1/* 2 * Armv8-A Cryptographic Extension support functions for Aarch64 3 * 4 * Copyright The Mbed TLS Contributors 5 * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later 6 */ 7 8#if defined(__clang__) && (__clang_major__ >= 4) 9 10/* Ideally, we would simply use MBEDTLS_ARCH_IS_ARMV8_A in the following #if, 11 * but that is defined by build_info.h, and we need this block to happen first. */ 12#if defined(__ARM_ARCH) 13#if __ARM_ARCH >= 8 14#define MBEDTLS_AESCE_ARCH_IS_ARMV8_A 15#endif 16#endif 17 18#if defined(MBEDTLS_AESCE_ARCH_IS_ARMV8_A) && !defined(__ARM_FEATURE_CRYPTO) 19/* TODO: Re-consider above after https://reviews.llvm.org/D131064 merged. 20 * 21 * The intrinsic declaration are guarded by predefined ACLE macros in clang: 22 * these are normally only enabled by the -march option on the command line. 23 * By defining the macros ourselves we gain access to those declarations without 24 * requiring -march on the command line. 25 * 26 * `arm_neon.h` is included by common.h, so we put these defines 27 * at the top of this file, before any includes. 28 */ 29#define __ARM_FEATURE_CRYPTO 1 30/* See: https://arm-software.github.io/acle/main/acle.html#cryptographic-extensions 31 * 32 * `__ARM_FEATURE_CRYPTO` is deprecated, but we need to continue to specify it 33 * for older compilers. 34 */ 35#define __ARM_FEATURE_AES 1 36#define MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG 37#endif 38 39#endif /* defined(__clang__) && (__clang_major__ >= 4) */ 40 41#include <string.h> 42#include "common.h" 43 44#if defined(MBEDTLS_AESCE_C) 45 46#include "aesce.h" 47 48#if defined(MBEDTLS_AESCE_HAVE_CODE) 49 50/* Compiler version checks. */ 51#if defined(__clang__) 52# if defined(MBEDTLS_ARCH_IS_ARM32) && (__clang_major__ < 11) 53# error "Minimum version of Clang for MBEDTLS_AESCE_C on 32-bit Arm or Thumb is 11.0." 54# elif defined(MBEDTLS_ARCH_IS_ARM64) && (__clang_major__ < 4) 55# error "Minimum version of Clang for MBEDTLS_AESCE_C on aarch64 is 4.0." 56# endif 57#elif defined(__GNUC__) 58# if __GNUC__ < 6 59# error "Minimum version of GCC for MBEDTLS_AESCE_C is 6.0." 60# endif 61#elif defined(_MSC_VER) 62/* TODO: We haven't verified MSVC from 1920 to 1928. If someone verified that, 63 * please update this and document of `MBEDTLS_AESCE_C` in 64 * `mbedtls_config.h`. */ 65# if _MSC_VER < 1929 66# error "Minimum version of MSVC for MBEDTLS_AESCE_C is 2019 version 16.11.2." 67# endif 68#elif defined(__ARMCC_VERSION) 69# if defined(MBEDTLS_ARCH_IS_ARM32) && (__ARMCC_VERSION < 6200002) 70/* TODO: We haven't verified armclang for 32-bit Arm/Thumb prior to 6.20. 71 * If someone verified that, please update this and document of 72 * `MBEDTLS_AESCE_C` in `mbedtls_config.h`. */ 73# error "Minimum version of armclang for MBEDTLS_AESCE_C on 32-bit Arm is 6.20." 74# elif defined(MBEDTLS_ARCH_IS_ARM64) && (__ARMCC_VERSION < 6060000) 75# error "Minimum version of armclang for MBEDTLS_AESCE_C on aarch64 is 6.6." 76# endif 77#endif 78 79#if !(defined(__ARM_FEATURE_CRYPTO) || defined(__ARM_FEATURE_AES)) || \ 80 defined(MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG) 81# if defined(__ARMCOMPILER_VERSION) 82# if __ARMCOMPILER_VERSION <= 6090000 83# error "Must use minimum -march=armv8-a+crypto for MBEDTLS_AESCE_C" 84# else 85# pragma clang attribute push (__attribute__((target("aes"))), apply_to=function) 86# define MBEDTLS_POP_TARGET_PRAGMA 87# endif 88# elif defined(__clang__) 89# pragma clang attribute push (__attribute__((target("aes"))), apply_to=function) 90# define MBEDTLS_POP_TARGET_PRAGMA 91# elif defined(__GNUC__) 92# pragma GCC push_options 93# pragma GCC target ("+crypto") 94# define MBEDTLS_POP_TARGET_PRAGMA 95# elif defined(_MSC_VER) 96# error "Required feature(__ARM_FEATURE_AES) is not enabled." 97# endif 98#endif /* !(__ARM_FEATURE_CRYPTO || __ARM_FEATURE_AES) || 99 MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG */ 100 101#if defined(__linux__) && !defined(MBEDTLS_AES_USE_HARDWARE_ONLY) 102 103#include <sys/auxv.h> 104#if !defined(HWCAP_NEON) 105#define HWCAP_NEON (1 << 12) 106#endif 107#if !defined(HWCAP2_AES) 108#define HWCAP2_AES (1 << 0) 109#endif 110#if !defined(HWCAP_AES) 111#define HWCAP_AES (1 << 3) 112#endif 113#if !defined(HWCAP_ASIMD) 114#define HWCAP_ASIMD (1 << 1) 115#endif 116 117signed char mbedtls_aesce_has_support_result = -1; 118 119#if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY) 120/* 121 * AES instruction support detection routine 122 */ 123int mbedtls_aesce_has_support_impl(void) 124{ 125 /* To avoid many calls to getauxval, cache the result. This is 126 * thread-safe, because we store the result in a char so cannot 127 * be vulnerable to non-atomic updates. 128 * It is possible that we could end up setting result more than 129 * once, but that is harmless. 130 */ 131 if (mbedtls_aesce_has_support_result == -1) { 132#if defined(MBEDTLS_ARCH_IS_ARM32) 133 unsigned long auxval = getauxval(AT_HWCAP); 134 unsigned long auxval2 = getauxval(AT_HWCAP2); 135 if (((auxval & HWCAP_NEON) == HWCAP_NEON) && 136 ((auxval2 & HWCAP2_AES) == HWCAP2_AES)) { 137 mbedtls_aesce_has_support_result = 1; 138 } else { 139 mbedtls_aesce_has_support_result = 0; 140 } 141#else 142 unsigned long auxval = getauxval(AT_HWCAP); 143 if ((auxval & (HWCAP_ASIMD | HWCAP_AES)) == 144 (HWCAP_ASIMD | HWCAP_AES)) { 145 mbedtls_aesce_has_support_result = 1; 146 } else { 147 mbedtls_aesce_has_support_result = 0; 148 } 149#endif 150 } 151 return mbedtls_aesce_has_support_result; 152} 153#endif 154 155#endif /* defined(__linux__) && !defined(MBEDTLS_AES_USE_HARDWARE_ONLY) */ 156 157/* Single round of AESCE encryption */ 158#define AESCE_ENCRYPT_ROUND \ 159 block = vaeseq_u8(block, vld1q_u8(keys)); \ 160 block = vaesmcq_u8(block); \ 161 keys += 16 162/* Two rounds of AESCE encryption */ 163#define AESCE_ENCRYPT_ROUND_X2 AESCE_ENCRYPT_ROUND; AESCE_ENCRYPT_ROUND 164 165MBEDTLS_OPTIMIZE_FOR_PERFORMANCE 166static uint8x16_t aesce_encrypt_block(uint8x16_t block, 167 unsigned char *keys, 168 int rounds) 169{ 170 /* 10, 12 or 14 rounds. Unroll loop. */ 171 if (rounds == 10) { 172 goto rounds_10; 173 } 174 if (rounds == 12) { 175 goto rounds_12; 176 } 177 AESCE_ENCRYPT_ROUND_X2; 178rounds_12: 179 AESCE_ENCRYPT_ROUND_X2; 180rounds_10: 181 AESCE_ENCRYPT_ROUND_X2; 182 AESCE_ENCRYPT_ROUND_X2; 183 AESCE_ENCRYPT_ROUND_X2; 184 AESCE_ENCRYPT_ROUND_X2; 185 AESCE_ENCRYPT_ROUND; 186 187 /* AES AddRoundKey for the previous round. 188 * SubBytes, ShiftRows for the final round. */ 189 block = vaeseq_u8(block, vld1q_u8(keys)); 190 keys += 16; 191 192 /* Final round: no MixColumns */ 193 194 /* Final AddRoundKey */ 195 block = veorq_u8(block, vld1q_u8(keys)); 196 197 return block; 198} 199 200/* Single round of AESCE decryption 201 * 202 * AES AddRoundKey, SubBytes, ShiftRows 203 * 204 * block = vaesdq_u8(block, vld1q_u8(keys)); 205 * 206 * AES inverse MixColumns for the next round. 207 * 208 * This means that we switch the order of the inverse AddRoundKey and 209 * inverse MixColumns operations. We have to do this as AddRoundKey is 210 * done in an atomic instruction together with the inverses of SubBytes 211 * and ShiftRows. 212 * 213 * It works because MixColumns is a linear operation over GF(2^8) and 214 * AddRoundKey is an exclusive or, which is equivalent to addition over 215 * GF(2^8). (The inverse of MixColumns needs to be applied to the 216 * affected round keys separately which has been done when the 217 * decryption round keys were calculated.) 218 * 219 * block = vaesimcq_u8(block); 220 */ 221#define AESCE_DECRYPT_ROUND \ 222 block = vaesdq_u8(block, vld1q_u8(keys)); \ 223 block = vaesimcq_u8(block); \ 224 keys += 16 225/* Two rounds of AESCE decryption */ 226#define AESCE_DECRYPT_ROUND_X2 AESCE_DECRYPT_ROUND; AESCE_DECRYPT_ROUND 227 228#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT) 229static uint8x16_t aesce_decrypt_block(uint8x16_t block, 230 unsigned char *keys, 231 int rounds) 232{ 233 /* 10, 12 or 14 rounds. Unroll loop. */ 234 if (rounds == 10) { 235 goto rounds_10; 236 } 237 if (rounds == 12) { 238 goto rounds_12; 239 } 240 AESCE_DECRYPT_ROUND_X2; 241rounds_12: 242 AESCE_DECRYPT_ROUND_X2; 243rounds_10: 244 AESCE_DECRYPT_ROUND_X2; 245 AESCE_DECRYPT_ROUND_X2; 246 AESCE_DECRYPT_ROUND_X2; 247 AESCE_DECRYPT_ROUND_X2; 248 AESCE_DECRYPT_ROUND; 249 250 /* The inverses of AES AddRoundKey, SubBytes, ShiftRows finishing up the 251 * last full round. */ 252 block = vaesdq_u8(block, vld1q_u8(keys)); 253 keys += 16; 254 255 /* Inverse AddRoundKey for inverting the initial round key addition. */ 256 block = veorq_u8(block, vld1q_u8(keys)); 257 258 return block; 259} 260#endif 261 262/* 263 * AES-ECB block en(de)cryption 264 */ 265int mbedtls_aesce_crypt_ecb(mbedtls_aes_context *ctx, 266 int mode, 267 const unsigned char input[16], 268 unsigned char output[16]) 269{ 270 uint8x16_t block = vld1q_u8(&input[0]); 271 unsigned char *keys = (unsigned char *) (ctx->buf + ctx->rk_offset); 272 273#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT) 274 if (mode == MBEDTLS_AES_DECRYPT) { 275 block = aesce_decrypt_block(block, keys, ctx->nr); 276 } else 277#else 278 (void) mode; 279#endif 280 { 281 block = aesce_encrypt_block(block, keys, ctx->nr); 282 } 283 vst1q_u8(&output[0], block); 284 285 return 0; 286} 287 288/* 289 * Compute decryption round keys from encryption round keys 290 */ 291#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT) 292void mbedtls_aesce_inverse_key(unsigned char *invkey, 293 const unsigned char *fwdkey, 294 int nr) 295{ 296 int i, j; 297 j = nr; 298 vst1q_u8(invkey, vld1q_u8(fwdkey + j * 16)); 299 for (i = 1, j--; j > 0; i++, j--) { 300 vst1q_u8(invkey + i * 16, 301 vaesimcq_u8(vld1q_u8(fwdkey + j * 16))); 302 } 303 vst1q_u8(invkey + i * 16, vld1q_u8(fwdkey + j * 16)); 304 305} 306#endif 307 308static inline uint32_t aes_rot_word(uint32_t word) 309{ 310 return (word << (32 - 8)) | (word >> 8); 311} 312 313static inline uint32_t aes_sub_word(uint32_t in) 314{ 315 uint8x16_t v = vreinterpretq_u8_u32(vdupq_n_u32(in)); 316 uint8x16_t zero = vdupq_n_u8(0); 317 318 /* vaeseq_u8 does both SubBytes and ShiftRows. Taking the first row yields 319 * the correct result as ShiftRows doesn't change the first row. */ 320 v = vaeseq_u8(zero, v); 321 return vgetq_lane_u32(vreinterpretq_u32_u8(v), 0); 322} 323 324/* 325 * Key expansion function 326 */ 327static void aesce_setkey_enc(unsigned char *rk, 328 const unsigned char *key, 329 const size_t key_bit_length) 330{ 331 static uint8_t const rcon[] = { 0x01, 0x02, 0x04, 0x08, 0x10, 332 0x20, 0x40, 0x80, 0x1b, 0x36 }; 333 /* See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf 334 * - Section 5, Nr = Nk + 6 335 * - Section 5.2, the length of round keys is Nb*(Nr+1) 336 */ 337 const size_t key_len_in_words = key_bit_length / 32; /* Nk */ 338 const size_t round_key_len_in_words = 4; /* Nb */ 339 const size_t rounds_needed = key_len_in_words + 6; /* Nr */ 340 const size_t round_keys_len_in_words = 341 round_key_len_in_words * (rounds_needed + 1); /* Nb*(Nr+1) */ 342 const uint32_t *rko_end = (uint32_t *) rk + round_keys_len_in_words; 343 344 memcpy(rk, key, key_len_in_words * 4); 345 346 for (uint32_t *rki = (uint32_t *) rk; 347 rki + key_len_in_words < rko_end; 348 rki += key_len_in_words) { 349 350 size_t iteration = (size_t) (rki - (uint32_t *) rk) / key_len_in_words; 351 uint32_t *rko; 352 rko = rki + key_len_in_words; 353 rko[0] = aes_rot_word(aes_sub_word(rki[key_len_in_words - 1])); 354 rko[0] ^= rcon[iteration] ^ rki[0]; 355 rko[1] = rko[0] ^ rki[1]; 356 rko[2] = rko[1] ^ rki[2]; 357 rko[3] = rko[2] ^ rki[3]; 358 if (rko + key_len_in_words > rko_end) { 359 /* Do not write overflow words.*/ 360 continue; 361 } 362#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH) 363 switch (key_bit_length) { 364 case 128: 365 break; 366 case 192: 367 rko[4] = rko[3] ^ rki[4]; 368 rko[5] = rko[4] ^ rki[5]; 369 break; 370 case 256: 371 rko[4] = aes_sub_word(rko[3]) ^ rki[4]; 372 rko[5] = rko[4] ^ rki[5]; 373 rko[6] = rko[5] ^ rki[6]; 374 rko[7] = rko[6] ^ rki[7]; 375 break; 376 } 377#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */ 378 } 379} 380 381/* 382 * Key expansion, wrapper 383 */ 384int mbedtls_aesce_setkey_enc(unsigned char *rk, 385 const unsigned char *key, 386 size_t bits) 387{ 388 switch (bits) { 389 case 128: 390 case 192: 391 case 256: 392 aesce_setkey_enc(rk, key, bits); 393 break; 394 default: 395 return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH; 396 } 397 398 return 0; 399} 400 401#if defined(MBEDTLS_GCM_C) 402 403#if defined(MBEDTLS_ARCH_IS_ARM32) 404 405#if defined(__clang__) 406/* On clang for A32/T32, work around some missing intrinsics and types which are listed in 407 * [ACLE](https://arm-software.github.io/acle/neon_intrinsics/advsimd.html#polynomial-1) 408 * These are only required for GCM. 409 */ 410#define vreinterpretq_u64_p64(a) ((uint64x2_t) a) 411 412typedef uint8x16_t poly128_t; 413 414static inline poly128_t vmull_p64(poly64_t a, poly64_t b) 415{ 416 poly128_t r; 417 asm ("vmull.p64 %[r], %[a], %[b]" : [r] "=w" (r) : [a] "w" (a), [b] "w" (b) :); 418 return r; 419} 420 421/* This is set to cause some more missing intrinsics to be defined below */ 422#define COMMON_MISSING_INTRINSICS 423 424static inline poly128_t vmull_high_p64(poly64x2_t a, poly64x2_t b) 425{ 426 return vmull_p64((poly64_t) (vget_high_u64((uint64x2_t) a)), 427 (poly64_t) (vget_high_u64((uint64x2_t) b))); 428} 429 430#endif /* defined(__clang__) */ 431 432static inline uint8x16_t vrbitq_u8(uint8x16_t x) 433{ 434 /* There is no vrbitq_u8 instruction in A32/T32, so provide 435 * an equivalent non-Neon implementation. Reverse bit order in each 436 * byte with 4x rbit, rev. */ 437 asm ("ldm %[p], { r2-r5 } \n\t" 438 "rbit r2, r2 \n\t" 439 "rev r2, r2 \n\t" 440 "rbit r3, r3 \n\t" 441 "rev r3, r3 \n\t" 442 "rbit r4, r4 \n\t" 443 "rev r4, r4 \n\t" 444 "rbit r5, r5 \n\t" 445 "rev r5, r5 \n\t" 446 "stm %[p], { r2-r5 } \n\t" 447 : 448 /* Output: 16 bytes of memory pointed to by &x */ 449 "+m" (*(uint8_t(*)[16]) &x) 450 : 451 [p] "r" (&x) 452 : 453 "r2", "r3", "r4", "r5" 454 ); 455 return x; 456} 457 458#endif /* defined(MBEDTLS_ARCH_IS_ARM32) */ 459 460#if defined(MBEDTLS_COMPILER_IS_GCC) && __GNUC__ == 5 461/* Some intrinsics are not available for GCC 5.X. */ 462#define COMMON_MISSING_INTRINSICS 463#endif /* MBEDTLS_COMPILER_IS_GCC && __GNUC__ == 5 */ 464 465 466#if defined(COMMON_MISSING_INTRINSICS) 467 468/* Missing intrinsics common to both GCC 5, and Clang on 32-bit */ 469 470#define vreinterpretq_p64_u8(a) ((poly64x2_t) a) 471#define vreinterpretq_u8_p128(a) ((uint8x16_t) a) 472 473static inline poly64x1_t vget_low_p64(poly64x2_t a) 474{ 475 uint64x1_t r = vget_low_u64(vreinterpretq_u64_p64(a)); 476 return (poly64x1_t) r; 477 478} 479 480#endif /* COMMON_MISSING_INTRINSICS */ 481 482/* vmull_p64/vmull_high_p64 wrappers. 483 * 484 * Older compilers miss some intrinsic functions for `poly*_t`. We use 485 * uint8x16_t and uint8x16x3_t as input/output parameters. 486 */ 487#if defined(MBEDTLS_COMPILER_IS_GCC) 488/* GCC reports incompatible type error without cast. GCC think poly64_t and 489 * poly64x1_t are different, that is different with MSVC and Clang. */ 490#define MBEDTLS_VMULL_P64(a, b) vmull_p64((poly64_t) a, (poly64_t) b) 491#else 492/* MSVC reports `error C2440: 'type cast'` with cast. Clang does not report 493 * error with/without cast. And I think poly64_t and poly64x1_t are same, no 494 * cast for clang also. */ 495#define MBEDTLS_VMULL_P64(a, b) vmull_p64(a, b) 496#endif /* MBEDTLS_COMPILER_IS_GCC */ 497 498static inline uint8x16_t pmull_low(uint8x16_t a, uint8x16_t b) 499{ 500 501 return vreinterpretq_u8_p128( 502 MBEDTLS_VMULL_P64( 503 (poly64_t) vget_low_p64(vreinterpretq_p64_u8(a)), 504 (poly64_t) vget_low_p64(vreinterpretq_p64_u8(b)) 505 )); 506} 507 508static inline uint8x16_t pmull_high(uint8x16_t a, uint8x16_t b) 509{ 510 return vreinterpretq_u8_p128( 511 vmull_high_p64(vreinterpretq_p64_u8(a), 512 vreinterpretq_p64_u8(b))); 513} 514 515/* GHASH does 128b polynomial multiplication on block in GF(2^128) defined by 516 * `x^128 + x^7 + x^2 + x + 1`. 517 * 518 * Arm64 only has 64b->128b polynomial multipliers, we need to do 4 64b 519 * multiplies to generate a 128b. 520 * 521 * `poly_mult_128` executes polynomial multiplication and outputs 256b that 522 * represented by 3 128b due to code size optimization. 523 * 524 * Output layout: 525 * | | | | 526 * |------------|-------------|-------------| 527 * | ret.val[0] | h3:h2:00:00 | high 128b | 528 * | ret.val[1] | :m2:m1:00 | middle 128b | 529 * | ret.val[2] | : :l1:l0 | low 128b | 530 */ 531static inline uint8x16x3_t poly_mult_128(uint8x16_t a, uint8x16_t b) 532{ 533 uint8x16x3_t ret; 534 uint8x16_t h, m, l; /* retval high/middle/low */ 535 uint8x16_t c, d, e; 536 537 h = pmull_high(a, b); /* h3:h2:00:00 = a1*b1 */ 538 l = pmull_low(a, b); /* : :l1:l0 = a0*b0 */ 539 c = vextq_u8(b, b, 8); /* :c1:c0 = b0:b1 */ 540 d = pmull_high(a, c); /* :d2:d1:00 = a1*b0 */ 541 e = pmull_low(a, c); /* :e2:e1:00 = a0*b1 */ 542 m = veorq_u8(d, e); /* :m2:m1:00 = d + e */ 543 544 ret.val[0] = h; 545 ret.val[1] = m; 546 ret.val[2] = l; 547 return ret; 548} 549 550/* 551 * Modulo reduction. 552 * 553 * See: https://www.researchgate.net/publication/285612706_Implementing_GCM_on_ARMv8 554 * 555 * Section 4.3 556 * 557 * Modular reduction is slightly more complex. Write the GCM modulus as f(z) = 558 * z^128 +r(z), where r(z) = z^7+z^2+z+ 1. The well known approach is to 559 * consider that z^128 ≡r(z) (mod z^128 +r(z)), allowing us to write the 256-bit 560 * operand to be reduced as a(z) = h(z)z^128 +l(z)≡h(z)r(z) + l(z). That is, we 561 * simply multiply the higher part of the operand by r(z) and add it to l(z). If 562 * the result is still larger than 128 bits, we reduce again. 563 */ 564static inline uint8x16_t poly_mult_reduce(uint8x16x3_t input) 565{ 566 uint8x16_t const ZERO = vdupq_n_u8(0); 567 568 uint64x2_t r = vreinterpretq_u64_u8(vdupq_n_u8(0x87)); 569#if defined(__GNUC__) 570 /* use 'asm' as an optimisation barrier to prevent loading MODULO from 571 * memory. It is for GNUC compatible compilers. 572 */ 573 asm volatile ("" : "+w" (r)); 574#endif 575 uint8x16_t const MODULO = vreinterpretq_u8_u64(vshrq_n_u64(r, 64 - 8)); 576 uint8x16_t h, m, l; /* input high/middle/low 128b */ 577 uint8x16_t c, d, e, f, g, n, o; 578 h = input.val[0]; /* h3:h2:00:00 */ 579 m = input.val[1]; /* :m2:m1:00 */ 580 l = input.val[2]; /* : :l1:l0 */ 581 c = pmull_high(h, MODULO); /* :c2:c1:00 = reduction of h3 */ 582 d = pmull_low(h, MODULO); /* : :d1:d0 = reduction of h2 */ 583 e = veorq_u8(c, m); /* :e2:e1:00 = m2:m1:00 + c2:c1:00 */ 584 f = pmull_high(e, MODULO); /* : :f1:f0 = reduction of e2 */ 585 g = vextq_u8(ZERO, e, 8); /* : :g1:00 = e1:00 */ 586 n = veorq_u8(d, l); /* : :n1:n0 = d1:d0 + l1:l0 */ 587 o = veorq_u8(n, f); /* o1:o0 = f1:f0 + n1:n0 */ 588 return veorq_u8(o, g); /* = o1:o0 + g1:00 */ 589} 590 591/* 592 * GCM multiplication: c = a times b in GF(2^128) 593 */ 594void mbedtls_aesce_gcm_mult(unsigned char c[16], 595 const unsigned char a[16], 596 const unsigned char b[16]) 597{ 598 uint8x16_t va, vb, vc; 599 va = vrbitq_u8(vld1q_u8(&a[0])); 600 vb = vrbitq_u8(vld1q_u8(&b[0])); 601 vc = vrbitq_u8(poly_mult_reduce(poly_mult_128(va, vb))); 602 vst1q_u8(&c[0], vc); 603} 604 605#endif /* MBEDTLS_GCM_C */ 606 607#if defined(MBEDTLS_POP_TARGET_PRAGMA) 608#if defined(__clang__) 609#pragma clang attribute pop 610#elif defined(__GNUC__) 611#pragma GCC pop_options 612#endif 613#undef MBEDTLS_POP_TARGET_PRAGMA 614#endif 615 616#endif /* MBEDTLS_AESCE_HAVE_CODE */ 617 618#endif /* MBEDTLS_AESCE_C */ 619