1/**
2 * \file psa/crypto_se_driver.h
3 * \brief PSA external cryptoprocessor driver module
4 *
5 * This header declares types and function signatures for cryptography
6 * drivers that access key material via opaque references.
7 * This is meant for cryptoprocessors that have a separate key storage from the
8 * space in which the PSA Crypto implementation runs, typically secure
9 * elements (SEs).
10 *
11 * This file is part of the PSA Crypto Driver HAL (hardware abstraction layer),
12 * containing functions for driver developers to implement to enable hardware
13 * to be called in a standardized way by a PSA Cryptography API
14 * implementation. The functions comprising the driver HAL, which driver
15 * authors implement, are not intended to be called by application developers.
16 */
17
18/*
19 *  Copyright The Mbed TLS Contributors
20 *  SPDX-License-Identifier: Apache-2.0
21 *
22 *  Licensed under the Apache License, Version 2.0 (the "License"); you may
23 *  not use this file except in compliance with the License.
24 *  You may obtain a copy of the License at
25 *
26 *  http://www.apache.org/licenses/LICENSE-2.0
27 *
28 *  Unless required by applicable law or agreed to in writing, software
29 *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
30 *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
31 *  See the License for the specific language governing permissions and
32 *  limitations under the License.
33 */
34#ifndef PSA_CRYPTO_SE_DRIVER_H
35#define PSA_CRYPTO_SE_DRIVER_H
36#include "mbedtls/private_access.h"
37
38#include "crypto_driver_common.h"
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/** \defgroup se_init Secure element driver initialization
45 */
46/**@{*/
47
48/** \brief Driver context structure
49 *
50 * Driver functions receive a pointer to this structure.
51 * Each registered driver has one instance of this structure.
52 *
53 * Implementations must include the fields specified here and
54 * may include other fields.
55 */
56typedef struct {
57    /** A read-only pointer to the driver's persistent data.
58     *
59     * Drivers typically use this persistent data to keep track of
60     * which slot numbers are available. This is only a guideline:
61     * drivers may use the persistent data for any purpose, keeping
62     * in mind the restrictions on when the persistent data is saved
63     * to storage: the persistent data is only saved after calling
64     * certain functions that receive a writable pointer to the
65     * persistent data.
66     *
67     * The core allocates a memory buffer for the persistent data.
68     * The pointer is guaranteed to be suitably aligned for any data type,
69     * like a pointer returned by `malloc` (but the core can use any
70     * method to allocate the buffer, not necessarily `malloc`).
71     *
72     * The size of this buffer is in the \c persistent_data_size field of
73     * this structure.
74     *
75     * Before the driver is initialized for the first time, the content of
76     * the persistent data is all-bits-zero. After a driver upgrade, if the
77     * size of the persistent data has increased, the original data is padded
78     * on the right with zeros; if the size has decreased, the original data
79     * is truncated to the new size.
80     *
81     * This pointer is to read-only data. Only a few driver functions are
82     * allowed to modify the persistent data. These functions receive a
83     * writable pointer. These functions are:
84     * - psa_drv_se_t::p_init
85     * - psa_drv_se_key_management_t::p_allocate
86     * - psa_drv_se_key_management_t::p_destroy
87     *
88     * The PSA Cryptography core saves the persistent data from one
89     * session to the next. It does this before returning from API functions
90     * that call a driver method that is allowed to modify the persistent
91     * data, specifically:
92     * - psa_crypto_init() causes a call to psa_drv_se_t::p_init, and may call
93     *   psa_drv_se_key_management_t::p_destroy to complete an action
94     *   that was interrupted by a power failure.
95     * - Key creation functions cause a call to
96     *   psa_drv_se_key_management_t::p_allocate, and may cause a call to
97     *   psa_drv_se_key_management_t::p_destroy in case an error occurs.
98     * - psa_destroy_key() causes a call to
99     *   psa_drv_se_key_management_t::p_destroy.
100     */
101    const void *const MBEDTLS_PRIVATE(persistent_data);
102
103    /** The size of \c persistent_data in bytes.
104     *
105     * This is always equal to the value of the `persistent_data_size` field
106     * of the ::psa_drv_se_t structure when the driver is registered.
107     */
108    const size_t MBEDTLS_PRIVATE(persistent_data_size);
109
110    /** Driver transient data.
111     *
112     * The core initializes this value to 0 and does not read or modify it
113     * afterwards. The driver may store whatever it wants in this field.
114     */
115    uintptr_t MBEDTLS_PRIVATE(transient_data);
116} psa_drv_se_context_t;
117
118/** \brief A driver initialization function.
119 *
120 * \param[in,out] drv_context       The driver context structure.
121 * \param[in,out] persistent_data   A pointer to the persistent data
122 *                                  that allows writing.
123 * \param location                  The location value for which this driver
124 *                                  is registered. The driver will be invoked
125 *                                  for all keys whose lifetime is in this
126 *                                  location.
127 *
128 * \retval #PSA_SUCCESS
129 *         The driver is operational.
130 *         The core will update the persistent data in storage.
131 * \return
132 *         Any other return value prevents the driver from being used in
133 *         this session.
134 *         The core will NOT update the persistent data in storage.
135 */
136typedef psa_status_t (*psa_drv_se_init_t)(psa_drv_se_context_t *drv_context,
137                                          void *persistent_data,
138                                          psa_key_location_t location);
139
140#if defined(__DOXYGEN_ONLY__) || !defined(MBEDTLS_PSA_CRYPTO_SE_C)
141/* Mbed Crypto with secure element support enabled defines this type in
142 * crypto_types.h because it is also visible to applications through an
143 * implementation-specific extension.
144 * For the PSA Cryptography specification, this type is only visible
145 * via crypto_se_driver.h. */
146/** An internal designation of a key slot between the core part of the
147 * PSA Crypto implementation and the driver. The meaning of this value
148 * is driver-dependent. */
149typedef uint64_t psa_key_slot_number_t;
150#endif /* __DOXYGEN_ONLY__ || !MBEDTLS_PSA_CRYPTO_SE_C */
151
152/**@}*/
153
154/** \defgroup se_mac Secure Element Message Authentication Codes
155 * Generation and authentication of Message Authentication Codes (MACs) using
156 * a secure element can be done either as a single function call (via the
157 * `psa_drv_se_mac_generate_t` or `psa_drv_se_mac_verify_t` functions), or in
158 * parts using the following sequence:
159 * - `psa_drv_se_mac_setup_t`
160 * - `psa_drv_se_mac_update_t`
161 * - `psa_drv_se_mac_update_t`
162 * - ...
163 * - `psa_drv_se_mac_finish_t` or `psa_drv_se_mac_finish_verify_t`
164 *
165 * If a previously started secure element MAC operation needs to be terminated,
166 * it should be done so by the `psa_drv_se_mac_abort_t`. Failure to do so may
167 * result in allocated resources not being freed or in other undefined
168 * behavior.
169 */
170/**@{*/
171/** \brief A function that starts a secure element  MAC operation for a PSA
172 * Crypto Driver implementation
173 *
174 * \param[in,out] drv_context   The driver context structure.
175 * \param[in,out] op_context    A structure that will contain the
176 *                              hardware-specific MAC context
177 * \param[in] key_slot          The slot of the key to be used for the
178 *                              operation
179 * \param[in] algorithm         The algorithm to be used to underly the MAC
180 *                              operation
181 *
182 * \retval  #PSA_SUCCESS
183 *          Success.
184 */
185typedef psa_status_t (*psa_drv_se_mac_setup_t)(psa_drv_se_context_t *drv_context,
186                                               void *op_context,
187                                               psa_key_slot_number_t key_slot,
188                                               psa_algorithm_t algorithm);
189
190/** \brief A function that continues a previously started secure element MAC
191 * operation
192 *
193 * \param[in,out] op_context    A hardware-specific structure for the
194 *                              previously-established MAC operation to be
195 *                              updated
196 * \param[in] p_input           A buffer containing the message to be appended
197 *                              to the MAC operation
198 * \param[in] input_length      The size in bytes of the input message buffer
199 */
200typedef psa_status_t (*psa_drv_se_mac_update_t)(void *op_context,
201                                                const uint8_t *p_input,
202                                                size_t input_length);
203
204/** \brief a function that completes a previously started secure element MAC
205 * operation by returning the resulting MAC.
206 *
207 * \param[in,out] op_context    A hardware-specific structure for the
208 *                              previously started MAC operation to be
209 *                              finished
210 * \param[out] p_mac            A buffer where the generated MAC will be
211 *                              placed
212 * \param[in] mac_size          The size in bytes of the buffer that has been
213 *                              allocated for the `output` buffer
214 * \param[out] p_mac_length     After completion, will contain the number of
215 *                              bytes placed in the `p_mac` buffer
216 *
217 * \retval  #PSA_SUCCESS
218 *          Success.
219 */
220typedef psa_status_t (*psa_drv_se_mac_finish_t)(void *op_context,
221                                                uint8_t *p_mac,
222                                                size_t mac_size,
223                                                size_t *p_mac_length);
224
225/** \brief A function that completes a previously started secure element MAC
226 * operation by comparing the resulting MAC against a provided value
227 *
228 * \param[in,out] op_context    A hardware-specific structure for the previously
229 *                              started MAC operation to be finished
230 * \param[in] p_mac             The MAC value against which the resulting MAC
231 *                              will be compared against
232 * \param[in] mac_length        The size in bytes of the value stored in `p_mac`
233 *
234 * \retval #PSA_SUCCESS
235 *         The operation completed successfully and the MACs matched each
236 *         other
237 * \retval #PSA_ERROR_INVALID_SIGNATURE
238 *         The operation completed successfully, but the calculated MAC did
239 *         not match the provided MAC
240 */
241typedef psa_status_t (*psa_drv_se_mac_finish_verify_t)(void *op_context,
242                                                       const uint8_t *p_mac,
243                                                       size_t mac_length);
244
245/** \brief A function that aborts a previous started secure element MAC
246 * operation
247 *
248 * \param[in,out] op_context    A hardware-specific structure for the previously
249 *                              started MAC operation to be aborted
250 */
251typedef psa_status_t (*psa_drv_se_mac_abort_t)(void *op_context);
252
253/** \brief A function that performs a secure element MAC operation in one
254 * command and returns the calculated MAC
255 *
256 * \param[in,out] drv_context   The driver context structure.
257 * \param[in] p_input           A buffer containing the message to be MACed
258 * \param[in] input_length      The size in bytes of `p_input`
259 * \param[in] key_slot          The slot of the key to be used
260 * \param[in] alg               The algorithm to be used to underlie the MAC
261 *                              operation
262 * \param[out] p_mac            A buffer where the generated MAC will be
263 *                              placed
264 * \param[in] mac_size          The size in bytes of the `p_mac` buffer
265 * \param[out] p_mac_length     After completion, will contain the number of
266 *                              bytes placed in the `output` buffer
267 *
268 * \retval #PSA_SUCCESS
269 *         Success.
270 */
271typedef psa_status_t (*psa_drv_se_mac_generate_t)(psa_drv_se_context_t *drv_context,
272                                                  const uint8_t *p_input,
273                                                  size_t input_length,
274                                                  psa_key_slot_number_t key_slot,
275                                                  psa_algorithm_t alg,
276                                                  uint8_t *p_mac,
277                                                  size_t mac_size,
278                                                  size_t *p_mac_length);
279
280/** \brief A function that performs a secure element MAC operation in one
281 * command and compares the resulting MAC against a provided value
282 *
283 * \param[in,out] drv_context       The driver context structure.
284 * \param[in] p_input       A buffer containing the message to be MACed
285 * \param[in] input_length  The size in bytes of `input`
286 * \param[in] key_slot      The slot of the key to be used
287 * \param[in] alg           The algorithm to be used to underlie the MAC
288 *                          operation
289 * \param[in] p_mac         The MAC value against which the resulting MAC will
290 *                          be compared against
291 * \param[in] mac_length   The size in bytes of `mac`
292 *
293 * \retval #PSA_SUCCESS
294 *         The operation completed successfully and the MACs matched each
295 *         other
296 * \retval #PSA_ERROR_INVALID_SIGNATURE
297 *         The operation completed successfully, but the calculated MAC did
298 *         not match the provided MAC
299 */
300typedef psa_status_t (*psa_drv_se_mac_verify_t)(psa_drv_se_context_t *drv_context,
301                                                const uint8_t *p_input,
302                                                size_t input_length,
303                                                psa_key_slot_number_t key_slot,
304                                                psa_algorithm_t alg,
305                                                const uint8_t *p_mac,
306                                                size_t mac_length);
307
308/** \brief A struct containing all of the function pointers needed to
309 * perform secure element MAC operations
310 *
311 * PSA Crypto API implementations should populate the table as appropriate
312 * upon startup.
313 *
314 * If one of the functions is not implemented (such as
315 * `psa_drv_se_mac_generate_t`), it should be set to NULL.
316 *
317 * Driver implementers should ensure that they implement all of the functions
318 * that make sense for their hardware, and that they provide a full solution
319 * (for example, if they support `p_setup`, they should also support
320 * `p_update` and at least one of `p_finish` or `p_finish_verify`).
321 *
322 */
323typedef struct {
324    /**The size in bytes of the hardware-specific secure element MAC context
325     * structure
326     */
327    size_t                    MBEDTLS_PRIVATE(context_size);
328    /** Function that performs a MAC setup operation
329     */
330    psa_drv_se_mac_setup_t          MBEDTLS_PRIVATE(p_setup);
331    /** Function that performs a MAC update operation
332     */
333    psa_drv_se_mac_update_t         MBEDTLS_PRIVATE(p_update);
334    /** Function that completes a MAC operation
335     */
336    psa_drv_se_mac_finish_t         MBEDTLS_PRIVATE(p_finish);
337    /** Function that completes a MAC operation with a verify check
338     */
339    psa_drv_se_mac_finish_verify_t  MBEDTLS_PRIVATE(p_finish_verify);
340    /** Function that aborts a previously started MAC operation
341     */
342    psa_drv_se_mac_abort_t          MBEDTLS_PRIVATE(p_abort);
343    /** Function that performs a MAC operation in one call
344     */
345    psa_drv_se_mac_generate_t       MBEDTLS_PRIVATE(p_mac);
346    /** Function that performs a MAC and verify operation in one call
347     */
348    psa_drv_se_mac_verify_t         MBEDTLS_PRIVATE(p_mac_verify);
349} psa_drv_se_mac_t;
350/**@}*/
351
352/** \defgroup se_cipher Secure Element Symmetric Ciphers
353 *
354 * Encryption and Decryption using secure element keys in block modes other
355 * than ECB must be done in multiple parts, using the following flow:
356 * - `psa_drv_se_cipher_setup_t`
357 * - `psa_drv_se_cipher_set_iv_t` (optional depending upon block mode)
358 * - `psa_drv_se_cipher_update_t`
359 * - `psa_drv_se_cipher_update_t`
360 * - ...
361 * - `psa_drv_se_cipher_finish_t`
362 *
363 * If a previously started secure element Cipher operation needs to be
364 * terminated, it should be done so by the `psa_drv_se_cipher_abort_t`. Failure
365 * to do so may result in allocated resources not being freed or in other
366 * undefined behavior.
367 *
368 * In situations where a PSA Cryptographic API implementation is using a block
369 * mode not-supported by the underlying hardware or driver, it can construct
370 * the block mode itself, while calling the `psa_drv_se_cipher_ecb_t` function
371 * for the cipher operations.
372 */
373/**@{*/
374
375/** \brief A function that provides the cipher setup function for a
376 * secure element driver
377 *
378 * \param[in,out] drv_context   The driver context structure.
379 * \param[in,out] op_context    A structure that will contain the
380 *                              hardware-specific cipher context.
381 * \param[in] key_slot          The slot of the key to be used for the
382 *                              operation
383 * \param[in] algorithm         The algorithm to be used in the cipher
384 *                              operation
385 * \param[in] direction         Indicates whether the operation is an encrypt
386 *                              or decrypt
387 *
388 * \retval #PSA_SUCCESS \emptydescription
389 * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
390 */
391typedef psa_status_t (*psa_drv_se_cipher_setup_t)(psa_drv_se_context_t *drv_context,
392                                                  void *op_context,
393                                                  psa_key_slot_number_t key_slot,
394                                                  psa_algorithm_t algorithm,
395                                                  psa_encrypt_or_decrypt_t direction);
396
397/** \brief A function that sets the initialization vector (if
398 * necessary) for a secure element cipher operation
399 *
400 * Rationale: The `psa_se_cipher_*` operation in the PSA Cryptographic API has
401 * two IV functions: one to set the IV, and one to generate it internally. The
402 * generate function is not necessary for the drivers to implement as the PSA
403 * Crypto implementation can do the generation using its RNG features.
404 *
405 * \param[in,out] op_context    A structure that contains the previously set up
406 *                              hardware-specific cipher context
407 * \param[in] p_iv              A buffer containing the initialization vector
408 * \param[in] iv_length         The size (in bytes) of the `p_iv` buffer
409 *
410 * \retval #PSA_SUCCESS \emptydescription
411 */
412typedef psa_status_t (*psa_drv_se_cipher_set_iv_t)(void *op_context,
413                                                   const uint8_t *p_iv,
414                                                   size_t iv_length);
415
416/** \brief A function that continues a previously started secure element cipher
417 * operation
418 *
419 * \param[in,out] op_context        A hardware-specific structure for the
420 *                                  previously started cipher operation
421 * \param[in] p_input               A buffer containing the data to be
422 *                                  encrypted/decrypted
423 * \param[in] input_size            The size in bytes of the buffer pointed to
424 *                                  by `p_input`
425 * \param[out] p_output             The caller-allocated buffer where the
426 *                                  output will be placed
427 * \param[in] output_size           The allocated size in bytes of the
428 *                                  `p_output` buffer
429 * \param[out] p_output_length      After completion, will contain the number
430 *                                  of bytes placed in the `p_output` buffer
431 *
432 * \retval #PSA_SUCCESS \emptydescription
433 */
434typedef psa_status_t (*psa_drv_se_cipher_update_t)(void *op_context,
435                                                   const uint8_t *p_input,
436                                                   size_t input_size,
437                                                   uint8_t *p_output,
438                                                   size_t output_size,
439                                                   size_t *p_output_length);
440
441/** \brief A function that completes a previously started secure element cipher
442 * operation
443 *
444 * \param[in,out] op_context    A hardware-specific structure for the
445 *                              previously started cipher operation
446 * \param[out] p_output         The caller-allocated buffer where the output
447 *                              will be placed
448 * \param[in] output_size       The allocated size in bytes of the `p_output`
449 *                              buffer
450 * \param[out] p_output_length  After completion, will contain the number of
451 *                              bytes placed in the `p_output` buffer
452 *
453 * \retval #PSA_SUCCESS \emptydescription
454 */
455typedef psa_status_t (*psa_drv_se_cipher_finish_t)(void *op_context,
456                                                   uint8_t *p_output,
457                                                   size_t output_size,
458                                                   size_t *p_output_length);
459
460/** \brief A function that aborts a previously started secure element cipher
461 * operation
462 *
463 * \param[in,out] op_context    A hardware-specific structure for the
464 *                              previously started cipher operation
465 */
466typedef psa_status_t (*psa_drv_se_cipher_abort_t)(void *op_context);
467
468/** \brief A function that performs the ECB block mode for secure element
469 * cipher operations
470 *
471 * Note: this function should only be used with implementations that do not
472 * provide a needed higher-level operation.
473 *
474 * \param[in,out] drv_context   The driver context structure.
475 * \param[in] key_slot          The slot of the key to be used for the operation
476 * \param[in] algorithm         The algorithm to be used in the cipher operation
477 * \param[in] direction         Indicates whether the operation is an encrypt or
478 *                              decrypt
479 * \param[in] p_input           A buffer containing the data to be
480 *                              encrypted/decrypted
481 * \param[in] input_size        The size in bytes of the buffer pointed to by
482 *                              `p_input`
483 * \param[out] p_output         The caller-allocated buffer where the output
484 *                              will be placed
485 * \param[in] output_size       The allocated size in bytes of the `p_output`
486 *                              buffer
487 *
488 * \retval #PSA_SUCCESS \emptydescription
489 * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
490 */
491typedef psa_status_t (*psa_drv_se_cipher_ecb_t)(psa_drv_se_context_t *drv_context,
492                                                psa_key_slot_number_t key_slot,
493                                                psa_algorithm_t algorithm,
494                                                psa_encrypt_or_decrypt_t direction,
495                                                const uint8_t *p_input,
496                                                size_t input_size,
497                                                uint8_t *p_output,
498                                                size_t output_size);
499
500/**
501 * \brief A struct containing all of the function pointers needed to implement
502 * cipher operations using secure elements.
503 *
504 * PSA Crypto API implementations should populate instances of the table as
505 * appropriate upon startup or at build time.
506 *
507 * If one of the functions is not implemented (such as
508 * `psa_drv_se_cipher_ecb_t`), it should be set to NULL.
509 */
510typedef struct {
511    /** The size in bytes of the hardware-specific secure element cipher
512     * context structure
513     */
514    size_t               MBEDTLS_PRIVATE(context_size);
515    /** Function that performs a cipher setup operation */
516    psa_drv_se_cipher_setup_t  MBEDTLS_PRIVATE(p_setup);
517    /** Function that sets a cipher IV (if necessary) */
518    psa_drv_se_cipher_set_iv_t MBEDTLS_PRIVATE(p_set_iv);
519    /** Function that performs a cipher update operation */
520    psa_drv_se_cipher_update_t MBEDTLS_PRIVATE(p_update);
521    /** Function that completes a cipher operation */
522    psa_drv_se_cipher_finish_t MBEDTLS_PRIVATE(p_finish);
523    /** Function that aborts a cipher operation */
524    psa_drv_se_cipher_abort_t  MBEDTLS_PRIVATE(p_abort);
525    /** Function that performs ECB mode for a cipher operation
526     * (Danger: ECB mode should not be used directly by clients of the PSA
527     * Crypto Client API)
528     */
529    psa_drv_se_cipher_ecb_t    MBEDTLS_PRIVATE(p_ecb);
530} psa_drv_se_cipher_t;
531
532/**@}*/
533
534/** \defgroup se_asymmetric Secure Element Asymmetric Cryptography
535 *
536 * Since the amount of data that can (or should) be encrypted or signed using
537 * asymmetric keys is limited by the key size, asymmetric key operations using
538 * keys in a secure element must be done in single function calls.
539 */
540/**@{*/
541
542/**
543 * \brief A function that signs a hash or short message with a private key in
544 * a secure element
545 *
546 * \param[in,out] drv_context       The driver context structure.
547 * \param[in] key_slot              Key slot of an asymmetric key pair
548 * \param[in] alg                   A signature algorithm that is compatible
549 *                                  with the type of `key`
550 * \param[in] p_hash                The hash to sign
551 * \param[in] hash_length           Size of the `p_hash` buffer in bytes
552 * \param[out] p_signature          Buffer where the signature is to be written
553 * \param[in] signature_size        Size of the `p_signature` buffer in bytes
554 * \param[out] p_signature_length   On success, the number of bytes
555 *                                  that make up the returned signature value
556 *
557 * \retval #PSA_SUCCESS \emptydescription
558 */
559typedef psa_status_t (*psa_drv_se_asymmetric_sign_t)(psa_drv_se_context_t *drv_context,
560                                                     psa_key_slot_number_t key_slot,
561                                                     psa_algorithm_t alg,
562                                                     const uint8_t *p_hash,
563                                                     size_t hash_length,
564                                                     uint8_t *p_signature,
565                                                     size_t signature_size,
566                                                     size_t *p_signature_length);
567
568/**
569 * \brief A function that verifies the signature a hash or short message using
570 * an asymmetric public key in a secure element
571 *
572 * \param[in,out] drv_context   The driver context structure.
573 * \param[in] key_slot          Key slot of a public key or an asymmetric key
574 *                              pair
575 * \param[in] alg               A signature algorithm that is compatible with
576 *                              the type of `key`
577 * \param[in] p_hash            The hash whose signature is to be verified
578 * \param[in] hash_length       Size of the `p_hash` buffer in bytes
579 * \param[in] p_signature       Buffer containing the signature to verify
580 * \param[in] signature_length  Size of the `p_signature` buffer in bytes
581 *
582 * \retval #PSA_SUCCESS
583 *         The signature is valid.
584 */
585typedef psa_status_t (*psa_drv_se_asymmetric_verify_t)(psa_drv_se_context_t *drv_context,
586                                                       psa_key_slot_number_t key_slot,
587                                                       psa_algorithm_t alg,
588                                                       const uint8_t *p_hash,
589                                                       size_t hash_length,
590                                                       const uint8_t *p_signature,
591                                                       size_t signature_length);
592
593/**
594 * \brief A function that encrypts a short message with an asymmetric public
595 * key in a secure element
596 *
597 * \param[in,out] drv_context   The driver context structure.
598 * \param[in] key_slot          Key slot of a public key or an asymmetric key
599 *                              pair
600 * \param[in] alg               An asymmetric encryption algorithm that is
601 *                              compatible with the type of `key`
602 * \param[in] p_input           The message to encrypt
603 * \param[in] input_length      Size of the `p_input` buffer in bytes
604 * \param[in] p_salt            A salt or label, if supported by the
605 *                              encryption algorithm
606 *                              If the algorithm does not support a
607 *                              salt, pass `NULL`.
608 *                              If the algorithm supports an optional
609 *                              salt and you do not want to pass a salt,
610 *                              pass `NULL`.
611 *                              For #PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is
612 *                              supported.
613 * \param[in] salt_length       Size of the `p_salt` buffer in bytes
614 *                              If `p_salt` is `NULL`, pass 0.
615 * \param[out] p_output         Buffer where the encrypted message is to
616 *                              be written
617 * \param[in] output_size       Size of the `p_output` buffer in bytes
618 * \param[out] p_output_length  On success, the number of bytes that make up
619 *                              the returned output
620 *
621 * \retval #PSA_SUCCESS \emptydescription
622 */
623typedef psa_status_t (*psa_drv_se_asymmetric_encrypt_t)(psa_drv_se_context_t *drv_context,
624                                                        psa_key_slot_number_t key_slot,
625                                                        psa_algorithm_t alg,
626                                                        const uint8_t *p_input,
627                                                        size_t input_length,
628                                                        const uint8_t *p_salt,
629                                                        size_t salt_length,
630                                                        uint8_t *p_output,
631                                                        size_t output_size,
632                                                        size_t *p_output_length);
633
634/**
635 * \brief A function that decrypts a short message with an asymmetric private
636 * key in a secure element.
637 *
638 * \param[in,out] drv_context   The driver context structure.
639 * \param[in] key_slot          Key slot of an asymmetric key pair
640 * \param[in] alg               An asymmetric encryption algorithm that is
641 *                              compatible with the type of `key`
642 * \param[in] p_input           The message to decrypt
643 * \param[in] input_length      Size of the `p_input` buffer in bytes
644 * \param[in] p_salt            A salt or label, if supported by the
645 *                              encryption algorithm
646 *                              If the algorithm does not support a
647 *                              salt, pass `NULL`.
648 *                              If the algorithm supports an optional
649 *                              salt and you do not want to pass a salt,
650 *                              pass `NULL`.
651 *                              For #PSA_ALG_RSA_PKCS1V15_CRYPT, no salt is
652 *                              supported.
653 * \param[in] salt_length       Size of the `p_salt` buffer in bytes
654 *                              If `p_salt` is `NULL`, pass 0.
655 * \param[out] p_output         Buffer where the decrypted message is to
656 *                              be written
657 * \param[in] output_size       Size of the `p_output` buffer in bytes
658 * \param[out] p_output_length  On success, the number of bytes
659 *                              that make up the returned output
660 *
661 * \retval #PSA_SUCCESS \emptydescription
662 */
663typedef psa_status_t (*psa_drv_se_asymmetric_decrypt_t)(psa_drv_se_context_t *drv_context,
664                                                        psa_key_slot_number_t key_slot,
665                                                        psa_algorithm_t alg,
666                                                        const uint8_t *p_input,
667                                                        size_t input_length,
668                                                        const uint8_t *p_salt,
669                                                        size_t salt_length,
670                                                        uint8_t *p_output,
671                                                        size_t output_size,
672                                                        size_t *p_output_length);
673
674/**
675 * \brief A struct containing all of the function pointers needed to implement
676 * asymmetric cryptographic operations using secure elements.
677 *
678 * PSA Crypto API implementations should populate instances of the table as
679 * appropriate upon startup or at build time.
680 *
681 * If one of the functions is not implemented, it should be set to NULL.
682 */
683typedef struct {
684    /** Function that performs an asymmetric sign operation */
685    psa_drv_se_asymmetric_sign_t    MBEDTLS_PRIVATE(p_sign);
686    /** Function that performs an asymmetric verify operation */
687    psa_drv_se_asymmetric_verify_t  MBEDTLS_PRIVATE(p_verify);
688    /** Function that performs an asymmetric encrypt operation */
689    psa_drv_se_asymmetric_encrypt_t MBEDTLS_PRIVATE(p_encrypt);
690    /** Function that performs an asymmetric decrypt operation */
691    psa_drv_se_asymmetric_decrypt_t MBEDTLS_PRIVATE(p_decrypt);
692} psa_drv_se_asymmetric_t;
693
694/**@}*/
695
696/** \defgroup se_aead Secure Element Authenticated Encryption with Additional Data
697 * Authenticated Encryption with Additional Data (AEAD) operations with secure
698 * elements must be done in one function call. While this creates a burden for
699 * implementers as there must be sufficient space in memory for the entire
700 * message, it prevents decrypted data from being made available before the
701 * authentication operation is complete and the data is known to be authentic.
702 */
703/**@{*/
704
705/** \brief A function that performs a secure element authenticated encryption
706 * operation
707 *
708 * \param[in,out] drv_context           The driver context structure.
709 * \param[in] key_slot                  Slot containing the key to use.
710 * \param[in] algorithm                 The AEAD algorithm to compute
711 *                                      (\c PSA_ALG_XXX value such that
712 *                                      #PSA_ALG_IS_AEAD(`alg`) is true)
713 * \param[in] p_nonce                   Nonce or IV to use
714 * \param[in] nonce_length              Size of the `p_nonce` buffer in bytes
715 * \param[in] p_additional_data         Additional data that will be
716 *                                      authenticated but not encrypted
717 * \param[in] additional_data_length    Size of `p_additional_data` in bytes
718 * \param[in] p_plaintext               Data that will be authenticated and
719 *                                      encrypted
720 * \param[in] plaintext_length          Size of `p_plaintext` in bytes
721 * \param[out] p_ciphertext             Output buffer for the authenticated and
722 *                                      encrypted data. The additional data is
723 *                                      not part of this output. For algorithms
724 *                                      where the encrypted data and the
725 *                                      authentication tag are defined as
726 *                                      separate outputs, the authentication
727 *                                      tag is appended to the encrypted data.
728 * \param[in] ciphertext_size           Size of the `p_ciphertext` buffer in
729 *                                      bytes
730 * \param[out] p_ciphertext_length      On success, the size of the output in
731 *                                      the `p_ciphertext` buffer
732 *
733 * \retval #PSA_SUCCESS
734 *         Success.
735 */
736typedef psa_status_t (*psa_drv_se_aead_encrypt_t)(psa_drv_se_context_t *drv_context,
737                                                  psa_key_slot_number_t key_slot,
738                                                  psa_algorithm_t algorithm,
739                                                  const uint8_t *p_nonce,
740                                                  size_t nonce_length,
741                                                  const uint8_t *p_additional_data,
742                                                  size_t additional_data_length,
743                                                  const uint8_t *p_plaintext,
744                                                  size_t plaintext_length,
745                                                  uint8_t *p_ciphertext,
746                                                  size_t ciphertext_size,
747                                                  size_t *p_ciphertext_length);
748
749/** A function that performs a secure element authenticated decryption operation
750 *
751 * \param[in,out] drv_context           The driver context structure.
752 * \param[in] key_slot                  Slot containing the key to use
753 * \param[in] algorithm                 The AEAD algorithm to compute
754 *                                      (\c PSA_ALG_XXX value such that
755 *                                      #PSA_ALG_IS_AEAD(`alg`) is true)
756 * \param[in] p_nonce                   Nonce or IV to use
757 * \param[in] nonce_length              Size of the `p_nonce` buffer in bytes
758 * \param[in] p_additional_data         Additional data that has been
759 *                                      authenticated but not encrypted
760 * \param[in] additional_data_length    Size of `p_additional_data` in bytes
761 * \param[in] p_ciphertext              Data that has been authenticated and
762 *                                      encrypted.
763 *                                      For algorithms where the encrypted data
764 *                                      and the authentication tag are defined
765 *                                      as separate inputs, the buffer must
766 *                                      contain the encrypted data followed by
767 *                                      the authentication tag.
768 * \param[in] ciphertext_length         Size of `p_ciphertext` in bytes
769 * \param[out] p_plaintext              Output buffer for the decrypted data
770 * \param[in] plaintext_size            Size of the `p_plaintext` buffer in
771 *                                      bytes
772 * \param[out] p_plaintext_length       On success, the size of the output in
773 *                                      the `p_plaintext` buffer
774 *
775 * \retval #PSA_SUCCESS
776 *         Success.
777 */
778typedef psa_status_t (*psa_drv_se_aead_decrypt_t)(psa_drv_se_context_t *drv_context,
779                                                  psa_key_slot_number_t key_slot,
780                                                  psa_algorithm_t algorithm,
781                                                  const uint8_t *p_nonce,
782                                                  size_t nonce_length,
783                                                  const uint8_t *p_additional_data,
784                                                  size_t additional_data_length,
785                                                  const uint8_t *p_ciphertext,
786                                                  size_t ciphertext_length,
787                                                  uint8_t *p_plaintext,
788                                                  size_t plaintext_size,
789                                                  size_t *p_plaintext_length);
790
791/**
792 * \brief A struct containing all of the function pointers needed to implement
793 * secure element Authenticated Encryption with Additional Data operations
794 *
795 * PSA Crypto API implementations should populate instances of the table as
796 * appropriate upon startup.
797 *
798 * If one of the functions is not implemented, it should be set to NULL.
799 */
800typedef struct {
801    /** Function that performs the AEAD encrypt operation */
802    psa_drv_se_aead_encrypt_t MBEDTLS_PRIVATE(p_encrypt);
803    /** Function that performs the AEAD decrypt operation */
804    psa_drv_se_aead_decrypt_t MBEDTLS_PRIVATE(p_decrypt);
805} psa_drv_se_aead_t;
806/**@}*/
807
808/** \defgroup se_key_management Secure Element Key Management
809 * Currently, key management is limited to importing keys in the clear,
810 * destroying keys, and exporting keys in the clear.
811 * Whether a key may be exported is determined by the key policies in place
812 * on the key slot.
813 */
814/**@{*/
815
816/** An enumeration indicating how a key is created.
817 */
818typedef enum {
819    PSA_KEY_CREATION_IMPORT, /**< During psa_import_key() */
820    PSA_KEY_CREATION_GENERATE, /**< During psa_generate_key() */
821    PSA_KEY_CREATION_DERIVE, /**< During psa_key_derivation_output_key() */
822    PSA_KEY_CREATION_COPY, /**< During psa_copy_key() */
823
824#ifndef __DOXYGEN_ONLY__
825    /** A key is being registered with mbedtls_psa_register_se_key().
826     *
827     * The core only passes this value to
828     * psa_drv_se_key_management_t::p_validate_slot_number, not to
829     * psa_drv_se_key_management_t::p_allocate. The call to
830     * `p_validate_slot_number` is not followed by any other call to the
831     * driver: the key is considered successfully registered if the call to
832     * `p_validate_slot_number` succeeds, or if `p_validate_slot_number` is
833     * null.
834     *
835     * With this creation method, the driver must return #PSA_SUCCESS if
836     * the given attributes are compatible with the existing key in the slot,
837     * and #PSA_ERROR_DOES_NOT_EXIST if the driver can determine that there
838     * is no key with the specified slot number.
839     *
840     * This is an Mbed Crypto extension.
841     */
842    PSA_KEY_CREATION_REGISTER,
843#endif
844} psa_key_creation_method_t;
845
846/** \brief A function that allocates a slot for a key.
847 *
848 * To create a key in a specific slot in a secure element, the core
849 * first calls this function to determine a valid slot number,
850 * then calls a function to create the key material in that slot.
851 * In nominal conditions (that is, if no error occurs),
852 * the effect of a call to a key creation function in the PSA Cryptography
853 * API with a lifetime that places the key in a secure element is the
854 * following:
855 * -# The core calls psa_drv_se_key_management_t::p_allocate
856 *    (or in some implementations
857 *    psa_drv_se_key_management_t::p_validate_slot_number). The driver
858 *    selects (or validates) a suitable slot number given the key attributes
859 *    and the state of the secure element.
860 * -# The core calls a key creation function in the driver.
861 *
862 * The key creation functions in the PSA Cryptography API are:
863 * - psa_import_key(), which causes
864 *   a call to `p_allocate` with \p method = #PSA_KEY_CREATION_IMPORT
865 *   then a call to psa_drv_se_key_management_t::p_import.
866 * - psa_generate_key(), which causes
867 *   a call to `p_allocate` with \p method = #PSA_KEY_CREATION_GENERATE
868 *   then a call to psa_drv_se_key_management_t::p_import.
869 * - psa_key_derivation_output_key(), which causes
870 *   a call to `p_allocate` with \p method = #PSA_KEY_CREATION_DERIVE
871 *   then a call to psa_drv_se_key_derivation_t::p_derive.
872 * - psa_copy_key(), which causes
873 *   a call to `p_allocate` with \p method = #PSA_KEY_CREATION_COPY
874 *   then a call to psa_drv_se_key_management_t::p_export.
875 *
876 * In case of errors, other behaviors are possible.
877 * - If the PSA Cryptography subsystem dies after the first step,
878 *   for example because the device has lost power abruptly,
879 *   the second step may never happen, or may happen after a reset
880 *   and re-initialization. Alternatively, after a reset and
881 *   re-initialization, the core may call
882 *   psa_drv_se_key_management_t::p_destroy on the slot number that
883 *   was allocated (or validated) instead of calling a key creation function.
884 * - If an error occurs, the core may call
885 *   psa_drv_se_key_management_t::p_destroy on the slot number that
886 *   was allocated (or validated) instead of calling a key creation function.
887 *
888 * Errors and system resets also have an impact on the driver's persistent
889 * data. If a reset happens before the overall key creation process is
890 * completed (before or after the second step above), it is unspecified
891 * whether the persistent data after the reset is identical to what it
892 * was before or after the call to `p_allocate` (or `p_validate_slot_number`).
893 *
894 * \param[in,out] drv_context       The driver context structure.
895 * \param[in,out] persistent_data   A pointer to the persistent data
896 *                                  that allows writing.
897 * \param[in] attributes            Attributes of the key.
898 * \param method                    The way in which the key is being created.
899 * \param[out] key_slot             Slot where the key will be stored.
900 *                                  This must be a valid slot for a key of the
901 *                                  chosen type. It must be unoccupied.
902 *
903 * \retval #PSA_SUCCESS
904 *         Success.
905 *         The core will record \c *key_slot as the key slot where the key
906 *         is stored and will update the persistent data in storage.
907 * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
908 * \retval #PSA_ERROR_INSUFFICIENT_STORAGE \emptydescription
909 */
910typedef psa_status_t (*psa_drv_se_allocate_key_t)(
911    psa_drv_se_context_t *drv_context,
912    void *persistent_data,
913    const psa_key_attributes_t *attributes,
914    psa_key_creation_method_t method,
915    psa_key_slot_number_t *key_slot);
916
917/** \brief A function that determines whether a slot number is valid
918 * for a key.
919 *
920 * To create a key in a specific slot in a secure element, the core
921 * first calls this function to validate the choice of slot number,
922 * then calls a function to create the key material in that slot.
923 * See the documentation of #psa_drv_se_allocate_key_t for more details.
924 *
925 * As of the PSA Cryptography API specification version 1.0, there is no way
926 * for applications to trigger a call to this function. However some
927 * implementations offer the capability to create or declare a key in
928 * a specific slot via implementation-specific means, generally for the
929 * sake of initial device provisioning or onboarding. Such a mechanism may
930 * be added to a future version of the PSA Cryptography API specification.
931 *
932 * This function may update the driver's persistent data through
933 * \p persistent_data. The core will save the updated persistent data at the
934 * end of the key creation process. See the description of
935 * ::psa_drv_se_allocate_key_t for more information.
936 *
937 * \param[in,out] drv_context   The driver context structure.
938 * \param[in,out] persistent_data   A pointer to the persistent data
939 *                                  that allows writing.
940 * \param[in] attributes        Attributes of the key.
941 * \param method                The way in which the key is being created.
942 * \param[in] key_slot          Slot where the key is to be stored.
943 *
944 * \retval #PSA_SUCCESS
945 *         The given slot number is valid for a key with the given
946 *         attributes.
947 * \retval #PSA_ERROR_INVALID_ARGUMENT
948 *         The given slot number is not valid for a key with the
949 *         given attributes. This includes the case where the slot
950 *         number is not valid at all.
951 * \retval #PSA_ERROR_ALREADY_EXISTS
952 *         There is already a key with the specified slot number.
953 *         Drivers may choose to return this error from the key
954 *         creation function instead.
955 */
956typedef psa_status_t (*psa_drv_se_validate_slot_number_t)(
957    psa_drv_se_context_t *drv_context,
958    void *persistent_data,
959    const psa_key_attributes_t *attributes,
960    psa_key_creation_method_t method,
961    psa_key_slot_number_t key_slot);
962
963/** \brief A function that imports a key into a secure element in binary format
964 *
965 * This function can support any output from psa_export_key(). Refer to the
966 * documentation of psa_export_key() for the format for each key type.
967 *
968 * \param[in,out] drv_context   The driver context structure.
969 * \param key_slot              Slot where the key will be stored.
970 *                              This must be a valid slot for a key of the
971 *                              chosen type. It must be unoccupied.
972 * \param[in] attributes        The key attributes, including the lifetime,
973 *                              the key type and the usage policy.
974 *                              Drivers should not access the key size stored
975 *                              in the attributes: it may not match the
976 *                              data passed in \p data.
977 *                              Drivers can call psa_get_key_lifetime(),
978 *                              psa_get_key_type(),
979 *                              psa_get_key_usage_flags() and
980 *                              psa_get_key_algorithm() to access this
981 *                              information.
982 * \param[in] data              Buffer containing the key data.
983 * \param[in] data_length       Size of the \p data buffer in bytes.
984 * \param[out] bits             On success, the key size in bits. The driver
985 *                              must determine this value after parsing the
986 *                              key according to the key type.
987 *                              This value is not used if the function fails.
988 *
989 * \retval #PSA_SUCCESS
990 *         Success.
991 */
992typedef psa_status_t (*psa_drv_se_import_key_t)(
993    psa_drv_se_context_t *drv_context,
994    psa_key_slot_number_t key_slot,
995    const psa_key_attributes_t *attributes,
996    const uint8_t *data,
997    size_t data_length,
998    size_t *bits);
999
1000/**
1001 * \brief A function that destroys a secure element key and restore the slot to
1002 * its default state
1003 *
1004 * This function destroys the content of the key from a secure element.
1005 * Implementations shall make a best effort to ensure that any previous content
1006 * of the slot is unrecoverable.
1007 *
1008 * This function returns the specified slot to its default state.
1009 *
1010 * \param[in,out] drv_context       The driver context structure.
1011 * \param[in,out] persistent_data   A pointer to the persistent data
1012 *                                  that allows writing.
1013 * \param key_slot                  The key slot to erase.
1014 *
1015 * \retval #PSA_SUCCESS
1016 *         The slot's content, if any, has been erased.
1017 */
1018typedef psa_status_t (*psa_drv_se_destroy_key_t)(
1019    psa_drv_se_context_t *drv_context,
1020    void *persistent_data,
1021    psa_key_slot_number_t key_slot);
1022
1023/**
1024 * \brief A function that exports a secure element key in binary format
1025 *
1026 * The output of this function can be passed to psa_import_key() to
1027 * create an equivalent object.
1028 *
1029 * If a key is created with `psa_import_key()` and then exported with
1030 * this function, it is not guaranteed that the resulting data is
1031 * identical: the implementation may choose a different representation
1032 * of the same key if the format permits it.
1033 *
1034 * This function should generate output in the same format that
1035 * `psa_export_key()` does. Refer to the
1036 * documentation of `psa_export_key()` for the format for each key type.
1037 *
1038 * \param[in,out] drv_context   The driver context structure.
1039 * \param[in] key               Slot whose content is to be exported. This must
1040 *                              be an occupied key slot.
1041 * \param[out] p_data           Buffer where the key data is to be written.
1042 * \param[in] data_size         Size of the `p_data` buffer in bytes.
1043 * \param[out] p_data_length    On success, the number of bytes
1044 *                              that make up the key data.
1045 *
1046 * \retval #PSA_SUCCESS \emptydescription
1047 * \retval #PSA_ERROR_DOES_NOT_EXIST \emptydescription
1048 * \retval #PSA_ERROR_NOT_PERMITTED \emptydescription
1049 * \retval #PSA_ERROR_NOT_SUPPORTED \emptydescription
1050 * \retval #PSA_ERROR_COMMUNICATION_FAILURE \emptydescription
1051 * \retval #PSA_ERROR_HARDWARE_FAILURE \emptydescription
1052 * \retval #PSA_ERROR_CORRUPTION_DETECTED \emptydescription
1053 */
1054typedef psa_status_t (*psa_drv_se_export_key_t)(psa_drv_se_context_t *drv_context,
1055                                                psa_key_slot_number_t key,
1056                                                uint8_t *p_data,
1057                                                size_t data_size,
1058                                                size_t *p_data_length);
1059
1060/**
1061 * \brief A function that generates a symmetric or asymmetric key on a secure
1062 * element
1063 *
1064 * If the key type \c type recorded in \p attributes
1065 * is asymmetric (#PSA_KEY_TYPE_IS_ASYMMETRIC(\c type) = 1),
1066 * the driver may export the public key at the time of generation,
1067 * in the format documented for psa_export_public_key() by writing it
1068 * to the \p pubkey buffer.
1069 * This is optional, intended for secure elements that output the
1070 * public key at generation time and that cannot export the public key
1071 * later. Drivers that do not need this feature should leave
1072 * \p *pubkey_length set to 0 and should
1073 * implement the psa_drv_key_management_t::p_export_public function.
1074 * Some implementations do not support this feature, in which case
1075 * \p pubkey is \c NULL and \p pubkey_size is 0.
1076 *
1077 * \param[in,out] drv_context   The driver context structure.
1078 * \param key_slot              Slot where the key will be stored.
1079 *                              This must be a valid slot for a key of the
1080 *                              chosen type. It must be unoccupied.
1081 * \param[in] attributes        The key attributes, including the lifetime,
1082 *                              the key type and size, and the usage policy.
1083 *                              Drivers can call psa_get_key_lifetime(),
1084 *                              psa_get_key_type(), psa_get_key_bits(),
1085 *                              psa_get_key_usage_flags() and
1086 *                              psa_get_key_algorithm() to access this
1087 *                              information.
1088 * \param[out] pubkey           A buffer where the driver can write the
1089 *                              public key, when generating an asymmetric
1090 *                              key pair.
1091 *                              This is \c NULL when generating a symmetric
1092 *                              key or if the core does not support
1093 *                              exporting the public key at generation time.
1094 * \param pubkey_size           The size of the `pubkey` buffer in bytes.
1095 *                              This is 0 when generating a symmetric
1096 *                              key or if the core does not support
1097 *                              exporting the public key at generation time.
1098 * \param[out] pubkey_length    On entry, this is always 0.
1099 *                              On success, the number of bytes written to
1100 *                              \p pubkey. If this is 0 or unchanged on return,
1101 *                              the core will not read the \p pubkey buffer,
1102 *                              and will instead call the driver's
1103 *                              psa_drv_key_management_t::p_export_public
1104 *                              function to export the public key when needed.
1105 */
1106typedef psa_status_t (*psa_drv_se_generate_key_t)(
1107    psa_drv_se_context_t *drv_context,
1108    psa_key_slot_number_t key_slot,
1109    const psa_key_attributes_t *attributes,
1110    uint8_t *pubkey, size_t pubkey_size, size_t *pubkey_length);
1111
1112/**
1113 * \brief A struct containing all of the function pointers needed to for secure
1114 * element key management
1115 *
1116 * PSA Crypto API implementations should populate instances of the table as
1117 * appropriate upon startup or at build time.
1118 *
1119 * If one of the functions is not implemented, it should be set to NULL.
1120 */
1121typedef struct {
1122    /** Function that allocates a slot for a key. */
1123    psa_drv_se_allocate_key_t   MBEDTLS_PRIVATE(p_allocate);
1124    /** Function that checks the validity of a slot for a key. */
1125    psa_drv_se_validate_slot_number_t MBEDTLS_PRIVATE(p_validate_slot_number);
1126    /** Function that performs a key import operation */
1127    psa_drv_se_import_key_t     MBEDTLS_PRIVATE(p_import);
1128    /** Function that performs a generation */
1129    psa_drv_se_generate_key_t   MBEDTLS_PRIVATE(p_generate);
1130    /** Function that performs a key destroy operation */
1131    psa_drv_se_destroy_key_t    MBEDTLS_PRIVATE(p_destroy);
1132    /** Function that performs a key export operation */
1133    psa_drv_se_export_key_t     MBEDTLS_PRIVATE(p_export);
1134    /** Function that performs a public key export operation */
1135    psa_drv_se_export_key_t     MBEDTLS_PRIVATE(p_export_public);
1136} psa_drv_se_key_management_t;
1137
1138/**@}*/
1139
1140/** \defgroup driver_derivation Secure Element Key Derivation and Agreement
1141 * Key derivation is the process of generating new key material using an
1142 * existing key and additional parameters, iterating through a basic
1143 * cryptographic function, such as a hash.
1144 * Key agreement is a part of cryptographic protocols that allows two parties
1145 * to agree on the same key value, but starting from different original key
1146 * material.
1147 * The flows are similar, and the PSA Crypto Driver Model uses the same functions
1148 * for both of the flows.
1149 *
1150 * There are two different final functions for the flows,
1151 * `psa_drv_se_key_derivation_derive` and `psa_drv_se_key_derivation_export`.
1152 * `psa_drv_se_key_derivation_derive` is used when the key material should be
1153 * placed in a slot on the hardware and not exposed to the caller.
1154 * `psa_drv_se_key_derivation_export` is used when the key material should be
1155 * returned to the PSA Cryptographic API implementation.
1156 *
1157 * Different key derivation algorithms require a different number of inputs.
1158 * Instead of having an API that takes as input variable length arrays, which
1159 * can be problematic to manage on embedded platforms, the inputs are passed
1160 * to the driver via a function, `psa_drv_se_key_derivation_collateral`, that
1161 * is called multiple times with different `collateral_id`s. Thus, for a key
1162 * derivation algorithm that required 3 parameter inputs, the flow would look
1163 * something like:
1164 * ~~~~~~~~~~~~~{.c}
1165 * psa_drv_se_key_derivation_setup(kdf_algorithm, source_key, dest_key_size_bytes);
1166 * psa_drv_se_key_derivation_collateral(kdf_algorithm_collateral_id_0,
1167 *                                      p_collateral_0,
1168 *                                      collateral_0_size);
1169 * psa_drv_se_key_derivation_collateral(kdf_algorithm_collateral_id_1,
1170 *                                      p_collateral_1,
1171 *                                      collateral_1_size);
1172 * psa_drv_se_key_derivation_collateral(kdf_algorithm_collateral_id_2,
1173 *                                      p_collateral_2,
1174 *                                      collateral_2_size);
1175 * psa_drv_se_key_derivation_derive();
1176 * ~~~~~~~~~~~~~
1177 *
1178 * key agreement example:
1179 * ~~~~~~~~~~~~~{.c}
1180 * psa_drv_se_key_derivation_setup(alg, source_key. dest_key_size_bytes);
1181 * psa_drv_se_key_derivation_collateral(DHE_PUBKEY, p_pubkey, pubkey_size);
1182 * psa_drv_se_key_derivation_export(p_session_key,
1183 *                                  session_key_size,
1184 *                                  &session_key_length);
1185 * ~~~~~~~~~~~~~
1186 */
1187/**@{*/
1188
1189/** \brief A function that Sets up a secure element key derivation operation by
1190 * specifying the algorithm and the source key sot
1191 *
1192 * \param[in,out] drv_context   The driver context structure.
1193 * \param[in,out] op_context    A hardware-specific structure containing any
1194 *                              context information for the implementation
1195 * \param[in] kdf_alg           The algorithm to be used for the key derivation
1196 * \param[in] source_key        The key to be used as the source material for
1197 *                              the key derivation
1198 *
1199 * \retval #PSA_SUCCESS \emptydescription
1200 */
1201typedef psa_status_t (*psa_drv_se_key_derivation_setup_t)(psa_drv_se_context_t *drv_context,
1202                                                          void *op_context,
1203                                                          psa_algorithm_t kdf_alg,
1204                                                          psa_key_slot_number_t source_key);
1205
1206/** \brief A function that provides collateral (parameters) needed for a secure
1207 * element key derivation or key agreement operation
1208 *
1209 * Since many key derivation algorithms require multiple parameters, it is
1210 * expected that this function may be called multiple times for the same
1211 * operation, each with a different algorithm-specific `collateral_id`
1212 *
1213 * \param[in,out] op_context    A hardware-specific structure containing any
1214 *                              context information for the implementation
1215 * \param[in] collateral_id     An ID for the collateral being provided
1216 * \param[in] p_collateral      A buffer containing the collateral data
1217 * \param[in] collateral_size   The size in bytes of the collateral
1218 *
1219 * \retval #PSA_SUCCESS \emptydescription
1220 */
1221typedef psa_status_t (*psa_drv_se_key_derivation_collateral_t)(void *op_context,
1222                                                               uint32_t collateral_id,
1223                                                               const uint8_t *p_collateral,
1224                                                               size_t collateral_size);
1225
1226/** \brief A function that performs the final secure element key derivation
1227 * step and place the generated key material in a slot
1228 *
1229 * \param[in,out] op_context    A hardware-specific structure containing any
1230 *                              context information for the implementation
1231 * \param[in] dest_key          The slot where the generated key material
1232 *                              should be placed
1233 *
1234 * \retval #PSA_SUCCESS \emptydescription
1235 */
1236typedef psa_status_t (*psa_drv_se_key_derivation_derive_t)(void *op_context,
1237                                                           psa_key_slot_number_t dest_key);
1238
1239/** \brief A function that performs the final step of a secure element key
1240 * agreement and place the generated key material in a buffer
1241 *
1242 * \param[out] p_output         Buffer in which to place the generated key
1243 *                              material
1244 * \param[in] output_size       The size in bytes of `p_output`
1245 * \param[out] p_output_length  Upon success, contains the number of bytes of
1246 *                              key material placed in `p_output`
1247 *
1248 * \retval #PSA_SUCCESS \emptydescription
1249 */
1250typedef psa_status_t (*psa_drv_se_key_derivation_export_t)(void *op_context,
1251                                                           uint8_t *p_output,
1252                                                           size_t output_size,
1253                                                           size_t *p_output_length);
1254
1255/**
1256 * \brief A struct containing all of the function pointers needed to for secure
1257 * element key derivation and agreement
1258 *
1259 * PSA Crypto API implementations should populate instances of the table as
1260 * appropriate upon startup.
1261 *
1262 * If one of the functions is not implemented, it should be set to NULL.
1263 */
1264typedef struct {
1265    /** The driver-specific size of the key derivation context */
1266    size_t                           MBEDTLS_PRIVATE(context_size);
1267    /** Function that performs a key derivation setup */
1268    psa_drv_se_key_derivation_setup_t      MBEDTLS_PRIVATE(p_setup);
1269    /** Function that sets key derivation collateral */
1270    psa_drv_se_key_derivation_collateral_t MBEDTLS_PRIVATE(p_collateral);
1271    /** Function that performs a final key derivation step */
1272    psa_drv_se_key_derivation_derive_t     MBEDTLS_PRIVATE(p_derive);
1273    /** Function that performs a final key derivation or agreement and
1274     * exports the key */
1275    psa_drv_se_key_derivation_export_t     MBEDTLS_PRIVATE(p_export);
1276} psa_drv_se_key_derivation_t;
1277
1278/**@}*/
1279
1280/** \defgroup se_registration Secure element driver registration
1281 */
1282/**@{*/
1283
1284/** A structure containing pointers to all the entry points of a
1285 * secure element driver.
1286 *
1287 * Future versions of this specification may add extra substructures at
1288 * the end of this structure.
1289 */
1290typedef struct {
1291    /** The version of the driver HAL that this driver implements.
1292     * This is a protection against loading driver binaries built against
1293     * a different version of this specification.
1294     * Use #PSA_DRV_SE_HAL_VERSION.
1295     */
1296    uint32_t MBEDTLS_PRIVATE(hal_version);
1297
1298    /** The size of the driver's persistent data in bytes.
1299     *
1300     * This can be 0 if the driver does not need persistent data.
1301     *
1302     * See the documentation of psa_drv_se_context_t::persistent_data
1303     * for more information about why and how a driver can use
1304     * persistent data.
1305     */
1306    size_t MBEDTLS_PRIVATE(persistent_data_size);
1307
1308    /** The driver initialization function.
1309     *
1310     * This function is called once during the initialization of the
1311     * PSA Cryptography subsystem, before any other function of the
1312     * driver is called. If this function returns a failure status,
1313     * the driver will be unusable, at least until the next system reset.
1314     *
1315     * If this field is \c NULL, it is equivalent to a function that does
1316     * nothing and returns #PSA_SUCCESS.
1317     */
1318    psa_drv_se_init_t MBEDTLS_PRIVATE(p_init);
1319
1320    const psa_drv_se_key_management_t *MBEDTLS_PRIVATE(key_management);
1321    const psa_drv_se_mac_t *MBEDTLS_PRIVATE(mac);
1322    const psa_drv_se_cipher_t *MBEDTLS_PRIVATE(cipher);
1323    const psa_drv_se_aead_t *MBEDTLS_PRIVATE(aead);
1324    const psa_drv_se_asymmetric_t *MBEDTLS_PRIVATE(asymmetric);
1325    const psa_drv_se_key_derivation_t *MBEDTLS_PRIVATE(derivation);
1326} psa_drv_se_t;
1327
1328/** The current version of the secure element driver HAL.
1329 */
1330/* 0.0.0 patchlevel 5 */
1331#define PSA_DRV_SE_HAL_VERSION 0x00000005
1332
1333/** Register an external cryptoprocessor (secure element) driver.
1334 *
1335 * This function is only intended to be used by driver code, not by
1336 * application code. In implementations with separation between the
1337 * PSA cryptography module and applications, this function should
1338 * only be available to callers that run in the same memory space as
1339 * the cryptography module, and should not be exposed to applications
1340 * running in a different memory space.
1341 *
1342 * This function may be called before psa_crypto_init(). It is
1343 * implementation-defined whether this function may be called
1344 * after psa_crypto_init().
1345 *
1346 * \note Implementations store metadata about keys including the lifetime
1347 *       value, which contains the driver's location indicator. Therefore,
1348 *       from one instantiation of the PSA Cryptography
1349 *       library to the next one, if there is a key in storage with a certain
1350 *       lifetime value, you must always register the same driver (or an
1351 *       updated version that communicates with the same secure element)
1352 *       with the same location value.
1353 *
1354 * \param location      The location value through which this driver will
1355 *                      be exposed to applications.
1356 *                      This driver will be used for all keys such that
1357 *                      `location == #PSA_KEY_LIFETIME_GET_LOCATION( lifetime )`.
1358 *                      The value #PSA_KEY_LOCATION_LOCAL_STORAGE is reserved
1359 *                      and may not be used for drivers. Implementations
1360 *                      may reserve other values.
1361 * \param[in] methods   The method table of the driver. This structure must
1362 *                      remain valid for as long as the cryptography
1363 *                      module keeps running. It is typically a global
1364 *                      constant.
1365 *
1366 * \return #PSA_SUCCESS
1367 *         The driver was successfully registered. Applications can now
1368 *         use \p location to access keys through the methods passed to
1369 *         this function.
1370 * \return #PSA_ERROR_BAD_STATE
1371 *         This function was called after the initialization of the
1372 *         cryptography module, and this implementation does not support
1373 *         driver registration at this stage.
1374 * \return #PSA_ERROR_ALREADY_EXISTS
1375 *         There is already a registered driver for this value of \p location.
1376 * \return #PSA_ERROR_INVALID_ARGUMENT
1377 *         \p location is a reserved value.
1378 * \return #PSA_ERROR_NOT_SUPPORTED
1379 *         `methods->hal_version` is not supported by this implementation.
1380 * \return #PSA_ERROR_INSUFFICIENT_MEMORY
1381 * \return #PSA_ERROR_NOT_PERMITTED
1382 * \return #PSA_ERROR_STORAGE_FAILURE
1383 * \return #PSA_ERROR_DATA_CORRUPT
1384 */
1385psa_status_t psa_register_se_driver(
1386    psa_key_location_t location,
1387    const psa_drv_se_t *methods);
1388
1389/**@}*/
1390
1391#ifdef __cplusplus
1392}
1393#endif
1394
1395#endif /* PSA_CRYPTO_SE_DRIVER_H */
1396