1a8e1175bSopenharmony_ci/*
2a8e1175bSopenharmony_ci *  AES-NI support functions
3a8e1175bSopenharmony_ci *
4a8e1175bSopenharmony_ci *  Copyright The Mbed TLS Contributors
5a8e1175bSopenharmony_ci *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
6a8e1175bSopenharmony_ci */
7a8e1175bSopenharmony_ci
8a8e1175bSopenharmony_ci/*
9a8e1175bSopenharmony_ci * [AES-WP] https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html
10a8e1175bSopenharmony_ci * [CLMUL-WP] https://www.intel.com/content/www/us/en/develop/download/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode.html
11a8e1175bSopenharmony_ci */
12a8e1175bSopenharmony_ci
13a8e1175bSopenharmony_ci#include "common.h"
14a8e1175bSopenharmony_ci
15a8e1175bSopenharmony_ci#if defined(MBEDTLS_AESNI_C)
16a8e1175bSopenharmony_ci
17a8e1175bSopenharmony_ci#include "aesni.h"
18a8e1175bSopenharmony_ci
19a8e1175bSopenharmony_ci#include <string.h>
20a8e1175bSopenharmony_ci
21a8e1175bSopenharmony_ci#if defined(MBEDTLS_AESNI_HAVE_CODE)
22a8e1175bSopenharmony_ci
23a8e1175bSopenharmony_ci#if MBEDTLS_AESNI_HAVE_CODE == 2
24a8e1175bSopenharmony_ci#if defined(__GNUC__)
25a8e1175bSopenharmony_ci#include <cpuid.h>
26a8e1175bSopenharmony_ci#elif defined(_MSC_VER)
27a8e1175bSopenharmony_ci#include <intrin.h>
28a8e1175bSopenharmony_ci#else
29a8e1175bSopenharmony_ci#error "`__cpuid` required by MBEDTLS_AESNI_C is not supported by the compiler"
30a8e1175bSopenharmony_ci#endif
31a8e1175bSopenharmony_ci#include <immintrin.h>
32a8e1175bSopenharmony_ci#endif
33a8e1175bSopenharmony_ci
34a8e1175bSopenharmony_ci#if defined(MBEDTLS_ARCH_IS_X86)
35a8e1175bSopenharmony_ci#if defined(MBEDTLS_COMPILER_IS_GCC)
36a8e1175bSopenharmony_ci#pragma GCC push_options
37a8e1175bSopenharmony_ci#pragma GCC target ("pclmul,sse2,aes")
38a8e1175bSopenharmony_ci#define MBEDTLS_POP_TARGET_PRAGMA
39a8e1175bSopenharmony_ci#elif defined(__clang__) && (__clang_major__ >= 5)
40a8e1175bSopenharmony_ci#pragma clang attribute push (__attribute__((target("pclmul,sse2,aes"))), apply_to=function)
41a8e1175bSopenharmony_ci#define MBEDTLS_POP_TARGET_PRAGMA
42a8e1175bSopenharmony_ci#endif
43a8e1175bSopenharmony_ci#endif
44a8e1175bSopenharmony_ci
45a8e1175bSopenharmony_ci#if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
46a8e1175bSopenharmony_ci/*
47a8e1175bSopenharmony_ci * AES-NI support detection routine
48a8e1175bSopenharmony_ci */
49a8e1175bSopenharmony_ciint mbedtls_aesni_has_support(unsigned int what)
50a8e1175bSopenharmony_ci{
51a8e1175bSopenharmony_ci    static int done = 0;
52a8e1175bSopenharmony_ci    static unsigned int c = 0;
53a8e1175bSopenharmony_ci
54a8e1175bSopenharmony_ci    if (!done) {
55a8e1175bSopenharmony_ci#if MBEDTLS_AESNI_HAVE_CODE == 2
56a8e1175bSopenharmony_ci        static int info[4] = { 0, 0, 0, 0 };
57a8e1175bSopenharmony_ci#if defined(_MSC_VER)
58a8e1175bSopenharmony_ci        __cpuid(info, 1);
59a8e1175bSopenharmony_ci#else
60a8e1175bSopenharmony_ci        __cpuid(1, info[0], info[1], info[2], info[3]);
61a8e1175bSopenharmony_ci#endif
62a8e1175bSopenharmony_ci        c = info[2];
63a8e1175bSopenharmony_ci#else /* AESNI using asm */
64a8e1175bSopenharmony_ci        asm ("movl  $1, %%eax   \n\t"
65a8e1175bSopenharmony_ci             "cpuid             \n\t"
66a8e1175bSopenharmony_ci             : "=c" (c)
67a8e1175bSopenharmony_ci             :
68a8e1175bSopenharmony_ci             : "eax", "ebx", "edx");
69a8e1175bSopenharmony_ci#endif /* MBEDTLS_AESNI_HAVE_CODE */
70a8e1175bSopenharmony_ci        done = 1;
71a8e1175bSopenharmony_ci    }
72a8e1175bSopenharmony_ci
73a8e1175bSopenharmony_ci    return (c & what) != 0;
74a8e1175bSopenharmony_ci}
75a8e1175bSopenharmony_ci#endif /* !MBEDTLS_AES_USE_HARDWARE_ONLY */
76a8e1175bSopenharmony_ci
77a8e1175bSopenharmony_ci#if MBEDTLS_AESNI_HAVE_CODE == 2
78a8e1175bSopenharmony_ci
79a8e1175bSopenharmony_ci/*
80a8e1175bSopenharmony_ci * AES-NI AES-ECB block en(de)cryption
81a8e1175bSopenharmony_ci */
82a8e1175bSopenharmony_ciint mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
83a8e1175bSopenharmony_ci                            int mode,
84a8e1175bSopenharmony_ci                            const unsigned char input[16],
85a8e1175bSopenharmony_ci                            unsigned char output[16])
86a8e1175bSopenharmony_ci{
87a8e1175bSopenharmony_ci    const __m128i *rk = (const __m128i *) (ctx->buf + ctx->rk_offset);
88a8e1175bSopenharmony_ci    unsigned nr = ctx->nr; // Number of remaining rounds
89a8e1175bSopenharmony_ci
90a8e1175bSopenharmony_ci    // Load round key 0
91a8e1175bSopenharmony_ci    __m128i state;
92a8e1175bSopenharmony_ci    memcpy(&state, input, 16);
93a8e1175bSopenharmony_ci    state = _mm_xor_si128(state, rk[0]);  // state ^= *rk;
94a8e1175bSopenharmony_ci    ++rk;
95a8e1175bSopenharmony_ci    --nr;
96a8e1175bSopenharmony_ci
97a8e1175bSopenharmony_ci#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
98a8e1175bSopenharmony_ci    if (mode == MBEDTLS_AES_DECRYPT) {
99a8e1175bSopenharmony_ci        while (nr != 0) {
100a8e1175bSopenharmony_ci            state = _mm_aesdec_si128(state, *rk);
101a8e1175bSopenharmony_ci            ++rk;
102a8e1175bSopenharmony_ci            --nr;
103a8e1175bSopenharmony_ci        }
104a8e1175bSopenharmony_ci        state = _mm_aesdeclast_si128(state, *rk);
105a8e1175bSopenharmony_ci    } else
106a8e1175bSopenharmony_ci#else
107a8e1175bSopenharmony_ci    (void) mode;
108a8e1175bSopenharmony_ci#endif
109a8e1175bSopenharmony_ci    {
110a8e1175bSopenharmony_ci        while (nr != 0) {
111a8e1175bSopenharmony_ci            state = _mm_aesenc_si128(state, *rk);
112a8e1175bSopenharmony_ci            ++rk;
113a8e1175bSopenharmony_ci            --nr;
114a8e1175bSopenharmony_ci        }
115a8e1175bSopenharmony_ci        state = _mm_aesenclast_si128(state, *rk);
116a8e1175bSopenharmony_ci    }
117a8e1175bSopenharmony_ci
118a8e1175bSopenharmony_ci    memcpy(output, &state, 16);
119a8e1175bSopenharmony_ci    return 0;
120a8e1175bSopenharmony_ci}
121a8e1175bSopenharmony_ci
122a8e1175bSopenharmony_ci/*
123a8e1175bSopenharmony_ci * GCM multiplication: c = a times b in GF(2^128)
124a8e1175bSopenharmony_ci * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
125a8e1175bSopenharmony_ci */
126a8e1175bSopenharmony_ci
127a8e1175bSopenharmony_cistatic void gcm_clmul(const __m128i aa, const __m128i bb,
128a8e1175bSopenharmony_ci                      __m128i *cc, __m128i *dd)
129a8e1175bSopenharmony_ci{
130a8e1175bSopenharmony_ci    /*
131a8e1175bSopenharmony_ci     * Caryless multiplication dd:cc = aa * bb
132a8e1175bSopenharmony_ci     * using [CLMUL-WP] algorithm 1 (p. 12).
133a8e1175bSopenharmony_ci     */
134a8e1175bSopenharmony_ci    *cc = _mm_clmulepi64_si128(aa, bb, 0x00); // a0*b0 = c1:c0
135a8e1175bSopenharmony_ci    *dd = _mm_clmulepi64_si128(aa, bb, 0x11); // a1*b1 = d1:d0
136a8e1175bSopenharmony_ci    __m128i ee = _mm_clmulepi64_si128(aa, bb, 0x10); // a0*b1 = e1:e0
137a8e1175bSopenharmony_ci    __m128i ff = _mm_clmulepi64_si128(aa, bb, 0x01); // a1*b0 = f1:f0
138a8e1175bSopenharmony_ci    ff = _mm_xor_si128(ff, ee);                      // e1+f1:e0+f0
139a8e1175bSopenharmony_ci    ee = ff;                                         // e1+f1:e0+f0
140a8e1175bSopenharmony_ci    ff = _mm_srli_si128(ff, 8);                      // 0:e1+f1
141a8e1175bSopenharmony_ci    ee = _mm_slli_si128(ee, 8);                      // e0+f0:0
142a8e1175bSopenharmony_ci    *dd = _mm_xor_si128(*dd, ff);                    // d1:d0+e1+f1
143a8e1175bSopenharmony_ci    *cc = _mm_xor_si128(*cc, ee);                    // c1+e0+f0:c0
144a8e1175bSopenharmony_ci}
145a8e1175bSopenharmony_ci
146a8e1175bSopenharmony_cistatic void gcm_shift(__m128i *cc, __m128i *dd)
147a8e1175bSopenharmony_ci{
148a8e1175bSopenharmony_ci    /* [CMUCL-WP] Algorithm 5 Step 1: shift cc:dd one bit to the left,
149a8e1175bSopenharmony_ci     * taking advantage of [CLMUL-WP] eq 27 (p. 18). */
150a8e1175bSopenharmony_ci    //                                        // *cc = r1:r0
151a8e1175bSopenharmony_ci    //                                        // *dd = r3:r2
152a8e1175bSopenharmony_ci    __m128i cc_lo = _mm_slli_epi64(*cc, 1);   // r1<<1:r0<<1
153a8e1175bSopenharmony_ci    __m128i dd_lo = _mm_slli_epi64(*dd, 1);   // r3<<1:r2<<1
154a8e1175bSopenharmony_ci    __m128i cc_hi = _mm_srli_epi64(*cc, 63);  // r1>>63:r0>>63
155a8e1175bSopenharmony_ci    __m128i dd_hi = _mm_srli_epi64(*dd, 63);  // r3>>63:r2>>63
156a8e1175bSopenharmony_ci    __m128i xmm5 = _mm_srli_si128(cc_hi, 8);  // 0:r1>>63
157a8e1175bSopenharmony_ci    cc_hi = _mm_slli_si128(cc_hi, 8);         // r0>>63:0
158a8e1175bSopenharmony_ci    dd_hi = _mm_slli_si128(dd_hi, 8);         // 0:r1>>63
159a8e1175bSopenharmony_ci
160a8e1175bSopenharmony_ci    *cc = _mm_or_si128(cc_lo, cc_hi);         // r1<<1|r0>>63:r0<<1
161a8e1175bSopenharmony_ci    *dd = _mm_or_si128(_mm_or_si128(dd_lo, dd_hi), xmm5); // r3<<1|r2>>62:r2<<1|r1>>63
162a8e1175bSopenharmony_ci}
163a8e1175bSopenharmony_ci
164a8e1175bSopenharmony_cistatic __m128i gcm_reduce(__m128i xx)
165a8e1175bSopenharmony_ci{
166a8e1175bSopenharmony_ci    //                                            // xx = x1:x0
167a8e1175bSopenharmony_ci    /* [CLMUL-WP] Algorithm 5 Step 2 */
168a8e1175bSopenharmony_ci    __m128i aa = _mm_slli_epi64(xx, 63);          // x1<<63:x0<<63 = stuff:a
169a8e1175bSopenharmony_ci    __m128i bb = _mm_slli_epi64(xx, 62);          // x1<<62:x0<<62 = stuff:b
170a8e1175bSopenharmony_ci    __m128i cc = _mm_slli_epi64(xx, 57);          // x1<<57:x0<<57 = stuff:c
171a8e1175bSopenharmony_ci    __m128i dd = _mm_slli_si128(_mm_xor_si128(_mm_xor_si128(aa, bb), cc), 8); // a+b+c:0
172a8e1175bSopenharmony_ci    return _mm_xor_si128(dd, xx);                 // x1+a+b+c:x0 = d:x0
173a8e1175bSopenharmony_ci}
174a8e1175bSopenharmony_ci
175a8e1175bSopenharmony_cistatic __m128i gcm_mix(__m128i dx)
176a8e1175bSopenharmony_ci{
177a8e1175bSopenharmony_ci    /* [CLMUL-WP] Algorithm 5 Steps 3 and 4 */
178a8e1175bSopenharmony_ci    __m128i ee = _mm_srli_epi64(dx, 1);           // e1:x0>>1 = e1:e0'
179a8e1175bSopenharmony_ci    __m128i ff = _mm_srli_epi64(dx, 2);           // f1:x0>>2 = f1:f0'
180a8e1175bSopenharmony_ci    __m128i gg = _mm_srli_epi64(dx, 7);           // g1:x0>>7 = g1:g0'
181a8e1175bSopenharmony_ci
182a8e1175bSopenharmony_ci    // e0'+f0'+g0' is almost e0+f0+g0, except for some missing
183a8e1175bSopenharmony_ci    // bits carried from d. Now get those bits back in.
184a8e1175bSopenharmony_ci    __m128i eh = _mm_slli_epi64(dx, 63);          // d<<63:stuff
185a8e1175bSopenharmony_ci    __m128i fh = _mm_slli_epi64(dx, 62);          // d<<62:stuff
186a8e1175bSopenharmony_ci    __m128i gh = _mm_slli_epi64(dx, 57);          // d<<57:stuff
187a8e1175bSopenharmony_ci    __m128i hh = _mm_srli_si128(_mm_xor_si128(_mm_xor_si128(eh, fh), gh), 8); // 0:missing bits of d
188a8e1175bSopenharmony_ci
189a8e1175bSopenharmony_ci    return _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(ee, ff), gg), hh), dx);
190a8e1175bSopenharmony_ci}
191a8e1175bSopenharmony_ci
192a8e1175bSopenharmony_civoid mbedtls_aesni_gcm_mult(unsigned char c[16],
193a8e1175bSopenharmony_ci                            const unsigned char a[16],
194a8e1175bSopenharmony_ci                            const unsigned char b[16])
195a8e1175bSopenharmony_ci{
196a8e1175bSopenharmony_ci    __m128i aa = { 0 }, bb = { 0 }, cc, dd;
197a8e1175bSopenharmony_ci
198a8e1175bSopenharmony_ci    /* The inputs are in big-endian order, so byte-reverse them */
199a8e1175bSopenharmony_ci    for (size_t i = 0; i < 16; i++) {
200a8e1175bSopenharmony_ci        ((uint8_t *) &aa)[i] = a[15 - i];
201a8e1175bSopenharmony_ci        ((uint8_t *) &bb)[i] = b[15 - i];
202a8e1175bSopenharmony_ci    }
203a8e1175bSopenharmony_ci
204a8e1175bSopenharmony_ci    gcm_clmul(aa, bb, &cc, &dd);
205a8e1175bSopenharmony_ci    gcm_shift(&cc, &dd);
206a8e1175bSopenharmony_ci    /*
207a8e1175bSopenharmony_ci     * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
208a8e1175bSopenharmony_ci     * using [CLMUL-WP] algorithm 5 (p. 18).
209a8e1175bSopenharmony_ci     * Currently dd:cc holds x3:x2:x1:x0 (already shifted).
210a8e1175bSopenharmony_ci     */
211a8e1175bSopenharmony_ci    __m128i dx = gcm_reduce(cc);
212a8e1175bSopenharmony_ci    __m128i xh = gcm_mix(dx);
213a8e1175bSopenharmony_ci    cc = _mm_xor_si128(xh, dd); // x3+h1:x2+h0
214a8e1175bSopenharmony_ci
215a8e1175bSopenharmony_ci    /* Now byte-reverse the outputs */
216a8e1175bSopenharmony_ci    for (size_t i = 0; i < 16; i++) {
217a8e1175bSopenharmony_ci        c[i] = ((uint8_t *) &cc)[15 - i];
218a8e1175bSopenharmony_ci    }
219a8e1175bSopenharmony_ci
220a8e1175bSopenharmony_ci    return;
221a8e1175bSopenharmony_ci}
222a8e1175bSopenharmony_ci
223a8e1175bSopenharmony_ci/*
224a8e1175bSopenharmony_ci * Compute decryption round keys from encryption round keys
225a8e1175bSopenharmony_ci */
226a8e1175bSopenharmony_ci#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
227a8e1175bSopenharmony_civoid mbedtls_aesni_inverse_key(unsigned char *invkey,
228a8e1175bSopenharmony_ci                               const unsigned char *fwdkey, int nr)
229a8e1175bSopenharmony_ci{
230a8e1175bSopenharmony_ci    __m128i *ik = (__m128i *) invkey;
231a8e1175bSopenharmony_ci    const __m128i *fk = (const __m128i *) fwdkey + nr;
232a8e1175bSopenharmony_ci
233a8e1175bSopenharmony_ci    *ik = *fk;
234a8e1175bSopenharmony_ci    for (--fk, ++ik; fk > (const __m128i *) fwdkey; --fk, ++ik) {
235a8e1175bSopenharmony_ci        *ik = _mm_aesimc_si128(*fk);
236a8e1175bSopenharmony_ci    }
237a8e1175bSopenharmony_ci    *ik = *fk;
238a8e1175bSopenharmony_ci}
239a8e1175bSopenharmony_ci#endif
240a8e1175bSopenharmony_ci
241a8e1175bSopenharmony_ci/*
242a8e1175bSopenharmony_ci * Key expansion, 128-bit case
243a8e1175bSopenharmony_ci */
244a8e1175bSopenharmony_cistatic __m128i aesni_set_rk_128(__m128i state, __m128i xword)
245a8e1175bSopenharmony_ci{
246a8e1175bSopenharmony_ci    /*
247a8e1175bSopenharmony_ci     * Finish generating the next round key.
248a8e1175bSopenharmony_ci     *
249a8e1175bSopenharmony_ci     * On entry state is r3:r2:r1:r0 and xword is X:stuff:stuff:stuff
250a8e1175bSopenharmony_ci     * with X = rot( sub( r3 ) ) ^ RCON (obtained with AESKEYGENASSIST).
251a8e1175bSopenharmony_ci     *
252a8e1175bSopenharmony_ci     * On exit, xword is r7:r6:r5:r4
253a8e1175bSopenharmony_ci     * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
254a8e1175bSopenharmony_ci     * and this is returned, to be written to the round key buffer.
255a8e1175bSopenharmony_ci     */
256a8e1175bSopenharmony_ci    xword = _mm_shuffle_epi32(xword, 0xff);   // X:X:X:X
257a8e1175bSopenharmony_ci    xword = _mm_xor_si128(xword, state);      // X+r3:X+r2:X+r1:r4
258a8e1175bSopenharmony_ci    state = _mm_slli_si128(state, 4);         // r2:r1:r0:0
259a8e1175bSopenharmony_ci    xword = _mm_xor_si128(xword, state);      // X+r3+r2:X+r2+r1:r5:r4
260a8e1175bSopenharmony_ci    state = _mm_slli_si128(state, 4);         // r1:r0:0:0
261a8e1175bSopenharmony_ci    xword = _mm_xor_si128(xword, state);      // X+r3+r2+r1:r6:r5:r4
262a8e1175bSopenharmony_ci    state = _mm_slli_si128(state, 4);         // r0:0:0:0
263a8e1175bSopenharmony_ci    state = _mm_xor_si128(xword, state);      // r7:r6:r5:r4
264a8e1175bSopenharmony_ci    return state;
265a8e1175bSopenharmony_ci}
266a8e1175bSopenharmony_ci
267a8e1175bSopenharmony_cistatic void aesni_setkey_enc_128(unsigned char *rk_bytes,
268a8e1175bSopenharmony_ci                                 const unsigned char *key)
269a8e1175bSopenharmony_ci{
270a8e1175bSopenharmony_ci    __m128i *rk = (__m128i *) rk_bytes;
271a8e1175bSopenharmony_ci
272a8e1175bSopenharmony_ci    memcpy(&rk[0], key, 16);
273a8e1175bSopenharmony_ci    rk[1] = aesni_set_rk_128(rk[0], _mm_aeskeygenassist_si128(rk[0], 0x01));
274a8e1175bSopenharmony_ci    rk[2] = aesni_set_rk_128(rk[1], _mm_aeskeygenassist_si128(rk[1], 0x02));
275a8e1175bSopenharmony_ci    rk[3] = aesni_set_rk_128(rk[2], _mm_aeskeygenassist_si128(rk[2], 0x04));
276a8e1175bSopenharmony_ci    rk[4] = aesni_set_rk_128(rk[3], _mm_aeskeygenassist_si128(rk[3], 0x08));
277a8e1175bSopenharmony_ci    rk[5] = aesni_set_rk_128(rk[4], _mm_aeskeygenassist_si128(rk[4], 0x10));
278a8e1175bSopenharmony_ci    rk[6] = aesni_set_rk_128(rk[5], _mm_aeskeygenassist_si128(rk[5], 0x20));
279a8e1175bSopenharmony_ci    rk[7] = aesni_set_rk_128(rk[6], _mm_aeskeygenassist_si128(rk[6], 0x40));
280a8e1175bSopenharmony_ci    rk[8] = aesni_set_rk_128(rk[7], _mm_aeskeygenassist_si128(rk[7], 0x80));
281a8e1175bSopenharmony_ci    rk[9] = aesni_set_rk_128(rk[8], _mm_aeskeygenassist_si128(rk[8], 0x1B));
282a8e1175bSopenharmony_ci    rk[10] = aesni_set_rk_128(rk[9], _mm_aeskeygenassist_si128(rk[9], 0x36));
283a8e1175bSopenharmony_ci}
284a8e1175bSopenharmony_ci
285a8e1175bSopenharmony_ci/*
286a8e1175bSopenharmony_ci * Key expansion, 192-bit case
287a8e1175bSopenharmony_ci */
288a8e1175bSopenharmony_ci#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
289a8e1175bSopenharmony_cistatic void aesni_set_rk_192(__m128i *state0, __m128i *state1, __m128i xword,
290a8e1175bSopenharmony_ci                             unsigned char *rk)
291a8e1175bSopenharmony_ci{
292a8e1175bSopenharmony_ci    /*
293a8e1175bSopenharmony_ci     * Finish generating the next 6 quarter-keys.
294a8e1175bSopenharmony_ci     *
295a8e1175bSopenharmony_ci     * On entry state0 is r3:r2:r1:r0, state1 is stuff:stuff:r5:r4
296a8e1175bSopenharmony_ci     * and xword is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON
297a8e1175bSopenharmony_ci     * (obtained with AESKEYGENASSIST).
298a8e1175bSopenharmony_ci     *
299a8e1175bSopenharmony_ci     * On exit, state0 is r9:r8:r7:r6 and state1 is stuff:stuff:r11:r10
300a8e1175bSopenharmony_ci     * and those are written to the round key buffer.
301a8e1175bSopenharmony_ci     */
302a8e1175bSopenharmony_ci    xword = _mm_shuffle_epi32(xword, 0x55);   // X:X:X:X
303a8e1175bSopenharmony_ci    xword = _mm_xor_si128(xword, *state0);    // X+r3:X+r2:X+r1:X+r0
304a8e1175bSopenharmony_ci    *state0 = _mm_slli_si128(*state0, 4);     // r2:r1:r0:0
305a8e1175bSopenharmony_ci    xword = _mm_xor_si128(xword, *state0);    // X+r3+r2:X+r2+r1:X+r1+r0:X+r0
306a8e1175bSopenharmony_ci    *state0 = _mm_slli_si128(*state0, 4);     // r1:r0:0:0
307a8e1175bSopenharmony_ci    xword = _mm_xor_si128(xword, *state0);    // X+r3+r2+r1:X+r2+r1+r0:X+r1+r0:X+r0
308a8e1175bSopenharmony_ci    *state0 = _mm_slli_si128(*state0, 4);     // r0:0:0:0
309a8e1175bSopenharmony_ci    xword = _mm_xor_si128(xword, *state0);    // X+r3+r2+r1+r0:X+r2+r1+r0:X+r1+r0:X+r0
310a8e1175bSopenharmony_ci    *state0 = xword;                          // = r9:r8:r7:r6
311a8e1175bSopenharmony_ci
312a8e1175bSopenharmony_ci    xword = _mm_shuffle_epi32(xword, 0xff);   // r9:r9:r9:r9
313a8e1175bSopenharmony_ci    xword = _mm_xor_si128(xword, *state1);    // stuff:stuff:r9+r5:r9+r4
314a8e1175bSopenharmony_ci    *state1 = _mm_slli_si128(*state1, 4);     // stuff:stuff:r4:0
315a8e1175bSopenharmony_ci    xword = _mm_xor_si128(xword, *state1);    // stuff:stuff:r9+r5+r4:r9+r4
316a8e1175bSopenharmony_ci    *state1 = xword;                          // = stuff:stuff:r11:r10
317a8e1175bSopenharmony_ci
318a8e1175bSopenharmony_ci    /* Store state0 and the low half of state1 into rk, which is conceptually
319a8e1175bSopenharmony_ci     * an array of 24-byte elements. Since 24 is not a multiple of 16,
320a8e1175bSopenharmony_ci     * rk is not necessarily aligned so just `*rk = *state0` doesn't work. */
321a8e1175bSopenharmony_ci    memcpy(rk, state0, 16);
322a8e1175bSopenharmony_ci    memcpy(rk + 16, state1, 8);
323a8e1175bSopenharmony_ci}
324a8e1175bSopenharmony_ci
325a8e1175bSopenharmony_cistatic void aesni_setkey_enc_192(unsigned char *rk,
326a8e1175bSopenharmony_ci                                 const unsigned char *key)
327a8e1175bSopenharmony_ci{
328a8e1175bSopenharmony_ci    /* First round: use original key */
329a8e1175bSopenharmony_ci    memcpy(rk, key, 24);
330a8e1175bSopenharmony_ci    /* aes.c guarantees that rk is aligned on a 16-byte boundary. */
331a8e1175bSopenharmony_ci    __m128i state0 = ((__m128i *) rk)[0];
332a8e1175bSopenharmony_ci    __m128i state1 = _mm_loadl_epi64(((__m128i *) rk) + 1);
333a8e1175bSopenharmony_ci
334a8e1175bSopenharmony_ci    aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x01), rk + 24 * 1);
335a8e1175bSopenharmony_ci    aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x02), rk + 24 * 2);
336a8e1175bSopenharmony_ci    aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x04), rk + 24 * 3);
337a8e1175bSopenharmony_ci    aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x08), rk + 24 * 4);
338a8e1175bSopenharmony_ci    aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x10), rk + 24 * 5);
339a8e1175bSopenharmony_ci    aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x20), rk + 24 * 6);
340a8e1175bSopenharmony_ci    aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x40), rk + 24 * 7);
341a8e1175bSopenharmony_ci    aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x80), rk + 24 * 8);
342a8e1175bSopenharmony_ci}
343a8e1175bSopenharmony_ci#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
344a8e1175bSopenharmony_ci
345a8e1175bSopenharmony_ci/*
346a8e1175bSopenharmony_ci * Key expansion, 256-bit case
347a8e1175bSopenharmony_ci */
348a8e1175bSopenharmony_ci#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
349a8e1175bSopenharmony_cistatic void aesni_set_rk_256(__m128i state0, __m128i state1, __m128i xword,
350a8e1175bSopenharmony_ci                             __m128i *rk0, __m128i *rk1)
351a8e1175bSopenharmony_ci{
352a8e1175bSopenharmony_ci    /*
353a8e1175bSopenharmony_ci     * Finish generating the next two round keys.
354a8e1175bSopenharmony_ci     *
355a8e1175bSopenharmony_ci     * On entry state0 is r3:r2:r1:r0, state1 is r7:r6:r5:r4 and
356a8e1175bSopenharmony_ci     * xword is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
357a8e1175bSopenharmony_ci     * (obtained with AESKEYGENASSIST).
358a8e1175bSopenharmony_ci     *
359a8e1175bSopenharmony_ci     * On exit, *rk0 is r11:r10:r9:r8 and *rk1 is r15:r14:r13:r12
360a8e1175bSopenharmony_ci     */
361a8e1175bSopenharmony_ci    xword = _mm_shuffle_epi32(xword, 0xff);
362a8e1175bSopenharmony_ci    xword = _mm_xor_si128(xword, state0);
363a8e1175bSopenharmony_ci    state0 = _mm_slli_si128(state0, 4);
364a8e1175bSopenharmony_ci    xword = _mm_xor_si128(xword, state0);
365a8e1175bSopenharmony_ci    state0 = _mm_slli_si128(state0, 4);
366a8e1175bSopenharmony_ci    xword = _mm_xor_si128(xword, state0);
367a8e1175bSopenharmony_ci    state0 = _mm_slli_si128(state0, 4);
368a8e1175bSopenharmony_ci    state0 = _mm_xor_si128(state0, xword);
369a8e1175bSopenharmony_ci    *rk0 = state0;
370a8e1175bSopenharmony_ci
371a8e1175bSopenharmony_ci    /* Set xword to stuff:Y:stuff:stuff with Y = subword( r11 )
372a8e1175bSopenharmony_ci     * and proceed to generate next round key from there */
373a8e1175bSopenharmony_ci    xword = _mm_aeskeygenassist_si128(state0, 0x00);
374a8e1175bSopenharmony_ci    xword = _mm_shuffle_epi32(xword, 0xaa);
375a8e1175bSopenharmony_ci    xword = _mm_xor_si128(xword, state1);
376a8e1175bSopenharmony_ci    state1 = _mm_slli_si128(state1, 4);
377a8e1175bSopenharmony_ci    xword = _mm_xor_si128(xword, state1);
378a8e1175bSopenharmony_ci    state1 = _mm_slli_si128(state1, 4);
379a8e1175bSopenharmony_ci    xword = _mm_xor_si128(xword, state1);
380a8e1175bSopenharmony_ci    state1 = _mm_slli_si128(state1, 4);
381a8e1175bSopenharmony_ci    state1 = _mm_xor_si128(state1, xword);
382a8e1175bSopenharmony_ci    *rk1 = state1;
383a8e1175bSopenharmony_ci}
384a8e1175bSopenharmony_ci
385a8e1175bSopenharmony_cistatic void aesni_setkey_enc_256(unsigned char *rk_bytes,
386a8e1175bSopenharmony_ci                                 const unsigned char *key)
387a8e1175bSopenharmony_ci{
388a8e1175bSopenharmony_ci    __m128i *rk = (__m128i *) rk_bytes;
389a8e1175bSopenharmony_ci
390a8e1175bSopenharmony_ci    memcpy(&rk[0], key, 16);
391a8e1175bSopenharmony_ci    memcpy(&rk[1], key + 16, 16);
392a8e1175bSopenharmony_ci
393a8e1175bSopenharmony_ci    /*
394a8e1175bSopenharmony_ci     * Main "loop" - Generating one more key than necessary,
395a8e1175bSopenharmony_ci     * see definition of mbedtls_aes_context.buf
396a8e1175bSopenharmony_ci     */
397a8e1175bSopenharmony_ci    aesni_set_rk_256(rk[0], rk[1], _mm_aeskeygenassist_si128(rk[1], 0x01), &rk[2], &rk[3]);
398a8e1175bSopenharmony_ci    aesni_set_rk_256(rk[2], rk[3], _mm_aeskeygenassist_si128(rk[3], 0x02), &rk[4], &rk[5]);
399a8e1175bSopenharmony_ci    aesni_set_rk_256(rk[4], rk[5], _mm_aeskeygenassist_si128(rk[5], 0x04), &rk[6], &rk[7]);
400a8e1175bSopenharmony_ci    aesni_set_rk_256(rk[6], rk[7], _mm_aeskeygenassist_si128(rk[7], 0x08), &rk[8], &rk[9]);
401a8e1175bSopenharmony_ci    aesni_set_rk_256(rk[8], rk[9], _mm_aeskeygenassist_si128(rk[9], 0x10), &rk[10], &rk[11]);
402a8e1175bSopenharmony_ci    aesni_set_rk_256(rk[10], rk[11], _mm_aeskeygenassist_si128(rk[11], 0x20), &rk[12], &rk[13]);
403a8e1175bSopenharmony_ci    aesni_set_rk_256(rk[12], rk[13], _mm_aeskeygenassist_si128(rk[13], 0x40), &rk[14], &rk[15]);
404a8e1175bSopenharmony_ci}
405a8e1175bSopenharmony_ci#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
406a8e1175bSopenharmony_ci
407a8e1175bSopenharmony_ci#if defined(MBEDTLS_POP_TARGET_PRAGMA)
408a8e1175bSopenharmony_ci#if defined(__clang__)
409a8e1175bSopenharmony_ci#pragma clang attribute pop
410a8e1175bSopenharmony_ci#elif defined(__GNUC__)
411a8e1175bSopenharmony_ci#pragma GCC pop_options
412a8e1175bSopenharmony_ci#endif
413a8e1175bSopenharmony_ci#undef MBEDTLS_POP_TARGET_PRAGMA
414a8e1175bSopenharmony_ci#endif
415a8e1175bSopenharmony_ci
416a8e1175bSopenharmony_ci#else /* MBEDTLS_AESNI_HAVE_CODE == 1 */
417a8e1175bSopenharmony_ci
418a8e1175bSopenharmony_ci#if defined(__has_feature)
419a8e1175bSopenharmony_ci#if __has_feature(memory_sanitizer)
420a8e1175bSopenharmony_ci#warning \
421a8e1175bSopenharmony_ci    "MBEDTLS_AESNI_C is known to cause spurious error reports with some memory sanitizers as they do not understand the assembly code."
422a8e1175bSopenharmony_ci#endif
423a8e1175bSopenharmony_ci#endif
424a8e1175bSopenharmony_ci
425a8e1175bSopenharmony_ci/*
426a8e1175bSopenharmony_ci * Binutils needs to be at least 2.19 to support AES-NI instructions.
427a8e1175bSopenharmony_ci * Unfortunately, a lot of users have a lower version now (2014-04).
428a8e1175bSopenharmony_ci * Emit bytecode directly in order to support "old" version of gas.
429a8e1175bSopenharmony_ci *
430a8e1175bSopenharmony_ci * Opcodes from the Intel architecture reference manual, vol. 3.
431a8e1175bSopenharmony_ci * We always use registers, so we don't need prefixes for memory operands.
432a8e1175bSopenharmony_ci * Operand macros are in gas order (src, dst) as opposed to Intel order
433a8e1175bSopenharmony_ci * (dst, src) in order to blend better into the surrounding assembly code.
434a8e1175bSopenharmony_ci */
435a8e1175bSopenharmony_ci#define AESDEC(regs)      ".byte 0x66,0x0F,0x38,0xDE," regs "\n\t"
436a8e1175bSopenharmony_ci#define AESDECLAST(regs)  ".byte 0x66,0x0F,0x38,0xDF," regs "\n\t"
437a8e1175bSopenharmony_ci#define AESENC(regs)      ".byte 0x66,0x0F,0x38,0xDC," regs "\n\t"
438a8e1175bSopenharmony_ci#define AESENCLAST(regs)  ".byte 0x66,0x0F,0x38,0xDD," regs "\n\t"
439a8e1175bSopenharmony_ci#define AESIMC(regs)      ".byte 0x66,0x0F,0x38,0xDB," regs "\n\t"
440a8e1175bSopenharmony_ci#define AESKEYGENA(regs, imm)  ".byte 0x66,0x0F,0x3A,0xDF," regs "," imm "\n\t"
441a8e1175bSopenharmony_ci#define PCLMULQDQ(regs, imm)   ".byte 0x66,0x0F,0x3A,0x44," regs "," imm "\n\t"
442a8e1175bSopenharmony_ci
443a8e1175bSopenharmony_ci#define xmm0_xmm0   "0xC0"
444a8e1175bSopenharmony_ci#define xmm0_xmm1   "0xC8"
445a8e1175bSopenharmony_ci#define xmm0_xmm2   "0xD0"
446a8e1175bSopenharmony_ci#define xmm0_xmm3   "0xD8"
447a8e1175bSopenharmony_ci#define xmm0_xmm4   "0xE0"
448a8e1175bSopenharmony_ci#define xmm1_xmm0   "0xC1"
449a8e1175bSopenharmony_ci#define xmm1_xmm2   "0xD1"
450a8e1175bSopenharmony_ci
451a8e1175bSopenharmony_ci/*
452a8e1175bSopenharmony_ci * AES-NI AES-ECB block en(de)cryption
453a8e1175bSopenharmony_ci */
454a8e1175bSopenharmony_ciint mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
455a8e1175bSopenharmony_ci                            int mode,
456a8e1175bSopenharmony_ci                            const unsigned char input[16],
457a8e1175bSopenharmony_ci                            unsigned char output[16])
458a8e1175bSopenharmony_ci{
459a8e1175bSopenharmony_ci    asm ("movdqu    (%3), %%xmm0    \n\t" // load input
460a8e1175bSopenharmony_ci         "movdqu    (%1), %%xmm1    \n\t" // load round key 0
461a8e1175bSopenharmony_ci         "pxor      %%xmm1, %%xmm0  \n\t" // round 0
462a8e1175bSopenharmony_ci         "add       $16, %1         \n\t" // point to next round key
463a8e1175bSopenharmony_ci         "subl      $1, %0          \n\t" // normal rounds = nr - 1
464a8e1175bSopenharmony_ci         "test      %2, %2          \n\t" // mode?
465a8e1175bSopenharmony_ci         "jz        2f              \n\t" // 0 = decrypt
466a8e1175bSopenharmony_ci
467a8e1175bSopenharmony_ci         "1:                        \n\t" // encryption loop
468a8e1175bSopenharmony_ci         "movdqu    (%1), %%xmm1    \n\t" // load round key
469a8e1175bSopenharmony_ci         AESENC(xmm1_xmm0)                // do round
470a8e1175bSopenharmony_ci         "add       $16, %1         \n\t" // point to next round key
471a8e1175bSopenharmony_ci         "subl      $1, %0          \n\t" // loop
472a8e1175bSopenharmony_ci         "jnz       1b              \n\t"
473a8e1175bSopenharmony_ci         "movdqu    (%1), %%xmm1    \n\t" // load round key
474a8e1175bSopenharmony_ci         AESENCLAST(xmm1_xmm0)            // last round
475a8e1175bSopenharmony_ci#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
476a8e1175bSopenharmony_ci         "jmp       3f              \n\t"
477a8e1175bSopenharmony_ci
478a8e1175bSopenharmony_ci         "2:                        \n\t" // decryption loop
479a8e1175bSopenharmony_ci         "movdqu    (%1), %%xmm1    \n\t"
480a8e1175bSopenharmony_ci         AESDEC(xmm1_xmm0)                // do round
481a8e1175bSopenharmony_ci         "add       $16, %1         \n\t"
482a8e1175bSopenharmony_ci         "subl      $1, %0          \n\t"
483a8e1175bSopenharmony_ci         "jnz       2b              \n\t"
484a8e1175bSopenharmony_ci         "movdqu    (%1), %%xmm1    \n\t" // load round key
485a8e1175bSopenharmony_ci         AESDECLAST(xmm1_xmm0)            // last round
486a8e1175bSopenharmony_ci#endif
487a8e1175bSopenharmony_ci
488a8e1175bSopenharmony_ci         "3:                        \n\t"
489a8e1175bSopenharmony_ci         "movdqu    %%xmm0, (%4)    \n\t" // export output
490a8e1175bSopenharmony_ci         :
491a8e1175bSopenharmony_ci         : "r" (ctx->nr), "r" (ctx->buf + ctx->rk_offset), "r" (mode), "r" (input), "r" (output)
492a8e1175bSopenharmony_ci         : "memory", "cc", "xmm0", "xmm1");
493a8e1175bSopenharmony_ci
494a8e1175bSopenharmony_ci
495a8e1175bSopenharmony_ci    return 0;
496a8e1175bSopenharmony_ci}
497a8e1175bSopenharmony_ci
498a8e1175bSopenharmony_ci/*
499a8e1175bSopenharmony_ci * GCM multiplication: c = a times b in GF(2^128)
500a8e1175bSopenharmony_ci * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
501a8e1175bSopenharmony_ci */
502a8e1175bSopenharmony_civoid mbedtls_aesni_gcm_mult(unsigned char c[16],
503a8e1175bSopenharmony_ci                            const unsigned char a[16],
504a8e1175bSopenharmony_ci                            const unsigned char b[16])
505a8e1175bSopenharmony_ci{
506a8e1175bSopenharmony_ci    unsigned char aa[16], bb[16], cc[16];
507a8e1175bSopenharmony_ci    size_t i;
508a8e1175bSopenharmony_ci
509a8e1175bSopenharmony_ci    /* The inputs are in big-endian order, so byte-reverse them */
510a8e1175bSopenharmony_ci    for (i = 0; i < 16; i++) {
511a8e1175bSopenharmony_ci        aa[i] = a[15 - i];
512a8e1175bSopenharmony_ci        bb[i] = b[15 - i];
513a8e1175bSopenharmony_ci    }
514a8e1175bSopenharmony_ci
515a8e1175bSopenharmony_ci    asm ("movdqu (%0), %%xmm0               \n\t" // a1:a0
516a8e1175bSopenharmony_ci         "movdqu (%1), %%xmm1               \n\t" // b1:b0
517a8e1175bSopenharmony_ci
518a8e1175bSopenharmony_ci         /*
519a8e1175bSopenharmony_ci          * Caryless multiplication xmm2:xmm1 = xmm0 * xmm1
520a8e1175bSopenharmony_ci          * using [CLMUL-WP] algorithm 1 (p. 12).
521a8e1175bSopenharmony_ci          */
522a8e1175bSopenharmony_ci         "movdqa %%xmm1, %%xmm2             \n\t" // copy of b1:b0
523a8e1175bSopenharmony_ci         "movdqa %%xmm1, %%xmm3             \n\t" // same
524a8e1175bSopenharmony_ci         "movdqa %%xmm1, %%xmm4             \n\t" // same
525a8e1175bSopenharmony_ci         PCLMULQDQ(xmm0_xmm1, "0x00")             // a0*b0 = c1:c0
526a8e1175bSopenharmony_ci         PCLMULQDQ(xmm0_xmm2, "0x11")             // a1*b1 = d1:d0
527a8e1175bSopenharmony_ci         PCLMULQDQ(xmm0_xmm3, "0x10")             // a0*b1 = e1:e0
528a8e1175bSopenharmony_ci         PCLMULQDQ(xmm0_xmm4, "0x01")             // a1*b0 = f1:f0
529a8e1175bSopenharmony_ci         "pxor %%xmm3, %%xmm4               \n\t" // e1+f1:e0+f0
530a8e1175bSopenharmony_ci         "movdqa %%xmm4, %%xmm3             \n\t" // same
531a8e1175bSopenharmony_ci         "psrldq $8, %%xmm4                 \n\t" // 0:e1+f1
532a8e1175bSopenharmony_ci         "pslldq $8, %%xmm3                 \n\t" // e0+f0:0
533a8e1175bSopenharmony_ci         "pxor %%xmm4, %%xmm2               \n\t" // d1:d0+e1+f1
534a8e1175bSopenharmony_ci         "pxor %%xmm3, %%xmm1               \n\t" // c1+e0+f1:c0
535a8e1175bSopenharmony_ci
536a8e1175bSopenharmony_ci         /*
537a8e1175bSopenharmony_ci          * Now shift the result one bit to the left,
538a8e1175bSopenharmony_ci          * taking advantage of [CLMUL-WP] eq 27 (p. 18)
539a8e1175bSopenharmony_ci          */
540a8e1175bSopenharmony_ci         "movdqa %%xmm1, %%xmm3             \n\t" // r1:r0
541a8e1175bSopenharmony_ci         "movdqa %%xmm2, %%xmm4             \n\t" // r3:r2
542a8e1175bSopenharmony_ci         "psllq $1, %%xmm1                  \n\t" // r1<<1:r0<<1
543a8e1175bSopenharmony_ci         "psllq $1, %%xmm2                  \n\t" // r3<<1:r2<<1
544a8e1175bSopenharmony_ci         "psrlq $63, %%xmm3                 \n\t" // r1>>63:r0>>63
545a8e1175bSopenharmony_ci         "psrlq $63, %%xmm4                 \n\t" // r3>>63:r2>>63
546a8e1175bSopenharmony_ci         "movdqa %%xmm3, %%xmm5             \n\t" // r1>>63:r0>>63
547a8e1175bSopenharmony_ci         "pslldq $8, %%xmm3                 \n\t" // r0>>63:0
548a8e1175bSopenharmony_ci         "pslldq $8, %%xmm4                 \n\t" // r2>>63:0
549a8e1175bSopenharmony_ci         "psrldq $8, %%xmm5                 \n\t" // 0:r1>>63
550a8e1175bSopenharmony_ci         "por %%xmm3, %%xmm1                \n\t" // r1<<1|r0>>63:r0<<1
551a8e1175bSopenharmony_ci         "por %%xmm4, %%xmm2                \n\t" // r3<<1|r2>>62:r2<<1
552a8e1175bSopenharmony_ci         "por %%xmm5, %%xmm2                \n\t" // r3<<1|r2>>62:r2<<1|r1>>63
553a8e1175bSopenharmony_ci
554a8e1175bSopenharmony_ci         /*
555a8e1175bSopenharmony_ci          * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
556a8e1175bSopenharmony_ci          * using [CLMUL-WP] algorithm 5 (p. 18).
557a8e1175bSopenharmony_ci          * Currently xmm2:xmm1 holds x3:x2:x1:x0 (already shifted).
558a8e1175bSopenharmony_ci          */
559a8e1175bSopenharmony_ci         /* Step 2 (1) */
560a8e1175bSopenharmony_ci         "movdqa %%xmm1, %%xmm3             \n\t" // x1:x0
561a8e1175bSopenharmony_ci         "movdqa %%xmm1, %%xmm4             \n\t" // same
562a8e1175bSopenharmony_ci         "movdqa %%xmm1, %%xmm5             \n\t" // same
563a8e1175bSopenharmony_ci         "psllq $63, %%xmm3                 \n\t" // x1<<63:x0<<63 = stuff:a
564a8e1175bSopenharmony_ci         "psllq $62, %%xmm4                 \n\t" // x1<<62:x0<<62 = stuff:b
565a8e1175bSopenharmony_ci         "psllq $57, %%xmm5                 \n\t" // x1<<57:x0<<57 = stuff:c
566a8e1175bSopenharmony_ci
567a8e1175bSopenharmony_ci         /* Step 2 (2) */
568a8e1175bSopenharmony_ci         "pxor %%xmm4, %%xmm3               \n\t" // stuff:a+b
569a8e1175bSopenharmony_ci         "pxor %%xmm5, %%xmm3               \n\t" // stuff:a+b+c
570a8e1175bSopenharmony_ci         "pslldq $8, %%xmm3                 \n\t" // a+b+c:0
571a8e1175bSopenharmony_ci         "pxor %%xmm3, %%xmm1               \n\t" // x1+a+b+c:x0 = d:x0
572a8e1175bSopenharmony_ci
573a8e1175bSopenharmony_ci         /* Steps 3 and 4 */
574a8e1175bSopenharmony_ci         "movdqa %%xmm1,%%xmm0              \n\t" // d:x0
575a8e1175bSopenharmony_ci         "movdqa %%xmm1,%%xmm4              \n\t" // same
576a8e1175bSopenharmony_ci         "movdqa %%xmm1,%%xmm5              \n\t" // same
577a8e1175bSopenharmony_ci         "psrlq $1, %%xmm0                  \n\t" // e1:x0>>1 = e1:e0'
578a8e1175bSopenharmony_ci         "psrlq $2, %%xmm4                  \n\t" // f1:x0>>2 = f1:f0'
579a8e1175bSopenharmony_ci         "psrlq $7, %%xmm5                  \n\t" // g1:x0>>7 = g1:g0'
580a8e1175bSopenharmony_ci         "pxor %%xmm4, %%xmm0               \n\t" // e1+f1:e0'+f0'
581a8e1175bSopenharmony_ci         "pxor %%xmm5, %%xmm0               \n\t" // e1+f1+g1:e0'+f0'+g0'
582a8e1175bSopenharmony_ci         // e0'+f0'+g0' is almost e0+f0+g0, ex\tcept for some missing
583a8e1175bSopenharmony_ci         // bits carried from d. Now get those\t bits back in.
584a8e1175bSopenharmony_ci         "movdqa %%xmm1,%%xmm3              \n\t" // d:x0
585a8e1175bSopenharmony_ci         "movdqa %%xmm1,%%xmm4              \n\t" // same
586a8e1175bSopenharmony_ci         "movdqa %%xmm1,%%xmm5              \n\t" // same
587a8e1175bSopenharmony_ci         "psllq $63, %%xmm3                 \n\t" // d<<63:stuff
588a8e1175bSopenharmony_ci         "psllq $62, %%xmm4                 \n\t" // d<<62:stuff
589a8e1175bSopenharmony_ci         "psllq $57, %%xmm5                 \n\t" // d<<57:stuff
590a8e1175bSopenharmony_ci         "pxor %%xmm4, %%xmm3               \n\t" // d<<63+d<<62:stuff
591a8e1175bSopenharmony_ci         "pxor %%xmm5, %%xmm3               \n\t" // missing bits of d:stuff
592a8e1175bSopenharmony_ci         "psrldq $8, %%xmm3                 \n\t" // 0:missing bits of d
593a8e1175bSopenharmony_ci         "pxor %%xmm3, %%xmm0               \n\t" // e1+f1+g1:e0+f0+g0
594a8e1175bSopenharmony_ci         "pxor %%xmm1, %%xmm0               \n\t" // h1:h0
595a8e1175bSopenharmony_ci         "pxor %%xmm2, %%xmm0               \n\t" // x3+h1:x2+h0
596a8e1175bSopenharmony_ci
597a8e1175bSopenharmony_ci         "movdqu %%xmm0, (%2)               \n\t" // done
598a8e1175bSopenharmony_ci         :
599a8e1175bSopenharmony_ci         : "r" (aa), "r" (bb), "r" (cc)
600a8e1175bSopenharmony_ci         : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5");
601a8e1175bSopenharmony_ci
602a8e1175bSopenharmony_ci    /* Now byte-reverse the outputs */
603a8e1175bSopenharmony_ci    for (i = 0; i < 16; i++) {
604a8e1175bSopenharmony_ci        c[i] = cc[15 - i];
605a8e1175bSopenharmony_ci    }
606a8e1175bSopenharmony_ci
607a8e1175bSopenharmony_ci    return;
608a8e1175bSopenharmony_ci}
609a8e1175bSopenharmony_ci
610a8e1175bSopenharmony_ci/*
611a8e1175bSopenharmony_ci * Compute decryption round keys from encryption round keys
612a8e1175bSopenharmony_ci */
613a8e1175bSopenharmony_ci#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
614a8e1175bSopenharmony_civoid mbedtls_aesni_inverse_key(unsigned char *invkey,
615a8e1175bSopenharmony_ci                               const unsigned char *fwdkey, int nr)
616a8e1175bSopenharmony_ci{
617a8e1175bSopenharmony_ci    unsigned char *ik = invkey;
618a8e1175bSopenharmony_ci    const unsigned char *fk = fwdkey + 16 * nr;
619a8e1175bSopenharmony_ci
620a8e1175bSopenharmony_ci    memcpy(ik, fk, 16);
621a8e1175bSopenharmony_ci
622a8e1175bSopenharmony_ci    for (fk -= 16, ik += 16; fk > fwdkey; fk -= 16, ik += 16) {
623a8e1175bSopenharmony_ci        asm ("movdqu (%0), %%xmm0       \n\t"
624a8e1175bSopenharmony_ci             AESIMC(xmm0_xmm0)
625a8e1175bSopenharmony_ci             "movdqu %%xmm0, (%1)       \n\t"
626a8e1175bSopenharmony_ci             :
627a8e1175bSopenharmony_ci             : "r" (fk), "r" (ik)
628a8e1175bSopenharmony_ci             : "memory", "xmm0");
629a8e1175bSopenharmony_ci    }
630a8e1175bSopenharmony_ci
631a8e1175bSopenharmony_ci    memcpy(ik, fk, 16);
632a8e1175bSopenharmony_ci}
633a8e1175bSopenharmony_ci#endif
634a8e1175bSopenharmony_ci
635a8e1175bSopenharmony_ci/*
636a8e1175bSopenharmony_ci * Key expansion, 128-bit case
637a8e1175bSopenharmony_ci */
638a8e1175bSopenharmony_cistatic void aesni_setkey_enc_128(unsigned char *rk,
639a8e1175bSopenharmony_ci                                 const unsigned char *key)
640a8e1175bSopenharmony_ci{
641a8e1175bSopenharmony_ci    asm ("movdqu (%1), %%xmm0               \n\t" // copy the original key
642a8e1175bSopenharmony_ci         "movdqu %%xmm0, (%0)               \n\t" // as round key 0
643a8e1175bSopenharmony_ci         "jmp 2f                            \n\t" // skip auxiliary routine
644a8e1175bSopenharmony_ci
645a8e1175bSopenharmony_ci         /*
646a8e1175bSopenharmony_ci          * Finish generating the next round key.
647a8e1175bSopenharmony_ci          *
648a8e1175bSopenharmony_ci          * On entry xmm0 is r3:r2:r1:r0 and xmm1 is X:stuff:stuff:stuff
649a8e1175bSopenharmony_ci          * with X = rot( sub( r3 ) ) ^ RCON.
650a8e1175bSopenharmony_ci          *
651a8e1175bSopenharmony_ci          * On exit, xmm0 is r7:r6:r5:r4
652a8e1175bSopenharmony_ci          * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
653a8e1175bSopenharmony_ci          * and those are written to the round key buffer.
654a8e1175bSopenharmony_ci          */
655a8e1175bSopenharmony_ci         "1:                                \n\t"
656a8e1175bSopenharmony_ci         "pshufd $0xff, %%xmm1, %%xmm1      \n\t" // X:X:X:X
657a8e1175bSopenharmony_ci         "pxor %%xmm0, %%xmm1               \n\t" // X+r3:X+r2:X+r1:r4
658a8e1175bSopenharmony_ci         "pslldq $4, %%xmm0                 \n\t" // r2:r1:r0:0
659a8e1175bSopenharmony_ci         "pxor %%xmm0, %%xmm1               \n\t" // X+r3+r2:X+r2+r1:r5:r4
660a8e1175bSopenharmony_ci         "pslldq $4, %%xmm0                 \n\t" // etc
661a8e1175bSopenharmony_ci         "pxor %%xmm0, %%xmm1               \n\t"
662a8e1175bSopenharmony_ci         "pslldq $4, %%xmm0                 \n\t"
663a8e1175bSopenharmony_ci         "pxor %%xmm1, %%xmm0               \n\t" // update xmm0 for next time!
664a8e1175bSopenharmony_ci         "add $16, %0                       \n\t" // point to next round key
665a8e1175bSopenharmony_ci         "movdqu %%xmm0, (%0)               \n\t" // write it
666a8e1175bSopenharmony_ci         "ret                               \n\t"
667a8e1175bSopenharmony_ci
668a8e1175bSopenharmony_ci         /* Main "loop" */
669a8e1175bSopenharmony_ci         "2:                                \n\t"
670a8e1175bSopenharmony_ci         AESKEYGENA(xmm0_xmm1, "0x01")      "call 1b \n\t"
671a8e1175bSopenharmony_ci         AESKEYGENA(xmm0_xmm1, "0x02")      "call 1b \n\t"
672a8e1175bSopenharmony_ci         AESKEYGENA(xmm0_xmm1, "0x04")      "call 1b \n\t"
673a8e1175bSopenharmony_ci         AESKEYGENA(xmm0_xmm1, "0x08")      "call 1b \n\t"
674a8e1175bSopenharmony_ci         AESKEYGENA(xmm0_xmm1, "0x10")      "call 1b \n\t"
675a8e1175bSopenharmony_ci         AESKEYGENA(xmm0_xmm1, "0x20")      "call 1b \n\t"
676a8e1175bSopenharmony_ci         AESKEYGENA(xmm0_xmm1, "0x40")      "call 1b \n\t"
677a8e1175bSopenharmony_ci         AESKEYGENA(xmm0_xmm1, "0x80")      "call 1b \n\t"
678a8e1175bSopenharmony_ci         AESKEYGENA(xmm0_xmm1, "0x1B")      "call 1b \n\t"
679a8e1175bSopenharmony_ci         AESKEYGENA(xmm0_xmm1, "0x36")      "call 1b \n\t"
680a8e1175bSopenharmony_ci         :
681a8e1175bSopenharmony_ci         : "r" (rk), "r" (key)
682a8e1175bSopenharmony_ci         : "memory", "cc", "0");
683a8e1175bSopenharmony_ci}
684a8e1175bSopenharmony_ci
685a8e1175bSopenharmony_ci/*
686a8e1175bSopenharmony_ci * Key expansion, 192-bit case
687a8e1175bSopenharmony_ci */
688a8e1175bSopenharmony_ci#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
689a8e1175bSopenharmony_cistatic void aesni_setkey_enc_192(unsigned char *rk,
690a8e1175bSopenharmony_ci                                 const unsigned char *key)
691a8e1175bSopenharmony_ci{
692a8e1175bSopenharmony_ci    asm ("movdqu (%1), %%xmm0   \n\t" // copy original round key
693a8e1175bSopenharmony_ci         "movdqu %%xmm0, (%0)   \n\t"
694a8e1175bSopenharmony_ci         "add $16, %0           \n\t"
695a8e1175bSopenharmony_ci         "movq 16(%1), %%xmm1   \n\t"
696a8e1175bSopenharmony_ci         "movq %%xmm1, (%0)     \n\t"
697a8e1175bSopenharmony_ci         "add $8, %0            \n\t"
698a8e1175bSopenharmony_ci         "jmp 2f                \n\t" // skip auxiliary routine
699a8e1175bSopenharmony_ci
700a8e1175bSopenharmony_ci         /*
701a8e1175bSopenharmony_ci          * Finish generating the next 6 quarter-keys.
702a8e1175bSopenharmony_ci          *
703a8e1175bSopenharmony_ci          * On entry xmm0 is r3:r2:r1:r0, xmm1 is stuff:stuff:r5:r4
704a8e1175bSopenharmony_ci          * and xmm2 is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON.
705a8e1175bSopenharmony_ci          *
706a8e1175bSopenharmony_ci          * On exit, xmm0 is r9:r8:r7:r6 and xmm1 is stuff:stuff:r11:r10
707a8e1175bSopenharmony_ci          * and those are written to the round key buffer.
708a8e1175bSopenharmony_ci          */
709a8e1175bSopenharmony_ci         "1:                            \n\t"
710a8e1175bSopenharmony_ci         "pshufd $0x55, %%xmm2, %%xmm2  \n\t" // X:X:X:X
711a8e1175bSopenharmony_ci         "pxor %%xmm0, %%xmm2           \n\t" // X+r3:X+r2:X+r1:r4
712a8e1175bSopenharmony_ci         "pslldq $4, %%xmm0             \n\t" // etc
713a8e1175bSopenharmony_ci         "pxor %%xmm0, %%xmm2           \n\t"
714a8e1175bSopenharmony_ci         "pslldq $4, %%xmm0             \n\t"
715a8e1175bSopenharmony_ci         "pxor %%xmm0, %%xmm2           \n\t"
716a8e1175bSopenharmony_ci         "pslldq $4, %%xmm0             \n\t"
717a8e1175bSopenharmony_ci         "pxor %%xmm2, %%xmm0           \n\t" // update xmm0 = r9:r8:r7:r6
718a8e1175bSopenharmony_ci         "movdqu %%xmm0, (%0)           \n\t"
719a8e1175bSopenharmony_ci         "add $16, %0                   \n\t"
720a8e1175bSopenharmony_ci         "pshufd $0xff, %%xmm0, %%xmm2  \n\t" // r9:r9:r9:r9
721a8e1175bSopenharmony_ci         "pxor %%xmm1, %%xmm2           \n\t" // stuff:stuff:r9+r5:r10
722a8e1175bSopenharmony_ci         "pslldq $4, %%xmm1             \n\t" // r2:r1:r0:0
723a8e1175bSopenharmony_ci         "pxor %%xmm2, %%xmm1           \n\t" // xmm1 = stuff:stuff:r11:r10
724a8e1175bSopenharmony_ci         "movq %%xmm1, (%0)             \n\t"
725a8e1175bSopenharmony_ci         "add $8, %0                    \n\t"
726a8e1175bSopenharmony_ci         "ret                           \n\t"
727a8e1175bSopenharmony_ci
728a8e1175bSopenharmony_ci         "2:                            \n\t"
729a8e1175bSopenharmony_ci         AESKEYGENA(xmm1_xmm2, "0x01")  "call 1b \n\t"
730a8e1175bSopenharmony_ci         AESKEYGENA(xmm1_xmm2, "0x02")  "call 1b \n\t"
731a8e1175bSopenharmony_ci         AESKEYGENA(xmm1_xmm2, "0x04")  "call 1b \n\t"
732a8e1175bSopenharmony_ci         AESKEYGENA(xmm1_xmm2, "0x08")  "call 1b \n\t"
733a8e1175bSopenharmony_ci         AESKEYGENA(xmm1_xmm2, "0x10")  "call 1b \n\t"
734a8e1175bSopenharmony_ci         AESKEYGENA(xmm1_xmm2, "0x20")  "call 1b \n\t"
735a8e1175bSopenharmony_ci         AESKEYGENA(xmm1_xmm2, "0x40")  "call 1b \n\t"
736a8e1175bSopenharmony_ci         AESKEYGENA(xmm1_xmm2, "0x80")  "call 1b \n\t"
737a8e1175bSopenharmony_ci
738a8e1175bSopenharmony_ci         :
739a8e1175bSopenharmony_ci         : "r" (rk), "r" (key)
740a8e1175bSopenharmony_ci         : "memory", "cc", "0");
741a8e1175bSopenharmony_ci}
742a8e1175bSopenharmony_ci#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
743a8e1175bSopenharmony_ci
744a8e1175bSopenharmony_ci/*
745a8e1175bSopenharmony_ci * Key expansion, 256-bit case
746a8e1175bSopenharmony_ci */
747a8e1175bSopenharmony_ci#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
748a8e1175bSopenharmony_cistatic void aesni_setkey_enc_256(unsigned char *rk,
749a8e1175bSopenharmony_ci                                 const unsigned char *key)
750a8e1175bSopenharmony_ci{
751a8e1175bSopenharmony_ci    asm ("movdqu (%1), %%xmm0           \n\t"
752a8e1175bSopenharmony_ci         "movdqu %%xmm0, (%0)           \n\t"
753a8e1175bSopenharmony_ci         "add $16, %0                   \n\t"
754a8e1175bSopenharmony_ci         "movdqu 16(%1), %%xmm1         \n\t"
755a8e1175bSopenharmony_ci         "movdqu %%xmm1, (%0)           \n\t"
756a8e1175bSopenharmony_ci         "jmp 2f                        \n\t" // skip auxiliary routine
757a8e1175bSopenharmony_ci
758a8e1175bSopenharmony_ci         /*
759a8e1175bSopenharmony_ci          * Finish generating the next two round keys.
760a8e1175bSopenharmony_ci          *
761a8e1175bSopenharmony_ci          * On entry xmm0 is r3:r2:r1:r0, xmm1 is r7:r6:r5:r4 and
762a8e1175bSopenharmony_ci          * xmm2 is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
763a8e1175bSopenharmony_ci          *
764a8e1175bSopenharmony_ci          * On exit, xmm0 is r11:r10:r9:r8 and xmm1 is r15:r14:r13:r12
765a8e1175bSopenharmony_ci          * and those have been written to the output buffer.
766a8e1175bSopenharmony_ci          */
767a8e1175bSopenharmony_ci         "1:                                \n\t"
768a8e1175bSopenharmony_ci         "pshufd $0xff, %%xmm2, %%xmm2      \n\t"
769a8e1175bSopenharmony_ci         "pxor %%xmm0, %%xmm2               \n\t"
770a8e1175bSopenharmony_ci         "pslldq $4, %%xmm0                 \n\t"
771a8e1175bSopenharmony_ci         "pxor %%xmm0, %%xmm2               \n\t"
772a8e1175bSopenharmony_ci         "pslldq $4, %%xmm0                 \n\t"
773a8e1175bSopenharmony_ci         "pxor %%xmm0, %%xmm2               \n\t"
774a8e1175bSopenharmony_ci         "pslldq $4, %%xmm0                 \n\t"
775a8e1175bSopenharmony_ci         "pxor %%xmm2, %%xmm0               \n\t"
776a8e1175bSopenharmony_ci         "add $16, %0                       \n\t"
777a8e1175bSopenharmony_ci         "movdqu %%xmm0, (%0)               \n\t"
778a8e1175bSopenharmony_ci
779a8e1175bSopenharmony_ci         /* Set xmm2 to stuff:Y:stuff:stuff with Y = subword( r11 )
780a8e1175bSopenharmony_ci          * and proceed to generate next round key from there */
781a8e1175bSopenharmony_ci         AESKEYGENA(xmm0_xmm2, "0x00")
782a8e1175bSopenharmony_ci         "pshufd $0xaa, %%xmm2, %%xmm2      \n\t"
783a8e1175bSopenharmony_ci         "pxor %%xmm1, %%xmm2               \n\t"
784a8e1175bSopenharmony_ci         "pslldq $4, %%xmm1                 \n\t"
785a8e1175bSopenharmony_ci         "pxor %%xmm1, %%xmm2               \n\t"
786a8e1175bSopenharmony_ci         "pslldq $4, %%xmm1                 \n\t"
787a8e1175bSopenharmony_ci         "pxor %%xmm1, %%xmm2               \n\t"
788a8e1175bSopenharmony_ci         "pslldq $4, %%xmm1                 \n\t"
789a8e1175bSopenharmony_ci         "pxor %%xmm2, %%xmm1               \n\t"
790a8e1175bSopenharmony_ci         "add $16, %0                       \n\t"
791a8e1175bSopenharmony_ci         "movdqu %%xmm1, (%0)               \n\t"
792a8e1175bSopenharmony_ci         "ret                               \n\t"
793a8e1175bSopenharmony_ci
794a8e1175bSopenharmony_ci         /*
795a8e1175bSopenharmony_ci          * Main "loop" - Generating one more key than necessary,
796a8e1175bSopenharmony_ci          * see definition of mbedtls_aes_context.buf
797a8e1175bSopenharmony_ci          */
798a8e1175bSopenharmony_ci         "2:                                \n\t"
799a8e1175bSopenharmony_ci         AESKEYGENA(xmm1_xmm2, "0x01")      "call 1b \n\t"
800a8e1175bSopenharmony_ci         AESKEYGENA(xmm1_xmm2, "0x02")      "call 1b \n\t"
801a8e1175bSopenharmony_ci         AESKEYGENA(xmm1_xmm2, "0x04")      "call 1b \n\t"
802a8e1175bSopenharmony_ci         AESKEYGENA(xmm1_xmm2, "0x08")      "call 1b \n\t"
803a8e1175bSopenharmony_ci         AESKEYGENA(xmm1_xmm2, "0x10")      "call 1b \n\t"
804a8e1175bSopenharmony_ci         AESKEYGENA(xmm1_xmm2, "0x20")      "call 1b \n\t"
805a8e1175bSopenharmony_ci         AESKEYGENA(xmm1_xmm2, "0x40")      "call 1b \n\t"
806a8e1175bSopenharmony_ci         :
807a8e1175bSopenharmony_ci         : "r" (rk), "r" (key)
808a8e1175bSopenharmony_ci         : "memory", "cc", "0");
809a8e1175bSopenharmony_ci}
810a8e1175bSopenharmony_ci#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
811a8e1175bSopenharmony_ci
812a8e1175bSopenharmony_ci#endif  /* MBEDTLS_AESNI_HAVE_CODE */
813a8e1175bSopenharmony_ci
814a8e1175bSopenharmony_ci/*
815a8e1175bSopenharmony_ci * Key expansion, wrapper
816a8e1175bSopenharmony_ci */
817a8e1175bSopenharmony_ciint mbedtls_aesni_setkey_enc(unsigned char *rk,
818a8e1175bSopenharmony_ci                             const unsigned char *key,
819a8e1175bSopenharmony_ci                             size_t bits)
820a8e1175bSopenharmony_ci{
821a8e1175bSopenharmony_ci    switch (bits) {
822a8e1175bSopenharmony_ci        case 128: aesni_setkey_enc_128(rk, key); break;
823a8e1175bSopenharmony_ci#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
824a8e1175bSopenharmony_ci        case 192: aesni_setkey_enc_192(rk, key); break;
825a8e1175bSopenharmony_ci        case 256: aesni_setkey_enc_256(rk, key); break;
826a8e1175bSopenharmony_ci#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
827a8e1175bSopenharmony_ci        default: return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
828a8e1175bSopenharmony_ci    }
829a8e1175bSopenharmony_ci
830a8e1175bSopenharmony_ci    return 0;
831a8e1175bSopenharmony_ci}
832a8e1175bSopenharmony_ci
833a8e1175bSopenharmony_ci#endif /* MBEDTLS_AESNI_HAVE_CODE */
834a8e1175bSopenharmony_ci
835a8e1175bSopenharmony_ci#endif /* MBEDTLS_AESNI_C */
836