1/** 2 * \file alignment.h 3 * 4 * \brief Utility code for dealing with unaligned memory accesses 5 */ 6/* 7 * Copyright The Mbed TLS Contributors 8 * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later 9 */ 10 11#ifndef MBEDTLS_LIBRARY_ALIGNMENT_H 12#define MBEDTLS_LIBRARY_ALIGNMENT_H 13 14#include <stdint.h> 15#include <string.h> 16#include <stdlib.h> 17 18/* 19 * Define MBEDTLS_EFFICIENT_UNALIGNED_ACCESS for architectures where unaligned memory 20 * accesses are known to be efficient. 21 * 22 * All functions defined here will behave correctly regardless, but might be less 23 * efficient when this is not defined. 24 */ 25#if defined(__ARM_FEATURE_UNALIGNED) \ 26 || defined(MBEDTLS_ARCH_IS_X86) || defined(MBEDTLS_ARCH_IS_X64) \ 27 || defined(MBEDTLS_PLATFORM_IS_WINDOWS_ON_ARM64) 28/* 29 * __ARM_FEATURE_UNALIGNED is defined where appropriate by armcc, gcc 7, clang 9 30 * (and later versions) for Arm v7 and later; all x86 platforms should have 31 * efficient unaligned access. 32 * 33 * https://learn.microsoft.com/en-us/cpp/build/arm64-windows-abi-conventions?view=msvc-170#alignment 34 * specifies that on Windows-on-Arm64, unaligned access is safe (except for uncached 35 * device memory). 36 */ 37#define MBEDTLS_EFFICIENT_UNALIGNED_ACCESS 38#endif 39 40#if defined(__IAR_SYSTEMS_ICC__) && \ 41 (defined(MBEDTLS_ARCH_IS_ARM64) || defined(MBEDTLS_ARCH_IS_ARM32) \ 42 || defined(__ICCRX__) || defined(__ICCRL78__) || defined(__ICCRISCV__)) 43#pragma language=save 44#pragma language=extended 45#define MBEDTLS_POP_IAR_LANGUAGE_PRAGMA 46/* IAR recommend this technique for accessing unaligned data in 47 * https://www.iar.com/knowledge/support/technical-notes/compiler/accessing-unaligned-data 48 * This results in a single load / store instruction (if unaligned access is supported). 49 * According to that document, this is only supported on certain architectures. 50 */ 51 #define UINT_UNALIGNED 52typedef uint16_t __packed mbedtls_uint16_unaligned_t; 53typedef uint32_t __packed mbedtls_uint32_unaligned_t; 54typedef uint64_t __packed mbedtls_uint64_unaligned_t; 55#elif defined(MBEDTLS_COMPILER_IS_GCC) && (MBEDTLS_GCC_VERSION >= 40504) && \ 56 ((MBEDTLS_GCC_VERSION < 60300) || (!defined(MBEDTLS_EFFICIENT_UNALIGNED_ACCESS))) 57/* 58 * gcc may generate a branch to memcpy for calls like `memcpy(dest, src, 4)` rather than 59 * generating some LDR or LDRB instructions (similar for stores). 60 * 61 * This is architecture dependent: x86-64 seems fine even with old gcc; 32-bit Arm 62 * is affected. To keep it simple, we enable for all architectures. 63 * 64 * For versions of gcc < 5.4.0 this issue always happens. 65 * For gcc < 6.3.0, this issue happens at -O0 66 * For all versions, this issue happens iff unaligned access is not supported. 67 * 68 * For gcc 4.x, this implementation will generate byte-by-byte loads even if unaligned access is 69 * supported, which is correct but not optimal. 70 * 71 * For performance (and code size, in some cases), we want to avoid the branch and just generate 72 * some inline load/store instructions since the access is small and constant-size. 73 * 74 * The manual states: 75 * "The packed attribute specifies that a variable or structure field should have the smallest 76 * possible alignment��one byte for a variable" 77 * https://gcc.gnu.org/onlinedocs/gcc-4.5.4/gcc/Variable-Attributes.html 78 * 79 * Previous implementations used __attribute__((__aligned__(1)), but had issues with a gcc bug: 80 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94662 81 * 82 * Tested with several versions of GCC from 4.5.0 up to 13.2.0 83 * We don't enable for older than 4.5.0 as this has not been tested. 84 */ 85 #define UINT_UNALIGNED_STRUCT 86typedef struct { 87 uint16_t x; 88} __attribute__((packed)) mbedtls_uint16_unaligned_t; 89typedef struct { 90 uint32_t x; 91} __attribute__((packed)) mbedtls_uint32_unaligned_t; 92typedef struct { 93 uint64_t x; 94} __attribute__((packed)) mbedtls_uint64_unaligned_t; 95 #endif 96 97/* 98 * We try to force mbedtls_(get|put)_unaligned_uintXX to be always inline, because this results 99 * in code that is both smaller and faster. IAR and gcc both benefit from this when optimising 100 * for size. 101 */ 102 103/** 104 * Read the unsigned 16 bits integer from the given address, which need not 105 * be aligned. 106 * 107 * \param p pointer to 2 bytes of data 108 * \return Data at the given address 109 */ 110uint16_t mbedtls_get_unaligned_uint16(const void *p); 111 112/** 113 * Write the unsigned 16 bits integer to the given address, which need not 114 * be aligned. 115 * 116 * \param p pointer to 2 bytes of data 117 * \param x data to write 118 */ 119void mbedtls_put_unaligned_uint16(void *p, uint16_t x); 120 121/** 122 * Read the unsigned 32 bits integer from the given address, which need not 123 * be aligned. 124 * 125 * \param p pointer to 4 bytes of data 126 * \return Data at the given address 127 */ 128uint32_t mbedtls_get_unaligned_uint32(const void *p); 129 130/** 131 * Write the unsigned 32 bits integer to the given address, which need not 132 * be aligned. 133 * 134 * \param p pointer to 4 bytes of data 135 * \param x data to write 136 */ 137void mbedtls_put_unaligned_uint32(void *p, uint32_t x); 138 139/** 140 * Read the unsigned 64 bits integer from the given address, which need not 141 * be aligned. 142 * 143 * \param p pointer to 8 bytes of data 144 * \return Data at the given address 145 */ 146uint64_t mbedtls_get_unaligned_uint64(const void *p); 147 148/** 149 * Write the unsigned 64 bits integer to the given address, which need not 150 * be aligned. 151 * 152 * \param p pointer to 8 bytes of data 153 * \param x data to write 154 */ 155void mbedtls_put_unaligned_uint64(void *p, uint64_t x); 156#if defined(MBEDTLS_POP_IAR_LANGUAGE_PRAGMA) 157#pragma language=restore 158#endif 159 160/** Byte Reading Macros 161 * 162 * Given a multi-byte integer \p x, MBEDTLS_BYTE_n retrieves the n-th 163 * byte from x, where byte 0 is the least significant byte. 164 */ 165#define MBEDTLS_BYTE_0(x) ((uint8_t) ((x) & 0xff)) 166#define MBEDTLS_BYTE_1(x) ((uint8_t) (((x) >> 8) & 0xff)) 167#define MBEDTLS_BYTE_2(x) ((uint8_t) (((x) >> 16) & 0xff)) 168#define MBEDTLS_BYTE_3(x) ((uint8_t) (((x) >> 24) & 0xff)) 169#define MBEDTLS_BYTE_4(x) ((uint8_t) (((x) >> 32) & 0xff)) 170#define MBEDTLS_BYTE_5(x) ((uint8_t) (((x) >> 40) & 0xff)) 171#define MBEDTLS_BYTE_6(x) ((uint8_t) (((x) >> 48) & 0xff)) 172#define MBEDTLS_BYTE_7(x) ((uint8_t) (((x) >> 56) & 0xff)) 173 174/* 175 * Detect GCC built-in byteswap routines 176 */ 177#if defined(__GNUC__) && defined(__GNUC_PREREQ) 178#if __GNUC_PREREQ(4, 8) 179#define MBEDTLS_BSWAP16 __builtin_bswap16 180#endif /* __GNUC_PREREQ(4,8) */ 181#if __GNUC_PREREQ(4, 3) 182#define MBEDTLS_BSWAP32 __builtin_bswap32 183#define MBEDTLS_BSWAP64 __builtin_bswap64 184#endif /* __GNUC_PREREQ(4,3) */ 185#endif /* defined(__GNUC__) && defined(__GNUC_PREREQ) */ 186 187/* 188 * Detect Clang built-in byteswap routines 189 */ 190#if defined(__clang__) && defined(__has_builtin) 191#if __has_builtin(__builtin_bswap16) && !defined(MBEDTLS_BSWAP16) 192#define MBEDTLS_BSWAP16 __builtin_bswap16 193#endif /* __has_builtin(__builtin_bswap16) */ 194#if __has_builtin(__builtin_bswap32) && !defined(MBEDTLS_BSWAP32) 195#define MBEDTLS_BSWAP32 __builtin_bswap32 196#endif /* __has_builtin(__builtin_bswap32) */ 197#if __has_builtin(__builtin_bswap64) && !defined(MBEDTLS_BSWAP64) 198#define MBEDTLS_BSWAP64 __builtin_bswap64 199#endif /* __has_builtin(__builtin_bswap64) */ 200#endif /* defined(__clang__) && defined(__has_builtin) */ 201 202/* 203 * Detect MSVC built-in byteswap routines 204 */ 205#if defined(_MSC_VER) 206#if !defined(MBEDTLS_BSWAP16) 207#define MBEDTLS_BSWAP16 _byteswap_ushort 208#endif 209#if !defined(MBEDTLS_BSWAP32) 210#define MBEDTLS_BSWAP32 _byteswap_ulong 211#endif 212#if !defined(MBEDTLS_BSWAP64) 213#define MBEDTLS_BSWAP64 _byteswap_uint64 214#endif 215#endif /* defined(_MSC_VER) */ 216 217/* Detect armcc built-in byteswap routine */ 218#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 410000) && !defined(MBEDTLS_BSWAP32) 219#if defined(__ARM_ACLE) /* ARM Compiler 6 - earlier versions don't need a header */ 220#include <arm_acle.h> 221#endif 222#define MBEDTLS_BSWAP32 __rev 223#endif 224 225/* Detect IAR built-in byteswap routine */ 226#if defined(__IAR_SYSTEMS_ICC__) 227#if defined(__ARM_ACLE) 228#include <arm_acle.h> 229#define MBEDTLS_BSWAP16(x) ((uint16_t) __rev16((uint32_t) (x))) 230#define MBEDTLS_BSWAP32 __rev 231#define MBEDTLS_BSWAP64 __revll 232#endif 233#endif 234 235/* 236 * Where compiler built-ins are not present, fall back to C code that the 237 * compiler may be able to detect and transform into the relevant bswap or 238 * similar instruction. 239 */ 240#if !defined(MBEDTLS_BSWAP16) 241static inline uint16_t mbedtls_bswap16(uint16_t x) 242{ 243 return 244 (x & 0x00ff) << 8 | 245 (x & 0xff00) >> 8; 246} 247#define MBEDTLS_BSWAP16 mbedtls_bswap16 248#endif /* !defined(MBEDTLS_BSWAP16) */ 249 250#if !defined(MBEDTLS_BSWAP32) 251static inline uint32_t mbedtls_bswap32(uint32_t x) 252{ 253 return 254 (x & 0x000000ff) << 24 | 255 (x & 0x0000ff00) << 8 | 256 (x & 0x00ff0000) >> 8 | 257 (x & 0xff000000) >> 24; 258} 259#define MBEDTLS_BSWAP32 mbedtls_bswap32 260#endif /* !defined(MBEDTLS_BSWAP32) */ 261 262#if !defined(MBEDTLS_BSWAP64) 263static inline uint64_t mbedtls_bswap64(uint64_t x) 264{ 265 return 266 (x & 0x00000000000000ffULL) << 56 | 267 (x & 0x000000000000ff00ULL) << 40 | 268 (x & 0x0000000000ff0000ULL) << 24 | 269 (x & 0x00000000ff000000ULL) << 8 | 270 (x & 0x000000ff00000000ULL) >> 8 | 271 (x & 0x0000ff0000000000ULL) >> 24 | 272 (x & 0x00ff000000000000ULL) >> 40 | 273 (x & 0xff00000000000000ULL) >> 56; 274} 275#define MBEDTLS_BSWAP64 mbedtls_bswap64 276#endif /* !defined(MBEDTLS_BSWAP64) */ 277 278#if !defined(__BYTE_ORDER__) 279 280#if defined(__LITTLE_ENDIAN__) 281/* IAR defines __xxx_ENDIAN__, but not __BYTE_ORDER__ */ 282#define MBEDTLS_IS_BIG_ENDIAN 0 283#elif defined(__BIG_ENDIAN__) 284#define MBEDTLS_IS_BIG_ENDIAN 1 285#else 286static const uint16_t mbedtls_byte_order_detector = { 0x100 }; 287#define MBEDTLS_IS_BIG_ENDIAN (*((unsigned char *) (&mbedtls_byte_order_detector)) == 0x01) 288#endif 289 290#else 291 292#if (__BYTE_ORDER__) == (__ORDER_BIG_ENDIAN__) 293#define MBEDTLS_IS_BIG_ENDIAN 1 294#else 295#define MBEDTLS_IS_BIG_ENDIAN 0 296#endif 297 298#endif /* !defined(__BYTE_ORDER__) */ 299 300/** 301 * Get the unsigned 32 bits integer corresponding to four bytes in 302 * big-endian order (MSB first). 303 * 304 * \param data Base address of the memory to get the four bytes from. 305 * \param offset Offset from \p data of the first and most significant 306 * byte of the four bytes to build the 32 bits unsigned 307 * integer from. 308 */ 309#define MBEDTLS_GET_UINT32_BE(data, offset) \ 310 ((MBEDTLS_IS_BIG_ENDIAN) \ 311 ? mbedtls_get_unaligned_uint32((data) + (offset)) \ 312 : MBEDTLS_BSWAP32(mbedtls_get_unaligned_uint32((data) + (offset))) \ 313 ) 314 315/** 316 * Put in memory a 32 bits unsigned integer in big-endian order. 317 * 318 * \param n 32 bits unsigned integer to put in memory. 319 * \param data Base address of the memory where to put the 32 320 * bits unsigned integer in. 321 * \param offset Offset from \p data where to put the most significant 322 * byte of the 32 bits unsigned integer \p n. 323 */ 324#define MBEDTLS_PUT_UINT32_BE(n, data, offset) \ 325 { \ 326 if (MBEDTLS_IS_BIG_ENDIAN) \ 327 { \ 328 mbedtls_put_unaligned_uint32((data) + (offset), (uint32_t) (n)); \ 329 } \ 330 else \ 331 { \ 332 mbedtls_put_unaligned_uint32((data) + (offset), MBEDTLS_BSWAP32((uint32_t) (n))); \ 333 } \ 334 } 335 336/** 337 * Get the unsigned 32 bits integer corresponding to four bytes in 338 * little-endian order (LSB first). 339 * 340 * \param data Base address of the memory to get the four bytes from. 341 * \param offset Offset from \p data of the first and least significant 342 * byte of the four bytes to build the 32 bits unsigned 343 * integer from. 344 */ 345#define MBEDTLS_GET_UINT32_LE(data, offset) \ 346 ((MBEDTLS_IS_BIG_ENDIAN) \ 347 ? MBEDTLS_BSWAP32(mbedtls_get_unaligned_uint32((data) + (offset))) \ 348 : mbedtls_get_unaligned_uint32((data) + (offset)) \ 349 ) 350 351 352/** 353 * Put in memory a 32 bits unsigned integer in little-endian order. 354 * 355 * \param n 32 bits unsigned integer to put in memory. 356 * \param data Base address of the memory where to put the 32 357 * bits unsigned integer in. 358 * \param offset Offset from \p data where to put the least significant 359 * byte of the 32 bits unsigned integer \p n. 360 */ 361#define MBEDTLS_PUT_UINT32_LE(n, data, offset) \ 362 { \ 363 if (MBEDTLS_IS_BIG_ENDIAN) \ 364 { \ 365 mbedtls_put_unaligned_uint32((data) + (offset), MBEDTLS_BSWAP32((uint32_t) (n))); \ 366 } \ 367 else \ 368 { \ 369 mbedtls_put_unaligned_uint32((data) + (offset), ((uint32_t) (n))); \ 370 } \ 371 } 372 373/** 374 * Get the unsigned 16 bits integer corresponding to two bytes in 375 * little-endian order (LSB first). 376 * 377 * \param data Base address of the memory to get the two bytes from. 378 * \param offset Offset from \p data of the first and least significant 379 * byte of the two bytes to build the 16 bits unsigned 380 * integer from. 381 */ 382#define MBEDTLS_GET_UINT16_LE(data, offset) \ 383 ((MBEDTLS_IS_BIG_ENDIAN) \ 384 ? MBEDTLS_BSWAP16(mbedtls_get_unaligned_uint16((data) + (offset))) \ 385 : mbedtls_get_unaligned_uint16((data) + (offset)) \ 386 ) 387 388/** 389 * Put in memory a 16 bits unsigned integer in little-endian order. 390 * 391 * \param n 16 bits unsigned integer to put in memory. 392 * \param data Base address of the memory where to put the 16 393 * bits unsigned integer in. 394 * \param offset Offset from \p data where to put the least significant 395 * byte of the 16 bits unsigned integer \p n. 396 */ 397#define MBEDTLS_PUT_UINT16_LE(n, data, offset) \ 398 { \ 399 if (MBEDTLS_IS_BIG_ENDIAN) \ 400 { \ 401 mbedtls_put_unaligned_uint16((data) + (offset), MBEDTLS_BSWAP16((uint16_t) (n))); \ 402 } \ 403 else \ 404 { \ 405 mbedtls_put_unaligned_uint16((data) + (offset), (uint16_t) (n)); \ 406 } \ 407 } 408 409/** 410 * Get the unsigned 16 bits integer corresponding to two bytes in 411 * big-endian order (MSB first). 412 * 413 * \param data Base address of the memory to get the two bytes from. 414 * \param offset Offset from \p data of the first and most significant 415 * byte of the two bytes to build the 16 bits unsigned 416 * integer from. 417 */ 418#define MBEDTLS_GET_UINT16_BE(data, offset) \ 419 ((MBEDTLS_IS_BIG_ENDIAN) \ 420 ? mbedtls_get_unaligned_uint16((data) + (offset)) \ 421 : MBEDTLS_BSWAP16(mbedtls_get_unaligned_uint16((data) + (offset))) \ 422 ) 423 424/** 425 * Put in memory a 16 bits unsigned integer in big-endian order. 426 * 427 * \param n 16 bits unsigned integer to put in memory. 428 * \param data Base address of the memory where to put the 16 429 * bits unsigned integer in. 430 * \param offset Offset from \p data where to put the most significant 431 * byte of the 16 bits unsigned integer \p n. 432 */ 433#define MBEDTLS_PUT_UINT16_BE(n, data, offset) \ 434 { \ 435 if (MBEDTLS_IS_BIG_ENDIAN) \ 436 { \ 437 mbedtls_put_unaligned_uint16((data) + (offset), (uint16_t) (n)); \ 438 } \ 439 else \ 440 { \ 441 mbedtls_put_unaligned_uint16((data) + (offset), MBEDTLS_BSWAP16((uint16_t) (n))); \ 442 } \ 443 } 444 445/** 446 * Get the unsigned 24 bits integer corresponding to three bytes in 447 * big-endian order (MSB first). 448 * 449 * \param data Base address of the memory to get the three bytes from. 450 * \param offset Offset from \p data of the first and most significant 451 * byte of the three bytes to build the 24 bits unsigned 452 * integer from. 453 */ 454#define MBEDTLS_GET_UINT24_BE(data, offset) \ 455 ( \ 456 ((uint32_t) (data)[(offset)] << 16) \ 457 | ((uint32_t) (data)[(offset) + 1] << 8) \ 458 | ((uint32_t) (data)[(offset) + 2]) \ 459 ) 460 461/** 462 * Put in memory a 24 bits unsigned integer in big-endian order. 463 * 464 * \param n 24 bits unsigned integer to put in memory. 465 * \param data Base address of the memory where to put the 24 466 * bits unsigned integer in. 467 * \param offset Offset from \p data where to put the most significant 468 * byte of the 24 bits unsigned integer \p n. 469 */ 470#define MBEDTLS_PUT_UINT24_BE(n, data, offset) \ 471 { \ 472 (data)[(offset)] = MBEDTLS_BYTE_2(n); \ 473 (data)[(offset) + 1] = MBEDTLS_BYTE_1(n); \ 474 (data)[(offset) + 2] = MBEDTLS_BYTE_0(n); \ 475 } 476 477/** 478 * Get the unsigned 24 bits integer corresponding to three bytes in 479 * little-endian order (LSB first). 480 * 481 * \param data Base address of the memory to get the three bytes from. 482 * \param offset Offset from \p data of the first and least significant 483 * byte of the three bytes to build the 24 bits unsigned 484 * integer from. 485 */ 486#define MBEDTLS_GET_UINT24_LE(data, offset) \ 487 ( \ 488 ((uint32_t) (data)[(offset)]) \ 489 | ((uint32_t) (data)[(offset) + 1] << 8) \ 490 | ((uint32_t) (data)[(offset) + 2] << 16) \ 491 ) 492 493/** 494 * Put in memory a 24 bits unsigned integer in little-endian order. 495 * 496 * \param n 24 bits unsigned integer to put in memory. 497 * \param data Base address of the memory where to put the 24 498 * bits unsigned integer in. 499 * \param offset Offset from \p data where to put the least significant 500 * byte of the 24 bits unsigned integer \p n. 501 */ 502#define MBEDTLS_PUT_UINT24_LE(n, data, offset) \ 503 { \ 504 (data)[(offset)] = MBEDTLS_BYTE_0(n); \ 505 (data)[(offset) + 1] = MBEDTLS_BYTE_1(n); \ 506 (data)[(offset) + 2] = MBEDTLS_BYTE_2(n); \ 507 } 508 509/** 510 * Get the unsigned 64 bits integer corresponding to eight bytes in 511 * big-endian order (MSB first). 512 * 513 * \param data Base address of the memory to get the eight bytes from. 514 * \param offset Offset from \p data of the first and most significant 515 * byte of the eight bytes to build the 64 bits unsigned 516 * integer from. 517 */ 518#define MBEDTLS_GET_UINT64_BE(data, offset) \ 519 ((MBEDTLS_IS_BIG_ENDIAN) \ 520 ? mbedtls_get_unaligned_uint64((data) + (offset)) \ 521 : MBEDTLS_BSWAP64(mbedtls_get_unaligned_uint64((data) + (offset))) \ 522 ) 523 524/** 525 * Put in memory a 64 bits unsigned integer in big-endian order. 526 * 527 * \param n 64 bits unsigned integer to put in memory. 528 * \param data Base address of the memory where to put the 64 529 * bits unsigned integer in. 530 * \param offset Offset from \p data where to put the most significant 531 * byte of the 64 bits unsigned integer \p n. 532 */ 533#define MBEDTLS_PUT_UINT64_BE(n, data, offset) \ 534 { \ 535 if (MBEDTLS_IS_BIG_ENDIAN) \ 536 { \ 537 mbedtls_put_unaligned_uint64((data) + (offset), (uint64_t) (n)); \ 538 } \ 539 else \ 540 { \ 541 mbedtls_put_unaligned_uint64((data) + (offset), MBEDTLS_BSWAP64((uint64_t) (n))); \ 542 } \ 543 } 544 545/** 546 * Get the unsigned 64 bits integer corresponding to eight bytes in 547 * little-endian order (LSB first). 548 * 549 * \param data Base address of the memory to get the eight bytes from. 550 * \param offset Offset from \p data of the first and least significant 551 * byte of the eight bytes to build the 64 bits unsigned 552 * integer from. 553 */ 554#define MBEDTLS_GET_UINT64_LE(data, offset) \ 555 ((MBEDTLS_IS_BIG_ENDIAN) \ 556 ? MBEDTLS_BSWAP64(mbedtls_get_unaligned_uint64((data) + (offset))) \ 557 : mbedtls_get_unaligned_uint64((data) + (offset)) \ 558 ) 559 560/** 561 * Put in memory a 64 bits unsigned integer in little-endian order. 562 * 563 * \param n 64 bits unsigned integer to put in memory. 564 * \param data Base address of the memory where to put the 64 565 * bits unsigned integer in. 566 * \param offset Offset from \p data where to put the least significant 567 * byte of the 64 bits unsigned integer \p n. 568 */ 569#define MBEDTLS_PUT_UINT64_LE(n, data, offset) \ 570 { \ 571 if (MBEDTLS_IS_BIG_ENDIAN) \ 572 { \ 573 mbedtls_put_unaligned_uint64((data) + (offset), MBEDTLS_BSWAP64((uint64_t) (n))); \ 574 } \ 575 else \ 576 { \ 577 mbedtls_put_unaligned_uint64((data) + (offset), (uint64_t) (n)); \ 578 } \ 579 } 580 581#endif /* MBEDTLS_LIBRARY_ALIGNMENT_H */ 582