xref: /third_party/mbedtls/library/ecp.c (revision a8e1175b)
1/*
2 *  Elliptic curves over GF(p): generic functions
3 *
4 *  Copyright The Mbed TLS Contributors
5 *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6 */
7
8/*
9 * References:
10 *
11 * SEC1 https://www.secg.org/sec1-v2.pdf
12 * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
13 * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
14 * RFC 4492 for the related TLS structures and constants
15 * - https://www.rfc-editor.org/rfc/rfc4492
16 * RFC 7748 for the Curve448 and Curve25519 curve definitions
17 * - https://www.rfc-editor.org/rfc/rfc7748
18 *
19 * [Curve25519] https://cr.yp.to/ecdh/curve25519-20060209.pdf
20 *
21 * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
22 *     for elliptic curve cryptosystems. In : Cryptographic Hardware and
23 *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
24 *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
25 *
26 * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
27 *     render ECC resistant against Side Channel Attacks. IACR Cryptology
28 *     ePrint Archive, 2004, vol. 2004, p. 342.
29 *     <http://eprint.iacr.org/2004/342.pdf>
30 */
31
32#include "common.h"
33
34/**
35 * \brief Function level alternative implementation.
36 *
37 * The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to
38 * replace certain functions in this module. The alternative implementations are
39 * typically hardware accelerators and need to activate the hardware before the
40 * computation starts and deactivate it after it finishes. The
41 * mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve
42 * this purpose.
43 *
44 * To preserve the correct functionality the following conditions must hold:
45 *
46 * - The alternative implementation must be activated by
47 *   mbedtls_internal_ecp_init() before any of the replaceable functions is
48 *   called.
49 * - mbedtls_internal_ecp_free() must \b only be called when the alternative
50 *   implementation is activated.
51 * - mbedtls_internal_ecp_init() must \b not be called when the alternative
52 *   implementation is activated.
53 * - Public functions must not return while the alternative implementation is
54 *   activated.
55 * - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and
56 *   before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) )
57 *   \endcode ensures that the alternative implementation supports the current
58 *   group.
59 */
60#if defined(MBEDTLS_ECP_INTERNAL_ALT)
61#endif
62
63#if defined(MBEDTLS_ECP_LIGHT)
64
65#include "mbedtls/ecp.h"
66#include "mbedtls/threading.h"
67#include "mbedtls/platform_util.h"
68#include "mbedtls/error.h"
69
70#include "bn_mul.h"
71#include "ecp_invasive.h"
72
73#include <string.h>
74
75#if !defined(MBEDTLS_ECP_ALT)
76
77#include "mbedtls/platform.h"
78
79#include "ecp_internal_alt.h"
80
81#if defined(MBEDTLS_SELF_TEST)
82/*
83 * Counts of point addition and doubling, and field multiplications.
84 * Used to test resistance of point multiplication to simple timing attacks.
85 */
86#if defined(MBEDTLS_ECP_C)
87static unsigned long add_count, dbl_count;
88#endif /* MBEDTLS_ECP_C */
89static unsigned long mul_count;
90#endif
91
92#if defined(MBEDTLS_ECP_RESTARTABLE)
93/*
94 * Maximum number of "basic operations" to be done in a row.
95 *
96 * Default value 0 means that ECC operations will not yield.
97 * Note that regardless of the value of ecp_max_ops, always at
98 * least one step is performed before yielding.
99 *
100 * Setting ecp_max_ops=1 can be suitable for testing purposes
101 * as it will interrupt computation at all possible points.
102 */
103static unsigned ecp_max_ops = 0;
104
105/*
106 * Set ecp_max_ops
107 */
108void mbedtls_ecp_set_max_ops(unsigned max_ops)
109{
110    ecp_max_ops = max_ops;
111}
112
113/*
114 * Check if restart is enabled
115 */
116int mbedtls_ecp_restart_is_enabled(void)
117{
118    return ecp_max_ops != 0;
119}
120
121/*
122 * Restart sub-context for ecp_mul_comb()
123 */
124struct mbedtls_ecp_restart_mul {
125    mbedtls_ecp_point R;    /* current intermediate result                  */
126    size_t i;               /* current index in various loops, 0 outside    */
127    mbedtls_ecp_point *T;   /* table for precomputed points                 */
128    unsigned char T_size;   /* number of points in table T                  */
129    enum {                  /* what were we doing last time we returned?    */
130        ecp_rsm_init = 0,       /* nothing so far, dummy initial state      */
131        ecp_rsm_pre_dbl,        /* precompute 2^n multiples                 */
132        ecp_rsm_pre_norm_dbl,   /* normalize precomputed 2^n multiples      */
133        ecp_rsm_pre_add,        /* precompute remaining points by adding    */
134        ecp_rsm_pre_norm_add,   /* normalize all precomputed points         */
135        ecp_rsm_comb_core,      /* ecp_mul_comb_core()                      */
136        ecp_rsm_final_norm,     /* do the final normalization               */
137    } state;
138};
139
140/*
141 * Init restart_mul sub-context
142 */
143static void ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx *ctx)
144{
145    mbedtls_ecp_point_init(&ctx->R);
146    ctx->i = 0;
147    ctx->T = NULL;
148    ctx->T_size = 0;
149    ctx->state = ecp_rsm_init;
150}
151
152/*
153 * Free the components of a restart_mul sub-context
154 */
155static void ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx *ctx)
156{
157    unsigned char i;
158
159    if (ctx == NULL) {
160        return;
161    }
162
163    mbedtls_ecp_point_free(&ctx->R);
164
165    if (ctx->T != NULL) {
166        for (i = 0; i < ctx->T_size; i++) {
167            mbedtls_ecp_point_free(ctx->T + i);
168        }
169        mbedtls_free(ctx->T);
170    }
171
172    ecp_restart_rsm_init(ctx);
173}
174
175/*
176 * Restart context for ecp_muladd()
177 */
178struct mbedtls_ecp_restart_muladd {
179    mbedtls_ecp_point mP;       /* mP value                             */
180    mbedtls_ecp_point R;        /* R intermediate result                */
181    enum {                      /* what should we do next?              */
182        ecp_rsma_mul1 = 0,      /* first multiplication                 */
183        ecp_rsma_mul2,          /* second multiplication                */
184        ecp_rsma_add,           /* addition                             */
185        ecp_rsma_norm,          /* normalization                        */
186    } state;
187};
188
189/*
190 * Init restart_muladd sub-context
191 */
192static void ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx *ctx)
193{
194    mbedtls_ecp_point_init(&ctx->mP);
195    mbedtls_ecp_point_init(&ctx->R);
196    ctx->state = ecp_rsma_mul1;
197}
198
199/*
200 * Free the components of a restart_muladd sub-context
201 */
202static void ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx *ctx)
203{
204    if (ctx == NULL) {
205        return;
206    }
207
208    mbedtls_ecp_point_free(&ctx->mP);
209    mbedtls_ecp_point_free(&ctx->R);
210
211    ecp_restart_ma_init(ctx);
212}
213
214/*
215 * Initialize a restart context
216 */
217void mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx *ctx)
218{
219    ctx->ops_done = 0;
220    ctx->depth = 0;
221    ctx->rsm = NULL;
222    ctx->ma = NULL;
223}
224
225/*
226 * Free the components of a restart context
227 */
228void mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx *ctx)
229{
230    if (ctx == NULL) {
231        return;
232    }
233
234    ecp_restart_rsm_free(ctx->rsm);
235    mbedtls_free(ctx->rsm);
236
237    ecp_restart_ma_free(ctx->ma);
238    mbedtls_free(ctx->ma);
239
240    mbedtls_ecp_restart_init(ctx);
241}
242
243/*
244 * Check if we can do the next step
245 */
246int mbedtls_ecp_check_budget(const mbedtls_ecp_group *grp,
247                             mbedtls_ecp_restart_ctx *rs_ctx,
248                             unsigned ops)
249{
250    if (rs_ctx != NULL && ecp_max_ops != 0) {
251        /* scale depending on curve size: the chosen reference is 256-bit,
252         * and multiplication is quadratic. Round to the closest integer. */
253        if (grp->pbits >= 512) {
254            ops *= 4;
255        } else if (grp->pbits >= 384) {
256            ops *= 2;
257        }
258
259        /* Avoid infinite loops: always allow first step.
260         * Because of that, however, it's not generally true
261         * that ops_done <= ecp_max_ops, so the check
262         * ops_done > ecp_max_ops below is mandatory. */
263        if ((rs_ctx->ops_done != 0) &&
264            (rs_ctx->ops_done > ecp_max_ops ||
265             ops > ecp_max_ops - rs_ctx->ops_done)) {
266            return MBEDTLS_ERR_ECP_IN_PROGRESS;
267        }
268
269        /* update running count */
270        rs_ctx->ops_done += ops;
271    }
272
273    return 0;
274}
275
276/* Call this when entering a function that needs its own sub-context */
277#define ECP_RS_ENTER(SUB)   do {                                      \
278        /* reset ops count for this call if top-level */                    \
279        if (rs_ctx != NULL && rs_ctx->depth++ == 0)                        \
280        rs_ctx->ops_done = 0;                                           \
281                                                                        \
282        /* set up our own sub-context if needed */                          \
283        if (mbedtls_ecp_restart_is_enabled() &&                             \
284            rs_ctx != NULL && rs_ctx->SUB == NULL)                         \
285        {                                                                   \
286            rs_ctx->SUB = mbedtls_calloc(1, sizeof(*rs_ctx->SUB));      \
287            if (rs_ctx->SUB == NULL)                                       \
288            return MBEDTLS_ERR_ECP_ALLOC_FAILED;                     \
289                                                                      \
290            ecp_restart_## SUB ##_init(rs_ctx->SUB);                      \
291        }                                                                   \
292} while (0)
293
294/* Call this when leaving a function that needs its own sub-context */
295#define ECP_RS_LEAVE(SUB)   do {                                      \
296        /* clear our sub-context when not in progress (done or error) */    \
297        if (rs_ctx != NULL && rs_ctx->SUB != NULL &&                        \
298            ret != MBEDTLS_ERR_ECP_IN_PROGRESS)                            \
299        {                                                                   \
300            ecp_restart_## SUB ##_free(rs_ctx->SUB);                      \
301            mbedtls_free(rs_ctx->SUB);                                    \
302            rs_ctx->SUB = NULL;                                             \
303        }                                                                   \
304                                                                        \
305        if (rs_ctx != NULL)                                                \
306        rs_ctx->depth--;                                                \
307} while (0)
308
309#else /* MBEDTLS_ECP_RESTARTABLE */
310
311#define ECP_RS_ENTER(sub)     (void) rs_ctx;
312#define ECP_RS_LEAVE(sub)     (void) rs_ctx;
313
314#endif /* MBEDTLS_ECP_RESTARTABLE */
315
316#if defined(MBEDTLS_ECP_C)
317static void mpi_init_many(mbedtls_mpi *arr, size_t size)
318{
319    while (size--) {
320        mbedtls_mpi_init(arr++);
321    }
322}
323
324static void mpi_free_many(mbedtls_mpi *arr, size_t size)
325{
326    while (size--) {
327        mbedtls_mpi_free(arr++);
328    }
329}
330#endif /* MBEDTLS_ECP_C */
331
332/*
333 * List of supported curves:
334 *  - internal ID
335 *  - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2, RFC 8446 sec. 4.2.7)
336 *  - size in bits
337 *  - readable name
338 *
339 * Curves are listed in order: largest curves first, and for a given size,
340 * fastest curves first.
341 *
342 * Reminder: update profiles in x509_crt.c and ssl_tls.c when adding a new curve!
343 */
344static const mbedtls_ecp_curve_info ecp_supported_curves[] =
345{
346#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
347    { MBEDTLS_ECP_DP_SECP521R1,    25,     521,    "secp521r1"         },
348#endif
349#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
350    { MBEDTLS_ECP_DP_BP512R1,      28,     512,    "brainpoolP512r1"   },
351#endif
352#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
353    { MBEDTLS_ECP_DP_SECP384R1,    24,     384,    "secp384r1"         },
354#endif
355#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
356    { MBEDTLS_ECP_DP_BP384R1,      27,     384,    "brainpoolP384r1"   },
357#endif
358#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
359    { MBEDTLS_ECP_DP_SECP256R1,    23,     256,    "secp256r1"         },
360#endif
361#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
362    { MBEDTLS_ECP_DP_SECP256K1,    22,     256,    "secp256k1"         },
363#endif
364#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
365    { MBEDTLS_ECP_DP_BP256R1,      26,     256,    "brainpoolP256r1"   },
366#endif
367#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
368    { MBEDTLS_ECP_DP_SECP224R1,    21,     224,    "secp224r1"         },
369#endif
370#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
371    { MBEDTLS_ECP_DP_SECP224K1,    20,     224,    "secp224k1"         },
372#endif
373#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
374    { MBEDTLS_ECP_DP_SECP192R1,    19,     192,    "secp192r1"         },
375#endif
376#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
377    { MBEDTLS_ECP_DP_SECP192K1,    18,     192,    "secp192k1"         },
378#endif
379#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
380    { MBEDTLS_ECP_DP_CURVE25519,   29,     256,    "x25519"            },
381#endif
382#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
383    { MBEDTLS_ECP_DP_CURVE448,     30,     448,    "x448"              },
384#endif
385    { MBEDTLS_ECP_DP_NONE,          0,     0,      NULL                },
386};
387
388#define ECP_NB_CURVES   sizeof(ecp_supported_curves) /    \
389    sizeof(ecp_supported_curves[0])
390
391static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
392
393/*
394 * List of supported curves and associated info
395 */
396const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list(void)
397{
398    return ecp_supported_curves;
399}
400
401/*
402 * List of supported curves, group ID only
403 */
404const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list(void)
405{
406    static int init_done = 0;
407
408    if (!init_done) {
409        size_t i = 0;
410        const mbedtls_ecp_curve_info *curve_info;
411
412        for (curve_info = mbedtls_ecp_curve_list();
413             curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
414             curve_info++) {
415            ecp_supported_grp_id[i++] = curve_info->grp_id;
416        }
417        ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
418
419        init_done = 1;
420    }
421
422    return ecp_supported_grp_id;
423}
424
425/*
426 * Get the curve info for the internal identifier
427 */
428const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)
429{
430    const mbedtls_ecp_curve_info *curve_info;
431
432    for (curve_info = mbedtls_ecp_curve_list();
433         curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
434         curve_info++) {
435        if (curve_info->grp_id == grp_id) {
436            return curve_info;
437        }
438    }
439
440    return NULL;
441}
442
443/*
444 * Get the curve info from the TLS identifier
445 */
446const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)
447{
448    const mbedtls_ecp_curve_info *curve_info;
449
450    for (curve_info = mbedtls_ecp_curve_list();
451         curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
452         curve_info++) {
453        if (curve_info->tls_id == tls_id) {
454            return curve_info;
455        }
456    }
457
458    return NULL;
459}
460
461/*
462 * Get the curve info from the name
463 */
464const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name(const char *name)
465{
466    const mbedtls_ecp_curve_info *curve_info;
467
468    if (name == NULL) {
469        return NULL;
470    }
471
472    for (curve_info = mbedtls_ecp_curve_list();
473         curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
474         curve_info++) {
475        if (strcmp(curve_info->name, name) == 0) {
476            return curve_info;
477        }
478    }
479
480    return NULL;
481}
482
483/*
484 * Get the type of a curve
485 */
486mbedtls_ecp_curve_type mbedtls_ecp_get_type(const mbedtls_ecp_group *grp)
487{
488    if (grp->G.X.p == NULL) {
489        return MBEDTLS_ECP_TYPE_NONE;
490    }
491
492    if (grp->G.Y.p == NULL) {
493        return MBEDTLS_ECP_TYPE_MONTGOMERY;
494    } else {
495        return MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS;
496    }
497}
498
499/*
500 * Initialize (the components of) a point
501 */
502void mbedtls_ecp_point_init(mbedtls_ecp_point *pt)
503{
504    mbedtls_mpi_init(&pt->X);
505    mbedtls_mpi_init(&pt->Y);
506    mbedtls_mpi_init(&pt->Z);
507}
508
509/*
510 * Initialize (the components of) a group
511 */
512void mbedtls_ecp_group_init(mbedtls_ecp_group *grp)
513{
514    grp->id = MBEDTLS_ECP_DP_NONE;
515    mbedtls_mpi_init(&grp->P);
516    mbedtls_mpi_init(&grp->A);
517    mbedtls_mpi_init(&grp->B);
518    mbedtls_ecp_point_init(&grp->G);
519    mbedtls_mpi_init(&grp->N);
520    grp->pbits = 0;
521    grp->nbits = 0;
522    grp->h = 0;
523    grp->modp = NULL;
524    grp->t_pre = NULL;
525    grp->t_post = NULL;
526    grp->t_data = NULL;
527    grp->T = NULL;
528    grp->T_size = 0;
529}
530
531/*
532 * Initialize (the components of) a key pair
533 */
534void mbedtls_ecp_keypair_init(mbedtls_ecp_keypair *key)
535{
536    mbedtls_ecp_group_init(&key->grp);
537    mbedtls_mpi_init(&key->d);
538    mbedtls_ecp_point_init(&key->Q);
539}
540
541/*
542 * Unallocate (the components of) a point
543 */
544void mbedtls_ecp_point_free(mbedtls_ecp_point *pt)
545{
546    if (pt == NULL) {
547        return;
548    }
549
550    mbedtls_mpi_free(&(pt->X));
551    mbedtls_mpi_free(&(pt->Y));
552    mbedtls_mpi_free(&(pt->Z));
553}
554
555/*
556 * Check that the comb table (grp->T) is static initialized.
557 */
558static int ecp_group_is_static_comb_table(const mbedtls_ecp_group *grp)
559{
560#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
561    return grp->T != NULL && grp->T_size == 0;
562#else
563    (void) grp;
564    return 0;
565#endif
566}
567
568/*
569 * Unallocate (the components of) a group
570 */
571void mbedtls_ecp_group_free(mbedtls_ecp_group *grp)
572{
573    size_t i;
574
575    if (grp == NULL) {
576        return;
577    }
578
579    if (grp->h != 1) {
580        mbedtls_mpi_free(&grp->A);
581        mbedtls_mpi_free(&grp->B);
582        mbedtls_ecp_point_free(&grp->G);
583
584#if !defined(MBEDTLS_ECP_WITH_MPI_UINT)
585        mbedtls_mpi_free(&grp->N);
586        mbedtls_mpi_free(&grp->P);
587#endif
588    }
589
590    if (!ecp_group_is_static_comb_table(grp) && grp->T != NULL) {
591        for (i = 0; i < grp->T_size; i++) {
592            mbedtls_ecp_point_free(&grp->T[i]);
593        }
594        mbedtls_free(grp->T);
595    }
596
597    mbedtls_platform_zeroize(grp, sizeof(mbedtls_ecp_group));
598}
599
600/*
601 * Unallocate (the components of) a key pair
602 */
603void mbedtls_ecp_keypair_free(mbedtls_ecp_keypair *key)
604{
605    if (key == NULL) {
606        return;
607    }
608
609    mbedtls_ecp_group_free(&key->grp);
610    mbedtls_mpi_free(&key->d);
611    mbedtls_ecp_point_free(&key->Q);
612}
613
614/*
615 * Copy the contents of a point
616 */
617int mbedtls_ecp_copy(mbedtls_ecp_point *P, const mbedtls_ecp_point *Q)
618{
619    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
620    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->X, &Q->X));
621    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Y, &Q->Y));
622    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Z, &Q->Z));
623
624cleanup:
625    return ret;
626}
627
628/*
629 * Copy the contents of a group object
630 */
631int mbedtls_ecp_group_copy(mbedtls_ecp_group *dst, const mbedtls_ecp_group *src)
632{
633    return mbedtls_ecp_group_load(dst, src->id);
634}
635
636/*
637 * Set point to zero
638 */
639int mbedtls_ecp_set_zero(mbedtls_ecp_point *pt)
640{
641    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
642    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->X, 1));
643    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Y, 1));
644    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 0));
645
646cleanup:
647    return ret;
648}
649
650/*
651 * Tell if a point is zero
652 */
653int mbedtls_ecp_is_zero(mbedtls_ecp_point *pt)
654{
655    return mbedtls_mpi_cmp_int(&pt->Z, 0) == 0;
656}
657
658/*
659 * Compare two points lazily
660 */
661int mbedtls_ecp_point_cmp(const mbedtls_ecp_point *P,
662                          const mbedtls_ecp_point *Q)
663{
664    if (mbedtls_mpi_cmp_mpi(&P->X, &Q->X) == 0 &&
665        mbedtls_mpi_cmp_mpi(&P->Y, &Q->Y) == 0 &&
666        mbedtls_mpi_cmp_mpi(&P->Z, &Q->Z) == 0) {
667        return 0;
668    }
669
670    return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
671}
672
673/*
674 * Import a non-zero point from ASCII strings
675 */
676int mbedtls_ecp_point_read_string(mbedtls_ecp_point *P, int radix,
677                                  const char *x, const char *y)
678{
679    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
680    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->X, radix, x));
681    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->Y, radix, y));
682    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&P->Z, 1));
683
684cleanup:
685    return ret;
686}
687
688/*
689 * Export a point into unsigned binary data (SEC1 2.3.3 and RFC7748)
690 */
691int mbedtls_ecp_point_write_binary(const mbedtls_ecp_group *grp,
692                                   const mbedtls_ecp_point *P,
693                                   int format, size_t *olen,
694                                   unsigned char *buf, size_t buflen)
695{
696    int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
697    size_t plen;
698    if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
699        format != MBEDTLS_ECP_PF_COMPRESSED) {
700        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
701    }
702
703    plen = mbedtls_mpi_size(&grp->P);
704
705#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
706    (void) format; /* Montgomery curves always use the same point format */
707    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
708        *olen = plen;
709        if (buflen < *olen) {
710            return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
711        }
712
713        MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&P->X, buf, plen));
714    }
715#endif
716#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
717    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
718        /*
719         * Common case: P == 0
720         */
721        if (mbedtls_mpi_cmp_int(&P->Z, 0) == 0) {
722            if (buflen < 1) {
723                return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
724            }
725
726            buf[0] = 0x00;
727            *olen = 1;
728
729            return 0;
730        }
731
732        if (format == MBEDTLS_ECP_PF_UNCOMPRESSED) {
733            *olen = 2 * plen + 1;
734
735            if (buflen < *olen) {
736                return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
737            }
738
739            buf[0] = 0x04;
740            MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
741            MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->Y, buf + 1 + plen, plen));
742        } else if (format == MBEDTLS_ECP_PF_COMPRESSED) {
743            *olen = plen + 1;
744
745            if (buflen < *olen) {
746                return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
747            }
748
749            buf[0] = 0x02 + mbedtls_mpi_get_bit(&P->Y, 0);
750            MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
751        }
752    }
753#endif
754
755cleanup:
756    return ret;
757}
758
759#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
760static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
761                                   const mbedtls_mpi *X,
762                                   mbedtls_mpi *Y,
763                                   int parity_bit);
764#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
765
766/*
767 * Import a point from unsigned binary data (SEC1 2.3.4 and RFC7748)
768 */
769int mbedtls_ecp_point_read_binary(const mbedtls_ecp_group *grp,
770                                  mbedtls_ecp_point *pt,
771                                  const unsigned char *buf, size_t ilen)
772{
773    int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
774    size_t plen;
775    if (ilen < 1) {
776        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
777    }
778
779    plen = mbedtls_mpi_size(&grp->P);
780
781#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
782    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
783        if (plen != ilen) {
784            return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
785        }
786
787        MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&pt->X, buf, plen));
788        mbedtls_mpi_free(&pt->Y);
789
790        if (grp->id == MBEDTLS_ECP_DP_CURVE25519) {
791            /* Set most significant bit to 0 as prescribed in RFC7748 §5 */
792            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&pt->X, plen * 8 - 1, 0));
793        }
794
795        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
796    }
797#endif
798#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
799    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
800        if (buf[0] == 0x00) {
801            if (ilen == 1) {
802                return mbedtls_ecp_set_zero(pt);
803            } else {
804                return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
805            }
806        }
807
808        if (ilen < 1 + plen) {
809            return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
810        }
811
812        MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&pt->X, buf + 1, plen));
813        MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
814
815        if (buf[0] == 0x04) {
816            /* format == MBEDTLS_ECP_PF_UNCOMPRESSED */
817            if (ilen != 1 + plen * 2) {
818                return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
819            }
820            return mbedtls_mpi_read_binary(&pt->Y, buf + 1 + plen, plen);
821        } else if (buf[0] == 0x02 || buf[0] == 0x03) {
822            /* format == MBEDTLS_ECP_PF_COMPRESSED */
823            if (ilen != 1 + plen) {
824                return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
825            }
826            return mbedtls_ecp_sw_derive_y(grp, &pt->X, &pt->Y,
827                                           (buf[0] & 1));
828        } else {
829            return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
830        }
831    }
832#endif
833
834cleanup:
835    return ret;
836}
837
838/*
839 * Import a point from a TLS ECPoint record (RFC 4492)
840 *      struct {
841 *          opaque point <1..2^8-1>;
842 *      } ECPoint;
843 */
844int mbedtls_ecp_tls_read_point(const mbedtls_ecp_group *grp,
845                               mbedtls_ecp_point *pt,
846                               const unsigned char **buf, size_t buf_len)
847{
848    unsigned char data_len;
849    const unsigned char *buf_start;
850    /*
851     * We must have at least two bytes (1 for length, at least one for data)
852     */
853    if (buf_len < 2) {
854        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
855    }
856
857    data_len = *(*buf)++;
858    if (data_len < 1 || data_len > buf_len - 1) {
859        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
860    }
861
862    /*
863     * Save buffer start for read_binary and update buf
864     */
865    buf_start = *buf;
866    *buf += data_len;
867
868    return mbedtls_ecp_point_read_binary(grp, pt, buf_start, data_len);
869}
870
871/*
872 * Export a point as a TLS ECPoint record (RFC 4492)
873 *      struct {
874 *          opaque point <1..2^8-1>;
875 *      } ECPoint;
876 */
877int mbedtls_ecp_tls_write_point(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
878                                int format, size_t *olen,
879                                unsigned char *buf, size_t blen)
880{
881    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
882    if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
883        format != MBEDTLS_ECP_PF_COMPRESSED) {
884        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
885    }
886
887    /*
888     * buffer length must be at least one, for our length byte
889     */
890    if (blen < 1) {
891        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
892    }
893
894    if ((ret = mbedtls_ecp_point_write_binary(grp, pt, format,
895                                              olen, buf + 1, blen - 1)) != 0) {
896        return ret;
897    }
898
899    /*
900     * write length to the first byte and update total length
901     */
902    buf[0] = (unsigned char) *olen;
903    ++*olen;
904
905    return 0;
906}
907
908/*
909 * Set a group from an ECParameters record (RFC 4492)
910 */
911int mbedtls_ecp_tls_read_group(mbedtls_ecp_group *grp,
912                               const unsigned char **buf, size_t len)
913{
914    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
915    mbedtls_ecp_group_id grp_id;
916    if ((ret = mbedtls_ecp_tls_read_group_id(&grp_id, buf, len)) != 0) {
917        return ret;
918    }
919
920    return mbedtls_ecp_group_load(grp, grp_id);
921}
922
923/*
924 * Read a group id from an ECParameters record (RFC 4492) and convert it to
925 * mbedtls_ecp_group_id.
926 */
927int mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id *grp,
928                                  const unsigned char **buf, size_t len)
929{
930    uint16_t tls_id;
931    const mbedtls_ecp_curve_info *curve_info;
932    /*
933     * We expect at least three bytes (see below)
934     */
935    if (len < 3) {
936        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
937    }
938
939    /*
940     * First byte is curve_type; only named_curve is handled
941     */
942    if (*(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE) {
943        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
944    }
945
946    /*
947     * Next two bytes are the namedcurve value
948     */
949    tls_id = MBEDTLS_GET_UINT16_BE(*buf, 0);
950    *buf += 2;
951
952    if ((curve_info = mbedtls_ecp_curve_info_from_tls_id(tls_id)) == NULL) {
953        return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
954    }
955
956    *grp = curve_info->grp_id;
957
958    return 0;
959}
960
961/*
962 * Write the ECParameters record corresponding to a group (RFC 4492)
963 */
964int mbedtls_ecp_tls_write_group(const mbedtls_ecp_group *grp, size_t *olen,
965                                unsigned char *buf, size_t blen)
966{
967    const mbedtls_ecp_curve_info *curve_info;
968    if ((curve_info = mbedtls_ecp_curve_info_from_grp_id(grp->id)) == NULL) {
969        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
970    }
971
972    /*
973     * We are going to write 3 bytes (see below)
974     */
975    *olen = 3;
976    if (blen < *olen) {
977        return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
978    }
979
980    /*
981     * First byte is curve_type, always named_curve
982     */
983    *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
984
985    /*
986     * Next two bytes are the namedcurve value
987     */
988    MBEDTLS_PUT_UINT16_BE(curve_info->tls_id, buf, 0);
989
990    return 0;
991}
992
993/*
994 * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
995 * See the documentation of struct mbedtls_ecp_group.
996 *
997 * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
998 */
999static int ecp_modp(mbedtls_mpi *N, const mbedtls_ecp_group *grp)
1000{
1001    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1002
1003    if (grp->modp == NULL) {
1004        return mbedtls_mpi_mod_mpi(N, N, &grp->P);
1005    }
1006
1007    /* N->s < 0 is a much faster test, which fails only if N is 0 */
1008    if ((N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) ||
1009        mbedtls_mpi_bitlen(N) > 2 * grp->pbits) {
1010        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1011    }
1012
1013    MBEDTLS_MPI_CHK(grp->modp(N));
1014
1015    /* N->s < 0 is a much faster test, which fails only if N is 0 */
1016    while (N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) {
1017        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &grp->P));
1018    }
1019
1020    while (mbedtls_mpi_cmp_mpi(N, &grp->P) >= 0) {
1021        /* we known P, N and the result are positive */
1022        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(N, N, &grp->P));
1023    }
1024
1025cleanup:
1026    return ret;
1027}
1028
1029/*
1030 * Fast mod-p functions expect their argument to be in the 0..p^2 range.
1031 *
1032 * In order to guarantee that, we need to ensure that operands of
1033 * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
1034 * bring the result back to this range.
1035 *
1036 * The following macros are shortcuts for doing that.
1037 */
1038
1039/*
1040 * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
1041 */
1042#if defined(MBEDTLS_SELF_TEST)
1043#define INC_MUL_COUNT   mul_count++;
1044#else
1045#define INC_MUL_COUNT
1046#endif
1047
1048#define MOD_MUL(N)                                                    \
1049    do                                                                  \
1050    {                                                                   \
1051        MBEDTLS_MPI_CHK(ecp_modp(&(N), grp));                       \
1052        INC_MUL_COUNT                                                   \
1053    } while (0)
1054
1055static inline int mbedtls_mpi_mul_mod(const mbedtls_ecp_group *grp,
1056                                      mbedtls_mpi *X,
1057                                      const mbedtls_mpi *A,
1058                                      const mbedtls_mpi *B)
1059{
1060    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1061    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(X, A, B));
1062    MOD_MUL(*X);
1063cleanup:
1064    return ret;
1065}
1066
1067/*
1068 * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
1069 * N->s < 0 is a very fast test, which fails only if N is 0
1070 */
1071#define MOD_SUB(N)                                                          \
1072    do {                                                                      \
1073        while ((N)->s < 0 && mbedtls_mpi_cmp_int((N), 0) != 0)             \
1074        MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi((N), (N), &grp->P));      \
1075    } while (0)
1076
1077MBEDTLS_MAYBE_UNUSED
1078static inline int mbedtls_mpi_sub_mod(const mbedtls_ecp_group *grp,
1079                                      mbedtls_mpi *X,
1080                                      const mbedtls_mpi *A,
1081                                      const mbedtls_mpi *B)
1082{
1083    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1084    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(X, A, B));
1085    MOD_SUB(X);
1086cleanup:
1087    return ret;
1088}
1089
1090/*
1091 * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
1092 * We known P, N and the result are positive, so sub_abs is correct, and
1093 * a bit faster.
1094 */
1095#define MOD_ADD(N)                                                   \
1096    while (mbedtls_mpi_cmp_mpi((N), &grp->P) >= 0)                  \
1097    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs((N), (N), &grp->P))
1098
1099static inline int mbedtls_mpi_add_mod(const mbedtls_ecp_group *grp,
1100                                      mbedtls_mpi *X,
1101                                      const mbedtls_mpi *A,
1102                                      const mbedtls_mpi *B)
1103{
1104    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1105    MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(X, A, B));
1106    MOD_ADD(X);
1107cleanup:
1108    return ret;
1109}
1110
1111MBEDTLS_MAYBE_UNUSED
1112static inline int mbedtls_mpi_mul_int_mod(const mbedtls_ecp_group *grp,
1113                                          mbedtls_mpi *X,
1114                                          const mbedtls_mpi *A,
1115                                          mbedtls_mpi_uint c)
1116{
1117    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1118
1119    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(X, A, c));
1120    MOD_ADD(X);
1121cleanup:
1122    return ret;
1123}
1124
1125MBEDTLS_MAYBE_UNUSED
1126static inline int mbedtls_mpi_sub_int_mod(const mbedtls_ecp_group *grp,
1127                                          mbedtls_mpi *X,
1128                                          const mbedtls_mpi *A,
1129                                          mbedtls_mpi_uint c)
1130{
1131    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1132
1133    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(X, A, c));
1134    MOD_SUB(X);
1135cleanup:
1136    return ret;
1137}
1138
1139#define MPI_ECP_SUB_INT(X, A, c)             \
1140    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int_mod(grp, X, A, c))
1141
1142MBEDTLS_MAYBE_UNUSED
1143static inline int mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group *grp,
1144                                          mbedtls_mpi *X,
1145                                          size_t count)
1146{
1147    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1148    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, count));
1149    MOD_ADD(X);
1150cleanup:
1151    return ret;
1152}
1153
1154/*
1155 * Macro wrappers around ECP modular arithmetic
1156 *
1157 * Currently, these wrappers are defined via the bignum module.
1158 */
1159
1160#define MPI_ECP_ADD(X, A, B)                                                  \
1161    MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, X, A, B))
1162
1163#define MPI_ECP_SUB(X, A, B)                                                  \
1164    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, X, A, B))
1165
1166#define MPI_ECP_MUL(X, A, B)                                                  \
1167    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, B))
1168
1169#define MPI_ECP_SQR(X, A)                                                     \
1170    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, A))
1171
1172#define MPI_ECP_MUL_INT(X, A, c)                                              \
1173    MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int_mod(grp, X, A, c))
1174
1175#define MPI_ECP_INV(dst, src)                                                 \
1176    MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod((dst), (src), &grp->P))
1177
1178#define MPI_ECP_MOV(X, A)                                                     \
1179    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A))
1180
1181#define MPI_ECP_SHIFT_L(X, count)                                             \
1182    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, X, count))
1183
1184#define MPI_ECP_LSET(X, c)                                                    \
1185    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, c))
1186
1187#define MPI_ECP_CMP_INT(X, c)                                                 \
1188    mbedtls_mpi_cmp_int(X, c)
1189
1190#define MPI_ECP_CMP(X, Y)                                                     \
1191    mbedtls_mpi_cmp_mpi(X, Y)
1192
1193/* Needs f_rng, p_rng to be defined. */
1194#define MPI_ECP_RAND(X)                                                       \
1195    MBEDTLS_MPI_CHK(mbedtls_mpi_random((X), 2, &grp->P, f_rng, p_rng))
1196
1197/* Conditional negation
1198 * Needs grp and a temporary MPI tmp to be defined. */
1199#define MPI_ECP_COND_NEG(X, cond)                                        \
1200    do                                                                     \
1201    {                                                                      \
1202        unsigned char nonzero = mbedtls_mpi_cmp_int((X), 0) != 0;        \
1203        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&tmp, &grp->P, (X)));      \
1204        MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), &tmp,          \
1205                                                     nonzero & cond)); \
1206    } while (0)
1207
1208#define MPI_ECP_NEG(X) MPI_ECP_COND_NEG((X), 1)
1209
1210#define MPI_ECP_VALID(X)                      \
1211    ((X)->p != NULL)
1212
1213#define MPI_ECP_COND_ASSIGN(X, Y, cond)       \
1214    MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), (Y), (cond)))
1215
1216#define MPI_ECP_COND_SWAP(X, Y, cond)       \
1217    MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap((X), (Y), (cond)))
1218
1219#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1220
1221/*
1222 * Computes the right-hand side of the Short Weierstrass equation
1223 * RHS = X^3 + A X + B
1224 */
1225static int ecp_sw_rhs(const mbedtls_ecp_group *grp,
1226                      mbedtls_mpi *rhs,
1227                      const mbedtls_mpi *X)
1228{
1229    int ret;
1230
1231    /* Compute X^3 + A X + B as X (X^2 + A) + B */
1232    MPI_ECP_SQR(rhs, X);
1233
1234    /* Special case for A = -3 */
1235    if (mbedtls_ecp_group_a_is_minus_3(grp)) {
1236        MPI_ECP_SUB_INT(rhs, rhs, 3);
1237    } else {
1238        MPI_ECP_ADD(rhs, rhs, &grp->A);
1239    }
1240
1241    MPI_ECP_MUL(rhs, rhs, X);
1242    MPI_ECP_ADD(rhs, rhs, &grp->B);
1243
1244cleanup:
1245    return ret;
1246}
1247
1248/*
1249 * Derive Y from X and a parity bit
1250 */
1251static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
1252                                   const mbedtls_mpi *X,
1253                                   mbedtls_mpi *Y,
1254                                   int parity_bit)
1255{
1256    /* w = y^2 = x^3 + ax + b
1257     * y = sqrt(w) = w^((p+1)/4) mod p   (for prime p where p = 3 mod 4)
1258     *
1259     * Note: this method for extracting square root does not validate that w
1260     * was indeed a square so this function will return garbage in Y if X
1261     * does not correspond to a point on the curve.
1262     */
1263
1264    /* Check prerequisite p = 3 mod 4 */
1265    if (mbedtls_mpi_get_bit(&grp->P, 0) != 1 ||
1266        mbedtls_mpi_get_bit(&grp->P, 1) != 1) {
1267        return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1268    }
1269
1270    int ret;
1271    mbedtls_mpi exp;
1272    mbedtls_mpi_init(&exp);
1273
1274    /* use Y to store intermediate result, actually w above */
1275    MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, Y, X));
1276
1277    /* w = y^2 */ /* Y contains y^2 intermediate result */
1278    /* exp = ((p+1)/4) */
1279    MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&exp, &grp->P, 1));
1280    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&exp, 2));
1281    /* sqrt(w) = w^((p+1)/4) mod p   (for prime p where p = 3 mod 4) */
1282    MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(Y, Y /*y^2*/, &exp, &grp->P, NULL));
1283
1284    /* check parity bit match or else invert Y */
1285    /* This quick inversion implementation is valid because Y != 0 for all
1286     * Short Weierstrass curves supported by mbedtls, as each supported curve
1287     * has an order that is a large prime, so each supported curve does not
1288     * have any point of order 2, and a point with Y == 0 would be of order 2 */
1289    if (mbedtls_mpi_get_bit(Y, 0) != parity_bit) {
1290        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Y, &grp->P, Y));
1291    }
1292
1293cleanup:
1294
1295    mbedtls_mpi_free(&exp);
1296    return ret;
1297}
1298#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
1299
1300#if defined(MBEDTLS_ECP_C)
1301#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
1302/*
1303 * For curves in short Weierstrass form, we do all the internal operations in
1304 * Jacobian coordinates.
1305 *
1306 * For multiplication, we'll use a comb method with countermeasures against
1307 * SPA, hence timing attacks.
1308 */
1309
1310/*
1311 * Normalize jacobian coordinates so that Z == 0 || Z == 1  (GECC 3.2.1)
1312 * Cost: 1N := 1I + 3M + 1S
1313 */
1314static int ecp_normalize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt)
1315{
1316    if (MPI_ECP_CMP_INT(&pt->Z, 0) == 0) {
1317        return 0;
1318    }
1319
1320#if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1321    if (mbedtls_internal_ecp_grp_capable(grp)) {
1322        return mbedtls_internal_ecp_normalize_jac(grp, pt);
1323    }
1324#endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */
1325
1326#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
1327    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1328#else
1329    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1330    mbedtls_mpi T;
1331    mbedtls_mpi_init(&T);
1332
1333    MPI_ECP_INV(&T,       &pt->Z);            /* T   <-          1 / Z   */
1334    MPI_ECP_MUL(&pt->Y,   &pt->Y,     &T);    /* Y'  <- Y*T    = Y / Z   */
1335    MPI_ECP_SQR(&T,       &T);                /* T   <- T^2    = 1 / Z^2 */
1336    MPI_ECP_MUL(&pt->X,   &pt->X,     &T);    /* X   <- X  * T = X / Z^2 */
1337    MPI_ECP_MUL(&pt->Y,   &pt->Y,     &T);    /* Y'' <- Y' * T = Y / Z^3 */
1338
1339    MPI_ECP_LSET(&pt->Z, 1);
1340
1341cleanup:
1342
1343    mbedtls_mpi_free(&T);
1344
1345    return ret;
1346#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) */
1347}
1348
1349/*
1350 * Normalize jacobian coordinates of an array of (pointers to) points,
1351 * using Montgomery's trick to perform only one inversion mod P.
1352 * (See for example Cohen's "A Course in Computational Algebraic Number
1353 * Theory", Algorithm 10.3.4.)
1354 *
1355 * Warning: fails (returning an error) if one of the points is zero!
1356 * This should never happen, see choice of w in ecp_mul_comb().
1357 *
1358 * Cost: 1N(t) := 1I + (6t - 3)M + 1S
1359 */
1360static int ecp_normalize_jac_many(const mbedtls_ecp_group *grp,
1361                                  mbedtls_ecp_point *T[], size_t T_size)
1362{
1363    if (T_size < 2) {
1364        return ecp_normalize_jac(grp, *T);
1365    }
1366
1367#if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1368    if (mbedtls_internal_ecp_grp_capable(grp)) {
1369        return mbedtls_internal_ecp_normalize_jac_many(grp, T, T_size);
1370    }
1371#endif
1372
1373#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
1374    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1375#else
1376    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1377    size_t i;
1378    mbedtls_mpi *c, t;
1379
1380    if ((c = mbedtls_calloc(T_size, sizeof(mbedtls_mpi))) == NULL) {
1381        return MBEDTLS_ERR_ECP_ALLOC_FAILED;
1382    }
1383
1384    mbedtls_mpi_init(&t);
1385
1386    mpi_init_many(c, T_size);
1387    /*
1388     * c[i] = Z_0 * ... * Z_i,   i = 0,..,n := T_size-1
1389     */
1390    MPI_ECP_MOV(&c[0], &T[0]->Z);
1391    for (i = 1; i < T_size; i++) {
1392        MPI_ECP_MUL(&c[i], &c[i-1], &T[i]->Z);
1393    }
1394
1395    /*
1396     * c[n] = 1 / (Z_0 * ... * Z_n) mod P
1397     */
1398    MPI_ECP_INV(&c[T_size-1], &c[T_size-1]);
1399
1400    for (i = T_size - 1;; i--) {
1401        /* At the start of iteration i (note that i decrements), we have
1402         * - c[j] = Z_0 * .... * Z_j        for j  < i,
1403         * - c[j] = 1 / (Z_0 * .... * Z_j)  for j == i,
1404         *
1405         * This is maintained via
1406         * - c[i-1] <- c[i] * Z_i
1407         *
1408         * We also derive 1/Z_i = c[i] * c[i-1] for i>0 and use that
1409         * to do the actual normalization. For i==0, we already have
1410         * c[0] = 1 / Z_0.
1411         */
1412
1413        if (i > 0) {
1414            /* Compute 1/Z_i and establish invariant for the next iteration. */
1415            MPI_ECP_MUL(&t,      &c[i], &c[i-1]);
1416            MPI_ECP_MUL(&c[i-1], &c[i], &T[i]->Z);
1417        } else {
1418            MPI_ECP_MOV(&t, &c[0]);
1419        }
1420
1421        /* Now t holds 1 / Z_i; normalize as in ecp_normalize_jac() */
1422        MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
1423        MPI_ECP_SQR(&t,       &t);
1424        MPI_ECP_MUL(&T[i]->X, &T[i]->X, &t);
1425        MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
1426
1427        /*
1428         * Post-precessing: reclaim some memory by shrinking coordinates
1429         * - not storing Z (always 1)
1430         * - shrinking other coordinates, but still keeping the same number of
1431         *   limbs as P, as otherwise it will too likely be regrown too fast.
1432         */
1433        MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->X, grp->P.n));
1434        MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->Y, grp->P.n));
1435
1436        MPI_ECP_LSET(&T[i]->Z, 1);
1437
1438        if (i == 0) {
1439            break;
1440        }
1441    }
1442
1443cleanup:
1444
1445    mbedtls_mpi_free(&t);
1446    mpi_free_many(c, T_size);
1447    mbedtls_free(c);
1448
1449    return ret;
1450#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) */
1451}
1452
1453/*
1454 * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
1455 * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
1456 */
1457static int ecp_safe_invert_jac(const mbedtls_ecp_group *grp,
1458                               mbedtls_ecp_point *Q,
1459                               unsigned char inv)
1460{
1461    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1462    mbedtls_mpi tmp;
1463    mbedtls_mpi_init(&tmp);
1464
1465    MPI_ECP_COND_NEG(&Q->Y, inv);
1466
1467cleanup:
1468    mbedtls_mpi_free(&tmp);
1469    return ret;
1470}
1471
1472/*
1473 * Point doubling R = 2 P, Jacobian coordinates
1474 *
1475 * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
1476 *
1477 * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
1478 * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
1479 *
1480 * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
1481 *
1482 * Cost: 1D := 3M + 4S          (A ==  0)
1483 *             4M + 4S          (A == -3)
1484 *             3M + 6S + 1a     otherwise
1485 */
1486static int ecp_double_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1487                          const mbedtls_ecp_point *P,
1488                          mbedtls_mpi tmp[4])
1489{
1490#if defined(MBEDTLS_SELF_TEST)
1491    dbl_count++;
1492#endif
1493
1494#if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1495    if (mbedtls_internal_ecp_grp_capable(grp)) {
1496        return mbedtls_internal_ecp_double_jac(grp, R, P);
1497    }
1498#endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */
1499
1500#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
1501    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1502#else
1503    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1504
1505    /* Special case for A = -3 */
1506    if (mbedtls_ecp_group_a_is_minus_3(grp)) {
1507        /* tmp[0] <- M = 3(X + Z^2)(X - Z^2) */
1508        MPI_ECP_SQR(&tmp[1],  &P->Z);
1509        MPI_ECP_ADD(&tmp[2],  &P->X,  &tmp[1]);
1510        MPI_ECP_SUB(&tmp[3],  &P->X,  &tmp[1]);
1511        MPI_ECP_MUL(&tmp[1],  &tmp[2],     &tmp[3]);
1512        MPI_ECP_MUL_INT(&tmp[0],  &tmp[1],     3);
1513    } else {
1514        /* tmp[0] <- M = 3.X^2 + A.Z^4 */
1515        MPI_ECP_SQR(&tmp[1],  &P->X);
1516        MPI_ECP_MUL_INT(&tmp[0],  &tmp[1],  3);
1517
1518        /* Optimize away for "koblitz" curves with A = 0 */
1519        if (MPI_ECP_CMP_INT(&grp->A, 0) != 0) {
1520            /* M += A.Z^4 */
1521            MPI_ECP_SQR(&tmp[1],  &P->Z);
1522            MPI_ECP_SQR(&tmp[2],  &tmp[1]);
1523            MPI_ECP_MUL(&tmp[1],  &tmp[2],     &grp->A);
1524            MPI_ECP_ADD(&tmp[0],  &tmp[0],     &tmp[1]);
1525        }
1526    }
1527
1528    /* tmp[1] <- S = 4.X.Y^2 */
1529    MPI_ECP_SQR(&tmp[2],  &P->Y);
1530    MPI_ECP_SHIFT_L(&tmp[2],  1);
1531    MPI_ECP_MUL(&tmp[1],  &P->X, &tmp[2]);
1532    MPI_ECP_SHIFT_L(&tmp[1],  1);
1533
1534    /* tmp[3] <- U = 8.Y^4 */
1535    MPI_ECP_SQR(&tmp[3],  &tmp[2]);
1536    MPI_ECP_SHIFT_L(&tmp[3],  1);
1537
1538    /* tmp[2] <- T = M^2 - 2.S */
1539    MPI_ECP_SQR(&tmp[2],  &tmp[0]);
1540    MPI_ECP_SUB(&tmp[2],  &tmp[2], &tmp[1]);
1541    MPI_ECP_SUB(&tmp[2],  &tmp[2], &tmp[1]);
1542
1543    /* tmp[1] <- S = M(S - T) - U */
1544    MPI_ECP_SUB(&tmp[1],  &tmp[1],     &tmp[2]);
1545    MPI_ECP_MUL(&tmp[1],  &tmp[1],     &tmp[0]);
1546    MPI_ECP_SUB(&tmp[1],  &tmp[1],     &tmp[3]);
1547
1548    /* tmp[3] <- U = 2.Y.Z */
1549    MPI_ECP_MUL(&tmp[3],  &P->Y,  &P->Z);
1550    MPI_ECP_SHIFT_L(&tmp[3],  1);
1551
1552    /* Store results */
1553    MPI_ECP_MOV(&R->X, &tmp[2]);
1554    MPI_ECP_MOV(&R->Y, &tmp[1]);
1555    MPI_ECP_MOV(&R->Z, &tmp[3]);
1556
1557cleanup:
1558
1559    return ret;
1560#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) */
1561}
1562
1563/*
1564 * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
1565 *
1566 * The coordinates of Q must be normalized (= affine),
1567 * but those of P don't need to. R is not normalized.
1568 *
1569 * P,Q,R may alias, but only at the level of EC points: they must be either
1570 * equal as pointers, or disjoint (including the coordinate data buffers).
1571 * Fine-grained aliasing at the level of coordinates is not supported.
1572 *
1573 * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
1574 * None of these cases can happen as intermediate step in ecp_mul_comb():
1575 * - at each step, P, Q and R are multiples of the base point, the factor
1576 *   being less than its order, so none of them is zero;
1577 * - Q is an odd multiple of the base point, P an even multiple,
1578 *   due to the choice of precomputed points in the modified comb method.
1579 * So branches for these cases do not leak secret information.
1580 *
1581 * Cost: 1A := 8M + 3S
1582 */
1583static int ecp_add_mixed(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
1584                         const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
1585                         mbedtls_mpi tmp[4])
1586{
1587#if defined(MBEDTLS_SELF_TEST)
1588    add_count++;
1589#endif
1590
1591#if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1592    if (mbedtls_internal_ecp_grp_capable(grp)) {
1593        return mbedtls_internal_ecp_add_mixed(grp, R, P, Q);
1594    }
1595#endif /* MBEDTLS_ECP_ADD_MIXED_ALT */
1596
1597#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_ADD_MIXED_ALT)
1598    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1599#else
1600    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1601
1602    /* NOTE: Aliasing between input and output is allowed, so one has to make
1603     *       sure that at the point X,Y,Z are written, {P,Q}->{X,Y,Z} are no
1604     *       longer read from. */
1605    mbedtls_mpi * const X = &R->X;
1606    mbedtls_mpi * const Y = &R->Y;
1607    mbedtls_mpi * const Z = &R->Z;
1608
1609    if (!MPI_ECP_VALID(&Q->Z)) {
1610        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1611    }
1612
1613    /*
1614     * Trivial cases: P == 0 or Q == 0 (case 1)
1615     */
1616    if (MPI_ECP_CMP_INT(&P->Z, 0) == 0) {
1617        return mbedtls_ecp_copy(R, Q);
1618    }
1619
1620    if (MPI_ECP_CMP_INT(&Q->Z, 0) == 0) {
1621        return mbedtls_ecp_copy(R, P);
1622    }
1623
1624    /*
1625     * Make sure Q coordinates are normalized
1626     */
1627    if (MPI_ECP_CMP_INT(&Q->Z, 1) != 0) {
1628        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
1629    }
1630
1631    MPI_ECP_SQR(&tmp[0], &P->Z);
1632    MPI_ECP_MUL(&tmp[1], &tmp[0], &P->Z);
1633    MPI_ECP_MUL(&tmp[0], &tmp[0], &Q->X);
1634    MPI_ECP_MUL(&tmp[1], &tmp[1], &Q->Y);
1635    MPI_ECP_SUB(&tmp[0], &tmp[0], &P->X);
1636    MPI_ECP_SUB(&tmp[1], &tmp[1], &P->Y);
1637
1638    /* Special cases (2) and (3) */
1639    if (MPI_ECP_CMP_INT(&tmp[0], 0) == 0) {
1640        if (MPI_ECP_CMP_INT(&tmp[1], 0) == 0) {
1641            ret = ecp_double_jac(grp, R, P, tmp);
1642            goto cleanup;
1643        } else {
1644            ret = mbedtls_ecp_set_zero(R);
1645            goto cleanup;
1646        }
1647    }
1648
1649    /* {P,Q}->Z no longer used, so OK to write to Z even if there's aliasing. */
1650    MPI_ECP_MUL(Z,        &P->Z,    &tmp[0]);
1651    MPI_ECP_SQR(&tmp[2],  &tmp[0]);
1652    MPI_ECP_MUL(&tmp[3],  &tmp[2],  &tmp[0]);
1653    MPI_ECP_MUL(&tmp[2],  &tmp[2],  &P->X);
1654
1655    MPI_ECP_MOV(&tmp[0], &tmp[2]);
1656    MPI_ECP_SHIFT_L(&tmp[0], 1);
1657
1658    /* {P,Q}->X no longer used, so OK to write to X even if there's aliasing. */
1659    MPI_ECP_SQR(X,        &tmp[1]);
1660    MPI_ECP_SUB(X,        X,        &tmp[0]);
1661    MPI_ECP_SUB(X,        X,        &tmp[3]);
1662    MPI_ECP_SUB(&tmp[2],  &tmp[2],  X);
1663    MPI_ECP_MUL(&tmp[2],  &tmp[2],  &tmp[1]);
1664    MPI_ECP_MUL(&tmp[3],  &tmp[3],  &P->Y);
1665    /* {P,Q}->Y no longer used, so OK to write to Y even if there's aliasing. */
1666    MPI_ECP_SUB(Y,     &tmp[2],     &tmp[3]);
1667
1668cleanup:
1669
1670    return ret;
1671#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_ADD_MIXED_ALT) */
1672}
1673
1674/*
1675 * Randomize jacobian coordinates:
1676 * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
1677 * This is sort of the reverse operation of ecp_normalize_jac().
1678 *
1679 * This countermeasure was first suggested in [2].
1680 */
1681static int ecp_randomize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
1682                             int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
1683{
1684#if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1685    if (mbedtls_internal_ecp_grp_capable(grp)) {
1686        return mbedtls_internal_ecp_randomize_jac(grp, pt, f_rng, p_rng);
1687    }
1688#endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */
1689
1690#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
1691    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
1692#else
1693    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1694    mbedtls_mpi l;
1695
1696    mbedtls_mpi_init(&l);
1697
1698    /* Generate l such that 1 < l < p */
1699    MPI_ECP_RAND(&l);
1700
1701    /* Z' = l * Z */
1702    MPI_ECP_MUL(&pt->Z,   &pt->Z,     &l);
1703
1704    /* Y' = l * Y */
1705    MPI_ECP_MUL(&pt->Y,   &pt->Y,     &l);
1706
1707    /* X' = l^2 * X */
1708    MPI_ECP_SQR(&l,       &l);
1709    MPI_ECP_MUL(&pt->X,   &pt->X,     &l);
1710
1711    /* Y'' = l^2 * Y' = l^3 * Y */
1712    MPI_ECP_MUL(&pt->Y,   &pt->Y,     &l);
1713
1714cleanup:
1715    mbedtls_mpi_free(&l);
1716
1717    if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
1718        ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
1719    }
1720    return ret;
1721#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) */
1722}
1723
1724/*
1725 * Check and define parameters used by the comb method (see below for details)
1726 */
1727#if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
1728#error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
1729#endif
1730
1731/* d = ceil( n / w ) */
1732#define COMB_MAX_D      (MBEDTLS_ECP_MAX_BITS + 1) / 2
1733
1734/* number of precomputed points */
1735#define COMB_MAX_PRE    (1 << (MBEDTLS_ECP_WINDOW_SIZE - 1))
1736
1737/*
1738 * Compute the representation of m that will be used with our comb method.
1739 *
1740 * The basic comb method is described in GECC 3.44 for example. We use a
1741 * modified version that provides resistance to SPA by avoiding zero
1742 * digits in the representation as in [3]. We modify the method further by
1743 * requiring that all K_i be odd, which has the small cost that our
1744 * representation uses one more K_i, due to carries, but saves on the size of
1745 * the precomputed table.
1746 *
1747 * Summary of the comb method and its modifications:
1748 *
1749 * - The goal is to compute m*P for some w*d-bit integer m.
1750 *
1751 * - The basic comb method splits m into the w-bit integers
1752 *   x[0] .. x[d-1] where x[i] consists of the bits in m whose
1753 *   index has residue i modulo d, and computes m * P as
1754 *   S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where
1755 *   S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P.
1756 *
1757 * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by
1758 *    .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] ..,
1759 *   thereby successively converting it into a form where all summands
1760 *   are nonzero, at the cost of negative summands. This is the basic idea of [3].
1761 *
1762 * - More generally, even if x[i+1] != 0, we can first transform the sum as
1763 *   .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] ..,
1764 *   and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]].
1765 *   Performing and iterating this procedure for those x[i] that are even
1766 *   (keeping track of carry), we can transform the original sum into one of the form
1767 *   S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]]
1768 *   with all x'[i] odd. It is therefore only necessary to know S at odd indices,
1769 *   which is why we are only computing half of it in the first place in
1770 *   ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb.
1771 *
1772 * - For the sake of compactness, only the seven low-order bits of x[i]
1773 *   are used to represent its absolute value (K_i in the paper), and the msb
1774 *   of x[i] encodes the sign (s_i in the paper): it is set if and only if
1775 *   if s_i == -1;
1776 *
1777 * Calling conventions:
1778 * - x is an array of size d + 1
1779 * - w is the size, ie number of teeth, of the comb, and must be between
1780 *   2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
1781 * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
1782 *   (the result will be incorrect if these assumptions are not satisfied)
1783 */
1784static void ecp_comb_recode_core(unsigned char x[], size_t d,
1785                                 unsigned char w, const mbedtls_mpi *m)
1786{
1787    size_t i, j;
1788    unsigned char c, cc, adjust;
1789
1790    memset(x, 0, d+1);
1791
1792    /* First get the classical comb values (except for x_d = 0) */
1793    for (i = 0; i < d; i++) {
1794        for (j = 0; j < w; j++) {
1795            x[i] |= mbedtls_mpi_get_bit(m, i + d * j) << j;
1796        }
1797    }
1798
1799    /* Now make sure x_1 .. x_d are odd */
1800    c = 0;
1801    for (i = 1; i <= d; i++) {
1802        /* Add carry and update it */
1803        cc   = x[i] & c;
1804        x[i] = x[i] ^ c;
1805        c = cc;
1806
1807        /* Adjust if needed, avoiding branches */
1808        adjust = 1 - (x[i] & 0x01);
1809        c   |= x[i] & (x[i-1] * adjust);
1810        x[i] = x[i] ^ (x[i-1] * adjust);
1811        x[i-1] |= adjust << 7;
1812    }
1813}
1814
1815/*
1816 * Precompute points for the adapted comb method
1817 *
1818 * Assumption: T must be able to hold 2^{w - 1} elements.
1819 *
1820 * Operation: If i = i_{w-1} ... i_1 is the binary representation of i,
1821 *            sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P.
1822 *
1823 * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
1824 *
1825 * Note: Even comb values (those where P would be omitted from the
1826 *       sum defining T[i] above) are not needed in our adaption
1827 *       the comb method. See ecp_comb_recode_core().
1828 *
1829 * This function currently works in four steps:
1830 * (1) [dbl]      Computation of intermediate T[i] for 2-power values of i
1831 * (2) [norm_dbl] Normalization of coordinates of these T[i]
1832 * (3) [add]      Computation of all T[i]
1833 * (4) [norm_add] Normalization of all T[i]
1834 *
1835 * Step 1 can be interrupted but not the others; together with the final
1836 * coordinate normalization they are the largest steps done at once, depending
1837 * on the window size. Here are operation counts for P-256:
1838 *
1839 * step     (2)     (3)     (4)
1840 * w = 5    142     165     208
1841 * w = 4    136      77     160
1842 * w = 3    130      33     136
1843 * w = 2    124      11     124
1844 *
1845 * So if ECC operations are blocking for too long even with a low max_ops
1846 * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order
1847 * to minimize maximum blocking time.
1848 */
1849static int ecp_precompute_comb(const mbedtls_ecp_group *grp,
1850                               mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
1851                               unsigned char w, size_t d,
1852                               mbedtls_ecp_restart_ctx *rs_ctx)
1853{
1854    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1855    unsigned char i;
1856    size_t j = 0;
1857    const unsigned char T_size = 1U << (w - 1);
1858    mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1] = { NULL };
1859
1860    mbedtls_mpi tmp[4];
1861
1862    mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
1863
1864#if defined(MBEDTLS_ECP_RESTARTABLE)
1865    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1866        if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
1867            goto dbl;
1868        }
1869        if (rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl) {
1870            goto norm_dbl;
1871        }
1872        if (rs_ctx->rsm->state == ecp_rsm_pre_add) {
1873            goto add;
1874        }
1875        if (rs_ctx->rsm->state == ecp_rsm_pre_norm_add) {
1876            goto norm_add;
1877        }
1878    }
1879#else
1880    (void) rs_ctx;
1881#endif
1882
1883#if defined(MBEDTLS_ECP_RESTARTABLE)
1884    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1885        rs_ctx->rsm->state = ecp_rsm_pre_dbl;
1886
1887        /* initial state for the loop */
1888        rs_ctx->rsm->i = 0;
1889    }
1890
1891dbl:
1892#endif
1893    /*
1894     * Set T[0] = P and
1895     * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
1896     */
1897    MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&T[0], P));
1898
1899#if defined(MBEDTLS_ECP_RESTARTABLE)
1900    if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
1901        j = rs_ctx->rsm->i;
1902    } else
1903#endif
1904    j = 0;
1905
1906    for (; j < d * (w - 1); j++) {
1907        MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL);
1908
1909        i = 1U << (j / d);
1910        cur = T + i;
1911
1912        if (j % d == 0) {
1913            MBEDTLS_MPI_CHK(mbedtls_ecp_copy(cur, T + (i >> 1)));
1914        }
1915
1916        MBEDTLS_MPI_CHK(ecp_double_jac(grp, cur, cur, tmp));
1917    }
1918
1919#if defined(MBEDTLS_ECP_RESTARTABLE)
1920    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1921        rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl;
1922    }
1923
1924norm_dbl:
1925#endif
1926    /*
1927     * Normalize current elements in T to allow them to be used in
1928     * ecp_add_mixed() below, which requires one normalized input.
1929     *
1930     * As T has holes, use an auxiliary array of pointers to elements in T.
1931     *
1932     */
1933    j = 0;
1934    for (i = 1; i < T_size; i <<= 1) {
1935        TT[j++] = T + i;
1936    }
1937
1938    MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
1939
1940    MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
1941
1942#if defined(MBEDTLS_ECP_RESTARTABLE)
1943    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1944        rs_ctx->rsm->state = ecp_rsm_pre_add;
1945    }
1946
1947add:
1948#endif
1949    /*
1950     * Compute the remaining ones using the minimal number of additions
1951     * Be careful to update T[2^l] only after using it!
1952     */
1953    MBEDTLS_ECP_BUDGET((T_size - 1) * MBEDTLS_ECP_OPS_ADD);
1954
1955    for (i = 1; i < T_size; i <<= 1) {
1956        j = i;
1957        while (j--) {
1958            MBEDTLS_MPI_CHK(ecp_add_mixed(grp, &T[i + j], &T[j], &T[i], tmp));
1959        }
1960    }
1961
1962#if defined(MBEDTLS_ECP_RESTARTABLE)
1963    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
1964        rs_ctx->rsm->state = ecp_rsm_pre_norm_add;
1965    }
1966
1967norm_add:
1968#endif
1969    /*
1970     * Normalize final elements in T. Even though there are no holes now, we
1971     * still need the auxiliary array for homogeneity with the previous
1972     * call. Also, skip T[0] which is already normalised, being a copy of P.
1973     */
1974    for (j = 0; j + 1 < T_size; j++) {
1975        TT[j] = T + j + 1;
1976    }
1977
1978    MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
1979
1980    MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
1981
1982    /* Free Z coordinate (=1 after normalization) to save RAM.
1983     * This makes T[i] invalid as mbedtls_ecp_points, but this is OK
1984     * since from this point onwards, they are only accessed indirectly
1985     * via the getter function ecp_select_comb() which does set the
1986     * target's Z coordinate to 1. */
1987    for (i = 0; i < T_size; i++) {
1988        mbedtls_mpi_free(&T[i].Z);
1989    }
1990
1991cleanup:
1992
1993    mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
1994
1995#if defined(MBEDTLS_ECP_RESTARTABLE)
1996    if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
1997        ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
1998        if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
1999            rs_ctx->rsm->i = j;
2000        }
2001    }
2002#endif
2003
2004    return ret;
2005}
2006
2007/*
2008 * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
2009 *
2010 * See ecp_comb_recode_core() for background
2011 */
2012static int ecp_select_comb(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2013                           const mbedtls_ecp_point T[], unsigned char T_size,
2014                           unsigned char i)
2015{
2016    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2017    unsigned char ii, j;
2018
2019    /* Ignore the "sign" bit and scale down */
2020    ii =  (i & 0x7Fu) >> 1;
2021
2022    /* Read the whole table to thwart cache-based timing attacks */
2023    for (j = 0; j < T_size; j++) {
2024        MPI_ECP_COND_ASSIGN(&R->X, &T[j].X, j == ii);
2025        MPI_ECP_COND_ASSIGN(&R->Y, &T[j].Y, j == ii);
2026    }
2027
2028    /* Safely invert result if i is "negative" */
2029    MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, R, i >> 7));
2030
2031    MPI_ECP_LSET(&R->Z, 1);
2032
2033cleanup:
2034    return ret;
2035}
2036
2037/*
2038 * Core multiplication algorithm for the (modified) comb method.
2039 * This part is actually common with the basic comb method (GECC 3.44)
2040 *
2041 * Cost: d A + d D + 1 R
2042 */
2043static int ecp_mul_comb_core(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2044                             const mbedtls_ecp_point T[], unsigned char T_size,
2045                             const unsigned char x[], size_t d,
2046                             int (*f_rng)(void *, unsigned char *, size_t),
2047                             void *p_rng,
2048                             mbedtls_ecp_restart_ctx *rs_ctx)
2049{
2050    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2051    mbedtls_ecp_point Txi;
2052    mbedtls_mpi tmp[4];
2053    size_t i;
2054
2055    mbedtls_ecp_point_init(&Txi);
2056    mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2057
2058#if !defined(MBEDTLS_ECP_RESTARTABLE)
2059    (void) rs_ctx;
2060#endif
2061
2062#if defined(MBEDTLS_ECP_RESTARTABLE)
2063    if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
2064        rs_ctx->rsm->state != ecp_rsm_comb_core) {
2065        rs_ctx->rsm->i = 0;
2066        rs_ctx->rsm->state = ecp_rsm_comb_core;
2067    }
2068
2069    /* new 'if' instead of nested for the sake of the 'else' branch */
2070    if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
2071        /* restore current index (R already pointing to rs_ctx->rsm->R) */
2072        i = rs_ctx->rsm->i;
2073    } else
2074#endif
2075    {
2076        /* Start with a non-zero point and randomize its coordinates */
2077        i = d;
2078        MBEDTLS_MPI_CHK(ecp_select_comb(grp, R, T, T_size, x[i]));
2079        if (f_rng != 0) {
2080            MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, R, f_rng, p_rng));
2081        }
2082    }
2083
2084    while (i != 0) {
2085        MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD);
2086        --i;
2087
2088        MBEDTLS_MPI_CHK(ecp_double_jac(grp, R, R, tmp));
2089        MBEDTLS_MPI_CHK(ecp_select_comb(grp, &Txi, T, T_size, x[i]));
2090        MBEDTLS_MPI_CHK(ecp_add_mixed(grp, R, R, &Txi, tmp));
2091    }
2092
2093cleanup:
2094
2095    mbedtls_ecp_point_free(&Txi);
2096    mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2097
2098#if defined(MBEDTLS_ECP_RESTARTABLE)
2099    if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
2100        ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
2101        rs_ctx->rsm->i = i;
2102        /* no need to save R, already pointing to rs_ctx->rsm->R */
2103    }
2104#endif
2105
2106    return ret;
2107}
2108
2109/*
2110 * Recode the scalar to get constant-time comb multiplication
2111 *
2112 * As the actual scalar recoding needs an odd scalar as a starting point,
2113 * this wrapper ensures that by replacing m by N - m if necessary, and
2114 * informs the caller that the result of multiplication will be negated.
2115 *
2116 * This works because we only support large prime order for Short Weierstrass
2117 * curves, so N is always odd hence either m or N - m is.
2118 *
2119 * See ecp_comb_recode_core() for background.
2120 */
2121static int ecp_comb_recode_scalar(const mbedtls_ecp_group *grp,
2122                                  const mbedtls_mpi *m,
2123                                  unsigned char k[COMB_MAX_D + 1],
2124                                  size_t d,
2125                                  unsigned char w,
2126                                  unsigned char *parity_trick)
2127{
2128    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2129    mbedtls_mpi M, mm;
2130
2131    mbedtls_mpi_init(&M);
2132    mbedtls_mpi_init(&mm);
2133
2134    /* N is always odd (see above), just make extra sure */
2135    if (mbedtls_mpi_get_bit(&grp->N, 0) != 1) {
2136        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2137    }
2138
2139    /* do we need the parity trick? */
2140    *parity_trick = (mbedtls_mpi_get_bit(m, 0) == 0);
2141
2142    /* execute parity fix in constant time */
2143    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&M, m));
2144    MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&mm, &grp->N, m));
2145    MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&M, &mm, *parity_trick));
2146
2147    /* actual scalar recoding */
2148    ecp_comb_recode_core(k, d, w, &M);
2149
2150cleanup:
2151    mbedtls_mpi_free(&mm);
2152    mbedtls_mpi_free(&M);
2153
2154    return ret;
2155}
2156
2157/*
2158 * Perform comb multiplication (for short Weierstrass curves)
2159 * once the auxiliary table has been pre-computed.
2160 *
2161 * Scalar recoding may use a parity trick that makes us compute -m * P,
2162 * if that is the case we'll need to recover m * P at the end.
2163 */
2164static int ecp_mul_comb_after_precomp(const mbedtls_ecp_group *grp,
2165                                      mbedtls_ecp_point *R,
2166                                      const mbedtls_mpi *m,
2167                                      const mbedtls_ecp_point *T,
2168                                      unsigned char T_size,
2169                                      unsigned char w,
2170                                      size_t d,
2171                                      int (*f_rng)(void *, unsigned char *, size_t),
2172                                      void *p_rng,
2173                                      mbedtls_ecp_restart_ctx *rs_ctx)
2174{
2175    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2176    unsigned char parity_trick;
2177    unsigned char k[COMB_MAX_D + 1];
2178    mbedtls_ecp_point *RR = R;
2179
2180#if defined(MBEDTLS_ECP_RESTARTABLE)
2181    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2182        RR = &rs_ctx->rsm->R;
2183
2184        if (rs_ctx->rsm->state == ecp_rsm_final_norm) {
2185            goto final_norm;
2186        }
2187    }
2188#endif
2189
2190    MBEDTLS_MPI_CHK(ecp_comb_recode_scalar(grp, m, k, d, w,
2191                                           &parity_trick));
2192    MBEDTLS_MPI_CHK(ecp_mul_comb_core(grp, RR, T, T_size, k, d,
2193                                      f_rng, p_rng, rs_ctx));
2194    MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, RR, parity_trick));
2195
2196#if defined(MBEDTLS_ECP_RESTARTABLE)
2197    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2198        rs_ctx->rsm->state = ecp_rsm_final_norm;
2199    }
2200
2201final_norm:
2202    MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
2203#endif
2204    /*
2205     * Knowledge of the jacobian coordinates may leak the last few bits of the
2206     * scalar [1], and since our MPI implementation isn't constant-flow,
2207     * inversion (used for coordinate normalization) may leak the full value
2208     * of its input via side-channels [2].
2209     *
2210     * [1] https://eprint.iacr.org/2003/191
2211     * [2] https://eprint.iacr.org/2020/055
2212     *
2213     * Avoid the leak by randomizing coordinates before we normalize them.
2214     */
2215    if (f_rng != 0) {
2216        MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, RR, f_rng, p_rng));
2217    }
2218
2219    MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, RR));
2220
2221#if defined(MBEDTLS_ECP_RESTARTABLE)
2222    if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
2223        MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, RR));
2224    }
2225#endif
2226
2227cleanup:
2228    return ret;
2229}
2230
2231/*
2232 * Pick window size based on curve size and whether we optimize for base point
2233 */
2234static unsigned char ecp_pick_window_size(const mbedtls_ecp_group *grp,
2235                                          unsigned char p_eq_g)
2236{
2237    unsigned char w;
2238
2239    /*
2240     * Minimize the number of multiplications, that is minimize
2241     * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
2242     * (see costs of the various parts, with 1S = 1M)
2243     */
2244    w = grp->nbits >= 384 ? 5 : 4;
2245
2246    /*
2247     * If P == G, pre-compute a bit more, since this may be re-used later.
2248     * Just adding one avoids upping the cost of the first mul too much,
2249     * and the memory cost too.
2250     */
2251    if (p_eq_g) {
2252        w++;
2253    }
2254
2255    /*
2256     * If static comb table may not be used (!p_eq_g) or static comb table does
2257     * not exists, make sure w is within bounds.
2258     * (The last test is useful only for very small curves in the test suite.)
2259     *
2260     * The user reduces MBEDTLS_ECP_WINDOW_SIZE does not changes the size of
2261     * static comb table, because the size of static comb table is fixed when
2262     * it is generated.
2263     */
2264#if (MBEDTLS_ECP_WINDOW_SIZE < 6)
2265    if ((!p_eq_g || !ecp_group_is_static_comb_table(grp)) && w > MBEDTLS_ECP_WINDOW_SIZE) {
2266        w = MBEDTLS_ECP_WINDOW_SIZE;
2267    }
2268#endif
2269    if (w >= grp->nbits) {
2270        w = 2;
2271    }
2272
2273    return w;
2274}
2275
2276/*
2277 * Multiplication using the comb method - for curves in short Weierstrass form
2278 *
2279 * This function is mainly responsible for administrative work:
2280 * - managing the restart context if enabled
2281 * - managing the table of precomputed points (passed between the below two
2282 *   functions): allocation, computation, ownership transfer, freeing.
2283 *
2284 * It delegates the actual arithmetic work to:
2285 *      ecp_precompute_comb() and ecp_mul_comb_with_precomp()
2286 *
2287 * See comments on ecp_comb_recode_core() regarding the computation strategy.
2288 */
2289static int ecp_mul_comb(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2290                        const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2291                        int (*f_rng)(void *, unsigned char *, size_t),
2292                        void *p_rng,
2293                        mbedtls_ecp_restart_ctx *rs_ctx)
2294{
2295    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2296    unsigned char w, p_eq_g, i;
2297    size_t d;
2298    unsigned char T_size = 0, T_ok = 0;
2299    mbedtls_ecp_point *T = NULL;
2300
2301    ECP_RS_ENTER(rsm);
2302
2303    /* Is P the base point ? */
2304#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
2305    p_eq_g = (MPI_ECP_CMP(&P->Y, &grp->G.Y) == 0 &&
2306              MPI_ECP_CMP(&P->X, &grp->G.X) == 0);
2307#else
2308    p_eq_g = 0;
2309#endif
2310
2311    /* Pick window size and deduce related sizes */
2312    w = ecp_pick_window_size(grp, p_eq_g);
2313    T_size = 1U << (w - 1);
2314    d = (grp->nbits + w - 1) / w;
2315
2316    /* Pre-computed table: do we have it already for the base point? */
2317    if (p_eq_g && grp->T != NULL) {
2318        /* second pointer to the same table, will be deleted on exit */
2319        T = grp->T;
2320        T_ok = 1;
2321    } else
2322#if defined(MBEDTLS_ECP_RESTARTABLE)
2323    /* Pre-computed table: do we have one in progress? complete? */
2324    if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL) {
2325        /* transfer ownership of T from rsm to local function */
2326        T = rs_ctx->rsm->T;
2327        rs_ctx->rsm->T = NULL;
2328        rs_ctx->rsm->T_size = 0;
2329
2330        /* This effectively jumps to the call to mul_comb_after_precomp() */
2331        T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core;
2332    } else
2333#endif
2334    /* Allocate table if we didn't have any */
2335    {
2336        T = mbedtls_calloc(T_size, sizeof(mbedtls_ecp_point));
2337        if (T == NULL) {
2338            ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
2339            goto cleanup;
2340        }
2341
2342        for (i = 0; i < T_size; i++) {
2343            mbedtls_ecp_point_init(&T[i]);
2344        }
2345
2346        T_ok = 0;
2347    }
2348
2349    /* Compute table (or finish computing it) if not done already */
2350    if (!T_ok) {
2351        MBEDTLS_MPI_CHK(ecp_precompute_comb(grp, T, P, w, d, rs_ctx));
2352
2353        if (p_eq_g) {
2354            /* almost transfer ownership of T to the group, but keep a copy of
2355             * the pointer to use for calling the next function more easily */
2356            grp->T = T;
2357            grp->T_size = T_size;
2358        }
2359    }
2360
2361    /* Actual comb multiplication using precomputed points */
2362    MBEDTLS_MPI_CHK(ecp_mul_comb_after_precomp(grp, R, m,
2363                                               T, T_size, w, d,
2364                                               f_rng, p_rng, rs_ctx));
2365
2366cleanup:
2367
2368    /* does T belong to the group? */
2369    if (T == grp->T) {
2370        T = NULL;
2371    }
2372
2373    /* does T belong to the restart context? */
2374#if defined(MBEDTLS_ECP_RESTARTABLE)
2375    if (rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL) {
2376        /* transfer ownership of T from local function to rsm */
2377        rs_ctx->rsm->T_size = T_size;
2378        rs_ctx->rsm->T = T;
2379        T = NULL;
2380    }
2381#endif
2382
2383    /* did T belong to us? then let's destroy it! */
2384    if (T != NULL) {
2385        for (i = 0; i < T_size; i++) {
2386            mbedtls_ecp_point_free(&T[i]);
2387        }
2388        mbedtls_free(T);
2389    }
2390
2391    /* prevent caller from using invalid value */
2392    int should_free_R = (ret != 0);
2393#if defined(MBEDTLS_ECP_RESTARTABLE)
2394    /* don't free R while in progress in case R == P */
2395    if (ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
2396        should_free_R = 0;
2397    }
2398#endif
2399    if (should_free_R) {
2400        mbedtls_ecp_point_free(R);
2401    }
2402
2403    ECP_RS_LEAVE(rsm);
2404
2405    return ret;
2406}
2407
2408#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2409
2410#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2411/*
2412 * For Montgomery curves, we do all the internal arithmetic in projective
2413 * coordinates. Import/export of points uses only the x coordinates, which is
2414 * internally represented as X / Z.
2415 *
2416 * For scalar multiplication, we'll use a Montgomery ladder.
2417 */
2418
2419/*
2420 * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
2421 * Cost: 1M + 1I
2422 */
2423static int ecp_normalize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P)
2424{
2425#if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2426    if (mbedtls_internal_ecp_grp_capable(grp)) {
2427        return mbedtls_internal_ecp_normalize_mxz(grp, P);
2428    }
2429#endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */
2430
2431#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
2432    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2433#else
2434    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2435    MPI_ECP_INV(&P->Z, &P->Z);
2436    MPI_ECP_MUL(&P->X, &P->X, &P->Z);
2437    MPI_ECP_LSET(&P->Z, 1);
2438
2439cleanup:
2440    return ret;
2441#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) */
2442}
2443
2444/*
2445 * Randomize projective x/z coordinates:
2446 * (X, Z) -> (l X, l Z) for random l
2447 * This is sort of the reverse operation of ecp_normalize_mxz().
2448 *
2449 * This countermeasure was first suggested in [2].
2450 * Cost: 2M
2451 */
2452static int ecp_randomize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
2453                             int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
2454{
2455#if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2456    if (mbedtls_internal_ecp_grp_capable(grp)) {
2457        return mbedtls_internal_ecp_randomize_mxz(grp, P, f_rng, p_rng);
2458    }
2459#endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */
2460
2461#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
2462    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2463#else
2464    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2465    mbedtls_mpi l;
2466    mbedtls_mpi_init(&l);
2467
2468    /* Generate l such that 1 < l < p */
2469    MPI_ECP_RAND(&l);
2470
2471    MPI_ECP_MUL(&P->X, &P->X, &l);
2472    MPI_ECP_MUL(&P->Z, &P->Z, &l);
2473
2474cleanup:
2475    mbedtls_mpi_free(&l);
2476
2477    if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
2478        ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
2479    }
2480    return ret;
2481#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) */
2482}
2483
2484/*
2485 * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
2486 * for Montgomery curves in x/z coordinates.
2487 *
2488 * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
2489 * with
2490 * d =  X1
2491 * P = (X2, Z2)
2492 * Q = (X3, Z3)
2493 * R = (X4, Z4)
2494 * S = (X5, Z5)
2495 * and eliminating temporary variables tO, ..., t4.
2496 *
2497 * Cost: 5M + 4S
2498 */
2499static int ecp_double_add_mxz(const mbedtls_ecp_group *grp,
2500                              mbedtls_ecp_point *R, mbedtls_ecp_point *S,
2501                              const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
2502                              const mbedtls_mpi *d,
2503                              mbedtls_mpi T[4])
2504{
2505#if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2506    if (mbedtls_internal_ecp_grp_capable(grp)) {
2507        return mbedtls_internal_ecp_double_add_mxz(grp, R, S, P, Q, d);
2508    }
2509#endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */
2510
2511#if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
2512    return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2513#else
2514    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2515
2516    MPI_ECP_ADD(&T[0], &P->X,   &P->Z);   /* Pp := PX + PZ                    */
2517    MPI_ECP_SUB(&T[1], &P->X,   &P->Z);   /* Pm := PX - PZ                    */
2518    MPI_ECP_ADD(&T[2], &Q->X,   &Q->Z);   /* Qp := QX + XZ                    */
2519    MPI_ECP_SUB(&T[3], &Q->X,   &Q->Z);   /* Qm := QX - QZ                    */
2520    MPI_ECP_MUL(&T[3], &T[3],   &T[0]);   /* Qm * Pp                          */
2521    MPI_ECP_MUL(&T[2], &T[2],   &T[1]);   /* Qp * Pm                          */
2522    MPI_ECP_SQR(&T[0], &T[0]);            /* Pp^2                             */
2523    MPI_ECP_SQR(&T[1], &T[1]);            /* Pm^2                             */
2524    MPI_ECP_MUL(&R->X, &T[0],   &T[1]);   /* Pp^2 * Pm^2                      */
2525    MPI_ECP_SUB(&T[0], &T[0],   &T[1]);   /* Pp^2 - Pm^2                      */
2526    MPI_ECP_MUL(&R->Z, &grp->A, &T[0]);   /* A * (Pp^2 - Pm^2)                */
2527    MPI_ECP_ADD(&R->Z, &T[1],   &R->Z);   /* [ A * (Pp^2-Pm^2) ] + Pm^2       */
2528    MPI_ECP_ADD(&S->X, &T[3],   &T[2]);   /* Qm*Pp + Qp*Pm                    */
2529    MPI_ECP_SQR(&S->X, &S->X);            /* (Qm*Pp + Qp*Pm)^2                */
2530    MPI_ECP_SUB(&S->Z, &T[3],   &T[2]);   /* Qm*Pp - Qp*Pm                    */
2531    MPI_ECP_SQR(&S->Z, &S->Z);            /* (Qm*Pp - Qp*Pm)^2                */
2532    MPI_ECP_MUL(&S->Z, d,       &S->Z);   /* d * ( Qm*Pp - Qp*Pm )^2          */
2533    MPI_ECP_MUL(&R->Z, &T[0],   &R->Z);   /* [A*(Pp^2-Pm^2)+Pm^2]*(Pp^2-Pm^2) */
2534
2535cleanup:
2536
2537    return ret;
2538#endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) */
2539}
2540
2541/*
2542 * Multiplication with Montgomery ladder in x/z coordinates,
2543 * for curves in Montgomery form
2544 */
2545static int ecp_mul_mxz(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2546                       const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2547                       int (*f_rng)(void *, unsigned char *, size_t),
2548                       void *p_rng)
2549{
2550    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2551    size_t i;
2552    unsigned char b;
2553    mbedtls_ecp_point RP;
2554    mbedtls_mpi PX;
2555    mbedtls_mpi tmp[4];
2556    mbedtls_ecp_point_init(&RP); mbedtls_mpi_init(&PX);
2557
2558    mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2559
2560    if (f_rng == NULL) {
2561        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2562    }
2563
2564    /* Save PX and read from P before writing to R, in case P == R */
2565    MPI_ECP_MOV(&PX, &P->X);
2566    MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&RP, P));
2567
2568    /* Set R to zero in modified x/z coordinates */
2569    MPI_ECP_LSET(&R->X, 1);
2570    MPI_ECP_LSET(&R->Z, 0);
2571    mbedtls_mpi_free(&R->Y);
2572
2573    /* RP.X might be slightly larger than P, so reduce it */
2574    MOD_ADD(&RP.X);
2575
2576    /* Randomize coordinates of the starting point */
2577    MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, &RP, f_rng, p_rng));
2578
2579    /* Loop invariant: R = result so far, RP = R + P */
2580    i = grp->nbits + 1; /* one past the (zero-based) required msb for private keys */
2581    while (i-- > 0) {
2582        b = mbedtls_mpi_get_bit(m, i);
2583        /*
2584         *  if (b) R = 2R + P else R = 2R,
2585         * which is:
2586         *  if (b) double_add( RP, R, RP, R )
2587         *  else   double_add( R, RP, R, RP )
2588         * but using safe conditional swaps to avoid leaks
2589         */
2590        MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
2591        MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
2592        MBEDTLS_MPI_CHK(ecp_double_add_mxz(grp, R, &RP, R, &RP, &PX, tmp));
2593        MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
2594        MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
2595    }
2596
2597    /*
2598     * Knowledge of the projective coordinates may leak the last few bits of the
2599     * scalar [1], and since our MPI implementation isn't constant-flow,
2600     * inversion (used for coordinate normalization) may leak the full value
2601     * of its input via side-channels [2].
2602     *
2603     * [1] https://eprint.iacr.org/2003/191
2604     * [2] https://eprint.iacr.org/2020/055
2605     *
2606     * Avoid the leak by randomizing coordinates before we normalize them.
2607     */
2608    MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, R, f_rng, p_rng));
2609    MBEDTLS_MPI_CHK(ecp_normalize_mxz(grp, R));
2610
2611cleanup:
2612    mbedtls_ecp_point_free(&RP); mbedtls_mpi_free(&PX);
2613
2614    mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2615    return ret;
2616}
2617
2618#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
2619
2620/*
2621 * Restartable multiplication R = m * P
2622 *
2623 * This internal function can be called without an RNG in case where we know
2624 * the inputs are not sensitive.
2625 */
2626static int ecp_mul_restartable_internal(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2627                                        const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2628                                        int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2629                                        mbedtls_ecp_restart_ctx *rs_ctx)
2630{
2631    int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2632#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2633    char is_grp_capable = 0;
2634#endif
2635
2636#if defined(MBEDTLS_ECP_RESTARTABLE)
2637    /* reset ops count for this call if top-level */
2638    if (rs_ctx != NULL && rs_ctx->depth++ == 0) {
2639        rs_ctx->ops_done = 0;
2640    }
2641#else
2642    (void) rs_ctx;
2643#endif
2644
2645#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2646    if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
2647        MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
2648    }
2649#endif /* MBEDTLS_ECP_INTERNAL_ALT */
2650
2651    int restarting = 0;
2652#if defined(MBEDTLS_ECP_RESTARTABLE)
2653    restarting = (rs_ctx != NULL && rs_ctx->rsm != NULL);
2654#endif
2655    /* skip argument check when restarting */
2656    if (!restarting) {
2657        /* check_privkey is free */
2658        MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_CHK);
2659
2660        /* Common sanity checks */
2661        MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(grp, m));
2662        MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2663    }
2664
2665    ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2666#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2667    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
2668        MBEDTLS_MPI_CHK(ecp_mul_mxz(grp, R, m, P, f_rng, p_rng));
2669    }
2670#endif
2671#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2672    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
2673        MBEDTLS_MPI_CHK(ecp_mul_comb(grp, R, m, P, f_rng, p_rng, rs_ctx));
2674    }
2675#endif
2676
2677cleanup:
2678
2679#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2680    if (is_grp_capable) {
2681        mbedtls_internal_ecp_free(grp);
2682    }
2683#endif /* MBEDTLS_ECP_INTERNAL_ALT */
2684
2685#if defined(MBEDTLS_ECP_RESTARTABLE)
2686    if (rs_ctx != NULL) {
2687        rs_ctx->depth--;
2688    }
2689#endif
2690
2691    return ret;
2692}
2693
2694/*
2695 * Restartable multiplication R = m * P
2696 */
2697int mbedtls_ecp_mul_restartable(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2698                                const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2699                                int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
2700                                mbedtls_ecp_restart_ctx *rs_ctx)
2701{
2702    if (f_rng == NULL) {
2703        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
2704    }
2705
2706    return ecp_mul_restartable_internal(grp, R, m, P, f_rng, p_rng, rs_ctx);
2707}
2708
2709/*
2710 * Multiplication R = m * P
2711 */
2712int mbedtls_ecp_mul(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2713                    const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2714                    int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
2715{
2716    return mbedtls_ecp_mul_restartable(grp, R, m, P, f_rng, p_rng, NULL);
2717}
2718#endif /* MBEDTLS_ECP_C */
2719
2720#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2721/*
2722 * Check that an affine point is valid as a public key,
2723 * short weierstrass curves (SEC1 3.2.3.1)
2724 */
2725static int ecp_check_pubkey_sw(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
2726{
2727    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2728    mbedtls_mpi YY, RHS;
2729
2730    /* pt coordinates must be normalized for our checks */
2731    if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0 ||
2732        mbedtls_mpi_cmp_int(&pt->Y, 0) < 0 ||
2733        mbedtls_mpi_cmp_mpi(&pt->X, &grp->P) >= 0 ||
2734        mbedtls_mpi_cmp_mpi(&pt->Y, &grp->P) >= 0) {
2735        return MBEDTLS_ERR_ECP_INVALID_KEY;
2736    }
2737
2738    mbedtls_mpi_init(&YY); mbedtls_mpi_init(&RHS);
2739
2740    /*
2741     * YY = Y^2
2742     * RHS = X^3 + A X + B
2743     */
2744    MPI_ECP_SQR(&YY,  &pt->Y);
2745    MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, &RHS, &pt->X));
2746
2747    if (MPI_ECP_CMP(&YY, &RHS) != 0) {
2748        ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2749    }
2750
2751cleanup:
2752
2753    mbedtls_mpi_free(&YY); mbedtls_mpi_free(&RHS);
2754
2755    return ret;
2756}
2757#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2758
2759#if defined(MBEDTLS_ECP_C)
2760#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
2761/*
2762 * R = m * P with shortcuts for m == 0, m == 1 and m == -1
2763 * NOT constant-time - ONLY for short Weierstrass!
2764 */
2765static int mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group *grp,
2766                                     mbedtls_ecp_point *R,
2767                                     const mbedtls_mpi *m,
2768                                     const mbedtls_ecp_point *P,
2769                                     mbedtls_ecp_restart_ctx *rs_ctx)
2770{
2771    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2772    mbedtls_mpi tmp;
2773    mbedtls_mpi_init(&tmp);
2774
2775    if (mbedtls_mpi_cmp_int(m, 0) == 0) {
2776        MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2777        MBEDTLS_MPI_CHK(mbedtls_ecp_set_zero(R));
2778    } else if (mbedtls_mpi_cmp_int(m, 1) == 0) {
2779        MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2780        MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
2781    } else if (mbedtls_mpi_cmp_int(m, -1) == 0) {
2782        MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
2783        MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
2784        MPI_ECP_NEG(&R->Y);
2785    } else {
2786        MBEDTLS_MPI_CHK(ecp_mul_restartable_internal(grp, R, m, P,
2787                                                     NULL, NULL, rs_ctx));
2788    }
2789
2790cleanup:
2791    mbedtls_mpi_free(&tmp);
2792
2793    return ret;
2794}
2795
2796/*
2797 * Restartable linear combination
2798 * NOT constant-time
2799 */
2800int mbedtls_ecp_muladd_restartable(
2801    mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2802    const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2803    const mbedtls_mpi *n, const mbedtls_ecp_point *Q,
2804    mbedtls_ecp_restart_ctx *rs_ctx)
2805{
2806    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2807    mbedtls_ecp_point mP;
2808    mbedtls_ecp_point *pmP = &mP;
2809    mbedtls_ecp_point *pR = R;
2810    mbedtls_mpi tmp[4];
2811#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2812    char is_grp_capable = 0;
2813#endif
2814    if (mbedtls_ecp_get_type(grp) != MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
2815        return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
2816    }
2817
2818    mbedtls_ecp_point_init(&mP);
2819    mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2820
2821    ECP_RS_ENTER(ma);
2822
2823#if defined(MBEDTLS_ECP_RESTARTABLE)
2824    if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2825        /* redirect intermediate results to restart context */
2826        pmP = &rs_ctx->ma->mP;
2827        pR  = &rs_ctx->ma->R;
2828
2829        /* jump to next operation */
2830        if (rs_ctx->ma->state == ecp_rsma_mul2) {
2831            goto mul2;
2832        }
2833        if (rs_ctx->ma->state == ecp_rsma_add) {
2834            goto add;
2835        }
2836        if (rs_ctx->ma->state == ecp_rsma_norm) {
2837            goto norm;
2838        }
2839    }
2840#endif /* MBEDTLS_ECP_RESTARTABLE */
2841
2842    MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pmP, m, P, rs_ctx));
2843#if defined(MBEDTLS_ECP_RESTARTABLE)
2844    if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2845        rs_ctx->ma->state = ecp_rsma_mul2;
2846    }
2847
2848mul2:
2849#endif
2850    MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pR,  n, Q, rs_ctx));
2851
2852#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2853    if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) {
2854        MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp));
2855    }
2856#endif /* MBEDTLS_ECP_INTERNAL_ALT */
2857
2858#if defined(MBEDTLS_ECP_RESTARTABLE)
2859    if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2860        rs_ctx->ma->state = ecp_rsma_add;
2861    }
2862
2863add:
2864#endif
2865    MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_ADD);
2866    MBEDTLS_MPI_CHK(ecp_add_mixed(grp, pR, pmP, pR, tmp));
2867#if defined(MBEDTLS_ECP_RESTARTABLE)
2868    if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2869        rs_ctx->ma->state = ecp_rsma_norm;
2870    }
2871
2872norm:
2873#endif
2874    MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
2875    MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, pR));
2876
2877#if defined(MBEDTLS_ECP_RESTARTABLE)
2878    if (rs_ctx != NULL && rs_ctx->ma != NULL) {
2879        MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, pR));
2880    }
2881#endif
2882
2883cleanup:
2884
2885    mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
2886
2887#if defined(MBEDTLS_ECP_INTERNAL_ALT)
2888    if (is_grp_capable) {
2889        mbedtls_internal_ecp_free(grp);
2890    }
2891#endif /* MBEDTLS_ECP_INTERNAL_ALT */
2892
2893    mbedtls_ecp_point_free(&mP);
2894
2895    ECP_RS_LEAVE(ma);
2896
2897    return ret;
2898}
2899
2900/*
2901 * Linear combination
2902 * NOT constant-time
2903 */
2904int mbedtls_ecp_muladd(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
2905                       const mbedtls_mpi *m, const mbedtls_ecp_point *P,
2906                       const mbedtls_mpi *n, const mbedtls_ecp_point *Q)
2907{
2908    return mbedtls_ecp_muladd_restartable(grp, R, m, P, n, Q, NULL);
2909}
2910#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
2911#endif /* MBEDTLS_ECP_C */
2912
2913#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
2914#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2915#define ECP_MPI_INIT(_p, _n) { .p = (mbedtls_mpi_uint *) (_p), .s = 1, .n = (_n) }
2916#define ECP_MPI_INIT_ARRAY(x)   \
2917    ECP_MPI_INIT(x, sizeof(x) / sizeof(mbedtls_mpi_uint))
2918/*
2919 * Constants for the two points other than 0, 1, -1 (mod p) in
2920 * https://cr.yp.to/ecdh.html#validate
2921 * See ecp_check_pubkey_x25519().
2922 */
2923static const mbedtls_mpi_uint x25519_bad_point_1[] = {
2924    MBEDTLS_BYTES_TO_T_UINT_8(0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae),
2925    MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a),
2926    MBEDTLS_BYTES_TO_T_UINT_8(0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd),
2927    MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00),
2928};
2929static const mbedtls_mpi_uint x25519_bad_point_2[] = {
2930    MBEDTLS_BYTES_TO_T_UINT_8(0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24),
2931    MBEDTLS_BYTES_TO_T_UINT_8(0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b),
2932    MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86),
2933    MBEDTLS_BYTES_TO_T_UINT_8(0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57),
2934};
2935static const mbedtls_mpi ecp_x25519_bad_point_1 = ECP_MPI_INIT_ARRAY(
2936    x25519_bad_point_1);
2937static const mbedtls_mpi ecp_x25519_bad_point_2 = ECP_MPI_INIT_ARRAY(
2938    x25519_bad_point_2);
2939#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
2940
2941/*
2942 * Check that the input point is not one of the low-order points.
2943 * This is recommended by the "May the Fourth" paper:
2944 * https://eprint.iacr.org/2017/806.pdf
2945 * Those points are never sent by an honest peer.
2946 */
2947static int ecp_check_bad_points_mx(const mbedtls_mpi *X, const mbedtls_mpi *P,
2948                                   const mbedtls_ecp_group_id grp_id)
2949{
2950    int ret;
2951    mbedtls_mpi XmP;
2952
2953    mbedtls_mpi_init(&XmP);
2954
2955    /* Reduce X mod P so that we only need to check values less than P.
2956     * We know X < 2^256 so we can proceed by subtraction. */
2957    MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&XmP, X));
2958    while (mbedtls_mpi_cmp_mpi(&XmP, P) >= 0) {
2959        MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&XmP, &XmP, P));
2960    }
2961
2962    /* Check against the known bad values that are less than P. For Curve448
2963     * these are 0, 1 and -1. For Curve25519 we check the values less than P
2964     * from the following list: https://cr.yp.to/ecdh.html#validate */
2965    if (mbedtls_mpi_cmp_int(&XmP, 1) <= 0) {  /* takes care of 0 and 1 */
2966        ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2967        goto cleanup;
2968    }
2969
2970#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
2971    if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
2972        if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_1) == 0) {
2973            ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2974            goto cleanup;
2975        }
2976
2977        if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_2) == 0) {
2978            ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2979            goto cleanup;
2980        }
2981    }
2982#else
2983    (void) grp_id;
2984#endif
2985
2986    /* Final check: check if XmP + 1 is P (final because it changes XmP!) */
2987    MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&XmP, &XmP, 1));
2988    if (mbedtls_mpi_cmp_mpi(&XmP, P) == 0) {
2989        ret = MBEDTLS_ERR_ECP_INVALID_KEY;
2990        goto cleanup;
2991    }
2992
2993    ret = 0;
2994
2995cleanup:
2996    mbedtls_mpi_free(&XmP);
2997
2998    return ret;
2999}
3000
3001/*
3002 * Check validity of a public key for Montgomery curves with x-only schemes
3003 */
3004static int ecp_check_pubkey_mx(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
3005{
3006    /* [Curve25519 p. 5] Just check X is the correct number of bytes */
3007    /* Allow any public value, if it's too big then we'll just reduce it mod p
3008     * (RFC 7748 sec. 5 para. 3). */
3009    if (mbedtls_mpi_size(&pt->X) > (grp->nbits + 7) / 8) {
3010        return MBEDTLS_ERR_ECP_INVALID_KEY;
3011    }
3012
3013    /* Implicit in all standards (as they don't consider negative numbers):
3014     * X must be non-negative. This is normally ensured by the way it's
3015     * encoded for transmission, but let's be extra sure. */
3016    if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0) {
3017        return MBEDTLS_ERR_ECP_INVALID_KEY;
3018    }
3019
3020    return ecp_check_bad_points_mx(&pt->X, &grp->P, grp->id);
3021}
3022#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3023
3024/*
3025 * Check that a point is valid as a public key
3026 */
3027int mbedtls_ecp_check_pubkey(const mbedtls_ecp_group *grp,
3028                             const mbedtls_ecp_point *pt)
3029{
3030    /* Must use affine coordinates */
3031    if (mbedtls_mpi_cmp_int(&pt->Z, 1) != 0) {
3032        return MBEDTLS_ERR_ECP_INVALID_KEY;
3033    }
3034
3035#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3036    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3037        return ecp_check_pubkey_mx(grp, pt);
3038    }
3039#endif
3040#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3041    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3042        return ecp_check_pubkey_sw(grp, pt);
3043    }
3044#endif
3045    return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3046}
3047
3048/*
3049 * Check that an mbedtls_mpi is valid as a private key
3050 */
3051int mbedtls_ecp_check_privkey(const mbedtls_ecp_group *grp,
3052                              const mbedtls_mpi *d)
3053{
3054#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3055    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3056        /* see RFC 7748 sec. 5 para. 5 */
3057        if (mbedtls_mpi_get_bit(d, 0) != 0 ||
3058            mbedtls_mpi_get_bit(d, 1) != 0 ||
3059            mbedtls_mpi_bitlen(d) - 1 != grp->nbits) {  /* mbedtls_mpi_bitlen is one-based! */
3060            return MBEDTLS_ERR_ECP_INVALID_KEY;
3061        }
3062
3063        /* see [Curve25519] page 5 */
3064        if (grp->nbits == 254 && mbedtls_mpi_get_bit(d, 2) != 0) {
3065            return MBEDTLS_ERR_ECP_INVALID_KEY;
3066        }
3067
3068        return 0;
3069    }
3070#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3071#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3072    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3073        /* see SEC1 3.2 */
3074        if (mbedtls_mpi_cmp_int(d, 1) < 0 ||
3075            mbedtls_mpi_cmp_mpi(d, &grp->N) >= 0) {
3076            return MBEDTLS_ERR_ECP_INVALID_KEY;
3077        } else {
3078            return 0;
3079        }
3080    }
3081#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3082
3083    return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3084}
3085
3086#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3087MBEDTLS_STATIC_TESTABLE
3088int mbedtls_ecp_gen_privkey_mx(size_t high_bit,
3089                               mbedtls_mpi *d,
3090                               int (*f_rng)(void *, unsigned char *, size_t),
3091                               void *p_rng)
3092{
3093    int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3094    size_t n_random_bytes = high_bit / 8 + 1;
3095
3096    /* [Curve25519] page 5 */
3097    /* Generate a (high_bit+1)-bit random number by generating just enough
3098     * random bytes, then shifting out extra bits from the top (necessary
3099     * when (high_bit+1) is not a multiple of 8). */
3100    MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(d, n_random_bytes,
3101                                            f_rng, p_rng));
3102    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(d, 8 * n_random_bytes - high_bit - 1));
3103
3104    MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, high_bit, 1));
3105
3106    /* Make sure the last two bits are unset for Curve448, three bits for
3107       Curve25519 */
3108    MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 0, 0));
3109    MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 1, 0));
3110    if (high_bit == 254) {
3111        MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 2, 0));
3112    }
3113
3114cleanup:
3115    return ret;
3116}
3117#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3118
3119#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3120static int mbedtls_ecp_gen_privkey_sw(
3121    const mbedtls_mpi *N, mbedtls_mpi *d,
3122    int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3123{
3124    int ret = mbedtls_mpi_random(d, 1, N, f_rng, p_rng);
3125    switch (ret) {
3126        case MBEDTLS_ERR_MPI_NOT_ACCEPTABLE:
3127            return MBEDTLS_ERR_ECP_RANDOM_FAILED;
3128        default:
3129            return ret;
3130    }
3131}
3132#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3133
3134/*
3135 * Generate a private key
3136 */
3137int mbedtls_ecp_gen_privkey(const mbedtls_ecp_group *grp,
3138                            mbedtls_mpi *d,
3139                            int (*f_rng)(void *, unsigned char *, size_t),
3140                            void *p_rng)
3141{
3142#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3143    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3144        return mbedtls_ecp_gen_privkey_mx(grp->nbits, d, f_rng, p_rng);
3145    }
3146#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3147
3148#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3149    if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3150        return mbedtls_ecp_gen_privkey_sw(&grp->N, d, f_rng, p_rng);
3151    }
3152#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3153
3154    return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3155}
3156
3157#if defined(MBEDTLS_ECP_C)
3158/*
3159 * Generate a keypair with configurable base point
3160 */
3161int mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group *grp,
3162                                 const mbedtls_ecp_point *G,
3163                                 mbedtls_mpi *d, mbedtls_ecp_point *Q,
3164                                 int (*f_rng)(void *, unsigned char *, size_t),
3165                                 void *p_rng)
3166{
3167    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3168    MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, d, f_rng, p_rng));
3169    MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, Q, d, G, f_rng, p_rng));
3170
3171cleanup:
3172    return ret;
3173}
3174
3175/*
3176 * Generate key pair, wrapper for conventional base point
3177 */
3178int mbedtls_ecp_gen_keypair(mbedtls_ecp_group *grp,
3179                            mbedtls_mpi *d, mbedtls_ecp_point *Q,
3180                            int (*f_rng)(void *, unsigned char *, size_t),
3181                            void *p_rng)
3182{
3183    return mbedtls_ecp_gen_keypair_base(grp, &grp->G, d, Q, f_rng, p_rng);
3184}
3185
3186/*
3187 * Generate a keypair, prettier wrapper
3188 */
3189int mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3190                        int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3191{
3192    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3193    if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3194        return ret;
3195    }
3196
3197    return mbedtls_ecp_gen_keypair(&key->grp, &key->d, &key->Q, f_rng, p_rng);
3198}
3199#endif /* MBEDTLS_ECP_C */
3200
3201int mbedtls_ecp_set_public_key(mbedtls_ecp_group_id grp_id,
3202                               mbedtls_ecp_keypair *key,
3203                               const mbedtls_ecp_point *Q)
3204{
3205    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3206
3207    if (key->grp.id == MBEDTLS_ECP_DP_NONE) {
3208        /* Group not set yet */
3209        if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3210            return ret;
3211        }
3212    } else if (key->grp.id != grp_id) {
3213        /* Group mismatch */
3214        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3215    }
3216    return mbedtls_ecp_copy(&key->Q, Q);
3217}
3218
3219
3220#define ECP_CURVE25519_KEY_SIZE 32
3221#define ECP_CURVE448_KEY_SIZE   56
3222/*
3223 * Read a private key.
3224 */
3225int mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
3226                         const unsigned char *buf, size_t buflen)
3227{
3228    int ret = 0;
3229
3230    if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
3231        return ret;
3232    }
3233
3234    ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
3235
3236#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3237    if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3238        /*
3239         * Mask the key as mandated by RFC7748 for Curve25519 and Curve448.
3240         */
3241        if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
3242            if (buflen != ECP_CURVE25519_KEY_SIZE) {
3243                return MBEDTLS_ERR_ECP_INVALID_KEY;
3244            }
3245
3246            MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
3247
3248            /* Set the three least significant bits to 0 */
3249            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
3250            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
3251            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 2, 0));
3252
3253            /* Set the most significant bit to 0 */
3254            MBEDTLS_MPI_CHK(
3255                mbedtls_mpi_set_bit(&key->d,
3256                                    ECP_CURVE25519_KEY_SIZE * 8 - 1, 0)
3257                );
3258
3259            /* Set the second most significant bit to 1 */
3260            MBEDTLS_MPI_CHK(
3261                mbedtls_mpi_set_bit(&key->d,
3262                                    ECP_CURVE25519_KEY_SIZE * 8 - 2, 1)
3263                );
3264        } else if (grp_id == MBEDTLS_ECP_DP_CURVE448) {
3265            if (buflen != ECP_CURVE448_KEY_SIZE) {
3266                return MBEDTLS_ERR_ECP_INVALID_KEY;
3267            }
3268
3269            MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
3270
3271            /* Set the two least significant bits to 0 */
3272            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
3273            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
3274
3275            /* Set the most significant bit to 1 */
3276            MBEDTLS_MPI_CHK(
3277                mbedtls_mpi_set_bit(&key->d,
3278                                    ECP_CURVE448_KEY_SIZE * 8 - 1, 1)
3279                );
3280        }
3281    }
3282#endif
3283#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3284    if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3285        MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&key->d, buf, buflen));
3286    }
3287#endif
3288
3289    if (ret == 0) {
3290        MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(&key->grp, &key->d));
3291    }
3292
3293cleanup:
3294
3295    if (ret != 0) {
3296        mbedtls_mpi_free(&key->d);
3297    }
3298
3299    return ret;
3300}
3301
3302/*
3303 * Write a private key.
3304 */
3305#if !defined MBEDTLS_DEPRECATED_REMOVED
3306int mbedtls_ecp_write_key(mbedtls_ecp_keypair *key,
3307                          unsigned char *buf, size_t buflen)
3308{
3309    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3310
3311#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3312    if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3313        if (key->grp.id == MBEDTLS_ECP_DP_CURVE25519) {
3314            if (buflen < ECP_CURVE25519_KEY_SIZE) {
3315                return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3316            }
3317
3318        } else if (key->grp.id == MBEDTLS_ECP_DP_CURVE448) {
3319            if (buflen < ECP_CURVE448_KEY_SIZE) {
3320                return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3321            }
3322        }
3323        MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&key->d, buf, buflen));
3324    }
3325#endif
3326#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3327    if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3328        MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&key->d, buf, buflen));
3329    }
3330
3331#endif
3332cleanup:
3333
3334    return ret;
3335}
3336#endif /* MBEDTLS_DEPRECATED_REMOVED */
3337
3338int mbedtls_ecp_write_key_ext(const mbedtls_ecp_keypair *key,
3339                              size_t *olen, unsigned char *buf, size_t buflen)
3340{
3341    size_t len = (key->grp.nbits + 7) / 8;
3342    if (len > buflen) {
3343        /* For robustness, ensure *olen <= buflen even on error. */
3344        *olen = 0;
3345        return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
3346    }
3347    *olen = len;
3348
3349    /* Private key not set */
3350    if (key->d.n == 0) {
3351        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3352    }
3353
3354#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3355    if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
3356        return mbedtls_mpi_write_binary_le(&key->d, buf, len);
3357    }
3358#endif
3359
3360#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3361    if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
3362        return mbedtls_mpi_write_binary(&key->d, buf, len);
3363    }
3364#endif
3365
3366    /* Private key set but no recognized curve type? This shouldn't happen. */
3367    return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3368}
3369
3370/*
3371 * Write a public key.
3372 */
3373int mbedtls_ecp_write_public_key(const mbedtls_ecp_keypair *key,
3374                                 int format, size_t *olen,
3375                                 unsigned char *buf, size_t buflen)
3376{
3377    return mbedtls_ecp_point_write_binary(&key->grp, &key->Q,
3378                                          format, olen, buf, buflen);
3379}
3380
3381
3382#if defined(MBEDTLS_ECP_C)
3383/*
3384 * Check a public-private key pair
3385 */
3386int mbedtls_ecp_check_pub_priv(
3387    const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv,
3388    int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
3389{
3390    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3391    mbedtls_ecp_point Q;
3392    mbedtls_ecp_group grp;
3393    if (pub->grp.id == MBEDTLS_ECP_DP_NONE ||
3394        pub->grp.id != prv->grp.id ||
3395        mbedtls_mpi_cmp_mpi(&pub->Q.X, &prv->Q.X) ||
3396        mbedtls_mpi_cmp_mpi(&pub->Q.Y, &prv->Q.Y) ||
3397        mbedtls_mpi_cmp_mpi(&pub->Q.Z, &prv->Q.Z)) {
3398        return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3399    }
3400
3401    mbedtls_ecp_point_init(&Q);
3402    mbedtls_ecp_group_init(&grp);
3403
3404    /* mbedtls_ecp_mul() needs a non-const group... */
3405    mbedtls_ecp_group_copy(&grp, &prv->grp);
3406
3407    /* Also checks d is valid */
3408    MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &Q, &prv->d, &prv->grp.G, f_rng, p_rng));
3409
3410    if (mbedtls_mpi_cmp_mpi(&Q.X, &prv->Q.X) ||
3411        mbedtls_mpi_cmp_mpi(&Q.Y, &prv->Q.Y) ||
3412        mbedtls_mpi_cmp_mpi(&Q.Z, &prv->Q.Z)) {
3413        ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
3414        goto cleanup;
3415    }
3416
3417cleanup:
3418    mbedtls_ecp_point_free(&Q);
3419    mbedtls_ecp_group_free(&grp);
3420
3421    return ret;
3422}
3423
3424int mbedtls_ecp_keypair_calc_public(mbedtls_ecp_keypair *key,
3425                                    int (*f_rng)(void *, unsigned char *, size_t),
3426                                    void *p_rng)
3427{
3428    return mbedtls_ecp_mul(&key->grp, &key->Q, &key->d, &key->grp.G,
3429                           f_rng, p_rng);
3430}
3431#endif /* MBEDTLS_ECP_C */
3432
3433mbedtls_ecp_group_id mbedtls_ecp_keypair_get_group_id(
3434    const mbedtls_ecp_keypair *key)
3435{
3436    return key->grp.id;
3437}
3438
3439/*
3440 * Export generic key-pair parameters.
3441 */
3442int mbedtls_ecp_export(const mbedtls_ecp_keypair *key, mbedtls_ecp_group *grp,
3443                       mbedtls_mpi *d, mbedtls_ecp_point *Q)
3444{
3445    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3446
3447    if (grp != NULL && (ret = mbedtls_ecp_group_copy(grp, &key->grp)) != 0) {
3448        return ret;
3449    }
3450
3451    if (d != NULL && (ret = mbedtls_mpi_copy(d, &key->d)) != 0) {
3452        return ret;
3453    }
3454
3455    if (Q != NULL && (ret = mbedtls_ecp_copy(Q, &key->Q)) != 0) {
3456        return ret;
3457    }
3458
3459    return 0;
3460}
3461
3462#if defined(MBEDTLS_SELF_TEST)
3463
3464#if defined(MBEDTLS_ECP_C)
3465/*
3466 * PRNG for test - !!!INSECURE NEVER USE IN PRODUCTION!!!
3467 *
3468 * This is the linear congruential generator from numerical recipes,
3469 * except we only use the low byte as the output. See
3470 * https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
3471 */
3472static int self_test_rng(void *ctx, unsigned char *out, size_t len)
3473{
3474    static uint32_t state = 42;
3475
3476    (void) ctx;
3477
3478    for (size_t i = 0; i < len; i++) {
3479        state = state * 1664525u + 1013904223u;
3480        out[i] = (unsigned char) state;
3481    }
3482
3483    return 0;
3484}
3485
3486/* Adjust the exponent to be a valid private point for the specified curve.
3487 * This is sometimes necessary because we use a single set of exponents
3488 * for all curves but the validity of values depends on the curve. */
3489static int self_test_adjust_exponent(const mbedtls_ecp_group *grp,
3490                                     mbedtls_mpi *m)
3491{
3492    int ret = 0;
3493    switch (grp->id) {
3494    /* If Curve25519 is available, then that's what we use for the
3495     * Montgomery test, so we don't need the adjustment code. */
3496#if !defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3497#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3498        case MBEDTLS_ECP_DP_CURVE448:
3499            /* Move highest bit from 254 to N-1. Setting bit N-1 is
3500             * necessary to enforce the highest-bit-set constraint. */
3501            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, 254, 0));
3502            MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, grp->nbits, 1));
3503            /* Copy second-highest bit from 253 to N-2. This is not
3504             * necessary but improves the test variety a bit. */
3505            MBEDTLS_MPI_CHK(
3506                mbedtls_mpi_set_bit(m, grp->nbits - 1,
3507                                    mbedtls_mpi_get_bit(m, 253)));
3508            break;
3509#endif
3510#endif /* ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) */
3511        default:
3512            /* Non-Montgomery curves and Curve25519 need no adjustment. */
3513            (void) grp;
3514            (void) m;
3515            goto cleanup;
3516    }
3517cleanup:
3518    return ret;
3519}
3520
3521/* Calculate R = m.P for each m in exponents. Check that the number of
3522 * basic operations doesn't depend on the value of m. */
3523static int self_test_point(int verbose,
3524                           mbedtls_ecp_group *grp,
3525                           mbedtls_ecp_point *R,
3526                           mbedtls_mpi *m,
3527                           const mbedtls_ecp_point *P,
3528                           const char *const *exponents,
3529                           size_t n_exponents)
3530{
3531    int ret = 0;
3532    size_t i = 0;
3533    unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
3534    add_count = 0;
3535    dbl_count = 0;
3536    mul_count = 0;
3537
3538    MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[0]));
3539    MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
3540    MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
3541
3542    for (i = 1; i < n_exponents; i++) {
3543        add_c_prev = add_count;
3544        dbl_c_prev = dbl_count;
3545        mul_c_prev = mul_count;
3546        add_count = 0;
3547        dbl_count = 0;
3548        mul_count = 0;
3549
3550        MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[i]));
3551        MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
3552        MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
3553
3554        if (add_count != add_c_prev ||
3555            dbl_count != dbl_c_prev ||
3556            mul_count != mul_c_prev) {
3557            ret = 1;
3558            break;
3559        }
3560    }
3561
3562cleanup:
3563    if (verbose != 0) {
3564        if (ret != 0) {
3565            mbedtls_printf("failed (%u)\n", (unsigned int) i);
3566        } else {
3567            mbedtls_printf("passed\n");
3568        }
3569    }
3570    return ret;
3571}
3572#endif /* MBEDTLS_ECP_C */
3573
3574/*
3575 * Checkup routine
3576 */
3577int mbedtls_ecp_self_test(int verbose)
3578{
3579#if defined(MBEDTLS_ECP_C)
3580    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
3581    mbedtls_ecp_group grp;
3582    mbedtls_ecp_point R, P;
3583    mbedtls_mpi m;
3584
3585#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3586    /* Exponents especially adapted for secp192k1, which has the lowest
3587     * order n of all supported curves (secp192r1 is in a slightly larger
3588     * field but the order of its base point is slightly smaller). */
3589    const char *sw_exponents[] =
3590    {
3591        "000000000000000000000000000000000000000000000001", /* one */
3592        "FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8C", /* n - 1 */
3593        "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
3594        "400000000000000000000000000000000000000000000000", /* one and zeros */
3595        "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
3596        "555555555555555555555555555555555555555555555555", /* 101010... */
3597    };
3598#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3599#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3600    const char *m_exponents[] =
3601    {
3602        /* Valid private values for Curve25519. In a build with Curve448
3603         * but not Curve25519, they will be adjusted in
3604         * self_test_adjust_exponent(). */
3605        "4000000000000000000000000000000000000000000000000000000000000000",
3606        "5C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C30",
3607        "5715ECCE24583F7A7023C24164390586842E816D7280A49EF6DF4EAE6B280BF8",
3608        "41A2B017516F6D254E1F002BCCBADD54BE30F8CEC737A0E912B4963B6BA74460",
3609        "5555555555555555555555555555555555555555555555555555555555555550",
3610        "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8",
3611    };
3612#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3613
3614    mbedtls_ecp_group_init(&grp);
3615    mbedtls_ecp_point_init(&R);
3616    mbedtls_ecp_point_init(&P);
3617    mbedtls_mpi_init(&m);
3618
3619#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
3620    /* Use secp192r1 if available, or any available curve */
3621#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
3622    MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP192R1));
3623#else
3624    MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, mbedtls_ecp_curve_list()->grp_id));
3625#endif
3626
3627    if (verbose != 0) {
3628        mbedtls_printf("  ECP SW test #1 (constant op_count, base point G): ");
3629    }
3630    /* Do a dummy multiplication first to trigger precomputation */
3631    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&m, 2));
3632    MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &P, &m, &grp.G, self_test_rng, NULL));
3633    ret = self_test_point(verbose,
3634                          &grp, &R, &m, &grp.G,
3635                          sw_exponents,
3636                          sizeof(sw_exponents) / sizeof(sw_exponents[0]));
3637    if (ret != 0) {
3638        goto cleanup;
3639    }
3640
3641    if (verbose != 0) {
3642        mbedtls_printf("  ECP SW test #2 (constant op_count, other point): ");
3643    }
3644    /* We computed P = 2G last time, use it */
3645    ret = self_test_point(verbose,
3646                          &grp, &R, &m, &P,
3647                          sw_exponents,
3648                          sizeof(sw_exponents) / sizeof(sw_exponents[0]));
3649    if (ret != 0) {
3650        goto cleanup;
3651    }
3652
3653    mbedtls_ecp_group_free(&grp);
3654    mbedtls_ecp_point_free(&R);
3655#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
3656
3657#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
3658    if (verbose != 0) {
3659        mbedtls_printf("  ECP Montgomery test (constant op_count): ");
3660    }
3661#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
3662    MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE25519));
3663#elif defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
3664    MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE448));
3665#else
3666#error "MBEDTLS_ECP_MONTGOMERY_ENABLED is defined, but no curve is supported for self-test"
3667#endif
3668    ret = self_test_point(verbose,
3669                          &grp, &R, &m, &grp.G,
3670                          m_exponents,
3671                          sizeof(m_exponents) / sizeof(m_exponents[0]));
3672    if (ret != 0) {
3673        goto cleanup;
3674    }
3675#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
3676
3677cleanup:
3678
3679    if (ret < 0 && verbose != 0) {
3680        mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
3681    }
3682
3683    mbedtls_ecp_group_free(&grp);
3684    mbedtls_ecp_point_free(&R);
3685    mbedtls_ecp_point_free(&P);
3686    mbedtls_mpi_free(&m);
3687
3688    if (verbose != 0) {
3689        mbedtls_printf("\n");
3690    }
3691
3692    return ret;
3693#else /* MBEDTLS_ECP_C */
3694    (void) verbose;
3695    return 0;
3696#endif /* MBEDTLS_ECP_C */
3697}
3698
3699#endif /* MBEDTLS_SELF_TEST */
3700
3701#endif /* !MBEDTLS_ECP_ALT */
3702
3703#endif /* MBEDTLS_ECP_LIGHT */
3704