xref: /third_party/mbedtls/library/bignum_core.c (revision a8e1175b)
1/*
2 *  Core bignum functions
3 *
4 *  Copyright The Mbed TLS Contributors
5 *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6 */
7
8#include "common.h"
9
10#if defined(MBEDTLS_BIGNUM_C)
11
12#include <string.h>
13
14#include "mbedtls/error.h"
15#include "mbedtls/platform_util.h"
16#include "constant_time_internal.h"
17
18#include "mbedtls/platform.h"
19
20#include "bignum_core.h"
21#include "bn_mul.h"
22#include "constant_time_internal.h"
23
24size_t mbedtls_mpi_core_clz(mbedtls_mpi_uint a)
25{
26#if defined(__has_builtin)
27#if (MBEDTLS_MPI_UINT_MAX == UINT_MAX) && __has_builtin(__builtin_clz)
28    #define core_clz __builtin_clz
29#elif (MBEDTLS_MPI_UINT_MAX == ULONG_MAX) && __has_builtin(__builtin_clzl)
30    #define core_clz __builtin_clzl
31#elif (MBEDTLS_MPI_UINT_MAX == ULLONG_MAX) && __has_builtin(__builtin_clzll)
32    #define core_clz __builtin_clzll
33#endif
34#endif
35#if defined(core_clz)
36    return (size_t) core_clz(a);
37#else
38    size_t j;
39    mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
40
41    for (j = 0; j < biL; j++) {
42        if (a & mask) {
43            break;
44        }
45
46        mask >>= 1;
47    }
48
49    return j;
50#endif
51}
52
53size_t mbedtls_mpi_core_bitlen(const mbedtls_mpi_uint *A, size_t A_limbs)
54{
55    int i;
56    size_t j;
57
58    for (i = ((int) A_limbs) - 1; i >= 0; i--) {
59        if (A[i] != 0) {
60            j = biL - mbedtls_mpi_core_clz(A[i]);
61            return (i * biL) + j;
62        }
63    }
64
65    return 0;
66}
67
68static mbedtls_mpi_uint mpi_bigendian_to_host(mbedtls_mpi_uint a)
69{
70    if (MBEDTLS_IS_BIG_ENDIAN) {
71        /* Nothing to do on bigendian systems. */
72        return a;
73    } else {
74#if defined(MBEDTLS_HAVE_INT32)
75        return (mbedtls_mpi_uint) MBEDTLS_BSWAP32(a);
76#elif defined(MBEDTLS_HAVE_INT64)
77        return (mbedtls_mpi_uint) MBEDTLS_BSWAP64(a);
78#endif
79    }
80}
81
82void mbedtls_mpi_core_bigendian_to_host(mbedtls_mpi_uint *A,
83                                        size_t A_limbs)
84{
85    mbedtls_mpi_uint *cur_limb_left;
86    mbedtls_mpi_uint *cur_limb_right;
87    if (A_limbs == 0) {
88        return;
89    }
90
91    /*
92     * Traverse limbs and
93     * - adapt byte-order in each limb
94     * - swap the limbs themselves.
95     * For that, simultaneously traverse the limbs from left to right
96     * and from right to left, as long as the left index is not bigger
97     * than the right index (it's not a problem if limbs is odd and the
98     * indices coincide in the last iteration).
99     */
100    for (cur_limb_left = A, cur_limb_right = A + (A_limbs - 1);
101         cur_limb_left <= cur_limb_right;
102         cur_limb_left++, cur_limb_right--) {
103        mbedtls_mpi_uint tmp;
104        /* Note that if cur_limb_left == cur_limb_right,
105         * this code effectively swaps the bytes only once. */
106        tmp             = mpi_bigendian_to_host(*cur_limb_left);
107        *cur_limb_left  = mpi_bigendian_to_host(*cur_limb_right);
108        *cur_limb_right = tmp;
109    }
110}
111
112/* Whether min <= A, in constant time.
113 * A_limbs must be at least 1. */
114mbedtls_ct_condition_t mbedtls_mpi_core_uint_le_mpi(mbedtls_mpi_uint min,
115                                                    const mbedtls_mpi_uint *A,
116                                                    size_t A_limbs)
117{
118    /* min <= least significant limb? */
119    mbedtls_ct_condition_t min_le_lsl = mbedtls_ct_uint_ge(A[0], min);
120
121    /* limbs other than the least significant one are all zero? */
122    mbedtls_ct_condition_t msll_mask = MBEDTLS_CT_FALSE;
123    for (size_t i = 1; i < A_limbs; i++) {
124        msll_mask = mbedtls_ct_bool_or(msll_mask, mbedtls_ct_bool(A[i]));
125    }
126
127    /* min <= A iff the lowest limb of A is >= min or the other limbs
128     * are not all zero. */
129    return mbedtls_ct_bool_or(msll_mask, min_le_lsl);
130}
131
132mbedtls_ct_condition_t mbedtls_mpi_core_lt_ct(const mbedtls_mpi_uint *A,
133                                              const mbedtls_mpi_uint *B,
134                                              size_t limbs)
135{
136    mbedtls_ct_condition_t ret = MBEDTLS_CT_FALSE, cond = MBEDTLS_CT_FALSE, done = MBEDTLS_CT_FALSE;
137
138    for (size_t i = limbs; i > 0; i--) {
139        /*
140         * If B[i - 1] < A[i - 1] then A < B is false and the result must
141         * remain 0.
142         *
143         * Again even if we can make a decision, we just mark the result and
144         * the fact that we are done and continue looping.
145         */
146        cond = mbedtls_ct_uint_lt(B[i - 1], A[i - 1]);
147        done = mbedtls_ct_bool_or(done, cond);
148
149        /*
150         * If A[i - 1] < B[i - 1] then A < B is true.
151         *
152         * Again even if we can make a decision, we just mark the result and
153         * the fact that we are done and continue looping.
154         */
155        cond = mbedtls_ct_uint_lt(A[i - 1], B[i - 1]);
156        ret  = mbedtls_ct_bool_or(ret, mbedtls_ct_bool_and(cond, mbedtls_ct_bool_not(done)));
157        done = mbedtls_ct_bool_or(done, cond);
158    }
159
160    /*
161     * If all the limbs were equal, then the numbers are equal, A < B is false
162     * and leaving the result 0 is correct.
163     */
164
165    return ret;
166}
167
168void mbedtls_mpi_core_cond_assign(mbedtls_mpi_uint *X,
169                                  const mbedtls_mpi_uint *A,
170                                  size_t limbs,
171                                  mbedtls_ct_condition_t assign)
172{
173    if (X == A) {
174        return;
175    }
176
177    /* This function is very performance-sensitive for RSA. For this reason
178     * we have the loop below, instead of calling mbedtls_ct_memcpy_if
179     * (this is more optimal since here we don't have to handle the case where
180     * we copy awkwardly sized data).
181     */
182    for (size_t i = 0; i < limbs; i++) {
183        X[i] = mbedtls_ct_mpi_uint_if(assign, A[i], X[i]);
184    }
185}
186
187void mbedtls_mpi_core_cond_swap(mbedtls_mpi_uint *X,
188                                mbedtls_mpi_uint *Y,
189                                size_t limbs,
190                                mbedtls_ct_condition_t swap)
191{
192    if (X == Y) {
193        return;
194    }
195
196    for (size_t i = 0; i < limbs; i++) {
197        mbedtls_mpi_uint tmp = X[i];
198        X[i] = mbedtls_ct_mpi_uint_if(swap, Y[i], X[i]);
199        Y[i] = mbedtls_ct_mpi_uint_if(swap, tmp, Y[i]);
200    }
201}
202
203int mbedtls_mpi_core_read_le(mbedtls_mpi_uint *X,
204                             size_t X_limbs,
205                             const unsigned char *input,
206                             size_t input_length)
207{
208    const size_t limbs = CHARS_TO_LIMBS(input_length);
209
210    if (X_limbs < limbs) {
211        return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
212    }
213
214    if (X != NULL) {
215        memset(X, 0, X_limbs * ciL);
216
217        for (size_t i = 0; i < input_length; i++) {
218            size_t offset = ((i % ciL) << 3);
219            X[i / ciL] |= ((mbedtls_mpi_uint) input[i]) << offset;
220        }
221    }
222
223    return 0;
224}
225
226int mbedtls_mpi_core_read_be(mbedtls_mpi_uint *X,
227                             size_t X_limbs,
228                             const unsigned char *input,
229                             size_t input_length)
230{
231    const size_t limbs = CHARS_TO_LIMBS(input_length);
232
233    if (X_limbs < limbs) {
234        return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
235    }
236
237    /* If X_limbs is 0, input_length must also be 0 (from previous test).
238     * Nothing to do. */
239    if (X_limbs == 0) {
240        return 0;
241    }
242
243    memset(X, 0, X_limbs * ciL);
244
245    /* memcpy() with (NULL, 0) is undefined behaviour */
246    if (input_length != 0) {
247        size_t overhead = (X_limbs * ciL) - input_length;
248        unsigned char *Xp = (unsigned char *) X;
249        memcpy(Xp + overhead, input, input_length);
250    }
251
252    mbedtls_mpi_core_bigendian_to_host(X, X_limbs);
253
254    return 0;
255}
256
257int mbedtls_mpi_core_write_le(const mbedtls_mpi_uint *A,
258                              size_t A_limbs,
259                              unsigned char *output,
260                              size_t output_length)
261{
262    size_t stored_bytes = A_limbs * ciL;
263    size_t bytes_to_copy;
264
265    if (stored_bytes < output_length) {
266        bytes_to_copy = stored_bytes;
267    } else {
268        bytes_to_copy = output_length;
269
270        /* The output buffer is smaller than the allocated size of A.
271         * However A may fit if its leading bytes are zero. */
272        for (size_t i = bytes_to_copy; i < stored_bytes; i++) {
273            if (GET_BYTE(A, i) != 0) {
274                return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
275            }
276        }
277    }
278
279    for (size_t i = 0; i < bytes_to_copy; i++) {
280        output[i] = GET_BYTE(A, i);
281    }
282
283    if (stored_bytes < output_length) {
284        /* Write trailing 0 bytes */
285        memset(output + stored_bytes, 0, output_length - stored_bytes);
286    }
287
288    return 0;
289}
290
291int mbedtls_mpi_core_write_be(const mbedtls_mpi_uint *X,
292                              size_t X_limbs,
293                              unsigned char *output,
294                              size_t output_length)
295{
296    size_t stored_bytes;
297    size_t bytes_to_copy;
298    unsigned char *p;
299
300    stored_bytes = X_limbs * ciL;
301
302    if (stored_bytes < output_length) {
303        /* There is enough space in the output buffer. Write initial
304         * null bytes and record the position at which to start
305         * writing the significant bytes. In this case, the execution
306         * trace of this function does not depend on the value of the
307         * number. */
308        bytes_to_copy = stored_bytes;
309        p = output + output_length - stored_bytes;
310        memset(output, 0, output_length - stored_bytes);
311    } else {
312        /* The output buffer is smaller than the allocated size of X.
313         * However X may fit if its leading bytes are zero. */
314        bytes_to_copy = output_length;
315        p = output;
316        for (size_t i = bytes_to_copy; i < stored_bytes; i++) {
317            if (GET_BYTE(X, i) != 0) {
318                return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
319            }
320        }
321    }
322
323    for (size_t i = 0; i < bytes_to_copy; i++) {
324        p[bytes_to_copy - i - 1] = GET_BYTE(X, i);
325    }
326
327    return 0;
328}
329
330void mbedtls_mpi_core_shift_r(mbedtls_mpi_uint *X, size_t limbs,
331                              size_t count)
332{
333    size_t i, v0, v1;
334    mbedtls_mpi_uint r0 = 0, r1;
335
336    v0 = count /  biL;
337    v1 = count & (biL - 1);
338
339    if (v0 > limbs || (v0 == limbs && v1 > 0)) {
340        memset(X, 0, limbs * ciL);
341        return;
342    }
343
344    /*
345     * shift by count / limb_size
346     */
347    if (v0 > 0) {
348        for (i = 0; i < limbs - v0; i++) {
349            X[i] = X[i + v0];
350        }
351
352        for (; i < limbs; i++) {
353            X[i] = 0;
354        }
355    }
356
357    /*
358     * shift by count % limb_size
359     */
360    if (v1 > 0) {
361        for (i = limbs; i > 0; i--) {
362            r1 = X[i - 1] << (biL - v1);
363            X[i - 1] >>= v1;
364            X[i - 1] |= r0;
365            r0 = r1;
366        }
367    }
368}
369
370void mbedtls_mpi_core_shift_l(mbedtls_mpi_uint *X, size_t limbs,
371                              size_t count)
372{
373    size_t i, v0, v1;
374    mbedtls_mpi_uint r0 = 0, r1;
375
376    v0 = count / (biL);
377    v1 = count & (biL - 1);
378
379    /*
380     * shift by count / limb_size
381     */
382    if (v0 > 0) {
383        for (i = limbs; i > v0; i--) {
384            X[i - 1] = X[i - v0 - 1];
385        }
386
387        for (; i > 0; i--) {
388            X[i - 1] = 0;
389        }
390    }
391
392    /*
393     * shift by count % limb_size
394     */
395    if (v1 > 0) {
396        for (i = v0; i < limbs; i++) {
397            r1 = X[i] >> (biL - v1);
398            X[i] <<= v1;
399            X[i] |= r0;
400            r0 = r1;
401        }
402    }
403}
404
405mbedtls_mpi_uint mbedtls_mpi_core_add(mbedtls_mpi_uint *X,
406                                      const mbedtls_mpi_uint *A,
407                                      const mbedtls_mpi_uint *B,
408                                      size_t limbs)
409{
410    mbedtls_mpi_uint c = 0;
411
412    for (size_t i = 0; i < limbs; i++) {
413        mbedtls_mpi_uint t = c + A[i];
414        c = (t < A[i]);
415        t += B[i];
416        c += (t < B[i]);
417        X[i] = t;
418    }
419
420    return c;
421}
422
423mbedtls_mpi_uint mbedtls_mpi_core_add_if(mbedtls_mpi_uint *X,
424                                         const mbedtls_mpi_uint *A,
425                                         size_t limbs,
426                                         unsigned cond)
427{
428    mbedtls_mpi_uint c = 0;
429
430    mbedtls_ct_condition_t do_add = mbedtls_ct_bool(cond);
431
432    for (size_t i = 0; i < limbs; i++) {
433        mbedtls_mpi_uint add = mbedtls_ct_mpi_uint_if_else_0(do_add, A[i]);
434        mbedtls_mpi_uint t = c + X[i];
435        c = (t < X[i]);
436        t += add;
437        c += (t < add);
438        X[i] = t;
439    }
440
441    return c;
442}
443
444mbedtls_mpi_uint mbedtls_mpi_core_sub(mbedtls_mpi_uint *X,
445                                      const mbedtls_mpi_uint *A,
446                                      const mbedtls_mpi_uint *B,
447                                      size_t limbs)
448{
449    mbedtls_mpi_uint c = 0;
450
451    for (size_t i = 0; i < limbs; i++) {
452        mbedtls_mpi_uint z = (A[i] < c);
453        mbedtls_mpi_uint t = A[i] - c;
454        c = (t < B[i]) + z;
455        X[i] = t - B[i];
456    }
457
458    return c;
459}
460
461mbedtls_mpi_uint mbedtls_mpi_core_mla(mbedtls_mpi_uint *d, size_t d_len,
462                                      const mbedtls_mpi_uint *s, size_t s_len,
463                                      mbedtls_mpi_uint b)
464{
465    mbedtls_mpi_uint c = 0; /* carry */
466    /*
467     * It is a documented precondition of this function that d_len >= s_len.
468     * If that's not the case, we swap these round: this turns what would be
469     * a buffer overflow into an incorrect result.
470     */
471    if (d_len < s_len) {
472        s_len = d_len;
473    }
474    size_t excess_len = d_len - s_len;
475    size_t steps_x8 = s_len / 8;
476    size_t steps_x1 = s_len & 7;
477
478    while (steps_x8--) {
479        MULADDC_X8_INIT
480        MULADDC_X8_CORE
481            MULADDC_X8_STOP
482    }
483
484    while (steps_x1--) {
485        MULADDC_X1_INIT
486        MULADDC_X1_CORE
487            MULADDC_X1_STOP
488    }
489
490    while (excess_len--) {
491        *d += c;
492        c = (*d < c);
493        d++;
494    }
495
496    return c;
497}
498
499void mbedtls_mpi_core_mul(mbedtls_mpi_uint *X,
500                          const mbedtls_mpi_uint *A, size_t A_limbs,
501                          const mbedtls_mpi_uint *B, size_t B_limbs)
502{
503    memset(X, 0, (A_limbs + B_limbs) * ciL);
504
505    for (size_t i = 0; i < B_limbs; i++) {
506        (void) mbedtls_mpi_core_mla(X + i, A_limbs + 1, A, A_limbs, B[i]);
507    }
508}
509
510/*
511 * Fast Montgomery initialization (thanks to Tom St Denis).
512 */
513mbedtls_mpi_uint mbedtls_mpi_core_montmul_init(const mbedtls_mpi_uint *N)
514{
515    mbedtls_mpi_uint x = N[0];
516
517    x += ((N[0] + 2) & 4) << 1;
518
519    for (unsigned int i = biL; i >= 8; i /= 2) {
520        x *= (2 - (N[0] * x));
521    }
522
523    return ~x + 1;
524}
525
526void mbedtls_mpi_core_montmul(mbedtls_mpi_uint *X,
527                              const mbedtls_mpi_uint *A,
528                              const mbedtls_mpi_uint *B,
529                              size_t B_limbs,
530                              const mbedtls_mpi_uint *N,
531                              size_t AN_limbs,
532                              mbedtls_mpi_uint mm,
533                              mbedtls_mpi_uint *T)
534{
535    memset(T, 0, (2 * AN_limbs + 1) * ciL);
536
537    for (size_t i = 0; i < AN_limbs; i++) {
538        /* T = (T + u0*B + u1*N) / 2^biL */
539        mbedtls_mpi_uint u0 = A[i];
540        mbedtls_mpi_uint u1 = (T[0] + u0 * B[0]) * mm;
541
542        (void) mbedtls_mpi_core_mla(T, AN_limbs + 2, B, B_limbs, u0);
543        (void) mbedtls_mpi_core_mla(T, AN_limbs + 2, N, AN_limbs, u1);
544
545        T++;
546    }
547
548    /*
549     * The result we want is (T >= N) ? T - N : T.
550     *
551     * For better constant-time properties in this function, we always do the
552     * subtraction, with the result in X.
553     *
554     * We also look to see if there was any carry in the final additions in the
555     * loop above.
556     */
557
558    mbedtls_mpi_uint carry  = T[AN_limbs];
559    mbedtls_mpi_uint borrow = mbedtls_mpi_core_sub(X, T, N, AN_limbs);
560
561    /*
562     * Using R as the Montgomery radix (auxiliary modulus) i.e. 2^(biL*AN_limbs):
563     *
564     * T can be in one of 3 ranges:
565     *
566     * 1) T < N      : (carry, borrow) = (0, 1): we want T
567     * 2) N <= T < R : (carry, borrow) = (0, 0): we want X
568     * 3) T >= R     : (carry, borrow) = (1, 1): we want X
569     *
570     * and (carry, borrow) = (1, 0) can't happen.
571     *
572     * So the correct return value is already in X if (carry ^ borrow) = 0,
573     * but is in (the lower AN_limbs limbs of) T if (carry ^ borrow) = 1.
574     */
575    mbedtls_ct_memcpy_if(mbedtls_ct_bool(carry ^ borrow),
576                         (unsigned char *) X,
577                         (unsigned char *) T,
578                         NULL,
579                         AN_limbs * sizeof(mbedtls_mpi_uint));
580}
581
582int mbedtls_mpi_core_get_mont_r2_unsafe(mbedtls_mpi *X,
583                                        const mbedtls_mpi *N)
584{
585    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
586
587    MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 1));
588    MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, N->n * 2 * biL));
589    MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(X, X, N));
590    MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(X, N->n));
591
592cleanup:
593    return ret;
594}
595
596MBEDTLS_STATIC_TESTABLE
597void mbedtls_mpi_core_ct_uint_table_lookup(mbedtls_mpi_uint *dest,
598                                           const mbedtls_mpi_uint *table,
599                                           size_t limbs,
600                                           size_t count,
601                                           size_t index)
602{
603    for (size_t i = 0; i < count; i++, table += limbs) {
604        mbedtls_ct_condition_t assign = mbedtls_ct_uint_eq(i, index);
605        mbedtls_mpi_core_cond_assign(dest, table, limbs, assign);
606    }
607}
608
609/* Fill X with n_bytes random bytes.
610 * X must already have room for those bytes.
611 * The ordering of the bytes returned from the RNG is suitable for
612 * deterministic ECDSA (see RFC 6979 §3.3 and the specification of
613 * mbedtls_mpi_core_random()).
614 */
615int mbedtls_mpi_core_fill_random(
616    mbedtls_mpi_uint *X, size_t X_limbs,
617    size_t n_bytes,
618    int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
619{
620    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
621    const size_t limbs = CHARS_TO_LIMBS(n_bytes);
622    const size_t overhead = (limbs * ciL) - n_bytes;
623
624    if (X_limbs < limbs) {
625        return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
626    }
627
628    memset(X, 0, overhead);
629    memset((unsigned char *) X + limbs * ciL, 0, (X_limbs - limbs) * ciL);
630    MBEDTLS_MPI_CHK(f_rng(p_rng, (unsigned char *) X + overhead, n_bytes));
631    mbedtls_mpi_core_bigendian_to_host(X, limbs);
632
633cleanup:
634    return ret;
635}
636
637int mbedtls_mpi_core_random(mbedtls_mpi_uint *X,
638                            mbedtls_mpi_uint min,
639                            const mbedtls_mpi_uint *N,
640                            size_t limbs,
641                            int (*f_rng)(void *, unsigned char *, size_t),
642                            void *p_rng)
643{
644    mbedtls_ct_condition_t ge_lower = MBEDTLS_CT_TRUE, lt_upper = MBEDTLS_CT_FALSE;
645    size_t n_bits = mbedtls_mpi_core_bitlen(N, limbs);
646    size_t n_bytes = (n_bits + 7) / 8;
647    int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
648
649    /*
650     * When min == 0, each try has at worst a probability 1/2 of failing
651     * (the msb has a probability 1/2 of being 0, and then the result will
652     * be < N), so after 30 tries failure probability is a most 2**(-30).
653     *
654     * When N is just below a power of 2, as is the case when generating
655     * a random scalar on most elliptic curves, 1 try is enough with
656     * overwhelming probability. When N is just above a power of 2,
657     * as when generating a random scalar on secp224k1, each try has
658     * a probability of failing that is almost 1/2.
659     *
660     * The probabilities are almost the same if min is nonzero but negligible
661     * compared to N. This is always the case when N is crypto-sized, but
662     * it's convenient to support small N for testing purposes. When N
663     * is small, use a higher repeat count, otherwise the probability of
664     * failure is macroscopic.
665     */
666    int count = (n_bytes > 4 ? 30 : 250);
667
668    /*
669     * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
670     * when f_rng is a suitably parametrized instance of HMAC_DRBG:
671     * - use the same byte ordering;
672     * - keep the leftmost n_bits bits of the generated octet string;
673     * - try until result is in the desired range.
674     * This also avoids any bias, which is especially important for ECDSA.
675     */
676    do {
677        MBEDTLS_MPI_CHK(mbedtls_mpi_core_fill_random(X, limbs,
678                                                     n_bytes,
679                                                     f_rng, p_rng));
680        mbedtls_mpi_core_shift_r(X, limbs, 8 * n_bytes - n_bits);
681
682        if (--count == 0) {
683            ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
684            goto cleanup;
685        }
686
687        ge_lower = mbedtls_mpi_core_uint_le_mpi(min, X, limbs);
688        lt_upper = mbedtls_mpi_core_lt_ct(X, N, limbs);
689    } while (mbedtls_ct_bool_and(ge_lower, lt_upper) == MBEDTLS_CT_FALSE);
690
691cleanup:
692    return ret;
693}
694
695static size_t exp_mod_get_window_size(size_t Ebits)
696{
697#if MBEDTLS_MPI_WINDOW_SIZE >= 6
698    return (Ebits > 671) ? 6 : (Ebits > 239) ? 5 : (Ebits >  79) ? 4 : 1;
699#elif MBEDTLS_MPI_WINDOW_SIZE == 5
700    return (Ebits > 239) ? 5 : (Ebits >  79) ? 4 : 1;
701#elif MBEDTLS_MPI_WINDOW_SIZE > 1
702    return (Ebits >  79) ? MBEDTLS_MPI_WINDOW_SIZE : 1;
703#else
704    (void) Ebits;
705    return 1;
706#endif
707}
708
709size_t mbedtls_mpi_core_exp_mod_working_limbs(size_t AN_limbs, size_t E_limbs)
710{
711    const size_t wsize = exp_mod_get_window_size(E_limbs * biL);
712    const size_t welem = ((size_t) 1) << wsize;
713
714    /* How big does each part of the working memory pool need to be? */
715    const size_t table_limbs   = welem * AN_limbs;
716    const size_t select_limbs  = AN_limbs;
717    const size_t temp_limbs    = 2 * AN_limbs + 1;
718
719    return table_limbs + select_limbs + temp_limbs;
720}
721
722static void exp_mod_precompute_window(const mbedtls_mpi_uint *A,
723                                      const mbedtls_mpi_uint *N,
724                                      size_t AN_limbs,
725                                      mbedtls_mpi_uint mm,
726                                      const mbedtls_mpi_uint *RR,
727                                      size_t welem,
728                                      mbedtls_mpi_uint *Wtable,
729                                      mbedtls_mpi_uint *temp)
730{
731    /* W[0] = 1 (in Montgomery presentation) */
732    memset(Wtable, 0, AN_limbs * ciL);
733    Wtable[0] = 1;
734    mbedtls_mpi_core_montmul(Wtable, Wtable, RR, AN_limbs, N, AN_limbs, mm, temp);
735
736    /* W[1] = A (already in Montgomery presentation) */
737    mbedtls_mpi_uint *W1 = Wtable + AN_limbs;
738    memcpy(W1, A, AN_limbs * ciL);
739
740    /* W[i+1] = W[i] * W[1], i >= 2 */
741    mbedtls_mpi_uint *Wprev = W1;
742    for (size_t i = 2; i < welem; i++) {
743        mbedtls_mpi_uint *Wcur = Wprev + AN_limbs;
744        mbedtls_mpi_core_montmul(Wcur, Wprev, W1, AN_limbs, N, AN_limbs, mm, temp);
745        Wprev = Wcur;
746    }
747}
748
749/* Exponentiation: X := A^E mod N.
750 *
751 * A must already be in Montgomery form.
752 *
753 * As in other bignum functions, assume that AN_limbs and E_limbs are nonzero.
754 *
755 * RR must contain 2^{2*biL} mod N.
756 *
757 * The algorithm is a variant of Left-to-right k-ary exponentiation: HAC 14.82
758 * (The difference is that the body in our loop processes a single bit instead
759 * of a full window.)
760 */
761void mbedtls_mpi_core_exp_mod(mbedtls_mpi_uint *X,
762                              const mbedtls_mpi_uint *A,
763                              const mbedtls_mpi_uint *N,
764                              size_t AN_limbs,
765                              const mbedtls_mpi_uint *E,
766                              size_t E_limbs,
767                              const mbedtls_mpi_uint *RR,
768                              mbedtls_mpi_uint *T)
769{
770    const size_t wsize = exp_mod_get_window_size(E_limbs * biL);
771    const size_t welem = ((size_t) 1) << wsize;
772
773    /* This is how we will use the temporary storage T, which must have space
774     * for table_limbs, select_limbs and (2 * AN_limbs + 1) for montmul. */
775    const size_t table_limbs  = welem * AN_limbs;
776    const size_t select_limbs = AN_limbs;
777
778    /* Pointers to specific parts of the temporary working memory pool */
779    mbedtls_mpi_uint *const Wtable  = T;
780    mbedtls_mpi_uint *const Wselect = Wtable  +  table_limbs;
781    mbedtls_mpi_uint *const temp    = Wselect + select_limbs;
782
783    /*
784     * Window precomputation
785     */
786
787    const mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init(N);
788
789    /* Set Wtable[i] = A^(2^i) (in Montgomery representation) */
790    exp_mod_precompute_window(A, N, AN_limbs,
791                              mm, RR,
792                              welem, Wtable, temp);
793
794    /*
795     * Fixed window exponentiation
796     */
797
798    /* X = 1 (in Montgomery presentation) initially */
799    memcpy(X, Wtable, AN_limbs * ciL);
800
801    /* We'll process the bits of E from most significant
802     * (limb_index=E_limbs-1, E_bit_index=biL-1) to least significant
803     * (limb_index=0, E_bit_index=0). */
804    size_t E_limb_index = E_limbs;
805    size_t E_bit_index = 0;
806    /* At any given time, window contains window_bits bits from E.
807     * window_bits can go up to wsize. */
808    size_t window_bits = 0;
809    mbedtls_mpi_uint window = 0;
810
811    do {
812        /* Square */
813        mbedtls_mpi_core_montmul(X, X, X, AN_limbs, N, AN_limbs, mm, temp);
814
815        /* Move to the next bit of the exponent */
816        if (E_bit_index == 0) {
817            --E_limb_index;
818            E_bit_index = biL - 1;
819        } else {
820            --E_bit_index;
821        }
822        /* Insert next exponent bit into window */
823        ++window_bits;
824        window <<= 1;
825        window |= (E[E_limb_index] >> E_bit_index) & 1;
826
827        /* Clear window if it's full. Also clear the window at the end,
828         * when we've finished processing the exponent. */
829        if (window_bits == wsize ||
830            (E_bit_index == 0 && E_limb_index == 0)) {
831            /* Select Wtable[window] without leaking window through
832             * memory access patterns. */
833            mbedtls_mpi_core_ct_uint_table_lookup(Wselect, Wtable,
834                                                  AN_limbs, welem, window);
835            /* Multiply X by the selected element. */
836            mbedtls_mpi_core_montmul(X, X, Wselect, AN_limbs, N, AN_limbs, mm,
837                                     temp);
838            window = 0;
839            window_bits = 0;
840        }
841    } while (!(E_bit_index == 0 && E_limb_index == 0));
842}
843
844mbedtls_mpi_uint mbedtls_mpi_core_sub_int(mbedtls_mpi_uint *X,
845                                          const mbedtls_mpi_uint *A,
846                                          mbedtls_mpi_uint c,  /* doubles as carry */
847                                          size_t limbs)
848{
849    for (size_t i = 0; i < limbs; i++) {
850        mbedtls_mpi_uint s = A[i];
851        mbedtls_mpi_uint t = s - c;
852        c = (t > s);
853        X[i] = t;
854    }
855
856    return c;
857}
858
859mbedtls_ct_condition_t mbedtls_mpi_core_check_zero_ct(const mbedtls_mpi_uint *A,
860                                                      size_t limbs)
861{
862    volatile const mbedtls_mpi_uint *force_read_A = A;
863    mbedtls_mpi_uint bits = 0;
864
865    for (size_t i = 0; i < limbs; i++) {
866        bits |= force_read_A[i];
867    }
868
869    return mbedtls_ct_bool(bits);
870}
871
872void mbedtls_mpi_core_to_mont_rep(mbedtls_mpi_uint *X,
873                                  const mbedtls_mpi_uint *A,
874                                  const mbedtls_mpi_uint *N,
875                                  size_t AN_limbs,
876                                  mbedtls_mpi_uint mm,
877                                  const mbedtls_mpi_uint *rr,
878                                  mbedtls_mpi_uint *T)
879{
880    mbedtls_mpi_core_montmul(X, A, rr, AN_limbs, N, AN_limbs, mm, T);
881}
882
883void mbedtls_mpi_core_from_mont_rep(mbedtls_mpi_uint *X,
884                                    const mbedtls_mpi_uint *A,
885                                    const mbedtls_mpi_uint *N,
886                                    size_t AN_limbs,
887                                    mbedtls_mpi_uint mm,
888                                    mbedtls_mpi_uint *T)
889{
890    const mbedtls_mpi_uint Rinv = 1;    /* 1/R in Mont. rep => 1 */
891
892    mbedtls_mpi_core_montmul(X, A, &Rinv, 1, N, AN_limbs, mm, T);
893}
894
895#endif /* MBEDTLS_BIGNUM_C */
896