1a8e1175bSopenharmony_ciPSA Cryptoprocessor Driver Interface 2a8e1175bSopenharmony_ci==================================== 3a8e1175bSopenharmony_ci 4a8e1175bSopenharmony_ciThis document describes an interface for cryptoprocessor drivers in the PSA cryptography API. This interface complements the [PSA Cryptography API specification](https://armmbed.github.io/mbed-crypto/psa/#application-programming-interface), which describes the interface between a PSA Cryptography implementation and an application. 5a8e1175bSopenharmony_ci 6a8e1175bSopenharmony_ciThis specification is work in progress and should be considered to be in a beta stage. There is ongoing work to implement this interface in Mbed TLS, which is the reference implementation of the PSA Cryptography API. At this stage, Arm does not expect major changes, but minor changes are expected based on experience from the first implementation and on external feedback. 7a8e1175bSopenharmony_ci 8a8e1175bSopenharmony_ciFor a practical guide, with a description of the current state of drivers Mbed TLS, see our [PSA Cryptoprocessor driver development examples](../psa-driver-example-and-guide.html). 9a8e1175bSopenharmony_ci 10a8e1175bSopenharmony_ci## Introduction 11a8e1175bSopenharmony_ci 12a8e1175bSopenharmony_ci### Purpose of the driver interface 13a8e1175bSopenharmony_ci 14a8e1175bSopenharmony_ciThe PSA Cryptography API defines an interface that allows applications to perform cryptographic operations in a uniform way regardless of how the operations are performed. Under the hood, different keys may be stored and used in different hardware or in different logical partitions, and different algorithms may involve different hardware or software components. 15a8e1175bSopenharmony_ci 16a8e1175bSopenharmony_ciThe driver interface allows implementations of the PSA Cryptography API to be built compositionally. An implementation of the PSA Cryptography API is composed of a **core** and zero or more **drivers**. The core handles key management, enforces key usage policies, and dispatches cryptographic operations either to the applicable driver or to built-in code. 17a8e1175bSopenharmony_ci 18a8e1175bSopenharmony_ciFunctions in the PSA Cryptography API invoke functions in the core. Code from the core calls drivers as described in the present document. 19a8e1175bSopenharmony_ci 20a8e1175bSopenharmony_ci### Types of drivers 21a8e1175bSopenharmony_ci 22a8e1175bSopenharmony_ciThe PSA Cryptography driver interface supports two types of cryptoprocessors, and accordingly two types of drivers. 23a8e1175bSopenharmony_ci 24a8e1175bSopenharmony_ci* **Transparent** drivers implement cryptographic operations on keys that are provided in cleartext at the beginning of each operation. They are typically used for hardware **accelerators**. When a transparent driver is available for a particular combination of parameters (cryptographic algorithm, key type and size, etc.), it is used instead of the default software implementation. Transparent drivers can also be pure software implementations that are distributed as plug-ins to a PSA Cryptography implementation (for example, an alternative implementation with different performance characteristics, or a certified implementation). 25a8e1175bSopenharmony_ci* **Opaque** drivers implement cryptographic operations on keys that can only be used inside a protected environment such as a **secure element**, a hardware security module, a smartcard, a secure enclave, etc. An opaque driver is invoked for the specific [key location](#lifetimes-and-locations) that the driver is registered for: the dispatch is based on the key's lifetime. 26a8e1175bSopenharmony_ci 27a8e1175bSopenharmony_ci### Requirements 28a8e1175bSopenharmony_ci 29a8e1175bSopenharmony_ciThe present specification was designed to fulfill the following high-level requirements. 30a8e1175bSopenharmony_ci 31a8e1175bSopenharmony_ci[Req.plugins] It is possible to combine multiple drivers from different providers into the same implementation, without any prior arrangement other than choosing certain names and values from disjoint namespaces. 32a8e1175bSopenharmony_ci 33a8e1175bSopenharmony_ci[Req.compile] It is possible to compile the code of each driver and of the core separately, and link them together. A small amount of glue code may need to be compiled once the list of drivers is available. 34a8e1175bSopenharmony_ci 35a8e1175bSopenharmony_ci[Req.types] Support drivers for the following types of hardware: accelerators that operate on keys in cleartext; cryptoprocessors that can wrap keys with a built-in keys but not store user keys; and cryptoprocessors that store key material. 36a8e1175bSopenharmony_ci 37a8e1175bSopenharmony_ci[Req.portable] The interface between drivers and the core does not involve any platform-specific consideration. Driver calls are simple C function calls. Interactions with platform-specific hardware happen only inside the driver (and in fact a driver need not involve any hardware at all). 38a8e1175bSopenharmony_ci 39a8e1175bSopenharmony_ci[Req.location] Applications can tell which location values correspond to which secure element drivers. 40a8e1175bSopenharmony_ci 41a8e1175bSopenharmony_ci[Req.fallback] Accelerator drivers can specify that they do not fully support a cryptographic mechanism and that a fallback to core code may be necessary. Conversely, if an accelerator fully supports cryptographic mechanism, the core must be able to omit code for this mechanism. 42a8e1175bSopenharmony_ci 43a8e1175bSopenharmony_ci[Req.mechanisms] Drivers can specify which mechanisms they support. A driver's code will not be invoked for cryptographic mechanisms that it does not support. 44a8e1175bSopenharmony_ci 45a8e1175bSopenharmony_ci## Overview of drivers 46a8e1175bSopenharmony_ci 47a8e1175bSopenharmony_ci### Deliverables for a driver 48a8e1175bSopenharmony_ci 49a8e1175bSopenharmony_ciTo write a driver, you need to implement some functions with C linkage, and to declare these functions in a **driver description file**. The driver description file declares which functions the driver implements and what cryptographic mechanisms they support. If the driver description references custom types, macros or constants, you also need to provide C header files defining those elements. 50a8e1175bSopenharmony_ci 51a8e1175bSopenharmony_ciThe concrete syntax for a driver description file is JSON. The structure of this JSON file is specified in the section [“Driver description syntax”](#driver-description-syntax). 52a8e1175bSopenharmony_ci 53a8e1175bSopenharmony_ciA driver therefore consists of: 54a8e1175bSopenharmony_ci 55a8e1175bSopenharmony_ci* A driver description file (in JSON format). 56a8e1175bSopenharmony_ci* C header files defining the types required by the driver description. The names of these header files are declared in the driver description file. 57a8e1175bSopenharmony_ci* An object file compiled for the target platform defining the entry point functions specified by the driver description. Implementations may allow drivers to be provided as source files and compiled with the core instead of being pre-compiled. 58a8e1175bSopenharmony_ci 59a8e1175bSopenharmony_ciHow to provide the driver description file, the C header files and the object code is implementation-dependent. 60a8e1175bSopenharmony_ci 61a8e1175bSopenharmony_ci### Driver description syntax 62a8e1175bSopenharmony_ci 63a8e1175bSopenharmony_ciThe concrete syntax for a driver description file is JSON. 64a8e1175bSopenharmony_ci 65a8e1175bSopenharmony_ciIn addition to the properties described here, any JSON object may have a property called `"_comment"` of type string, which will be ignored. 66a8e1175bSopenharmony_ci 67a8e1175bSopenharmony_ciPSA Cryptography core implementations may support additional properties. Such properties must use names consisting of the implementation's name, a slash, and additional characters. For example, the Yoyodyne implementation may use property names such as `"yoyodyne/foo"` and `"yoyodyne/widgets/girth"`. 68a8e1175bSopenharmony_ci 69a8e1175bSopenharmony_ci#### Driver description list 70a8e1175bSopenharmony_ci 71a8e1175bSopenharmony_ciPSA Cryptography core implementations should support multiple drivers. The driver description files are passed to the implementation as an ordered list in an unspecified manner. This may be, for example, a list of file names passed on a command line, or a JSON list whose elements are individual driver descriptions. 72a8e1175bSopenharmony_ci 73a8e1175bSopenharmony_ci#### Driver description top-level element 74a8e1175bSopenharmony_ci 75a8e1175bSopenharmony_ciA driver description is a JSON object containing the following properties: 76a8e1175bSopenharmony_ci 77a8e1175bSopenharmony_ci* `"prefix"` (mandatory, string). This must be a valid, non-empty prefix for a C identifier. All the types and functions provided by the driver have a name that starts with this prefix unless overridden with a `"name"` element in the applicable capability as described below. 78a8e1175bSopenharmony_ci* `"type"` (mandatory, string). One of `"transparent"` or `"opaque"`. 79a8e1175bSopenharmony_ci* `"headers"` (optional, array of strings). A list of header files. These header files must define the types, macros and constants referenced by the driver description. They may declare the entry point functions, but this is not required. They may include other PSA headers and standard headers of the platform. Whether they may include other headers is implementation-specific. If omitted, the list of headers is empty. The header files must be present at the specified location relative to a directory on the compiler's include path when compiling glue code between the core and the drivers. 80a8e1175bSopenharmony_ci* `"capabilities"` (mandatory, array of [capabilities](#driver-description-capability)). 81a8e1175bSopenharmony_ciA list of **capabilities**. Each capability describes a family of functions that the driver implements for a certain class of cryptographic mechanisms. 82a8e1175bSopenharmony_ci* `"key_context"` (not permitted for transparent drivers, mandatory for opaque drivers): information about the [representation of keys](#key-format-for-opaque-drivers). 83a8e1175bSopenharmony_ci* `"persistent_state_size"` (not permitted for transparent drivers, optional for opaque drivers, integer or string). The size in bytes of the [persistent state of the driver](#opaque-driver-persistent-state). This may be either a non-negative integer or a C constant expression of type `size_t`. 84a8e1175bSopenharmony_ci* `"location"` (not permitted for transparent drivers, optional for opaque drivers, integer or string). The [location value](#lifetimes-and-locations) for which this driver is invoked. In other words, this determines the lifetimes for which the driver is invoked. This may be either a non-negative integer or a C constant expression of type `psa_key_location_t`. 85a8e1175bSopenharmony_ci 86a8e1175bSopenharmony_ci### Driver description capability 87a8e1175bSopenharmony_ci 88a8e1175bSopenharmony_ci#### Capability syntax 89a8e1175bSopenharmony_ci 90a8e1175bSopenharmony_ciA capability declares a family of functions that the driver implements for a certain class of cryptographic mechanisms. The capability specifies which key types and algorithms are covered and the names of the types and functions that implement it. 91a8e1175bSopenharmony_ci 92a8e1175bSopenharmony_ciA capability is a JSON object containing the following properties: 93a8e1175bSopenharmony_ci 94a8e1175bSopenharmony_ci* `"entry_points"` (mandatory, list of strings). Each element is the name of a [driver entry point](#driver-entry-points) or driver entry point family. An entry point is a function defined by the driver. If specified, the core will invoke this capability of the driver only when performing one of the specified operations. The driver must implement all the specified entry points, as well as the types if applicable. 95a8e1175bSopenharmony_ci* `"algorithms"` (optional, list of strings). Each element is an [algorithm specification](#algorithm-specifications). If specified, the core will invoke this capability of the driver only when performing one of the specified algorithms. If omitted, the core will invoke this capability for all applicable algorithms. 96a8e1175bSopenharmony_ci* `"key_types"` (optional, list of strings). Each element is a [key type specification](#key-type-specifications). If specified, the core will invoke this capability of the driver only for operations involving a key with one of the specified key types. If omitted, the core will invoke this capability of the driver for all applicable key types. 97a8e1175bSopenharmony_ci* `"key_sizes"` (optional, list of integers). If specified, the core will invoke this capability of the driver only for operations involving a key with one of the specified key sizes. If omitted, the core will invoke this capability of the driver for all applicable key sizes. Key sizes are expressed in bits. 98a8e1175bSopenharmony_ci* `"names"` (optional, object). A mapping from entry point names described by the `"entry_points"` property, to the name of the C function in the driver that implements the corresponding function. If a function is not listed here, name of the driver function that implements it is the driver's prefix followed by an underscore (`_`) followed by the function name. If this property is omitted, it is equivalent to an empty object (so each entry point *suffix* is implemented by a function called *prefix*`_`*suffix*). 99a8e1175bSopenharmony_ci* `"fallback"` (optional for transparent drivers, not permitted for opaque drivers, boolean). If present and true, the driver may return `PSA_ERROR_NOT_SUPPORTED`, in which case the core should call another driver or use built-in code to perform this operation. If absent or false, the driver is expected to fully support the mechanisms described by this capability. See the section “[Fallback](#fallback)” for more information. 100a8e1175bSopenharmony_ci 101a8e1175bSopenharmony_ci#### Capability semantics 102a8e1175bSopenharmony_ci 103a8e1175bSopenharmony_ciWhen the PSA Cryptography implementation performs a cryptographic mechanism, it invokes available driver entry points as described in the section [“Driver entry points”](#driver-entry-points). 104a8e1175bSopenharmony_ci 105a8e1175bSopenharmony_ciA driver is considered available for a cryptographic mechanism that invokes a given entry point if all of the following conditions are met: 106a8e1175bSopenharmony_ci 107a8e1175bSopenharmony_ci* The driver specification includes a capability whose `"entry_points"` list either includes the entry point or includes an entry point family that includes the entry point. 108a8e1175bSopenharmony_ci* If the mechanism involves an algorithm: 109a8e1175bSopenharmony_ci * either the capability does not have an `"algorithms"` property; 110a8e1175bSopenharmony_ci * or the value of the capability's `"algorithms"` property includes an [algorithm specification](#algorithm-specifications) that matches this algorithm. 111a8e1175bSopenharmony_ci* If the mechanism involves a key: 112a8e1175bSopenharmony_ci * either the key is transparent (its location is `PSA_KEY_LOCATION_LOCAL_STORAGE`) and the driver is transparent; 113a8e1175bSopenharmony_ci * or the key is opaque (its location is not `PSA_KEY_LOCATION_LOCAL_STORAGE`) and the driver is an opaque driver whose location is the key's location. 114a8e1175bSopenharmony_ci* If the mechanism involves a key: 115a8e1175bSopenharmony_ci * either the capability does not have a `"key_types"` property; 116a8e1175bSopenharmony_ci * or the value of the capability's `"key_types"` property includes a [key type specification](#key-type-specifications) that matches this algorithm. 117a8e1175bSopenharmony_ci* If the mechanism involves a key: 118a8e1175bSopenharmony_ci * either the capability does not have a `"key_sizes"` property; 119a8e1175bSopenharmony_ci * or the value of the capability's `"key_sizes"` property includes the key's size. 120a8e1175bSopenharmony_ci 121a8e1175bSopenharmony_ciIf a driver includes multiple applicable capabilities for a given combination of entry point, algorithm, key type and key size, and all the capabilities map the entry point to the same function name, the driver is considered available for this cryptographic mechanism. If a driver includes multiple applicable capabilities for a given combination of entry point, algorithm, key type and key size, and at least two of these capabilities map the entry point to the different function names, the driver specification is invalid. 122a8e1175bSopenharmony_ci 123a8e1175bSopenharmony_ciIf multiple transparent drivers have applicable capabilities for a given combination of entry point, algorithm, key type and key size, the first matching driver in the [specification list](#driver-description-list) is invoked. If the capability has [fallback](#fallback) enabled and the first driver returns `PSA_ERROR_NOT_SUPPORTED`, the next matching driver is invoked, and so on. 124a8e1175bSopenharmony_ci 125a8e1175bSopenharmony_ciIf multiple opaque drivers have the same location, the list of driver specifications is invalid. 126a8e1175bSopenharmony_ci 127a8e1175bSopenharmony_ci#### Capability examples 128a8e1175bSopenharmony_ci 129a8e1175bSopenharmony_ciExample 1: the following capability declares that the driver can perform deterministic ECDSA signatures (but not signature verification) using any hash algorithm and any curve that the core supports. If the prefix of this driver is `"acme"`, the function that performs the signature is called `acme_sign_hash`. 130a8e1175bSopenharmony_ci``` 131a8e1175bSopenharmony_ci{ 132a8e1175bSopenharmony_ci "entry_points": ["sign_hash"], 133a8e1175bSopenharmony_ci "algorithms": ["PSA_ALG_DETERMINISTIC_ECDSA(PSA_ALG_ANY_HASH)"], 134a8e1175bSopenharmony_ci} 135a8e1175bSopenharmony_ci``` 136a8e1175bSopenharmony_ci 137a8e1175bSopenharmony_ciExample 2: the following capability declares that the driver can perform deterministic ECDSA signatures using SHA-256 or SHA-384 with a SECP256R1 or SECP384R1 private key (with either hash being possible in combination with either curve). If the prefix of this driver is `"acme"`, the function that performs the signature is called `acme_sign_hash`. 138a8e1175bSopenharmony_ci``` 139a8e1175bSopenharmony_ci{ 140a8e1175bSopenharmony_ci "entry_points": ["sign_hash"], 141a8e1175bSopenharmony_ci "algorithms": ["PSA_ALG_DETERMINISTIC_ECDSA(PSA_ALG_SHA_256)", 142a8e1175bSopenharmony_ci "PSA_ALG_DETERMINISTIC_ECDSA(PSA_ALG_SHA_384)"], 143a8e1175bSopenharmony_ci "key_types": ["PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_SECP_R1)"], 144a8e1175bSopenharmony_ci "key_sizes": [256, 384] 145a8e1175bSopenharmony_ci} 146a8e1175bSopenharmony_ci``` 147a8e1175bSopenharmony_ci 148a8e1175bSopenharmony_ci### Algorithm and key specifications 149a8e1175bSopenharmony_ci 150a8e1175bSopenharmony_ci#### Algorithm specifications 151a8e1175bSopenharmony_ci 152a8e1175bSopenharmony_ciAn algorithm specification is a string consisting of a `PSA_ALG_xxx` macro that specifies a cryptographic algorithm or an algorithm wildcard policy defined by the PSA Cryptography API. If the macro takes arguments, the string must have the syntax of a C macro call and each argument must be an algorithm specification or a decimal or hexadecimal literal with no suffix, depending on the expected type of argument. 153a8e1175bSopenharmony_ci 154a8e1175bSopenharmony_ciSpaces are optional after commas. Whether other whitespace is permitted is implementation-specific. 155a8e1175bSopenharmony_ci 156a8e1175bSopenharmony_ciValid examples: 157a8e1175bSopenharmony_ci``` 158a8e1175bSopenharmony_ciPSA_ALG_SHA_256 159a8e1175bSopenharmony_ciPSA_ALG_HMAC(PSA_ALG_SHA_256) 160a8e1175bSopenharmony_ciPSA_ALG_KEY_AGREEMENT(PSA_ALG_ECDH, PSA_ALG_HKDF(PSA_ALG_SHA_256)) 161a8e1175bSopenharmony_ciPSA_ALG_RSA_PSS(PSA_ALG_ANY_HASH) 162a8e1175bSopenharmony_ci``` 163a8e1175bSopenharmony_ci 164a8e1175bSopenharmony_ci#### Key type specifications 165a8e1175bSopenharmony_ci 166a8e1175bSopenharmony_ciAn algorithm specification is a string consisting of a `PSA_KEY_TYPE_xxx` macro that specifies a key type defined by the PSA Cryptography API. If the macro takes an argument, the string must have the syntax of a C macro call and each argument must be the name of a constant of suitable type (curve or group). 167a8e1175bSopenharmony_ci 168a8e1175bSopenharmony_ciThe name `_` may be used instead of a curve or group to indicate that the capability concerns all curves or groups. 169a8e1175bSopenharmony_ci 170a8e1175bSopenharmony_ciValid examples: 171a8e1175bSopenharmony_ci``` 172a8e1175bSopenharmony_ciPSA_KEY_TYPE_AES 173a8e1175bSopenharmony_ciPSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_SECP_R1) 174a8e1175bSopenharmony_ciPSA_KEY_TYPE_ECC_KEY_PAIR(_) 175a8e1175bSopenharmony_ci``` 176a8e1175bSopenharmony_ci 177a8e1175bSopenharmony_ci### Driver entry points 178a8e1175bSopenharmony_ci 179a8e1175bSopenharmony_ci#### Overview of driver entry points 180a8e1175bSopenharmony_ci 181a8e1175bSopenharmony_ciDrivers define functions, each of which implements an aspect of a capability of a driver, such as a cryptographic operation, a part of a cryptographic operation, or a key management action. These functions are called the **entry points** of the driver. Most driver entry points correspond to a particular function in the PSA Cryptography API. For example, if a call to `psa_sign_hash()` is dispatched to a driver, it invokes the driver's `sign_hash` function. 182a8e1175bSopenharmony_ci 183a8e1175bSopenharmony_ciAll driver entry points return a status of type `psa_status_t` which should use the status codes documented for PSA services in general and for PSA Cryptography in particular: `PSA_SUCCESS` indicates that the function succeeded, and `PSA_ERROR_xxx` values indicate that an error occurred. 184a8e1175bSopenharmony_ci 185a8e1175bSopenharmony_ciThe signature of a driver entry point generally looks like the signature of the PSA Cryptography API that it implements, with some modifications. This section gives an overview of modifications that apply to whole classes of entry points. Refer to the reference section for each entry point or entry point family for details. 186a8e1175bSopenharmony_ci 187a8e1175bSopenharmony_ci* For entry points that operate on an existing key, the `psa_key_id_t` parameter is replaced by a sequence of three parameters that describe the key: 188a8e1175bSopenharmony_ci 1. `const psa_key_attributes_t *attributes`: the key attributes. 189a8e1175bSopenharmony_ci 2. `const uint8_t *key_buffer`: a key material or key context buffer. 190a8e1175bSopenharmony_ci 3. `size_t key_buffer_size`: the size of the key buffer in bytes. 191a8e1175bSopenharmony_ci 192a8e1175bSopenharmony_ci For transparent drivers, the key buffer contains the key material, in the same format as defined for `psa_export_key()` and `psa_export_public_key()` in the PSA Cryptography API. For opaque drivers, the content of the key buffer is entirely up to the driver. 193a8e1175bSopenharmony_ci 194a8e1175bSopenharmony_ci* For entry points that involve a multi-part operation, the operation state type (`psa_XXX_operation_t`) is replaced by a driver-specific operation state type (*prefix*`_XXX_operation_t`). 195a8e1175bSopenharmony_ci 196a8e1175bSopenharmony_ci* For entry points that are involved in key creation, the `psa_key_id_t *` output parameter is replaced by a sequence of parameters that convey the key context: 197a8e1175bSopenharmony_ci 1. `uint8_t *key_buffer`: a buffer for the key material or key context. 198a8e1175bSopenharmony_ci 2. `size_t key_buffer_size`: the size of the key buffer in bytes. 199a8e1175bSopenharmony_ci 2. `size_t *key_buffer_length`: the length of the data written to the key buffer in bytes. 200a8e1175bSopenharmony_ci 201a8e1175bSopenharmony_ciSome entry points are grouped in families that must be implemented as a whole. If a driver supports an entry point family, it must provide all the entry points in the family. 202a8e1175bSopenharmony_ci 203a8e1175bSopenharmony_ciDrivers can also have entry points related to random generation. A transparent driver can provide a [random generation interface](#random-generation-entry-points). Separately, transparent and opaque drivers can have [entropy collection entry points](#entropy-collection-entry-point). 204a8e1175bSopenharmony_ci 205a8e1175bSopenharmony_ci#### General considerations on driver entry point parameters 206a8e1175bSopenharmony_ci 207a8e1175bSopenharmony_ciBuffer parameters for driver entry points obey the following conventions: 208a8e1175bSopenharmony_ci 209a8e1175bSopenharmony_ci* An input buffer has the type `const uint8_t *` and is immediately followed by a parameter of type `size_t` that indicates the buffer size. 210a8e1175bSopenharmony_ci* An output buffer has the type `uint8_t *` and is immediately followed by a parameter of type `size_t` that indicates the buffer size. A third parameter of type `size_t *` is provided to report the actual length of the data written in the buffer if the function succeeds. 211a8e1175bSopenharmony_ci* An in-out buffer has the type `uint8_t *` and is immediately followed by a parameter of type `size_t` that indicates the buffer size. In-out buffers are only used when the input and the output have the same length. 212a8e1175bSopenharmony_ci 213a8e1175bSopenharmony_ciBuffers of size 0 may be represented with either a null pointer or a non-null pointer. 214a8e1175bSopenharmony_ci 215a8e1175bSopenharmony_ciInput buffers and other input-only parameters (`const` pointers) may be in read-only memory. Overlap is possible between input buffers, and between an input buffer and an output buffer, but not between two output buffers or between a non-buffer parameter and another parameter. 216a8e1175bSopenharmony_ci 217a8e1175bSopenharmony_ci#### Driver entry points for single-part cryptographic operations 218a8e1175bSopenharmony_ci 219a8e1175bSopenharmony_ciThe following driver entry points perform a cryptographic operation in one shot (single-part operation): 220a8e1175bSopenharmony_ci 221a8e1175bSopenharmony_ci* `"hash_compute"` (transparent drivers only): calculation of a hash. Called by `psa_hash_compute()` and `psa_hash_compare()`. To verify a hash with `psa_hash_compare()`, the core calls the driver's `"hash_compute"` entry point and compares the result with the reference hash value. 222a8e1175bSopenharmony_ci* `"mac_compute"`: calculation of a MAC. Called by `psa_mac_compute()` and possibly `psa_mac_verify()`. To verify a mac with `psa_mac_verify()`, the core calls an applicable driver's `"mac_verify"` entry point if there is one, otherwise the core calls an applicable driver's `"mac_compute"` entry point and compares the result with the reference MAC value. 223a8e1175bSopenharmony_ci* `"mac_verify"`: verification of a MAC. Called by `psa_mac_verify()`. This entry point is mainly useful for drivers of secure elements that verify a MAC without revealing the correct MAC. Although transparent drivers may implement this entry point in addition to `"mac_compute"`, it is generally not useful because the core can call the `"mac_compute"` entry point and compare with the expected MAC value. 224a8e1175bSopenharmony_ci* `"cipher_encrypt"`: unauthenticated symmetric cipher encryption. Called by `psa_cipher_encrypt()`. 225a8e1175bSopenharmony_ci* `"cipher_decrypt"`: unauthenticated symmetric cipher decryption. Called by `psa_cipher_decrypt()`. 226a8e1175bSopenharmony_ci* `"aead_encrypt"`: authenticated encryption with associated data. Called by `psa_aead_encrypt()`. 227a8e1175bSopenharmony_ci* `"aead_decrypt"`: authenticated decryption with associated data. Called by `psa_aead_decrypt()`. 228a8e1175bSopenharmony_ci* `"asymmetric_encrypt"`: asymmetric encryption. Called by `psa_asymmetric_encrypt()`. 229a8e1175bSopenharmony_ci* `"asymmetric_decrypt"`: asymmetric decryption. Called by `psa_asymmetric_decrypt()`. 230a8e1175bSopenharmony_ci* `"sign_hash"`: signature of an already calculated hash. Called by `psa_sign_hash()` and possibly `psa_sign_message()`. To sign a message with `psa_sign_message()`, the core calls an applicable driver's `"sign_message"` entry point if there is one, otherwise the core calls an applicable driver's `"hash_compute"` entry point followed by an applicable driver's `"sign_hash"` entry point. 231a8e1175bSopenharmony_ci* `"verify_hash"`: verification of an already calculated hash. Called by `psa_verify_hash()` and possibly `psa_verify_message()`. To verify a message with `psa_verify_message()`, the core calls an applicable driver's `"verify_message"` entry point if there is one, otherwise the core calls an applicable driver's `"hash_compute"` entry point followed by an applicable driver's `"verify_hash"` entry point. 232a8e1175bSopenharmony_ci* `"sign_message"`: signature of a message. Called by `psa_sign_message()`. 233a8e1175bSopenharmony_ci* `"verify_message"`: verification of a message. Called by `psa_verify_message()`. 234a8e1175bSopenharmony_ci* `"key_agreement"`: key agreement without a subsequent key derivation. Called by `psa_raw_key_agreement()` and possibly `psa_key_derivation_key_agreement()`. 235a8e1175bSopenharmony_ci 236a8e1175bSopenharmony_ci### Driver entry points for multi-part operations 237a8e1175bSopenharmony_ci 238a8e1175bSopenharmony_ci#### General considerations on multi-part operations 239a8e1175bSopenharmony_ci 240a8e1175bSopenharmony_ciThe entry points that implement each step of a multi-part operation are grouped into a family. A driver that implements a multi-part operation must define all of the entry points in this family as well as a type that represents the operation context. The lifecycle of a driver operation context is similar to the lifecycle of an API operation context: 241a8e1175bSopenharmony_ci 242a8e1175bSopenharmony_ci1. The core initializes operation context objects to either all-bits-zero or to logical zero (`{0}`), at its discretion. 243a8e1175bSopenharmony_ci1. The core calls the `xxx_setup` entry point for this operation family. If this fails, the core destroys the operation context object without calling any other driver entry point on it. 244a8e1175bSopenharmony_ci1. The core calls other entry points that manipulate the operation context object, respecting the constraints. 245a8e1175bSopenharmony_ci1. If any entry point fails, the core calls the driver's `xxx_abort` entry point for this operation family, then destroys the operation context object without calling any other driver entry point on it. 246a8e1175bSopenharmony_ci1. If a “finish” entry point fails, the core destroys the operation context object without calling any other driver entry point on it. The finish entry points are: *prefix*`_mac_sign_finish`, *prefix*`_mac_verify_finish`, *prefix*`_cipher_finish`, *prefix*`_aead_finish`, *prefix*`_aead_verify`. 247a8e1175bSopenharmony_ci 248a8e1175bSopenharmony_ciIf a driver implements a multi-part operation but not the corresponding single-part operation, the core calls the driver's multipart operation entry points to perform the single-part operation. 249a8e1175bSopenharmony_ci 250a8e1175bSopenharmony_ci#### Multi-part operation entry point family `"hash_multipart"` 251a8e1175bSopenharmony_ci 252a8e1175bSopenharmony_ciThis family corresponds to the calculation of a hash in multiple steps. 253a8e1175bSopenharmony_ci 254a8e1175bSopenharmony_ciThis family applies to transparent drivers only. 255a8e1175bSopenharmony_ci 256a8e1175bSopenharmony_ciThis family requires the following type and entry points: 257a8e1175bSopenharmony_ci 258a8e1175bSopenharmony_ci* Type `"hash_operation_t"`: the type of a hash operation context. It must be possible to copy a hash operation context byte by byte, therefore hash operation contexts must not contain any embedded pointers (except pointers to global data that do not change after the setup step). 259a8e1175bSopenharmony_ci* `"hash_setup"`: called by `psa_hash_setup()`. 260a8e1175bSopenharmony_ci* `"hash_update"`: called by `psa_hash_update()`. 261a8e1175bSopenharmony_ci* `"hash_finish"`: called by `psa_hash_finish()` and `psa_hash_verify()`. 262a8e1175bSopenharmony_ci* `"hash_abort"`: called by all multi-part hash functions of the PSA Cryptography API. 263a8e1175bSopenharmony_ci 264a8e1175bSopenharmony_ciTo verify a hash with `psa_hash_verify()`, the core calls the driver's *prefix*`_hash_finish` entry point and compares the result with the reference hash value. 265a8e1175bSopenharmony_ci 266a8e1175bSopenharmony_ciFor example, a driver with the prefix `"acme"` that implements the `"hash_multipart"` entry point family must define the following type and entry points (assuming that the capability does not use the `"names"` property to declare different type and entry point names): 267a8e1175bSopenharmony_ci 268a8e1175bSopenharmony_ci``` 269a8e1175bSopenharmony_citypedef ... acme_hash_operation_t; 270a8e1175bSopenharmony_cipsa_status_t acme_hash_setup(acme_hash_operation_t *operation, 271a8e1175bSopenharmony_ci psa_algorithm_t alg); 272a8e1175bSopenharmony_cipsa_status_t acme_hash_update(acme_hash_operation_t *operation, 273a8e1175bSopenharmony_ci const uint8_t *input, 274a8e1175bSopenharmony_ci size_t input_length); 275a8e1175bSopenharmony_cipsa_status_t acme_hash_finish(acme_hash_operation_t *operation, 276a8e1175bSopenharmony_ci uint8_t *hash, 277a8e1175bSopenharmony_ci size_t hash_size, 278a8e1175bSopenharmony_ci size_t *hash_length); 279a8e1175bSopenharmony_cipsa_status_t acme_hash_abort(acme_hash_operation_t *operation); 280a8e1175bSopenharmony_ci``` 281a8e1175bSopenharmony_ci 282a8e1175bSopenharmony_ci#### Operation family `"mac_multipart"` 283a8e1175bSopenharmony_ci 284a8e1175bSopenharmony_ciTODO 285a8e1175bSopenharmony_ci 286a8e1175bSopenharmony_ci#### Operation family `"mac_verify_multipart"` 287a8e1175bSopenharmony_ci 288a8e1175bSopenharmony_ciTODO 289a8e1175bSopenharmony_ci 290a8e1175bSopenharmony_ci#### Operation family `"cipher_encrypt_multipart"` 291a8e1175bSopenharmony_ci 292a8e1175bSopenharmony_ciTODO 293a8e1175bSopenharmony_ci 294a8e1175bSopenharmony_ci#### Operation family `"cipher_decrypt_multipart"` 295a8e1175bSopenharmony_ci 296a8e1175bSopenharmony_ciTODO 297a8e1175bSopenharmony_ci 298a8e1175bSopenharmony_ci#### Operation family `"aead_encrypt_multipart"` 299a8e1175bSopenharmony_ci 300a8e1175bSopenharmony_ciTODO 301a8e1175bSopenharmony_ci 302a8e1175bSopenharmony_ci#### Operation family `"aead_decrypt_multipart"` 303a8e1175bSopenharmony_ci 304a8e1175bSopenharmony_ciTODO 305a8e1175bSopenharmony_ci 306a8e1175bSopenharmony_ci### Driver entry points for key derivation 307a8e1175bSopenharmony_ci 308a8e1175bSopenharmony_ciKey derivation is more complex than other multipart operations for several reasons: 309a8e1175bSopenharmony_ci 310a8e1175bSopenharmony_ci* There are multiple inputs and outputs. 311a8e1175bSopenharmony_ci* Multiple drivers can be involved. This happens when an operation combines a key agreement and a subsequent symmetric key derivation, each of which can have independent drivers. This also happens when deriving an asymmetric key, where processing the secret input and generating the key output might involve different drivers. 312a8e1175bSopenharmony_ci* When multiple drivers are involved, they are not always independent: if the secret input is managed by an opaque driver, it might not allow the core to retrieve the intermediate output and pass it to another driver. 313a8e1175bSopenharmony_ci* The involvement of an opaque driver cannot be determined as soon as the operation is set up (since `psa_key_derivation_setup()` does not determine the key input). 314a8e1175bSopenharmony_ci 315a8e1175bSopenharmony_ci#### Key derivation driver dispatch logic 316a8e1175bSopenharmony_ci 317a8e1175bSopenharmony_ciThe core decides whether to dispatch a key derivation operation to a driver based on the location associated with the input step `PSA_KEY_DERIVATION_INPUT_SECRET`. 318a8e1175bSopenharmony_ci 319a8e1175bSopenharmony_ci1. If this step is passed via `psa_key_derivation_input_key()` for a key in a secure element: 320a8e1175bSopenharmony_ci * If the driver for this secure element implements the `"key_derivation"` family for the specified algorithm, the core calls that driver's `"key_derivation_setup"` and subsequent entry points. 321a8e1175bSopenharmony_ci Note that for all currently specified algorithms, the key type for the secret input does not matter. 322a8e1175bSopenharmony_ci * Otherwise the core calls the secure element driver's [`"export_key"`](#key-management-with-opaque-drivers) entry point. 323a8e1175bSopenharmony_ci2. Otherwise ([or on fallback?](#fallback-for-key-derivation-in-opaque-drivers)), if there is a transparent driver for the specified algorithm, the core calls that driver's `"key_derivation_setup"` and subsequent entry points. 324a8e1175bSopenharmony_ci3. Otherwise, or on fallback, the core uses its built-in implementation. 325a8e1175bSopenharmony_ci 326a8e1175bSopenharmony_ci#### Summary of entry points for the operation family `"key_derivation"` 327a8e1175bSopenharmony_ci 328a8e1175bSopenharmony_ciA key derivation driver has the following entry points: 329a8e1175bSopenharmony_ci 330a8e1175bSopenharmony_ci* `"key_derivation_setup"` (mandatory): always the first entry point to be called. This entry point provides the [initial inputs](#key-derivation-driver-initial-inputs). See [“Key derivation driver setup”](#key-derivation-driver-setup). 331a8e1175bSopenharmony_ci* `"key_derivation_input_step"` (mandatory if the driver supports a key derivation algorithm with long inputs, otherwise ignored): provide an extra input for the key derivation. This entry point is only mandatory in drivers that support algorithms that have extra inputs. See [“Key derivation driver long inputs”](#key-derivation-driver-long-inputs). 332a8e1175bSopenharmony_ci* `"key_derivation_output_bytes"` (mandatory): derive cryptographic material and output it. See [“Key derivation driver outputs”](#key-derivation-driver-outputs). 333a8e1175bSopenharmony_ci* `"key_derivation_output_key"`, `"key_derivation_verify_bytes"`, `"key_derivation_verify_key"` (optional, opaque drivers only): derive key material which remains inside the same secure element. See [“Key derivation driver outputs”](#key-derivation-driver-outputs). 334a8e1175bSopenharmony_ci* `"key_derivation_set_capacity"` (mandatory for opaque drivers that implement `"key_derivation_output_key"` for “cooked”, i.e. non-raw-data key types; ignored for other opaque drivers; not permitted for transparent drivers): update the capacity policy on the operation. See [“Key derivation driver operation capacity”](#key-derivation-driver-operation-capacity). 335a8e1175bSopenharmony_ci* `"key_derivation_abort"` (mandatory): always the last entry point to be called. 336a8e1175bSopenharmony_ci 337a8e1175bSopenharmony_ciFor naming purposes, here and in the following subsection, this specification takes the example of a driver with the prefix `"acme"` that implements the `"key_derivation"` entry point family with a capability that does not use the `"names"` property to declare different type and entry point names. Such a driver must implement the following type and functions, as well as the entry points listed above and described in the following subsections: 338a8e1175bSopenharmony_ci``` 339a8e1175bSopenharmony_citypedef ... acme_key_derivation_operation_t; 340a8e1175bSopenharmony_cipsa_status_t acme_key_derivation_abort(acme_key_derivation_operation_t *operation); 341a8e1175bSopenharmony_ci``` 342a8e1175bSopenharmony_ci 343a8e1175bSopenharmony_ci#### Key derivation driver initial inputs 344a8e1175bSopenharmony_ci 345a8e1175bSopenharmony_ciThe core conveys the initial inputs for a key derivation via an opaque data structure of type `psa_crypto_driver_key_derivation_inputs_t`. 346a8e1175bSopenharmony_ci 347a8e1175bSopenharmony_ci``` 348a8e1175bSopenharmony_citypedef ... psa_crypto_driver_key_derivation_inputs_t; // implementation-specific type 349a8e1175bSopenharmony_ci``` 350a8e1175bSopenharmony_ci 351a8e1175bSopenharmony_ciA driver receiving an argument that points to a `psa_crypto_driver_key_derivation_inputs_t` can retrieve its contents by calling one of the type-specific functions below. To determine the correct function, the driver can call `psa_crypto_driver_key_derivation_get_input_type()`. 352a8e1175bSopenharmony_ci 353a8e1175bSopenharmony_ci``` 354a8e1175bSopenharmony_cienum psa_crypto_driver_key_derivation_input_type_t { 355a8e1175bSopenharmony_ci PSA_KEY_DERIVATION_INPUT_TYPE_INVALID = 0, 356a8e1175bSopenharmony_ci PSA_KEY_DERIVATION_INPUT_TYPE_OMITTED, 357a8e1175bSopenharmony_ci PSA_KEY_DERIVATION_INPUT_TYPE_BYTES, 358a8e1175bSopenharmony_ci PSA_KEY_DERIVATION_INPUT_TYPE_KEY, 359a8e1175bSopenharmony_ci PSA_KEY_DERIVATION_INPUT_TYPE_INTEGER, 360a8e1175bSopenharmony_ci // Implementations may add other values, and may freely choose the 361a8e1175bSopenharmony_ci // numerical values for each identifer except as explicitly specified 362a8e1175bSopenharmony_ci // above. 363a8e1175bSopenharmony_ci}; 364a8e1175bSopenharmony_cipsa_crypto_driver_key_derivation_input_type_t psa_crypto_driver_key_derivation_get_input_type( 365a8e1175bSopenharmony_ci const psa_crypto_driver_key_derivation_inputs_t *inputs, 366a8e1175bSopenharmony_ci psa_key_derivation_step_t step); 367a8e1175bSopenharmony_ci``` 368a8e1175bSopenharmony_ci 369a8e1175bSopenharmony_ciThe function `psa_crypto_driver_key_derivation_get_input_type()` determines whether a given step is present and how to access its value: 370a8e1175bSopenharmony_ci 371a8e1175bSopenharmony_ci* `PSA_KEY_DERIVATION_INPUT_TYPE_INVALID`: the step is invalid for the algorithm of the operation that the inputs are for. 372a8e1175bSopenharmony_ci* `PSA_KEY_DERIVATION_INPUT_TYPE_OMITTED`: the step is optional for the algorithm of the operation that the inputs are for, and has been omitted. 373a8e1175bSopenharmony_ci* `PSA_KEY_DERIVATION_INPUT_TYPE_BYTES`: the step is valid and present and is a transparent byte string. Call `psa_crypto_driver_key_derivation_get_input_size()` to obtain the size of the input data. Call `psa_crypto_driver_key_derivation_get_input_bytes()` to make a copy of the input data (design note: [why a copy?](#key-derivation-inputs-and-buffer-ownership)). 374a8e1175bSopenharmony_ci* `PSA_KEY_DERIVATION_INPUT_TYPE_KEY`: the step is valid and present and is a byte string passed via a key object. Call `psa_crypto_driver_key_derivation_get_input_key()` to obtain a pointer to the key context. 375a8e1175bSopenharmony_ci* `PSA_KEY_DERIVATION_INPUT_TYPE_INTEGER`: the step is valid and present and is an integer. Call `psa_crypto_driver_key_derivation_get_input_integer()` to retrieve the integer value. 376a8e1175bSopenharmony_ci 377a8e1175bSopenharmony_ci``` 378a8e1175bSopenharmony_cipsa_status_t psa_crypto_driver_key_derivation_get_input_size( 379a8e1175bSopenharmony_ci const psa_crypto_driver_key_derivation_inputs_t *inputs, 380a8e1175bSopenharmony_ci psa_key_derivation_step_t step, 381a8e1175bSopenharmony_ci size_t *size); 382a8e1175bSopenharmony_cipsa_status_t psa_crypto_driver_key_derivation_get_input_bytes( 383a8e1175bSopenharmony_ci const psa_crypto_driver_key_derivation_inputs_t *inputs, 384a8e1175bSopenharmony_ci psa_key_derivation_step_t step, 385a8e1175bSopenharmony_ci uint8_t *buffer, size_t buffer_size, size_t *buffer_length); 386a8e1175bSopenharmony_cipsa_status_t psa_crypto_driver_key_derivation_get_input_key( 387a8e1175bSopenharmony_ci const psa_crypto_driver_key_derivation_inputs_t *inputs, 388a8e1175bSopenharmony_ci psa_key_derivation_step_t step, 389a8e1175bSopenharmony_ci const psa_key_attributes_t *attributes, 390a8e1175bSopenharmony_ci uint8_t** p_key_buffer, size_t *key_buffer_size); 391a8e1175bSopenharmony_cipsa_status_t psa_crypto_driver_key_derivation_get_input_integer( 392a8e1175bSopenharmony_ci const psa_crypto_driver_key_derivation_inputs_t *inputs, 393a8e1175bSopenharmony_ci psa_key_derivation_step_t step, 394a8e1175bSopenharmony_ci uint64_t *value); 395a8e1175bSopenharmony_ci``` 396a8e1175bSopenharmony_ci 397a8e1175bSopenharmony_ciThe get-data functions take the following parameters: 398a8e1175bSopenharmony_ci 399a8e1175bSopenharmony_ci* The first parameter `inputs` must be a pointer passed by the core to a key derivation driver setup entry point which has not returned yet. 400a8e1175bSopenharmony_ci* The `step` parameter indicates the input step whose content the driver wants to retrieve. 401a8e1175bSopenharmony_ci* On a successful invocation of `psa_crypto_driver_key_derivation_get_input_size`, the core sets `*size` to the size of the specified input in bytes. 402a8e1175bSopenharmony_ci* On a successful invocation of `psa_crypto_driver_key_derivation_get_input_bytes`, the core fills the first *N* bytes of `buffer` with the specified input and sets `*buffer_length` to *N*, where *N* is the length of the input in bytes. The value of `buffer_size` must be at least *N*, otherwise this function fails with the status `PSA_ERROR_BUFFER_TOO_SMALL`. 403a8e1175bSopenharmony_ci* On a successful invocation of `psa_crypto_driver_key_derivation_get_input_key`, the core sets `*key_buffer` to a pointer to a buffer containing the key context and `*key_buffer_size` to the size of the key context in bytes. The key context buffer remains valid for the duration of the driver entry point. If the driver needs to access the key context after the current entry point returns, it must make a copy of the key context. 404a8e1175bSopenharmony_ci* On a successful invocation of `psa_crypto_driver_key_derivation_get_input_integer`, the core sets `*value` to the value of the specified input. 405a8e1175bSopenharmony_ci 406a8e1175bSopenharmony_ciThese functions can return the following statuses: 407a8e1175bSopenharmony_ci 408a8e1175bSopenharmony_ci* `PSA_SUCCESS`: the call succeeded and the requested value has been copied to the output parameter (`size`, `buffer`, `value` or `p_key_buffer`) and if applicable the size of the value has been written to the applicable parameter (`buffer_length`, `key_buffer_size`). 409a8e1175bSopenharmony_ci* `PSA_ERROR_DOES_NOT_EXIST`: the input step is valid for this particular algorithm, but it is not part of the initial inputs. This is not a fatal error. The driver will receive the input later as a [long input](#key-derivation-driver-long-inputs). 410a8e1175bSopenharmony_ci* `PSA_ERROR_INVALID_ARGUMENT`: the input type is not compatible with this function or was omitted. Call `psa_crypto_driver_key_derivation_get_input_type()` to find out the actual type of this input step. This is not a fatal error and the driver can, for example, subsequently call the appropriate function on the same step. 411a8e1175bSopenharmony_ci* `PSA_ERROR_BUFFER_TOO_SMALL` (`psa_crypto_driver_key_derivation_get_input_bytes` only): the output buffer is too small. This is not a fatal error and the driver can, for example, subsequently call the same function again with a larger buffer. Call `psa_crypto_driver_key_derivation_get_input_size` to obtain the required size. 412a8e1175bSopenharmony_ci* The core may return other errors such as `PSA_ERROR_CORRUPTION_DETECTED` or `PSA_ERROR_COMMUNICATION_FAILURE` to convey implementation-specific error conditions. Portable drivers should treat such conditions as fatal errors. 413a8e1175bSopenharmony_ci 414a8e1175bSopenharmony_ci#### Key derivation driver setup 415a8e1175bSopenharmony_ci 416a8e1175bSopenharmony_ciA key derivation driver must implement the following entry point: 417a8e1175bSopenharmony_ci``` 418a8e1175bSopenharmony_cipsa_status_t acme_key_derivation_setup( 419a8e1175bSopenharmony_ci acme_key_derivation_operation_t *operation, 420a8e1175bSopenharmony_ci psa_algorithm_t alg, 421a8e1175bSopenharmony_ci const psa_crypto_driver_key_derivation_inputs_t *inputs); 422a8e1175bSopenharmony_ci``` 423a8e1175bSopenharmony_ci 424a8e1175bSopenharmony_ci* `operation` is a zero-initialized operation object. 425a8e1175bSopenharmony_ci* `alg` is the algorithm for the key derivation operation. It does not include a key agreement component. 426a8e1175bSopenharmony_ci* `inputs` is an opaque pointer to the [initial inputs](#key-derivation-driver-initial-inputs) for the key derivation. 427a8e1175bSopenharmony_ci 428a8e1175bSopenharmony_ci#### Key derivation driver long inputs 429a8e1175bSopenharmony_ci 430a8e1175bSopenharmony_ciSome key derivation algorithms take long inputs which it would not be practical to pass in the [initial inputs](#key-derivation-driver-initial-inputs). A driver that implements a key derivation algorithm that takes such inputs must provide a `"key_derivation_input_step"` entry point. The core calls this entry point for all the long inputs after calling `"acme_key_derivation_setup"`. A long input step may be fragmented into multiple calls of `psa_key_derivation_input_bytes()`, and the core may reassemble or refragment those fragments before passing them to the driver. Calls to this entry point for different step values occur in an unspecified order and may be interspersed. 431a8e1175bSopenharmony_ci 432a8e1175bSopenharmony_ci``` 433a8e1175bSopenharmony_cipsa_status_t acme_key_derivation_input_step( 434a8e1175bSopenharmony_ci acme_key_derivation_operation_t *operation, 435a8e1175bSopenharmony_ci psa_key_derivation_step_t step, 436a8e1175bSopenharmony_ci const uint8_t *input, size_t input_length); 437a8e1175bSopenharmony_ci``` 438a8e1175bSopenharmony_ci 439a8e1175bSopenharmony_ciAt the time of writing, no standard key derivation algorithm has long inputs. It is likely that such algorithms will be added in the future. 440a8e1175bSopenharmony_ci 441a8e1175bSopenharmony_ci#### Key derivation driver operation capacity 442a8e1175bSopenharmony_ci 443a8e1175bSopenharmony_ciThe core keeps track of an operation's capacity and enforces it. The core guarantees that it will not request output beyond the capacity of the operation, with one exception: opaque drivers that support [`"key_derivation_output_key"`](#key-derivation-driver-outputs), i.e. for key types where the derived key material is not a direct copy of the key derivation's output stream. 444a8e1175bSopenharmony_ci 445a8e1175bSopenharmony_ciSuch drivers must enforce the capacity limitation and must return `PSA_ERROR_INSUFFICIENT_CAPACITY` from any output request that exceeds the operation's capacity. Such drivers must provide the following entry point: 446a8e1175bSopenharmony_ci``` 447a8e1175bSopenharmony_cipsa_status_t acme_key_derivation_set_capacity( 448a8e1175bSopenharmony_ci acme_key_derivation_operation_t *operation, 449a8e1175bSopenharmony_ci size_t capacity); 450a8e1175bSopenharmony_ci``` 451a8e1175bSopenharmony_ci`capacity` is guaranteed to be less or equal to any value previously set through this entry point, and is guaranteed not to be `PSA_KEY_DERIVATION_UNLIMITED_CAPACITY`. 452a8e1175bSopenharmony_ci 453a8e1175bSopenharmony_ciIf this entry point has not been called, the operation has an unlimited capacity. 454a8e1175bSopenharmony_ci 455a8e1175bSopenharmony_ci#### Key derivation driver outputs 456a8e1175bSopenharmony_ci 457a8e1175bSopenharmony_ciA key derivation driver must provide the following entry point: 458a8e1175bSopenharmony_ci``` 459a8e1175bSopenharmony_cipsa_status_t acme_key_derivation_output_bytes( 460a8e1175bSopenharmony_ci acme_key_derivation_operation_t *operation, 461a8e1175bSopenharmony_ci uint8_t *output, size_t length); 462a8e1175bSopenharmony_ci``` 463a8e1175bSopenharmony_ci 464a8e1175bSopenharmony_ciAn opaque key derivation driver may provide the following entry points: 465a8e1175bSopenharmony_ci``` 466a8e1175bSopenharmony_cipsa_status_t acme_key_derivation_output_key( 467a8e1175bSopenharmony_ci const psa_key_attributes_t *attributes, 468a8e1175bSopenharmony_ci acme_key_derivation_operation_t *operation, 469a8e1175bSopenharmony_ci uint8_t *key_buffer, size_t key_buffer_size, size_t *key_buffer_length); 470a8e1175bSopenharmony_cipsa_status_t acme_key_derivation_verify_bytes( 471a8e1175bSopenharmony_ci acme_key_derivation_operation_t *operation, 472a8e1175bSopenharmony_ci const uint8_t *expected output, size_t length); 473a8e1175bSopenharmony_cipsa_status_t acme_key_derivation_verify_key( 474a8e1175bSopenharmony_ci acme_key_derivation_operation_t *operation, 475a8e1175bSopenharmony_ci uint8_t *key_buffer, size_t key_buffer_size); 476a8e1175bSopenharmony_ci``` 477a8e1175bSopenharmony_ci 478a8e1175bSopenharmony_ciThe core calls a key derivation driver's output entry point when the application calls `psa_key_derivation_output_bytes()`, `psa_key_derivation_output_key()`, `psa_key_derivation_verify_bytes()` or `psa_key_derivation_verify_key()`. 479a8e1175bSopenharmony_ci 480a8e1175bSopenharmony_ciIf the key derivation's `PSA_KEY_DERIVATION_INPUT_SECRET` input is in a secure element and the derivation operation is handled by that secure element, the core performs the following steps: 481a8e1175bSopenharmony_ci 482a8e1175bSopenharmony_ci* For a call to `psa_key_derivation_output_key()`: 483a8e1175bSopenharmony_ci 484a8e1175bSopenharmony_ci 1. If the derived key is in the same secure element, if the driver has an `"key_derivation_output_key"` entry point, call that entry point. If the driver has no such entry point, or if that entry point returns `PSA_ERROR_NOT_SUPPORTED`, continue with the following steps, otherwise stop. 485a8e1175bSopenharmony_ci 1. If the driver's capabilities indicate that its `"import_key"` entry point does not support the derived key, stop and return `PSA_ERROR_NOT_SUPPORTED`. 486a8e1175bSopenharmony_ci 1. Otherwise proceed as for `psa_key_derivation_output_bytes()`, then import the resulting key material. 487a8e1175bSopenharmony_ci 488a8e1175bSopenharmony_ci* For a call to `psa_key_derivation_verify_key()`: 489a8e1175bSopenharmony_ci 1. If the driver has a `"key_derivation_verify_key"` entry point, call it and stop. 490a8e1175bSopenharmony_ci 1. Call the driver's `"export_key"` entry point on the key object that contains the expected value, then proceed as for `psa_key_derivation_verify_bytes()`. 491a8e1175bSopenharmony_ci 492a8e1175bSopenharmony_ci* For a call to `psa_key_derivation_verify_bytes()`: 493a8e1175bSopenharmony_ci 1. If the driver has a `"key_derivation_verify_bytes"` entry point, call that entry point on the expected output, then stop. 494a8e1175bSopenharmony_ci 1. Otherwise, proceed as for `psa_key_derivation_output_bytes()`, and compare the resulting output to the expected output inside the core. 495a8e1175bSopenharmony_ci 496a8e1175bSopenharmony_ci* For a call to `psa_key_derivation_output_bytes()`: 497a8e1175bSopenharmony_ci 1. Call the `"key_derivation_output_bytes"` entry point. The core may call this entry point multiple times to implement a single call from the application when deriving a cooked (non-raw) key as described below, or if the output size exceeds some implementation limit. 498a8e1175bSopenharmony_ci 499a8e1175bSopenharmony_ciIf the key derivation operation is not handled by an opaque driver as described above, the core calls the `"key_derivation_output_bytes"` from the applicable transparent driver (or multiple drivers in succession if fallback applies). In some cases, the core then calls additional entry points in the same or another driver: 500a8e1175bSopenharmony_ci 501a8e1175bSopenharmony_ci* For a call to `psa_key_derivation_output_key()` for some key types, the core calls a transparent driver's `"derive_key"` entry point. See [“Transparent cooked key derivation”](#transparent-cooked-key-derivation). 502a8e1175bSopenharmony_ci* For a call to `psa_key_derivation_output_key()` where the derived key is in a secure element, call that secure element driver's `"import_key"` entry point. 503a8e1175bSopenharmony_ci 504a8e1175bSopenharmony_ci#### Transparent cooked key derivation 505a8e1175bSopenharmony_ci 506a8e1175bSopenharmony_ciKey derivation is said to be *raw* for some key types, where the key material of a derived (8×*n*)-bit key consists of the next *n* bytes of output from the key derivation, and *cooked* otherwise. When deriving a raw key, the core only calls the driver's `"output_bytes"` entry point, except when deriving a key entirely inside a secure element as described in [“Key derivation driver outputs”](#key-derivation-driver-outputs). When deriving a cooked key, the core calls a transparent driver's `"derive_key"` entry point if available. 507a8e1175bSopenharmony_ci 508a8e1175bSopenharmony_ciA capability for cooked key derivation contains the following properties (this is not a subset of [the usual entry point properties](#capability-syntax)): 509a8e1175bSopenharmony_ci 510a8e1175bSopenharmony_ci* `"entry_points"` (mandatory, list of strings). Must be `["derive_key"]`. 511a8e1175bSopenharmony_ci* `"derived_types"` (mandatory, list of strings). Each element is a [key type specification](#key-type-specifications). This capability only applies when deriving a key of the specified type. 512a8e1175bSopenharmony_ci* `"derived_sizes"` (optional, list of integers). Each element is a size for the derived key, in bits. This capability only applies when deriving a key of the specified sizes. If absent, this capability applies to all sizes for the specified types. 513a8e1175bSopenharmony_ci* `"memory"` (optional, boolean). If present and true, the driver must define a type `"derive_key_memory_t"` and the core will allocate an object of that type as specified below. 514a8e1175bSopenharmony_ci* `"names"` (optional, object). A mapping from entry point names to C function and type names, as usual. 515a8e1175bSopenharmony_ci* `"fallback"` (optional, boolean). If present and true, the driver may return `PSA_ERROR_NOT_SUPPORTED` if it only partially supports the specified mechanism, as usual. 516a8e1175bSopenharmony_ci 517a8e1175bSopenharmony_ciA transparent driver with the prefix `"acme"` that implements cooked key derivation must provide the following type and function: 518a8e1175bSopenharmony_ci 519a8e1175bSopenharmony_ci``` 520a8e1175bSopenharmony_citypedef ... acme_derive_key_memory_t; // only if the "memory" property is true 521a8e1175bSopenharmony_cipsa_status_t acme_derive_key( 522a8e1175bSopenharmony_ci const psa_key_attributes_t *attributes, 523a8e1175bSopenharmony_ci const uint8_t *input, size_t input_length, 524a8e1175bSopenharmony_ci acme_derive_key_memory_t *memory, // if the "memory" property is false: void* 525a8e1175bSopenharmony_ci uint8_t *key_buffer, size_t key_buffer_size, size_t *key_buffer_length); 526a8e1175bSopenharmony_ci``` 527a8e1175bSopenharmony_ci 528a8e1175bSopenharmony_ci* `attributes` contains the attributes of the specified key. Note that only the key type and the bit-size are guaranteed to be set. 529a8e1175bSopenharmony_ci* `input` is a buffer of `input_length` bytes which contains the raw key stream, i.e. the data that `psa_key_derivation_output_bytes()` would return. 530a8e1175bSopenharmony_ci* If `"memory"` property in the driver capability is true, `memory` is a data structure that the driver may use to store data between successive calls of the `"derive_key"` entry point to derive the same key. If the `"memory"` property is false or absent, the `memory` parameter is a null pointer. 531a8e1175bSopenharmony_ci* `key_buffer` is a buffer for the output material, in the appropriate [export format](#key-format-for-transparent-drivers) for the key type. Its size is `key_buffer_size` bytes. 532a8e1175bSopenharmony_ci* On success, `*key_buffer_length` must contain the number of bytes written to `key_buffer`. 533a8e1175bSopenharmony_ci 534a8e1175bSopenharmony_ciThis entry point may return the following statuses: 535a8e1175bSopenharmony_ci 536a8e1175bSopenharmony_ci* `PSA_SUCCESS`: a key was derived successfully. The driver has placed the representation of the key in `key_buffer`. 537a8e1175bSopenharmony_ci* `PSA_ERROR_NOT_SUPPORTED` (for the first call only) (only if fallback is enabled): the driver cannot fulfill this request, but a fallback driver might. 538a8e1175bSopenharmony_ci* `PSA_ERROR_INSUFFICIENT_DATA`: the core must call the `"derive_key"` entry point again with the same `memory` object and with subsequent data from the key stream. 539a8e1175bSopenharmony_ci* Any other error is a fatal error. 540a8e1175bSopenharmony_ci 541a8e1175bSopenharmony_ciThe core calls the `"derive_key"` entry point in a loop until it returns a status other than `PSA_ERROR_INSUFFICIENT_DATA`. Each call has a successive fragment of the key stream. The `memory` object is guaranteed to be the same for successive calls, but note that its address may change between calls. Before the first call, `*memory` is initialized to all-bits-zero. 542a8e1175bSopenharmony_ci 543a8e1175bSopenharmony_ciFor standard key types, the `"derive_key"` entry point is called with a certain input length as follows: 544a8e1175bSopenharmony_ci 545a8e1175bSopenharmony_ci* `PSA_KEY_TYPE_DES`: the length of the key. 546a8e1175bSopenharmony_ci* `PSA_KEY_TYPE_ECC_KEY_PAIR(…)`, `PSA_KEY_TYPE_DH_KEY_PAIR(…)`: $m$ bytes, where the bit-size of the key $n$ satisfies $8 (m-1) < n \le 8 m$. 547a8e1175bSopenharmony_ci* `PSA_KEY_TYPE_RSA_KEY_PAIR`: an implementation-defined length. A future version of this specification may specify a length. 548a8e1175bSopenharmony_ci* Other key types: not applicable. 549a8e1175bSopenharmony_ci 550a8e1175bSopenharmony_ciSee [“Open questions around cooked key derivation”](#open-questions-around-cooked-key-derivation) for some points that may not be fully settled. 551a8e1175bSopenharmony_ci 552a8e1175bSopenharmony_ci#### Key agreement 553a8e1175bSopenharmony_ci 554a8e1175bSopenharmony_ciThe core always decouples key agreement from symmetric key derivation. 555a8e1175bSopenharmony_ci 556a8e1175bSopenharmony_ciTo implement a call to `psa_key_derivation_key_agreement()` where the private key is in a secure element that has a `"key_agreement_to_key"` entry point which is applicable for the given key type and algorithm, the core calls the secure element driver as follows: 557a8e1175bSopenharmony_ci 558a8e1175bSopenharmony_ci1. Call the `"key_agreement_to_key"` entry point to create a key object containing the shared secret. The key object is volatile and has the type `PSA_KEY_TYPE_DERIVE`. 559a8e1175bSopenharmony_ci2. Call the `"key_derivation_setup"` entry point, passing the resulting key object . 560a8e1175bSopenharmony_ci3. Perform the rest of the key derivation, up to and including the call to the `"key_derivation_abort"` entry point. 561a8e1175bSopenharmony_ci4. Call the `"destroy_key"` entry point to destroy the key containing the key object. 562a8e1175bSopenharmony_ci 563a8e1175bSopenharmony_ciIn other cases, the core treats `psa_key_derivation_key_agreement()` as if it was a call to `psa_raw_key_agreement()` followed by a call to `psa_key_derivation_input_bytes()` on the shared secret. 564a8e1175bSopenharmony_ci 565a8e1175bSopenharmony_ciThe entry points related to key agreement have the following prototypes for a driver with the prefix `"acme"`: 566a8e1175bSopenharmony_ci``` 567a8e1175bSopenharmony_cipsa_status_t acme_key_agreement(psa_algorithm_t alg, 568a8e1175bSopenharmony_ci const psa_key_attributes_t *our_attributes, 569a8e1175bSopenharmony_ci const uint8_t *our_key_buffer, 570a8e1175bSopenharmony_ci size_t our_key_buffer_length, 571a8e1175bSopenharmony_ci const uint8_t *peer_key, 572a8e1175bSopenharmony_ci size_t peer_key_length, 573a8e1175bSopenharmony_ci uint8_t *output, 574a8e1175bSopenharmony_ci size_t output_size, 575a8e1175bSopenharmony_ci size_t *output_length); 576a8e1175bSopenharmony_cipsa_status_t acme_key_agreement_to_key(psa_algorithm_t alg, 577a8e1175bSopenharmony_ci const psa_key_attributes_t *our_attributes, 578a8e1175bSopenharmony_ci const uint8_t *our_key_buffer, 579a8e1175bSopenharmony_ci size_t our_key_buffer_length, 580a8e1175bSopenharmony_ci const uint8_t *peer_key, 581a8e1175bSopenharmony_ci size_t peer_key_length, 582a8e1175bSopenharmony_ci const psa_key_attributes_t *shared_secret_attributes, 583a8e1175bSopenharmony_ci uint8_t *shared_secret_key_buffer, 584a8e1175bSopenharmony_ci size_t shared_secret_key_buffer_size, 585a8e1175bSopenharmony_ci size_t *shared_secret_key_buffer_length); 586a8e1175bSopenharmony_ci``` 587a8e1175bSopenharmony_ci 588a8e1175bSopenharmony_ciNote that unlike most other key creation entry points, in `"acme_key_agreement_to_key"`, the attributes for the shared secret are not placed near the beginning, but rather grouped with the other parameters related to the shared secret at the end of the parameter list. This is to avoid potential confusion with the attributes of the private key that is passed as an input. 589a8e1175bSopenharmony_ci 590a8e1175bSopenharmony_ci### Driver entry points for PAKE 591a8e1175bSopenharmony_ci 592a8e1175bSopenharmony_ciA PAKE operation is divided into two stages: collecting inputs and computation. Core side is responsible for keeping inputs and core set-data functions do not have driver entry points. Collected inputs are available for drivers via get-data functions for `password`, `role` and `cipher_suite`. 593a8e1175bSopenharmony_ci 594a8e1175bSopenharmony_ci### PAKE driver dispatch logic 595a8e1175bSopenharmony_ciThe core decides whether to dispatch a PAKE operation to a driver based on the location of the provided password. 596a8e1175bSopenharmony_ciWhen all inputs are collected and `"psa_pake_output"` or `"psa_pake_input"` is called for the first time `"pake_setup"` driver entry point is invoked. 597a8e1175bSopenharmony_ci 598a8e1175bSopenharmony_ci1. If the location of the `password` is the local storage 599a8e1175bSopenharmony_ci- if there is a transparent driver for the specified ciphersuite, the core calls that driver's `"pake_setup"` and subsequent entry points. 600a8e1175bSopenharmony_ci- otherwise, or on fallback, the core uses its built-in implementation. 601a8e1175bSopenharmony_ci2. If the location of the `password` is the location of a secure element 602a8e1175bSopenharmony_ci- the core calls the `"pake_setup"` entry point of the secure element driver and subsequent entry points. 603a8e1175bSopenharmony_ci 604a8e1175bSopenharmony_ci### Summary of entry points for PAKE 605a8e1175bSopenharmony_ci 606a8e1175bSopenharmony_ciA PAKE driver has the following entry points: 607a8e1175bSopenharmony_ci* `"pake_setup"` (mandatory): always the first entry point to be called. It is called when all inputs are collected and the computation stage starts. 608a8e1175bSopenharmony_ci* `"pake_output"` (mandatory): derive cryptographic material for the specified step and output it. 609a8e1175bSopenharmony_ci* `"pake_input"` (mandatory): provides cryptographic material in the format appropriate for the specified step. 610a8e1175bSopenharmony_ci* `"pake_get_implicit_key"` (mandatory): returns implicitly confirmed shared secret from a PAKE. 611a8e1175bSopenharmony_ci* `"pake_abort"` (mandatory): always the last entry point to be called. 612a8e1175bSopenharmony_ci 613a8e1175bSopenharmony_ciFor naming purposes, here and in the following subsection, this specification takes the example of a driver with the prefix `"acme"` that implements the PAKE entry point family with a capability that does not use the `"names"` property to declare different type and entry point names. Such a driver must implement the following type and functions, as well as the entry points listed above and described in the following subsections: 614a8e1175bSopenharmony_ci``` 615a8e1175bSopenharmony_citypedef ... acme_pake_operation_t; 616a8e1175bSopenharmony_cipsa_status_t acme_pake_abort( acme_pake_operation_t *operation ); 617a8e1175bSopenharmony_ci``` 618a8e1175bSopenharmony_ci 619a8e1175bSopenharmony_ci#### PAKE driver inputs 620a8e1175bSopenharmony_ci 621a8e1175bSopenharmony_ciThe core conveys the initial inputs for a PAKE operation via an opaque data structure of type `psa_crypto_driver_pake_inputs_t`. 622a8e1175bSopenharmony_ci 623a8e1175bSopenharmony_ci``` 624a8e1175bSopenharmony_citypedef ... psa_crypto_driver_pake_inputs_t; // implementation-specific type 625a8e1175bSopenharmony_ci``` 626a8e1175bSopenharmony_ci 627a8e1175bSopenharmony_ciA driver receiving an argument that points to a `psa_crypto_driver_pake_inputs_t` can retrieve its contents by calling one of the get-data functions below. 628a8e1175bSopenharmony_ci 629a8e1175bSopenharmony_ci``` 630a8e1175bSopenharmony_cipsa_status_t psa_crypto_driver_pake_get_password_len( 631a8e1175bSopenharmony_ci const psa_crypto_driver_pake_inputs_t *inputs, 632a8e1175bSopenharmony_ci size_t *password_len); 633a8e1175bSopenharmony_ci 634a8e1175bSopenharmony_cipsa_status_t psa_crypto_driver_pake_get_password_bytes( 635a8e1175bSopenharmony_ci const psa_crypto_driver_pake_inputs_t *inputs, 636a8e1175bSopenharmony_ci uint8_t *buffer, size_t buffer_size, size_t *buffer_length); 637a8e1175bSopenharmony_ci 638a8e1175bSopenharmony_cipsa_status_t psa_crypto_driver_pake_get_password_key( 639a8e1175bSopenharmony_ci const psa_crypto_driver_pake_inputs_t *inputs, 640a8e1175bSopenharmony_ci uint8_t** p_key_buffer, size_t *key_buffer_size, 641a8e1175bSopenharmony_ci const psa_key_attributes_t *attributes); 642a8e1175bSopenharmony_ci 643a8e1175bSopenharmony_cipsa_status_t psa_crypto_driver_pake_get_user_len( 644a8e1175bSopenharmony_ci const psa_crypto_driver_pake_inputs_t *inputs, 645a8e1175bSopenharmony_ci size_t *user_len); 646a8e1175bSopenharmony_ci 647a8e1175bSopenharmony_cipsa_status_t psa_crypto_driver_pake_get_user( 648a8e1175bSopenharmony_ci const psa_crypto_driver_pake_inputs_t *inputs, 649a8e1175bSopenharmony_ci uint8_t *user_id, size_t user_id_size, size_t *user_id_len); 650a8e1175bSopenharmony_ci 651a8e1175bSopenharmony_cipsa_status_t psa_crypto_driver_pake_get_peer_len( 652a8e1175bSopenharmony_ci const psa_crypto_driver_pake_inputs_t *inputs, 653a8e1175bSopenharmony_ci size_t *peer_len); 654a8e1175bSopenharmony_ci 655a8e1175bSopenharmony_cipsa_status_t psa_crypto_driver_pake_get_peer( 656a8e1175bSopenharmony_ci const psa_crypto_driver_pake_inputs_t *inputs, 657a8e1175bSopenharmony_ci uint8_t *peer_id, size_t peer_id_size, size_t *peer_id_length); 658a8e1175bSopenharmony_ci 659a8e1175bSopenharmony_cipsa_status_t psa_crypto_driver_pake_get_cipher_suite( 660a8e1175bSopenharmony_ci const psa_crypto_driver_pake_inputs_t *inputs, 661a8e1175bSopenharmony_ci psa_pake_cipher_suite_t *cipher_suite); 662a8e1175bSopenharmony_ci``` 663a8e1175bSopenharmony_ciThe get-data functions take the following parameters: 664a8e1175bSopenharmony_ci 665a8e1175bSopenharmony_ciThe first parameter `inputs` must be a pointer passed by the core to a PAKE driver setup entry point. 666a8e1175bSopenharmony_ciNext parameters are return buffers (must not be null pointers). 667a8e1175bSopenharmony_ci 668a8e1175bSopenharmony_ciThese functions can return the following statuses: 669a8e1175bSopenharmony_ci* `PSA_SUCCESS`: value has been successfully obtained 670a8e1175bSopenharmony_ci* `PSA_ERROR_BAD_STATE`: the inputs are not ready 671a8e1175bSopenharmony_ci* `PSA_ERROR_BUFFER_TOO_SMALL` (`psa_crypto_driver_pake_get_password_bytes` and `psa_crypto_driver_pake_get_password_key` only): the output buffer is too small. This is not a fatal error and the driver can, for example, subsequently call the same function again with a larger buffer. Call `psa_crypto_driver_pake_get_password_len` to obtain the required size. 672a8e1175bSopenharmony_ci 673a8e1175bSopenharmony_ci#### PAKE driver setup 674a8e1175bSopenharmony_ci 675a8e1175bSopenharmony_ci``` 676a8e1175bSopenharmony_cipsa_status_t acme_pake_setup( acme_pake_operation_t *operation, 677a8e1175bSopenharmony_ci const psa_crypto_driver_pake_inputs_t *inputs ); 678a8e1175bSopenharmony_ci``` 679a8e1175bSopenharmony_ci 680a8e1175bSopenharmony_ci* `operation` is a zero-initialized operation object. 681a8e1175bSopenharmony_ci* `inputs` is an opaque pointer to the [inputs](#pake-driver-inputs) for the PAKE operation. 682a8e1175bSopenharmony_ci 683a8e1175bSopenharmony_ciThe setup driver function should preserve the inputs using get-data functions. 684a8e1175bSopenharmony_ci 685a8e1175bSopenharmony_ciThe pointer output by `psa_crypto_driver_pake_get_password_key` is only valid until the "pake_setup" entry point returns. Opaque drivers must copy all relevant data from the key buffer during the "pake_setup" entry point and must not store the pointer itself. 686a8e1175bSopenharmony_ci 687a8e1175bSopenharmony_ci#### PAKE driver output 688a8e1175bSopenharmony_ci 689a8e1175bSopenharmony_ci``` 690a8e1175bSopenharmony_cipsa_status_t acme_pake_output(acme_pake_operation_t *operation, 691a8e1175bSopenharmony_ci psa_crypto_driver_pake_step_t step, 692a8e1175bSopenharmony_ci uint8_t *output, 693a8e1175bSopenharmony_ci size_t output_size, 694a8e1175bSopenharmony_ci size_t *output_length); 695a8e1175bSopenharmony_ci``` 696a8e1175bSopenharmony_ci 697a8e1175bSopenharmony_ci* `operation` is an operation object. 698a8e1175bSopenharmony_ci* `step` computation step based on which driver should perform an action. 699a8e1175bSopenharmony_ci* `output` buffer where the output is to be written. 700a8e1175bSopenharmony_ci* `output_size` size of the output buffer in bytes. 701a8e1175bSopenharmony_ci* `output_length` the number of bytes of the returned output. 702a8e1175bSopenharmony_ci 703a8e1175bSopenharmony_ciFor `PSA_ALG_JPAKE` the following steps are available for output operation: 704a8e1175bSopenharmony_ci`step` can be one of the following values: 705a8e1175bSopenharmony_ci* `PSA_JPAKE_X1_STEP_KEY_SHARE` Round 1: output our key share (for ephemeral private key X1) 706a8e1175bSopenharmony_ci* `PSA_JPAKE_X1_STEP_ZK_PUBLIC` Round 1: output Schnorr NIZKP public key for the X1 key 707a8e1175bSopenharmony_ci* `PSA_JPAKE_X1_STEP_ZK_PROOF` Round 1: output Schnorr NIZKP proof for the X1 key 708a8e1175bSopenharmony_ci* `PSA_JPAKE_X2_STEP_KEY_SHARE` Round 1: output our key share (for ephemeral private key X2) 709a8e1175bSopenharmony_ci* `PSA_JPAKE_X2_STEP_ZK_PUBLIC` Round 1: output Schnorr NIZKP public key for the X2 key 710a8e1175bSopenharmony_ci* `PSA_JPAKE_X2_STEP_ZK_PROOF` Round 1: output Schnorr NIZKP proof for the X2 key 711a8e1175bSopenharmony_ci* `PSA_JPAKE_X2S_STEP_KEY_SHARE` Round 2: output our X2S key 712a8e1175bSopenharmony_ci* `PSA_JPAKE_X2S_STEP_ZK_PUBLIC` Round 2: output Schnorr NIZKP public key for the X2S key 713a8e1175bSopenharmony_ci* `PSA_JPAKE_X2S_STEP_ZK_PROOF` Round 2: output Schnorr NIZKP proof for the X2S key 714a8e1175bSopenharmony_ci 715a8e1175bSopenharmony_ci#### PAKE driver input 716a8e1175bSopenharmony_ci``` 717a8e1175bSopenharmony_cipsa_status_t acme_pake_input(acme_pake_operation_t *operation, 718a8e1175bSopenharmony_ci psa_crypto_driver_pake_step_t step, 719a8e1175bSopenharmony_ci uint8_t *input, 720a8e1175bSopenharmony_ci size_t input_size); 721a8e1175bSopenharmony_ci``` 722a8e1175bSopenharmony_ci 723a8e1175bSopenharmony_ci* `operation` is an operation object. 724a8e1175bSopenharmony_ci* `step` computation step based on which driver should perform an action. 725a8e1175bSopenharmony_ci* `input` buffer containing the input. 726a8e1175bSopenharmony_ci* `input_length` length of the input in bytes. 727a8e1175bSopenharmony_ci 728a8e1175bSopenharmony_ciFor `PSA_ALG_JPAKE` the following steps are available for input operation: 729a8e1175bSopenharmony_ci* `PSA_JPAKE_X1_STEP_KEY_SHARE` Round 1: input key share from peer (for ephemeral private key X1) 730a8e1175bSopenharmony_ci* `PSA_JPAKE_X1_STEP_ZK_PUBLIC` Round 1: input Schnorr NIZKP public key for the X1 key 731a8e1175bSopenharmony_ci* `PSA_JPAKE_X1_STEP_ZK_PROOF` Round 1: input Schnorr NIZKP proof for the X1 key 732a8e1175bSopenharmony_ci* `PSA_JPAKE_X2_STEP_KEY_SHARE` Round 1: input key share from peer (for ephemeral private key X2) 733a8e1175bSopenharmony_ci* `PSA_JPAKE_X2_STEP_ZK_PUBLIC` Round 1: input Schnorr NIZKP public key for the X2 key 734a8e1175bSopenharmony_ci* `PSA_JPAKE_X2_STEP_ZK_PROOF` Round 1: input Schnorr NIZKP proof for the X2 key 735a8e1175bSopenharmony_ci* `PSA_JPAKE_X4S_STEP_KEY_SHARE` Round 2: input X4S key from peer 736a8e1175bSopenharmony_ci* `PSA_JPAKE_X4S_STEP_ZK_PUBLIC` Round 2: input Schnorr NIZKP public key for the X4S key 737a8e1175bSopenharmony_ci* `PSA_JPAKE_X4S_STEP_ZK_PROOF` Round 2: input Schnorr NIZKP proof for the X4S key 738a8e1175bSopenharmony_ci 739a8e1175bSopenharmony_ciThe core checks that `input_length` is not greater than `PSA_PAKE_INPUT_SIZE(alg, prim, step)` and 740a8e1175bSopenharmony_cithe driver can rely on that. 741a8e1175bSopenharmony_ci 742a8e1175bSopenharmony_ci### PAKE driver get implicit key 743a8e1175bSopenharmony_ci 744a8e1175bSopenharmony_ci``` 745a8e1175bSopenharmony_cipsa_status_t acme_pake_get_implicit_key( 746a8e1175bSopenharmony_ci acme_pake_operation_t *operation, 747a8e1175bSopenharmony_ci uint8_t *output, size_t output_size, 748a8e1175bSopenharmony_ci size_t *output_length ); 749a8e1175bSopenharmony_ci``` 750a8e1175bSopenharmony_ci 751a8e1175bSopenharmony_ci* `operation` The driver PAKE operation object to use. 752a8e1175bSopenharmony_ci* `output` Buffer where the implicit key is to be written. 753a8e1175bSopenharmony_ci* `output_size` Size of the output buffer in bytes. 754a8e1175bSopenharmony_ci* `output_length` On success, the number of bytes of the implicit key. 755a8e1175bSopenharmony_ci 756a8e1175bSopenharmony_ci### Driver entry points for key management 757a8e1175bSopenharmony_ci 758a8e1175bSopenharmony_ciThe driver entry points for key management differ significantly between [transparent drivers](#key-management-with-transparent-drivers) and [opaque drivers](#key-management-with-opaque-drivers). This section describes common elements. Refer to the applicable section for each driver type for more information. 759a8e1175bSopenharmony_ci 760a8e1175bSopenharmony_ciThe entry points that create or format key data have the following prototypes for a driver with the prefix `"acme"`: 761a8e1175bSopenharmony_ci 762a8e1175bSopenharmony_ci``` 763a8e1175bSopenharmony_cipsa_status_t acme_import_key(const psa_key_attributes_t *attributes, 764a8e1175bSopenharmony_ci const uint8_t *data, 765a8e1175bSopenharmony_ci size_t data_length, 766a8e1175bSopenharmony_ci uint8_t *key_buffer, 767a8e1175bSopenharmony_ci size_t key_buffer_size, 768a8e1175bSopenharmony_ci size_t *key_buffer_length, 769a8e1175bSopenharmony_ci size_t *bits); // additional parameter, see below 770a8e1175bSopenharmony_cipsa_status_t acme_generate_key(const psa_key_attributes_t *attributes, 771a8e1175bSopenharmony_ci uint8_t *key_buffer, 772a8e1175bSopenharmony_ci size_t key_buffer_size, 773a8e1175bSopenharmony_ci size_t *key_buffer_length); 774a8e1175bSopenharmony_ci``` 775a8e1175bSopenharmony_ciAdditionally, opaque drivers can create keys through their [`"key_derivation_output_key"`](#key-derivation-driver-outputs) and [`"key_agreement_key"`](#key-agreement) entry points. Transparent drivers can create key material through their [`"derive_key"`](#transparent-cooked-key-derivation) entry point. 776a8e1175bSopenharmony_ci 777a8e1175bSopenharmony_ciTODO: copy 778a8e1175bSopenharmony_ci 779a8e1175bSopenharmony_ci* The key attributes (`attributes`) have the same semantics as in the PSA Cryptography application interface. 780a8e1175bSopenharmony_ci* For the `"import_key"` entry point, the input in the `data` buffer is either the export format or an implementation-specific format that the core documents as an acceptable input format for `psa_import_key()`. 781a8e1175bSopenharmony_ci* The size of the key data buffer `key_buffer` is sufficient for the internal representation of the key. For a transparent driver, this is the key's [export format](#key-format-for-transparent-drivers). For an opaque driver, this is the size determined from the driver description and the key attributes, as specified in the section [“Key format for opaque drivers”](#key-format-for-opaque-drivers). 782a8e1175bSopenharmony_ci* For an opaque driver with an `"allocate_key"` entry point, the content of the key data buffer on entry is the output of that entry point. 783a8e1175bSopenharmony_ci* The `"import_key"` entry point must determine or validate the key size and set `*bits` as described in the section [“Key size determination on import”](#key-size-determination-on-import) below. 784a8e1175bSopenharmony_ci 785a8e1175bSopenharmony_ciAll key creation entry points must ensure that the resulting key is valid as specified in the section [“Key validation”](#key-validation) below. This is primarily important for import entry points since the key data comes from the application. 786a8e1175bSopenharmony_ci 787a8e1175bSopenharmony_ci#### Key size determination on import 788a8e1175bSopenharmony_ci 789a8e1175bSopenharmony_ciThe `"import_key"` entry point must determine or validate the key size. 790a8e1175bSopenharmony_ciThe PSA Cryptography API exposes the key size as part of the key attributes. 791a8e1175bSopenharmony_ciWhen importing a key, the key size recorded in the key attributes can be either a size specified by the caller of the API (who may not be trusted), or `0` which indicates that the size must be calculated from the data. 792a8e1175bSopenharmony_ci 793a8e1175bSopenharmony_ciWhen the core calls the `"import_key"` entry point to process a call to `psa_import_key`, it passes an `attributes` structure such that `psa_get_key_bits(attributes)` is the size passed by the caller of `psa_import_key`. If this size is `0`, the `"import_key"` entry point must set the `bits` input-output parameter to the correct key size. The semantics of `bits` is as follows: 794a8e1175bSopenharmony_ci 795a8e1175bSopenharmony_ci* The core sets `*bits` to `psa_get_key_bits(attributes)` before calling the `"import_key"` entry point. 796a8e1175bSopenharmony_ci* If `*bits == 0`, the driver must determine the key size from the data and set `*bits` to this size. If the key size cannot be determined from the data, the driver must return `PSA_ERROR_INVALID_ARGUMENT` (as of version 1.0 of the PSA Cryptography API specification, it is possible to determine the key size for all standard key types). 797a8e1175bSopenharmony_ci* If `*bits != 0`, the driver must check the value of `*bits` against the data and return `PSA_ERROR_INVALID_ARGUMENT` if it does not match. If the driver entry point changes `*bits` to a different value but returns `PSA_SUCCESS`, the core will consider the key as invalid and the import will fail. 798a8e1175bSopenharmony_ci 799a8e1175bSopenharmony_ci#### Key validation 800a8e1175bSopenharmony_ci 801a8e1175bSopenharmony_ciKey creation entry points must produce valid key data. Key data is _valid_ if operations involving the key are guaranteed to work functionally and not to cause indirect security loss. Operation functions are supposed to receive valid keys, and should not have to check and report invalid keys. For example: 802a8e1175bSopenharmony_ci 803a8e1175bSopenharmony_ci* If a cryptographic mechanism is defined as having keying material of a certain size, or if the keying material involves integers that have to be in a certain range, key creation must ensure that the keying material has an appropriate size and falls within an appropriate range. 804a8e1175bSopenharmony_ci* If a cryptographic operation involves a division by an integer which is provided as part of a key, key creation must ensure that this integer is nonzero. 805a8e1175bSopenharmony_ci* If a cryptographic operation involves two keys A and B (or more), then the creation of A must ensure that using it does not risk compromising B. This applies even if A's policy does not explicitly allow a problematic operation, but A is exportable. In particular, public keys that can potentially be used for key agreement are considered invalid and must not be created if they risk compromising the private key. 806a8e1175bSopenharmony_ci* On the other hand, it is acceptable for import to accept a key that cannot be verified as valid if using this key would at most compromise the key itself and material that is secured with this key. For example, RSA key import does not need to verify that the primes are actually prime. Key import may accept an insecure key if the consequences of the insecurity are no worse than a leak of the key prior to its import. 807a8e1175bSopenharmony_ci 808a8e1175bSopenharmony_ciWith opaque drivers, the key context can only be used by code from the same driver, so key validity is primarily intended to report key creation errors at creation time rather than during an operation. With transparent drivers, the key context can potentially be used by code from a different provider, so key validity is critical for interoperability. 809a8e1175bSopenharmony_ci 810a8e1175bSopenharmony_ciThis section describes some minimal validity requirements for standard key types. 811a8e1175bSopenharmony_ci 812a8e1175bSopenharmony_ci* For symmetric key types, check that the key size is suitable for the type. 813a8e1175bSopenharmony_ci* For DES (`PSA_KEY_TYPE_DES`), additionally verify the parity bits. 814a8e1175bSopenharmony_ci* For RSA (`PSA_KEY_TYPE_RSA_PUBLIC_KEY`, `PSA_KEY_TYPE_RSA_KEY_PAIR`), check the syntax of the key and make sanity checks on its components. TODO: what sanity checks? Value ranges (e.g. p < n), sanity checks such as parity, minimum and maximum size, what else? 815a8e1175bSopenharmony_ci* For elliptic curve private keys (`PSA_KEY_TYPE_ECC_KEY_PAIR`), check the size and range. TODO: what else? 816a8e1175bSopenharmony_ci* For elliptic curve public keys (`PSA_KEY_TYPE_ECC_PUBLIC_KEY`), check the size and range, and that the point is on the curve. TODO: what else? 817a8e1175bSopenharmony_ci 818a8e1175bSopenharmony_ci### Entropy collection entry point 819a8e1175bSopenharmony_ci 820a8e1175bSopenharmony_ciA driver can declare an entropy source by providing a `"get_entropy"` entry point. This entry point has the following prototype for a driver with the prefix `"acme"`: 821a8e1175bSopenharmony_ci 822a8e1175bSopenharmony_ci``` 823a8e1175bSopenharmony_cipsa_status_t acme_get_entropy(uint32_t flags, 824a8e1175bSopenharmony_ci size_t *estimate_bits, 825a8e1175bSopenharmony_ci uint8_t *output, 826a8e1175bSopenharmony_ci size_t output_size); 827a8e1175bSopenharmony_ci``` 828a8e1175bSopenharmony_ci 829a8e1175bSopenharmony_ciThe semantics of the parameters is as follows: 830a8e1175bSopenharmony_ci 831a8e1175bSopenharmony_ci* `flags`: a bit-mask of [entropy collection flags](#entropy-collection-flags). 832a8e1175bSopenharmony_ci* `estimate_bits`: on success, an estimate of the amount of entropy that is present in the `output` buffer, in bits. This must be at least `1` on success. The value is ignored on failure. Drivers should return a conservative estimate, even in circumstances where the quality of the entropy source is degraded due to environmental conditions (e.g. undervolting, low temperature, etc.). 833a8e1175bSopenharmony_ci* `output`: on success, this buffer contains non-deterministic data with an estimated entropy of at least `*estimate_bits` bits. When the entropy is coming from a hardware peripheral, this should preferably be raw or lightly conditioned measurements from a physical process, such that statistical tests run over a sufficiently large amount of output can confirm the entropy estimates. But this specification also permits entropy sources that are fully conditioned, for example when the PSA Cryptography system is running as an application in an operating system and `"get_entropy"` returns data from the random generator in the operating system's kernel. 834a8e1175bSopenharmony_ci* `output_size`: the size of the `output` buffer in bytes. This size should be large enough to allow a driver to pass unconditioned data with a low density of entropy; for example a peripheral that returns eight bytes of data with an estimated one bit of entropy cannot provide meaningful output in less than 8 bytes. 835a8e1175bSopenharmony_ci 836a8e1175bSopenharmony_ciNote that there is no output parameter indicating how many bytes the driver wrote to the buffer. Such an output length indication is not necessary because the entropy may be located anywhere in the buffer, so the driver may write less than `output_size` bytes but the core does not need to know this. The output parameter `estimate_bits` contains the amount of entropy, expressed in bits, which may be significantly less than `output_size * 8`. 837a8e1175bSopenharmony_ci 838a8e1175bSopenharmony_ciThe entry point may return the following statuses: 839a8e1175bSopenharmony_ci 840a8e1175bSopenharmony_ci* `PSA_SUCCESS`: success. The output buffer contains some entropy. 841a8e1175bSopenharmony_ci* `PSA_ERROR_INSUFFICIENT_ENTROPY`: no entropy is available without blocking. This is only permitted if the `PSA_DRIVER_GET_ENTROPY_BLOCK` flag is clear. The core may call `get_entropy` again later, giving time for entropy to be gathered or for adverse environmental conditions to be rectified. 842a8e1175bSopenharmony_ci* Other error codes indicate a transient or permanent failure of the entropy source. 843a8e1175bSopenharmony_ci 844a8e1175bSopenharmony_ciUnlike most other entry points, if multiple transparent drivers include a `"get_entropy"` point, the core will call all of them (as well as the entry points from opaque drivers). Fallback is not applicable to `"get_entropy"`. 845a8e1175bSopenharmony_ci 846a8e1175bSopenharmony_ci#### Entropy collection flags 847a8e1175bSopenharmony_ci 848a8e1175bSopenharmony_ci* `PSA_DRIVER_GET_ENTROPY_BLOCK`: If this flag is set, the driver should block until it has at least one bit of entropy. If this flag is clear, the driver should avoid blocking if no entropy is readily available. 849a8e1175bSopenharmony_ci* `PSA_DRIVER_GET_ENTROPY_KEEPALIVE`: This flag is intended to help with energy management for entropy-generating peripherals. If this flag is set, the driver should expect another call to `acme_get_entropy` after a short time. If this flag is clear, the core is not expecting to call the `"get_entropy"` entry point again within a short amount of time (but it may do so nonetheless). 850a8e1175bSopenharmony_ci 851a8e1175bSopenharmony_ci#### Entropy collection and blocking 852a8e1175bSopenharmony_ci 853a8e1175bSopenharmony_ciThe intent of the `BLOCK` and `KEEPALIVE` [flags](#entropy-collection-flags) is to support drivers for TRNG (True Random Number Generator, i.e. an entropy source peripheral) that have a long ramp-up time, especially on platforms with multiple entropy sources. 854a8e1175bSopenharmony_ci 855a8e1175bSopenharmony_ciHere is a suggested call sequence for entropy collection that leverages these flags: 856a8e1175bSopenharmony_ci 857a8e1175bSopenharmony_ci1. The core makes a first round of calls to `"get_entropy"` on every source with the `BLOCK` flag clear and the `KEEPALIVE` flag set, so that drivers can prepare the TRNG peripheral. 858a8e1175bSopenharmony_ci2. The core makes a second round of calls with the `BLOCK` flag set and the `KEEPALIVE` flag clear to gather needed entropy. 859a8e1175bSopenharmony_ci3. If the second round does not collect enough entropy, the core makes more similar rounds, until the total amount of collected entropy is sufficient. 860a8e1175bSopenharmony_ci 861a8e1175bSopenharmony_ci### Miscellaneous driver entry points 862a8e1175bSopenharmony_ci 863a8e1175bSopenharmony_ci#### Driver initialization 864a8e1175bSopenharmony_ci 865a8e1175bSopenharmony_ciA driver may declare an `"init"` entry point in a capability with no algorithm, key type or key size. If so, the core calls this entry point once during the initialization of the PSA Cryptography subsystem. If the init entry point of any driver fails, the initialization of the PSA Cryptography subsystem fails. 866a8e1175bSopenharmony_ci 867a8e1175bSopenharmony_ciWhen multiple drivers have an init entry point, the order in which they are called is unspecified. It is also unspecified whether other drivers' `"init"` entry points are called if one or more init entry point fails. 868a8e1175bSopenharmony_ci 869a8e1175bSopenharmony_ciOn platforms where the PSA Cryptography implementation is a subsystem of a single application, the initialization of the PSA Cryptography subsystem takes place during the call to `psa_crypto_init()`. On platforms where the PSA Cryptography implementation is separate from the application or applications, the initialization of the PSA Cryptography subsystem takes place before or during the first time an application calls `psa_crypto_init()`. 870a8e1175bSopenharmony_ci 871a8e1175bSopenharmony_ciThe init entry point does not take any parameter. 872a8e1175bSopenharmony_ci 873a8e1175bSopenharmony_ci### Combining multiple drivers 874a8e1175bSopenharmony_ci 875a8e1175bSopenharmony_ciTo declare a cryptoprocessor can handle both cleartext and wrapped keys, you need to provide two driver descriptions, one for a transparent driver and one for an opaque driver. You can use the mapping in capabilities' `"names"` property to arrange for multiple driver entry points to map to the same C function. 876a8e1175bSopenharmony_ci 877a8e1175bSopenharmony_ci## Transparent drivers 878a8e1175bSopenharmony_ci 879a8e1175bSopenharmony_ci### Key format for transparent drivers 880a8e1175bSopenharmony_ci 881a8e1175bSopenharmony_ciThe format of a key for transparent drivers is the same as in applications. Refer to the documentation of [`psa_export_key()`](https://armmbed.github.io/mbed-crypto/html/api/keys/management.html#c.psa_export_key) and [`psa_export_public_key()`](https://armmbed.github.io/mbed-crypto/html/api/keys/management.html#c.psa_export_public_key) in the PSA Cryptography API specification. For custom key types defined by an implementation, refer to the documentation of that implementation. 882a8e1175bSopenharmony_ci 883a8e1175bSopenharmony_ci### Key management with transparent drivers 884a8e1175bSopenharmony_ci 885a8e1175bSopenharmony_ciTransparent drivers may provide the following key management entry points: 886a8e1175bSopenharmony_ci 887a8e1175bSopenharmony_ci* [`"import_key"`](#key-import-with-transparent-drivers): called by `psa_import_key()`, only when importing a key pair or a public key (key such that `PSA_KEY_TYPE_IS_ASYMMETRIC` is true). 888a8e1175bSopenharmony_ci* `"generate_key"`: called by `psa_generate_key()`, only when generating a key pair (key such that `PSA_KEY_TYPE_IS_KEY_PAIR` is true). 889a8e1175bSopenharmony_ci* `"key_derivation_output_key"`: called by `psa_key_derivation_output_key()`, only when deriving a key pair (key such that `PSA_KEY_TYPE_IS_KEY_PAIR` is true). 890a8e1175bSopenharmony_ci* `"export_public_key"`: called by the core to obtain the public key of a key pair. The core may call this function at any time to obtain the public key, which can be for `psa_export_public_key()` but also at other times, including during a cryptographic operation that requires the public key such as a call to `psa_verify_message()` on a key pair object. 891a8e1175bSopenharmony_ci 892a8e1175bSopenharmony_ciTransparent drivers are not involved when exporting, copying or destroying keys, or when importing, generating or deriving symmetric keys. 893a8e1175bSopenharmony_ci 894a8e1175bSopenharmony_ci#### Key import with transparent drivers 895a8e1175bSopenharmony_ci 896a8e1175bSopenharmony_ciAs discussed in [the general section about key management entry points](#driver-entry-points-for-key-management), the key import entry points has the following prototype for a driver with the prefix `"acme"`: 897a8e1175bSopenharmony_ci``` 898a8e1175bSopenharmony_cipsa_status_t acme_import_key(const psa_key_attributes_t *attributes, 899a8e1175bSopenharmony_ci const uint8_t *data, 900a8e1175bSopenharmony_ci size_t data_length, 901a8e1175bSopenharmony_ci uint8_t *key_buffer, 902a8e1175bSopenharmony_ci size_t key_buffer_size, 903a8e1175bSopenharmony_ci size_t *key_buffer_length, 904a8e1175bSopenharmony_ci size_t *bits); 905a8e1175bSopenharmony_ci``` 906a8e1175bSopenharmony_ci 907a8e1175bSopenharmony_ciThis entry point has several roles: 908a8e1175bSopenharmony_ci 909a8e1175bSopenharmony_ci1. Parse the key data in the input buffer `data`. The driver must support the export format for the key types that the entry point is declared for. It may support additional formats as specified in the description of [`psa_import_key()`](https://armmbed.github.io/mbed-crypto/html/api/keys/management.html#c.psa_export_key) in the PSA Cryptography API specification. 910a8e1175bSopenharmony_ci2. Validate the key data. The necessary validation is described in the section [“Key validation”](#key-validation) above. 911a8e1175bSopenharmony_ci3. [Determine the key size](#key-size-determination-on-import) and output it through `*bits`. 912a8e1175bSopenharmony_ci4. Copy the validated key data from `data` to `key_buffer`. The output must be in the canonical format documented for [`psa_export_key()`](https://armmbed.github.io/mbed-crypto/html/api/keys/management.html#c.psa_export_key) or [`psa_export_public_key()`](https://armmbed.github.io/mbed-crypto/html/api/keys/management.html#c.psa_export_public_key), so if the input is not in this format, the entry point must convert it. 913a8e1175bSopenharmony_ci 914a8e1175bSopenharmony_ci### Random generation entry points 915a8e1175bSopenharmony_ci 916a8e1175bSopenharmony_ciA transparent driver may provide an operation family that can be used as a cryptographic random number generator. The random generation mechanism must obey the following requirements: 917a8e1175bSopenharmony_ci 918a8e1175bSopenharmony_ci* The random output must be of cryptographic quality, with a uniform distribution. Therefore, if the random generator includes an entropy source, this entropy source must be fed through a CSPRNG (cryptographically secure pseudo-random number generator). 919a8e1175bSopenharmony_ci* Random generation is expected to be fast. (If a device can provide entropy but is slow at generating random data, declare it as an [entropy driver](#entropy-collection-entry-point) instead.) 920a8e1175bSopenharmony_ci* The random generator should be able to incorporate entropy provided by an outside source. If it isn't, the random generator can only be used if it's the only entropy source on the platform. (A random generator peripheral can be declared as an [entropy source](#entropy-collection-entry-point) instead of a random generator; this way the core will combine it with other entropy sources.) 921a8e1175bSopenharmony_ci* The random generator may either be deterministic (in the sense that it always returns the same data when given the same entropy inputs) or non-deterministic (including its own entropy source). In other words, this interface is suitable both for PRNG (pseudo-random number generator, also known as DRBG (deterministic random bit generator)) and for NRBG (non-deterministic random bit generator). 922a8e1175bSopenharmony_ci 923a8e1175bSopenharmony_ciIf no driver implements the random generation entry point family, the core provides an unspecified random generation mechanism. 924a8e1175bSopenharmony_ci 925a8e1175bSopenharmony_ciThis operation family requires the following type, entry points and parameters (TODO: where exactly are the parameters in the JSON structure?): 926a8e1175bSopenharmony_ci 927a8e1175bSopenharmony_ci* Type `"random_context_t"`: the type of a random generation context. 928a8e1175bSopenharmony_ci* `"init_random"` (entry point, optional): if this function is present, [the core calls it once](#random-generator-initialization) after allocating a `"random_context_t"` object. 929a8e1175bSopenharmony_ci* `"add_entropy"` (entry point, optional): the core calls this function to [inject entropy](#entropy-injection). This entry point is optional if the driver is for a peripheral that includes an entropy source of its own, however [random generator drivers without entropy injection](#random-generator-drivers-without-entropy-injection) have limited portability since they can only be used on platforms with no other entropy source. This entry point is mandatory if `"initial_entropy_size"` is nonzero. 930a8e1175bSopenharmony_ci* `"get_random"` (entry point, mandatory): the core calls this function whenever it needs to [obtain random data](#the-get_random-entry-point). 931a8e1175bSopenharmony_ci* `"initial_entropy_size"` (integer, mandatory): the minimum number of bytes of entropy that the core must supply before the driver can output random data. This can be `0` if the driver is for a peripheral that includes an entropy source of its own. 932a8e1175bSopenharmony_ci* `"reseed_entropy_size"` (integer, optional): the minimum number of bytes of entropy that the core should supply via [`"add_entropy"`](#entropy-injection) when the driver runs out of entropy. This value is also a hint for the size to supply if the core makes additional calls to `"add_entropy"`, for example to enforce prediction resistance. If omitted, the core should pass an amount of entropy corresponding to the expected security strength of the device (for example, pass 32 bytes of entropy when reseeding to achieve a security strength of 256 bits). If specified, the core should pass the larger of `"reseed_entropy_size"` and the amount corresponding to the security strength. 933a8e1175bSopenharmony_ci 934a8e1175bSopenharmony_ciRandom generation is not parametrized by an algorithm. The choice of algorithm is up to the driver. 935a8e1175bSopenharmony_ci 936a8e1175bSopenharmony_ci#### Random generator initialization 937a8e1175bSopenharmony_ci 938a8e1175bSopenharmony_ciThe `"init_random"` entry point has the following prototype for a driver with the prefix `"acme"`: 939a8e1175bSopenharmony_ci 940a8e1175bSopenharmony_ci``` 941a8e1175bSopenharmony_cipsa_status_t acme_init_random(acme_random_context_t *context); 942a8e1175bSopenharmony_ci``` 943a8e1175bSopenharmony_ci 944a8e1175bSopenharmony_ciThe core calls this entry point once after allocating a random generation context. Initially, the context object is all-bits-zero. 945a8e1175bSopenharmony_ci 946a8e1175bSopenharmony_ciIf a driver does not have an `"init_random"` entry point, the context object passed to the first call to `"add_entropy"` or `"get_random"` will be all-bits-zero. 947a8e1175bSopenharmony_ci 948a8e1175bSopenharmony_ci#### Entropy injection 949a8e1175bSopenharmony_ci 950a8e1175bSopenharmony_ciThe `"add_entropy"` entry point has the following prototype for a driver with the prefix `"acme"`: 951a8e1175bSopenharmony_ci 952a8e1175bSopenharmony_ci``` 953a8e1175bSopenharmony_cipsa_status_t acme_add_entropy(acme_random_context_t *context, 954a8e1175bSopenharmony_ci const uint8_t *entropy, 955a8e1175bSopenharmony_ci size_t entropy_size); 956a8e1175bSopenharmony_ci``` 957a8e1175bSopenharmony_ci 958a8e1175bSopenharmony_ciThe semantics of the parameters is as follows: 959a8e1175bSopenharmony_ci 960a8e1175bSopenharmony_ci* `context`: a random generation context. On the first call to `"add_entropy"`, this object has been initialized by a call to the driver's `"init_random"` entry point if one is present, and to all-bits-zero otherwise. 961a8e1175bSopenharmony_ci* `entropy`: a buffer containing full-entropy data to seed the random generator. “Full-entropy” means that the data is uniformly distributed and independent of any other observable quantity. 962a8e1175bSopenharmony_ci* `entropy_size`: the size of the `entropy` buffer in bytes. It is guaranteed to be at least `1`, but it may be smaller than the amount of entropy that the driver needs to deliver random data, in which case the core will call the `"add_entropy"` entry point again to supply more entropy. 963a8e1175bSopenharmony_ci 964a8e1175bSopenharmony_ciThe core calls this function to supply entropy to the driver. The driver must mix this entropy into its internal state. The driver must mix the whole supplied entropy, even if there is more than what the driver requires, to ensure that all entropy sources are mixed into the random generator state. The driver may mix additional entropy of its own. 965a8e1175bSopenharmony_ci 966a8e1175bSopenharmony_ciThe core may call this function at any time. For example, to enforce prediction resistance, the core can call `"add_entropy"` immediately after each call to `"get_random"`. The core must call this function in two circumstances: 967a8e1175bSopenharmony_ci 968a8e1175bSopenharmony_ci* Before the first call to the `"get_random"` entry point, to supply `"initial_entropy_size"` bytes of entropy. 969a8e1175bSopenharmony_ci* After a call to the `"get_random"` entry point returns less than the required amount of random data, to supply at least `"reseed_entropy_size"` bytes of entropy. 970a8e1175bSopenharmony_ci 971a8e1175bSopenharmony_ciWhen the driver requires entropy, the core can supply it with one or more successive calls to the `"add_entropy"` entry point. If the required entropy size is zero, the core does not need to call `"add_entropy"`. 972a8e1175bSopenharmony_ci 973a8e1175bSopenharmony_ci#### Combining entropy sources with a random generation driver 974a8e1175bSopenharmony_ci 975a8e1175bSopenharmony_ciThis section provides guidance on combining one or more [entropy sources](#entropy-collection-entry-point) (each having a `"get_entropy"` entry point) with a random generation driver (with an `"add_entropy"` entry point). 976a8e1175bSopenharmony_ci 977a8e1175bSopenharmony_ciNote that `"get_entropy"` returns data with an estimated amount of entropy that is in general less than the buffer size. The core must apply a mixing algorithm to the output of `"get_entropy"` to obtain full-entropy data. 978a8e1175bSopenharmony_ci 979a8e1175bSopenharmony_ciFor example, the core may use a simple mixing scheme based on a pseudorandom function family $(F_k)$ with an $E$-bit output where $E = 8 \cdot \mathtt{entropy_size}$ and $\mathtt{entropy_size}$ is the desired amount of entropy in bytes (typically the random driver's `"initial_entropy_size"` property for the initial seeding and the `"reseed_entropy_size"` property for subsequent reseeding). The core calls the `"get_entropy"` points of the available entropy drivers, outputting a string $s_i$ and an entropy estimate $e_i$ on the $i$th call. It does so until the total entropy estimate $e_1 + e_2 + \ldots + e_n$ is at least $E$. The core then calculates $F_k(0)$ where $k = s_1 || s_2 || \ldots || s_n$. This value is a string of $\mathtt{entropy_size}$, and since $(F_k)$ is a pseudorandom function family, $F_k(0)$ is uniformly distributed over strings of $\mathtt{entropy_size}$ bytes. Therefore $F_k(0)$ is a suitable value to pass to `"add_entropy"`. 980a8e1175bSopenharmony_ci 981a8e1175bSopenharmony_ciNote that the mechanism above is only given as an example. Implementations may choose a different mechanism, for example involving multiple pools or intermediate compression functions. 982a8e1175bSopenharmony_ci 983a8e1175bSopenharmony_ci#### Random generator drivers without entropy injection 984a8e1175bSopenharmony_ci 985a8e1175bSopenharmony_ciRandom generator drivers should have the capability to inject additional entropy through the `"add_entropy"` entry point. This ensures that the random generator depends on all the entropy sources that are available on the platform. A driver where a call to `"add_entropy"` does not affect the state of the random generator is not compliant with this specification. 986a8e1175bSopenharmony_ci 987a8e1175bSopenharmony_ciHowever, a driver may omit the `"add_entropy"` entry point. This limits the driver's portability: implementations of the PSA Cryptography specification may reject drivers without an `"add_entropy"` entry point, or only accept such drivers in certain configurations. In particular, the `"add_entropy"` entry point is required if: 988a8e1175bSopenharmony_ci 989a8e1175bSopenharmony_ci* the integration of PSA Cryptography includes an entropy source that is outside the driver; or 990a8e1175bSopenharmony_ci* the core saves random data in persistent storage to be preserved across platform resets. 991a8e1175bSopenharmony_ci 992a8e1175bSopenharmony_ci#### The `"get_random"` entry point 993a8e1175bSopenharmony_ci 994a8e1175bSopenharmony_ciThe `"get_random"` entry point has the following prototype for a driver with the prefix `"acme"`: 995a8e1175bSopenharmony_ci 996a8e1175bSopenharmony_ci``` 997a8e1175bSopenharmony_cipsa_status_t acme_get_random(acme_random_context_t *context, 998a8e1175bSopenharmony_ci uint8_t *output, 999a8e1175bSopenharmony_ci size_t output_size, 1000a8e1175bSopenharmony_ci size_t *output_length); 1001a8e1175bSopenharmony_ci``` 1002a8e1175bSopenharmony_ci 1003a8e1175bSopenharmony_ciThe semantics of the parameters is as follows: 1004a8e1175bSopenharmony_ci 1005a8e1175bSopenharmony_ci* `context`: a random generation context. If the driver's `"initial_entropy_size"` property is nonzero, the core must have called `"add_entropy"` at least once with a total of at least `"initial_entropy_size"` bytes of entropy before it calls `"get_random"`. Alternatively, if the driver's `"initial_entropy_size"` property is zero and the core did not call `"add_entropy"`, or if the driver has no `"add_entropy"` entry point, the core must have called `"init_random"` if present, and otherwise the context is all-bits zero. 1006a8e1175bSopenharmony_ci* `output`: on success (including partial success), the first `*output_length` bytes of this buffer contain cryptographic-quality random data. The output is not used on error. 1007a8e1175bSopenharmony_ci* `output_size`: the size of the `output` buffer in bytes. 1008a8e1175bSopenharmony_ci* `*output_length`: on success (including partial success), the number of bytes of random data that the driver has written to the `output` buffer. This is preferably `output_size`, but the driver is allowed to return less data if it runs out of entropy as described below. The core sets this value to 0 on entry. The value is not used on error. 1009a8e1175bSopenharmony_ci 1010a8e1175bSopenharmony_ciThe driver may return the following status codes: 1011a8e1175bSopenharmony_ci 1012a8e1175bSopenharmony_ci* `PSA_SUCCESS`: the `output` buffer contains `*output_length` bytes of cryptographic-quality random data. Note that this may be less than `output_size`; in this case the core should call the driver's `"add_entropy"` method to supply at least `"reseed_entropy_size"` bytes of entropy before calling `"get_random"` again. 1013a8e1175bSopenharmony_ci* `PSA_ERROR_INSUFFICIENT_ENTROPY`: the core must supply additional entropy by calling the `"add_entropy"` entry point with at least `"reseed_entropy_size"` bytes. 1014a8e1175bSopenharmony_ci* `PSA_ERROR_NOT_SUPPORTED`: the random generator is not available. This is only permitted if the driver specification for random generation has the [fallback property](#fallback) enabled. 1015a8e1175bSopenharmony_ci* Other error codes such as `PSA_ERROR_COMMUNICATION_FAILURE` or `PSA_ERROR_HARDWARE_FAILURE` indicate a transient or permanent error. 1016a8e1175bSopenharmony_ci 1017a8e1175bSopenharmony_ci### Fallback 1018a8e1175bSopenharmony_ci 1019a8e1175bSopenharmony_ciSometimes cryptographic accelerators only support certain cryptographic mechanisms partially. The capability description language allows specifying some restrictions, including restrictions on key sizes, but it cannot cover all the possibilities that may arise in practice. Furthermore, it may be desirable to deploy the same binary image on different devices, only some of which have a cryptographic accelerators. 1020a8e1175bSopenharmony_ciFor these purposes, a transparent driver can declare that it only supports a [capability](#driver-description-capability) partially, by setting the capability's `"fallback"` property to true. 1021a8e1175bSopenharmony_ci 1022a8e1175bSopenharmony_ciIf a transparent driver entry point is part of a capability which has a true `"fallback"` property and returns `PSA_ERROR_NOT_SUPPORTED`, the core will call the next transparent driver that supports the mechanism, if there is one. The core considers drivers in the order given by the [driver description list](#driver-description-list). 1023a8e1175bSopenharmony_ci 1024a8e1175bSopenharmony_ciIf all the available drivers have fallback enabled and return `PSA_ERROR_NOT_SUPPORTED`, the core will perform the operation using built-in code. 1025a8e1175bSopenharmony_ciAs soon as a driver returns any value other than `PSA_ERROR_NOT_SUPPORTED` (`PSA_SUCCESS` or a different error code), this value is returned to the application, without attempting to call any other driver or built-in code. 1026a8e1175bSopenharmony_ci 1027a8e1175bSopenharmony_ciIf a transparent driver entry point is part of a capability where the `"fallback"` property is false or omitted, the core should not include any other code for this capability, whether built in or in another transparent driver. 1028a8e1175bSopenharmony_ci 1029a8e1175bSopenharmony_ci## Opaque drivers 1030a8e1175bSopenharmony_ci 1031a8e1175bSopenharmony_ciOpaque drivers allow a PSA Cryptography implementation to delegate cryptographic operations to a separate environment that might not allow exporting key material in cleartext. The opaque driver interface is designed so that the core never inspects the representation of a key. The opaque driver interface is designed to support two subtypes of cryptoprocessors: 1032a8e1175bSopenharmony_ci 1033a8e1175bSopenharmony_ci* Some cryptoprocessors do not have persistent storage for individual keys. The representation of a key is the key material wrapped with a master key which is located in the cryptoprocessor and never exported from it. The core stores this wrapped key material on behalf of the cryptoprocessor. 1034a8e1175bSopenharmony_ci* Some cryptoprocessors have persistent storage for individual keys. The representation of a key is an identifier such as label or slot number. The core stores this identifier. 1035a8e1175bSopenharmony_ci 1036a8e1175bSopenharmony_ci### Key format for opaque drivers 1037a8e1175bSopenharmony_ci 1038a8e1175bSopenharmony_ciThe format of a key for opaque drivers is an opaque blob. The content of this blob is fully up to the driver. The core merely stores this blob. 1039a8e1175bSopenharmony_ci 1040a8e1175bSopenharmony_ciNote that since the core stores the key context blob as it is in memory, it must only contain data that is meaningful after a reboot. In particular, it must not contain any pointers or transient handles. 1041a8e1175bSopenharmony_ci 1042a8e1175bSopenharmony_ciThe `"key_context"` property in the [driver description](#driver-description-top-level-element) specifies how to calculate the size of the key context as a function of the key type and size. This is an object with the following properties: 1043a8e1175bSopenharmony_ci 1044a8e1175bSopenharmony_ci* `"base_size"` (integer or string, optional): this many bytes are included in every key context. If omitted, this value defaults to 0. 1045a8e1175bSopenharmony_ci* `"key_pair_size"` (integer or string, optional): this many bytes are included in every key context for a key pair. If omitted, this value defaults to 0. 1046a8e1175bSopenharmony_ci* `"public_key_size"` (integer or string, optional): this many bytes are included in every key context for a public key. If omitted, this value defaults to 0. 1047a8e1175bSopenharmony_ci* `"symmetric_factor"` (integer or string, optional): every key context for a symmetric key includes this many times the key size. If omitted, this value defaults to 0. 1048a8e1175bSopenharmony_ci* `"store_public_key"` (boolean, optional): If specified and true, for a key pair, the key context includes space for the public key. If omitted or false, no additional space is added for the public key. 1049a8e1175bSopenharmony_ci* `"size_function"` (string, optional): the name of a function that returns the number of bytes that the driver needs in a key context for a key. This may be a pointer to function. This must be a C identifier; more complex expressions are not permitted. If the core uses this function, it supersedes all the other properties except for `"builtin_key_size"` (where applicable, if present). 1050a8e1175bSopenharmony_ci* `"builtin_key_size"` (integer or string, optional): If specified, this overrides all other methods (including the `"size_function"` entry point) to determine the size of the key context for [built-in keys](#built-in-keys). This allows drivers to efficiently represent application keys as wrapped key material, but built-in keys by an internal identifier that takes up less space. 1051a8e1175bSopenharmony_ci 1052a8e1175bSopenharmony_ciThe integer properties must be C language constants. A typical value for `"base_size"` is `sizeof(acme_key_context_t)` where `acme_key_context_t` is a type defined in a driver header file. 1053a8e1175bSopenharmony_ci 1054a8e1175bSopenharmony_ci#### Size of a dynamically allocated key context 1055a8e1175bSopenharmony_ci 1056a8e1175bSopenharmony_ciIf the core supports dynamic allocation for the key context and chooses to use it, and the driver specification includes the `"size_function"` property, the size of the key context is at least 1057a8e1175bSopenharmony_ci``` 1058a8e1175bSopenharmony_cisize_function(key_type, key_bits) 1059a8e1175bSopenharmony_ci``` 1060a8e1175bSopenharmony_ciwhere `size_function` is the function named in the `"size_function"` property, `key_type` is the key type and `key_bits` is the key size in bits. The prototype of the size function is 1061a8e1175bSopenharmony_ci``` 1062a8e1175bSopenharmony_cisize_t size_function(psa_key_type_t key_type, size_t key_bits); 1063a8e1175bSopenharmony_ci``` 1064a8e1175bSopenharmony_ci 1065a8e1175bSopenharmony_ci#### Size of a statically allocated key context 1066a8e1175bSopenharmony_ci 1067a8e1175bSopenharmony_ciIf the core does not support dynamic allocation for the key context or chooses not to use it, or if the driver specification does not include the `"size_function"` property, the size of the key context for a key of type `key_type` and of size `key_bits` bits is: 1068a8e1175bSopenharmony_ci 1069a8e1175bSopenharmony_ci* For a key pair (`PSA_KEY_TYPE_IS_KEY_PAIR(key_type)` is true): 1070a8e1175bSopenharmony_ci ``` 1071a8e1175bSopenharmony_ci base_size + key_pair_size + public_key_overhead 1072a8e1175bSopenharmony_ci ``` 1073a8e1175bSopenharmony_ci where `public_key_overhead = PSA_EXPORT_PUBLIC_KEY_MAX_SIZE(key_type, key_bits)` if the `"store_public_key"` property is true and `public_key_overhead = 0` otherwise. 1074a8e1175bSopenharmony_ci 1075a8e1175bSopenharmony_ci* For a public key (`PSA_KEY_TYPE_IS_PUBLIC_KEY(key_type)` is true): 1076a8e1175bSopenharmony_ci ``` 1077a8e1175bSopenharmony_ci base_size + public_key_size 1078a8e1175bSopenharmony_ci ``` 1079a8e1175bSopenharmony_ci 1080a8e1175bSopenharmony_ci* For a symmetric key (not a key pair or public key): 1081a8e1175bSopenharmony_ci ``` 1082a8e1175bSopenharmony_ci base_size + symmetric_factor * key_bytes 1083a8e1175bSopenharmony_ci ``` 1084a8e1175bSopenharmony_ci where `key_bytes = ((key_bits + 7) / 8)` is the key size in bytes. 1085a8e1175bSopenharmony_ci 1086a8e1175bSopenharmony_ci#### Key context size for a secure element with storage 1087a8e1175bSopenharmony_ci 1088a8e1175bSopenharmony_ciIf the key is stored in the secure element and the driver only needs to store a label for the key, use `"base_size"` as the size of the label plus any other metadata that the driver needs to store, and omit the other properties. 1089a8e1175bSopenharmony_ci 1090a8e1175bSopenharmony_ciIf the key is stored in the secure element, but the secure element does not store the public part of a key pair and cannot recompute it on demand, additionally use the `"store_public_key"` property with the value `true`. Note that this only influences the size of the key context: the driver code must copy the public key to the key context and retrieve it on demand in its `export_public_key` entry point. 1091a8e1175bSopenharmony_ci 1092a8e1175bSopenharmony_ci#### Key context size for a secure element without storage 1093a8e1175bSopenharmony_ci 1094a8e1175bSopenharmony_ciIf the key is stored in wrapped form outside the secure element, and the wrapped form of the key plus any metadata has up to *N* bytes of overhead, use *N* as the value of the `"base_size"` property and set the `"symmetric_factor"` property to 1. Set the `"key_pair_size"` and `"public_key_size"` properties appropriately for the largest supported key pair and the largest supported public key respectively. 1095a8e1175bSopenharmony_ci 1096a8e1175bSopenharmony_ci### Key management with opaque drivers 1097a8e1175bSopenharmony_ci 1098a8e1175bSopenharmony_ciOpaque drivers may provide the following key management entry points: 1099a8e1175bSopenharmony_ci 1100a8e1175bSopenharmony_ci* `"export_key"`: called by `psa_export_key()`, or by `psa_copy_key()` when copying a key from or to a different [location](#lifetimes-and-locations), or [as a fallback for key derivation](#key-derivation-driver-dispatch-logic). 1101a8e1175bSopenharmony_ci* `"export_public_key"`: called by the core to obtain the public key of a key pair. The core may call this entry point at any time to obtain the public key, which can be for `psa_export_public_key()` but also at other times, including during a cryptographic operation that requires the public key such as a call to `psa_verify_message()` on a key pair object. 1102a8e1175bSopenharmony_ci* `"import_key"`: called by `psa_import_key()`, or by `psa_copy_key()` when copying a key from another location. 1103a8e1175bSopenharmony_ci* `"generate_key"`: called by `psa_generate_key()`. 1104a8e1175bSopenharmony_ci* `"key_derivation_output_key"`: called by `psa_key_derivation_output_key()`. 1105a8e1175bSopenharmony_ci* `"copy_key"`: called by `psa_copy_key()` when copying a key within the same [location](#lifetimes-and-locations). 1106a8e1175bSopenharmony_ci* `"get_builtin_key"`: called by functions that access a key to retrieve information about a [built-in key](#built-in-keys). 1107a8e1175bSopenharmony_ci 1108a8e1175bSopenharmony_ciIn addition, secure elements that store the key material internally must provide the following two entry points: 1109a8e1175bSopenharmony_ci 1110a8e1175bSopenharmony_ci* `"allocate_key"`: called by `psa_import_key()`, `psa_generate_key()`, `psa_key_derivation_output_key()` or `psa_copy_key()` before creating a key in the location of this driver. 1111a8e1175bSopenharmony_ci* `"destroy_key"`: called by `psa_destroy_key()`. 1112a8e1175bSopenharmony_ci 1113a8e1175bSopenharmony_ci#### Key creation in a secure element without storage 1114a8e1175bSopenharmony_ci 1115a8e1175bSopenharmony_ciThis section describes the key creation process for secure elements that do not store the key material. The driver must obtain a wrapped form of the key material which the core will store. A driver for such a secure element has no `"allocate_key"` or `"destroy_key"` entry point. 1116a8e1175bSopenharmony_ci 1117a8e1175bSopenharmony_ciWhen creating a key with an opaque driver which does not have an `"allocate_key"` or `"destroy_key"` entry point: 1118a8e1175bSopenharmony_ci 1119a8e1175bSopenharmony_ci1. The core allocates memory for the key context. 1120a8e1175bSopenharmony_ci2. The core calls the driver's import, generate, derive or copy entry point. 1121a8e1175bSopenharmony_ci3. The core saves the resulting wrapped key material and any other data that the key context may contain. 1122a8e1175bSopenharmony_ci 1123a8e1175bSopenharmony_ciTo destroy a key, the core simply destroys the wrapped key material, without invoking driver code. 1124a8e1175bSopenharmony_ci 1125a8e1175bSopenharmony_ci#### Key management in a secure element with storage 1126a8e1175bSopenharmony_ci 1127a8e1175bSopenharmony_ciThis section describes the key creation and key destruction processes for secure elements that have persistent storage for the key material. A driver for such a secure element has two mandatory entry points: 1128a8e1175bSopenharmony_ci 1129a8e1175bSopenharmony_ci* `"allocate_key"`: this function obtains an internal identifier for the key. This may be, for example, a unique label or a slot number. 1130a8e1175bSopenharmony_ci* `"destroy_key"`: this function invalidates the internal identifier and destroys the associated key material. 1131a8e1175bSopenharmony_ci 1132a8e1175bSopenharmony_ciThese functions have the following prototypes for a driver with the prefix `"acme"`: 1133a8e1175bSopenharmony_ci``` 1134a8e1175bSopenharmony_cipsa_status_t acme_allocate_key(const psa_key_attributes_t *attributes, 1135a8e1175bSopenharmony_ci uint8_t *key_buffer, 1136a8e1175bSopenharmony_ci size_t key_buffer_size); 1137a8e1175bSopenharmony_cipsa_status_t acme_destroy_key(const psa_key_attributes_t *attributes, 1138a8e1175bSopenharmony_ci const uint8_t *key_buffer, 1139a8e1175bSopenharmony_ci size_t key_buffer_size); 1140a8e1175bSopenharmony_ci``` 1141a8e1175bSopenharmony_ci 1142a8e1175bSopenharmony_ciWhen creating a persistent key with an opaque driver which has an `"allocate_key"` entry point: 1143a8e1175bSopenharmony_ci 1144a8e1175bSopenharmony_ci1. The core calls the driver's `"allocate_key"` entry point. This function typically allocates an internal identifier for the key without modifying the state of the secure element and stores the identifier in the key context. This function should not modify the state of the secure element. It may modify the copy of the persistent state of the driver in memory. 1145a8e1175bSopenharmony_ci 1146a8e1175bSopenharmony_ci1. The core saves the key context to persistent storage. 1147a8e1175bSopenharmony_ci 1148a8e1175bSopenharmony_ci1. The core calls the driver's key creation entry point. 1149a8e1175bSopenharmony_ci 1150a8e1175bSopenharmony_ci1. The core saves the updated key context to persistent storage. 1151a8e1175bSopenharmony_ci 1152a8e1175bSopenharmony_ciIf a failure occurs after the `"allocate_key"` step but before the call to the second driver entry point, the core will do one of the following: 1153a8e1175bSopenharmony_ci 1154a8e1175bSopenharmony_ci* Fail the creation of the key without indicating this to the driver. This can happen, in particular, if the device loses power immediately after the key allocation entry point returns. 1155a8e1175bSopenharmony_ci* Call the driver's `"destroy_key"` entry point. 1156a8e1175bSopenharmony_ci 1157a8e1175bSopenharmony_ciTo destroy a key, the core calls the driver's `"destroy_key"` entry point. 1158a8e1175bSopenharmony_ci 1159a8e1175bSopenharmony_ciNote that the key allocation and destruction entry points must not rely solely on the key identifier in the key attributes to identify a key. Some implementations of the PSA Cryptography API store keys on behalf of multiple clients, and different clients may use the same key identifier to designate different keys. The manner in which the core distinguishes keys that have the same identifier but are part of the key namespace for different clients is implementation-dependent and is not accessible to drivers. Some typical strategies to allocate an internal key identifier are: 1160a8e1175bSopenharmony_ci 1161a8e1175bSopenharmony_ci* Maintain a set of free slot numbers which is stored either in the secure element or in the driver's persistent storage. To allocate a key slot, find a free slot number, mark it as occupied and store the number in the key context. When the key is destroyed, mark the slot number as free. 1162a8e1175bSopenharmony_ci* Maintain a monotonic counter with a practically unbounded range in the secure element or in the driver's persistent storage. To allocate a key slot, increment the counter and store the current value in the key context. Destroying a key does not change the counter. 1163a8e1175bSopenharmony_ci 1164a8e1175bSopenharmony_ciTODO: explain constraints on how the driver updates its persistent state for resilience 1165a8e1175bSopenharmony_ci 1166a8e1175bSopenharmony_ciTODO: some of the above doesn't apply to volatile keys 1167a8e1175bSopenharmony_ci 1168a8e1175bSopenharmony_ci#### Key creation entry points in opaque drivers 1169a8e1175bSopenharmony_ci 1170a8e1175bSopenharmony_ciThe key creation entry points have the following prototypes for a driver with the prefix `"acme"`: 1171a8e1175bSopenharmony_ci 1172a8e1175bSopenharmony_ci``` 1173a8e1175bSopenharmony_cipsa_status_t acme_import_key(const psa_key_attributes_t *attributes, 1174a8e1175bSopenharmony_ci const uint8_t *data, 1175a8e1175bSopenharmony_ci size_t data_length, 1176a8e1175bSopenharmony_ci uint8_t *key_buffer, 1177a8e1175bSopenharmony_ci size_t key_buffer_size, 1178a8e1175bSopenharmony_ci size_t *key_buffer_length, 1179a8e1175bSopenharmony_ci size_t *bits); 1180a8e1175bSopenharmony_cipsa_status_t acme_generate_key(const psa_key_attributes_t *attributes, 1181a8e1175bSopenharmony_ci uint8_t *key_buffer, 1182a8e1175bSopenharmony_ci size_t key_buffer_size, 1183a8e1175bSopenharmony_ci size_t *key_buffer_length); 1184a8e1175bSopenharmony_ci``` 1185a8e1175bSopenharmony_ci 1186a8e1175bSopenharmony_ciIf the driver has an [`"allocate_key"` entry point](#key-management-in-a-secure-element-with-storage), the core calls the `"allocate_key"` entry point with the same attributes on the same key buffer before calling the key creation entry point. 1187a8e1175bSopenharmony_ci 1188a8e1175bSopenharmony_ciTODO: derivation, copy 1189a8e1175bSopenharmony_ci 1190a8e1175bSopenharmony_ci#### Key export entry points in opaque drivers 1191a8e1175bSopenharmony_ci 1192a8e1175bSopenharmony_ciThe key export entry points have the following prototypes for a driver with the prefix `"acme"`: 1193a8e1175bSopenharmony_ci 1194a8e1175bSopenharmony_ci``` 1195a8e1175bSopenharmony_cipsa_status_t acme_export_key(const psa_key_attributes_t *attributes, 1196a8e1175bSopenharmony_ci const uint8_t *key_buffer, 1197a8e1175bSopenharmony_ci size_t key_buffer_size, 1198a8e1175bSopenharmony_ci uint8_t *data, 1199a8e1175bSopenharmony_ci size_t data_size, 1200a8e1175bSopenharmony_ci size_t *data_length); 1201a8e1175bSopenharmony_cipsa_status_t acme_export_public_key(const psa_key_attributes_t *attributes, 1202a8e1175bSopenharmony_ci const uint8_t *key_buffer, 1203a8e1175bSopenharmony_ci size_t key_buffer_size, 1204a8e1175bSopenharmony_ci uint8_t *data, 1205a8e1175bSopenharmony_ci size_t data_size, 1206a8e1175bSopenharmony_ci size_t *data_length); 1207a8e1175bSopenharmony_ci``` 1208a8e1175bSopenharmony_ci 1209a8e1175bSopenharmony_ciThe core will only call `acme_export_public_key` on a private key. Drivers implementers may choose to store the public key in the key context buffer or to recalculate it on demand. If the key context includes the public key, it needs to have an adequate size; see [“Key format for opaque drivers”](#key-format-for-opaque-drivers). 1210a8e1175bSopenharmony_ci 1211a8e1175bSopenharmony_ciThe core guarantees that the size of the output buffer (`data_size`) is sufficient to export any key with the given attributes. The driver must set `*data_length` to the exact size of the exported key. 1212a8e1175bSopenharmony_ci 1213a8e1175bSopenharmony_ci### Opaque driver persistent state 1214a8e1175bSopenharmony_ci 1215a8e1175bSopenharmony_ciThe core maintains persistent state on behalf of an opaque driver. This persistent state consists of a single byte array whose size is given by the `"persistent_state_size"` property in the [driver description](#driver-description-top-level-element). 1216a8e1175bSopenharmony_ci 1217a8e1175bSopenharmony_ciThe core loads the persistent state in memory before it calls the driver's [init entry point](#driver-initialization). It is adjusted to match the size declared by the driver, in case a driver upgrade changes the size: 1218a8e1175bSopenharmony_ci 1219a8e1175bSopenharmony_ci* The first time the driver is loaded on a system, the persistent state is all-bits-zero. 1220a8e1175bSopenharmony_ci* If the stored persistent state is smaller than the declared size, the core pads the persistent state with all-bits-zero at the end. 1221a8e1175bSopenharmony_ci* If the stored persistent state is larger than the declared size, the core truncates the persistent state to the declared size. 1222a8e1175bSopenharmony_ci 1223a8e1175bSopenharmony_ciThe core provides the following callback functions, which an opaque driver may call while it is processing a call from the driver: 1224a8e1175bSopenharmony_ci``` 1225a8e1175bSopenharmony_cipsa_status_t psa_crypto_driver_get_persistent_state(uint_8_t **persistent_state_ptr); 1226a8e1175bSopenharmony_cipsa_status_t psa_crypto_driver_commit_persistent_state(size_t from, size_t length); 1227a8e1175bSopenharmony_ci``` 1228a8e1175bSopenharmony_ci 1229a8e1175bSopenharmony_ci`psa_crypto_driver_get_persistent_state` sets `*persistent_state_ptr` to a pointer to the first byte of the persistent state. This pointer remains valid during a call to a driver entry point. Once the entry point returns, the pointer is no longer valid. The core guarantees that calls to `psa_crypto_driver_get_persistent_state` within the same entry point return the same address for the persistent state, but this address may change between calls to an entry point. 1230a8e1175bSopenharmony_ci 1231a8e1175bSopenharmony_ci`psa_crypto_driver_commit_persistent_state` updates the persistent state in persistent storage. Only the portion at byte offsets `from` inclusive to `from + length` exclusive is guaranteed to be updated; it is unspecified whether changes made to other parts of the state are taken into account. The driver must call this function after updating the persistent state in memory and before returning from the entry point, otherwise it is unspecified whether the persistent state is updated. 1232a8e1175bSopenharmony_ci 1233a8e1175bSopenharmony_ciThe core will not update the persistent state in storage while an entry point is running except when the entry point calls `psa_crypto_driver_commit_persistent_state`. It may update the persistent state in storage after an entry point returns. 1234a8e1175bSopenharmony_ci 1235a8e1175bSopenharmony_ciIn a multithreaded environment, the driver may only call these two functions from the thread that is executing the entry point. 1236a8e1175bSopenharmony_ci 1237a8e1175bSopenharmony_ci#### Built-in keys 1238a8e1175bSopenharmony_ci 1239a8e1175bSopenharmony_ciOpaque drivers may declare built-in keys. Built-in keys can be accessed, but not created, through the PSA Cryptography API. 1240a8e1175bSopenharmony_ci 1241a8e1175bSopenharmony_ciA built-in key is identified by its location and its **slot number**. Drivers that support built-in keys must provide a `"get_builtin_key"` entry point to retrieve the key data and metadata. The core calls this entry point when it needs to access the key, typically because the application requested an operation on the key. The core may keep information about the key in cache, and successive calls to access the same slot number should return the same data. This entry point has the following prototype: 1242a8e1175bSopenharmony_ci 1243a8e1175bSopenharmony_ci``` 1244a8e1175bSopenharmony_cipsa_status_t acme_get_builtin_key(psa_drv_slot_number_t slot_number, 1245a8e1175bSopenharmony_ci psa_key_attributes_t *attributes, 1246a8e1175bSopenharmony_ci uint8_t *key_buffer, 1247a8e1175bSopenharmony_ci size_t key_buffer_size, 1248a8e1175bSopenharmony_ci size_t *key_buffer_length); 1249a8e1175bSopenharmony_ci``` 1250a8e1175bSopenharmony_ci 1251a8e1175bSopenharmony_ciIf this function returns `PSA_SUCCESS` or `PSA_ERROR_BUFFER_TOO_SMALL`, it must fill `attributes` with the attributes of the key (except for the key identifier). On success, this function must also fill `key_buffer` with the key context. 1252a8e1175bSopenharmony_ci 1253a8e1175bSopenharmony_ciOn entry, `psa_get_key_lifetime(attributes)` is the location at which the driver was declared and a persistence level with which the platform is attempting to register the key. The driver entry point may choose to change the lifetime (`psa_set_key_lifetime(attributes, lifetime)`) of the reported key attributes to one with the same location but a different persistence level, in case the driver has more specific knowledge about the actual persistence level of the key which is being retrieved. For example, if a driver knows it cannot delete a key, it may override the persistence level in the lifetime to `PSA_KEY_PERSISTENCE_READ_ONLY`. The standard attributes other than the key identifier and lifetime have the value conveyed by `PSA_KEY_ATTRIBUTES_INIT`. 1254a8e1175bSopenharmony_ci 1255a8e1175bSopenharmony_ciThe output parameter `key_buffer` points to a writable buffer of `key_buffer_size` bytes. If the driver has a [`"builtin_key_size"` property](#key-format-for-opaque-drivers) property, `key_buffer_size` has this value, otherwise `key_buffer_size` has the value determined from the key type and size. 1256a8e1175bSopenharmony_ci 1257a8e1175bSopenharmony_ciTypically, for a built-in key, the key context is a reference to key material that is kept inside the secure element, similar to the format returned by [`"allocate_key"`](#key-management-in-a-secure-element-with-storage). A driver may have built-in keys even if it doesn't have an `"allocate_key"` entry point. 1258a8e1175bSopenharmony_ci 1259a8e1175bSopenharmony_ciThis entry point may return the following status values: 1260a8e1175bSopenharmony_ci 1261a8e1175bSopenharmony_ci* `PSA_SUCCESS`: the requested key exists, and the output parameters `attributes` and `key_buffer` contain the key metadata and key context respectively, and `*key_buffer_length` contains the length of the data written to `key_buffer`. 1262a8e1175bSopenharmony_ci* `PSA_ERROR_BUFFER_TOO_SMALL`: `key_buffer_size` is insufficient. In this case, the driver must pass the key's attributes in `*attributes`. In particular, `get_builtin_key(slot_number, &attributes, NULL, 0)` is a way for the core to obtain the key's attributes. 1263a8e1175bSopenharmony_ci* `PSA_ERROR_DOES_NOT_EXIST`: the requested key does not exist. 1264a8e1175bSopenharmony_ci* Other error codes such as `PSA_ERROR_COMMUNICATION_FAILURE` or `PSA_ERROR_HARDWARE_FAILURE` indicate a transient or permanent error. 1265a8e1175bSopenharmony_ci 1266a8e1175bSopenharmony_ciThe core will pass authorized requests to destroy a built-in key to the [`"destroy_key"`](#key-management-in-a-secure-element-with-storage) entry point if there is one. If built-in keys must not be destroyed, it is up to the driver to reject such requests. 1267a8e1175bSopenharmony_ci 1268a8e1175bSopenharmony_ci## How to use drivers from an application 1269a8e1175bSopenharmony_ci 1270a8e1175bSopenharmony_ci### Using transparent drivers 1271a8e1175bSopenharmony_ci 1272a8e1175bSopenharmony_ciTransparent drivers linked into the library are automatically used for the mechanisms that they implement. 1273a8e1175bSopenharmony_ci 1274a8e1175bSopenharmony_ci### Using opaque drivers 1275a8e1175bSopenharmony_ci 1276a8e1175bSopenharmony_ciEach opaque driver is assigned a [location](#lifetimes-and-locations). The driver is invoked for all actions that use a key in that location. A key's location is indicated by its lifetime. The application chooses the key's lifetime when it creates the key. 1277a8e1175bSopenharmony_ci 1278a8e1175bSopenharmony_ciFor example, the following snippet creates an AES-GCM key which is only accessible inside the secure element designated by the location `PSA_KEY_LOCATION_acme`. 1279a8e1175bSopenharmony_ci``` 1280a8e1175bSopenharmony_cipsa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT; 1281a8e1175bSopenharmony_cipsa_set_key_lifetime(&attributes, PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION( 1282a8e1175bSopenharmony_ci PSA_KEY_PERSISTENCE_DEFAULT, PSA_KEY_LOCATION_acme)); 1283a8e1175bSopenharmony_cipsa_set_key_identifier(&attributes, 42); 1284a8e1175bSopenharmony_cipsa_set_key_type(&attributes, PSA_KEY_TYPE_AES); 1285a8e1175bSopenharmony_cipsa_set_key_size(&attributes, 128); 1286a8e1175bSopenharmony_cipsa_set_key_algorithm(&attributes, PSA_ALG_GCM); 1287a8e1175bSopenharmony_cipsa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT); 1288a8e1175bSopenharmony_cipsa_key_id_t key; 1289a8e1175bSopenharmony_cipsa_generate_key(&attributes, &key); 1290a8e1175bSopenharmony_ci``` 1291a8e1175bSopenharmony_ci 1292a8e1175bSopenharmony_ci## Using opaque drivers from an application 1293a8e1175bSopenharmony_ci 1294a8e1175bSopenharmony_ci### Lifetimes and locations 1295a8e1175bSopenharmony_ci 1296a8e1175bSopenharmony_ciThe PSA Cryptography API, version 1.0.0, defines [lifetimes](https://armmbed.github.io/mbed-crypto/html/api/keys/attributes.html?highlight=psa_key_lifetime_t#c.psa_key_lifetime_t) as an attribute of a key that indicates where the key is stored and which application and system actions will create and destroy it. The lifetime is expressed as a 32-bit value (`typedef uint32_t psa_key_lifetime_t`). An upcoming version of the PSA Cryptography API defines more structure for lifetime values to separate these two aspects of the lifetime: 1297a8e1175bSopenharmony_ci 1298a8e1175bSopenharmony_ci* Bits 0–7 are a _persistence level_. This value indicates what device management actions can cause it to be destroyed. In particular, it indicates whether the key is volatile or persistent. 1299a8e1175bSopenharmony_ci* Bits 8–31 are a _location indicator_. This value indicates where the key material is stored and where operations on the key are performed. Location values can be stored in a variable of type `psa_key_location_t`. 1300a8e1175bSopenharmony_ci 1301a8e1175bSopenharmony_ciAn opaque driver is attached to a specific location. Keys in the default location (`PSA_KEY_LOCATION_LOCAL_STORAGE = 0`) are transparent: the core has direct access to the key material. For keys in a location that is managed by an opaque driver, only the secure element has access to the key material and can perform operations on the key, while the core only manipulates a wrapped form of the key or an identifier of the key. 1302a8e1175bSopenharmony_ci 1303a8e1175bSopenharmony_ci### Creating a key in a secure element 1304a8e1175bSopenharmony_ci 1305a8e1175bSopenharmony_ciThe core defines a compile-time constant for each opaque driver indicating its location called `PSA_KEY_LOCATION_`*prefix* where *prefix* is the value of the `"prefix"` property in the driver description. For convenience, Mbed TLS also declares a compile-time constant for the corresponding lifetime with the default persistence called `PSA_KEY_LIFETIME_`*prefix*. Therefore, to declare an opaque key in the location with the prefix `foo` with the default persistence, call `psa_set_key_lifetime` during the key creation as follows: 1306a8e1175bSopenharmony_ci``` 1307a8e1175bSopenharmony_cipsa_set_key_lifetime(&attributes, PSA_KEY_LIFETIME_foo); 1308a8e1175bSopenharmony_ci``` 1309a8e1175bSopenharmony_ci 1310a8e1175bSopenharmony_ciTo declare a volatile key: 1311a8e1175bSopenharmony_ci``` 1312a8e1175bSopenharmony_cipsa_set_key_lifetime(&attributes, PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION( 1313a8e1175bSopenharmony_ci PSA_KEY_LOCATION_foo, 1314a8e1175bSopenharmony_ci PSA_KEY_PERSISTENCE_VOLATILE)); 1315a8e1175bSopenharmony_ci``` 1316a8e1175bSopenharmony_ci 1317a8e1175bSopenharmony_ciGenerally speaking, to declare a key with a specified persistence: 1318a8e1175bSopenharmony_ci``` 1319a8e1175bSopenharmony_cipsa_set_key_lifetime(&attributes, PSA_KEY_LIFETIME_FROM_PERSISTENCE_AND_LOCATION( 1320a8e1175bSopenharmony_ci PSA_KEY_LOCATION_foo, 1321a8e1175bSopenharmony_ci persistence)); 1322a8e1175bSopenharmony_ci``` 1323a8e1175bSopenharmony_ci 1324a8e1175bSopenharmony_ci## Open questions 1325a8e1175bSopenharmony_ci 1326a8e1175bSopenharmony_ci### Value representation 1327a8e1175bSopenharmony_ci 1328a8e1175bSopenharmony_ci#### Integers 1329a8e1175bSopenharmony_ci 1330a8e1175bSopenharmony_ciIt would be better if there was a uniform requirement on integer values. Do they have to be JSON integers? C preprocessor integers (which could be e.g. a macro defined in some header file)? C compile-time constants (allowing `sizeof`)? 1331a8e1175bSopenharmony_ci 1332a8e1175bSopenharmony_ciThis choice is partly driven by the use of the values, so they might not be uniform. Note that if the value can be zero and it's plausible that the core would want to statically allocate an array of the given size, the core needs to know whether the value is 0 so that it could use code like 1333a8e1175bSopenharmony_ci``` 1334a8e1175bSopenharmony_ci#if ACME_FOO_SIZE != 0 1335a8e1175bSopenharmony_ci uint8_t foo[ACME_FOO_SIZE]; 1336a8e1175bSopenharmony_ci#endif 1337a8e1175bSopenharmony_ci``` 1338a8e1175bSopenharmony_ci 1339a8e1175bSopenharmony_ci### Driver declarations 1340a8e1175bSopenharmony_ci 1341a8e1175bSopenharmony_ci#### Declaring driver entry points 1342a8e1175bSopenharmony_ci 1343a8e1175bSopenharmony_ciThe core may want to provide declarations for the driver entry points so that it can compile code using them. At the time of writing this paragraph, the driver headers must define types but there is no obligation for them to declare functions. The core knows what the function names and argument types are, so it can generate prototypes. 1344a8e1175bSopenharmony_ci 1345a8e1175bSopenharmony_ciIt should be ok for driver functions to be function-like macros or function pointers. 1346a8e1175bSopenharmony_ci 1347a8e1175bSopenharmony_ci#### Driver location values 1348a8e1175bSopenharmony_ci 1349a8e1175bSopenharmony_ciHow does a driver author decide which location values to use? It should be possible to combine drivers from different sources. Use the same vendor assignment as for PSA services? 1350a8e1175bSopenharmony_ci 1351a8e1175bSopenharmony_ciCan the driver assembly process generate distinct location values as needed? This can be convenient, but it's also risky: if you upgrade a device, you need the location values to be the same between builds. 1352a8e1175bSopenharmony_ci 1353a8e1175bSopenharmony_ciThe current plan is for Arm to maintain a registry of vendors and assign a location namespace to each vendor. Parts of the namespace would be reserved for implementations and integrators. 1354a8e1175bSopenharmony_ci 1355a8e1175bSopenharmony_ci#### Multiple transparent drivers 1356a8e1175bSopenharmony_ci 1357a8e1175bSopenharmony_ciWhen multiple transparent drivers implement the same mechanism, which one is called? The first one? The last one? Unspecified? Or is this an error (excluding capabilities with fallback enabled)? 1358a8e1175bSopenharmony_ci 1359a8e1175bSopenharmony_ciThe current choice is that the first one is used, which allows having a preference order on drivers, but may mask integration errors. 1360a8e1175bSopenharmony_ci 1361a8e1175bSopenharmony_ci### Driver function interfaces 1362a8e1175bSopenharmony_ci 1363a8e1175bSopenharmony_ci#### Driver function parameter conventions 1364a8e1175bSopenharmony_ci 1365a8e1175bSopenharmony_ciShould 0-size buffers be guaranteed to have a non-null pointers? 1366a8e1175bSopenharmony_ci 1367a8e1175bSopenharmony_ciShould drivers really have to cope with overlap? 1368a8e1175bSopenharmony_ci 1369a8e1175bSopenharmony_ciShould the core guarantee that the output buffer size has the size indicated by the applicable buffer size macro (which may be an overestimation)? 1370a8e1175bSopenharmony_ci 1371a8e1175bSopenharmony_ci#### Key derivation inputs and buffer ownership 1372a8e1175bSopenharmony_ci 1373a8e1175bSopenharmony_ciWhy is `psa_crypto_driver_key_derivation_get_input_bytes` a copy, rather than giving a pointer? 1374a8e1175bSopenharmony_ci 1375a8e1175bSopenharmony_ciThe main reason is to avoid complex buffer ownership. A driver entry point does not own memory after the entry point return. This is generally necessary because an API function does not own memory after the entry point returns. In the case of key derivation inputs, this could be relaxed because the driver entry point is making callbacks to the core: these functions could return a pointer that is valid until the driver entry point returns, which would allow the driver to process the data immediately (e.g. hash it rather than copy it). 1376a8e1175bSopenharmony_ci 1377a8e1175bSopenharmony_ci### Partial computations in drivers 1378a8e1175bSopenharmony_ci 1379a8e1175bSopenharmony_ci#### Substitution points 1380a8e1175bSopenharmony_ci 1381a8e1175bSopenharmony_ciEarlier drafts of the driver interface had a concept of _substitution points_: places in the calculation where a driver may be called. Some hardware doesn't do the whole calculation, but only the “main” part. This goes both for transparent and opaque drivers. Some common examples: 1382a8e1175bSopenharmony_ci 1383a8e1175bSopenharmony_ci* A processor that performs the RSA exponentiation, but not the padding. The driver should be able to leverage the padding code in the core. 1384a8e1175bSopenharmony_ci* A processor that performs a block cipher operation only for a single block, or only in ECB mode, or only in CTR mode. The core would perform the block mode (CBC, CTR, CCM, ...). 1385a8e1175bSopenharmony_ci 1386a8e1175bSopenharmony_ciThis concept, or some other way to reuse portable code such as specifying inner functions like `psa_rsa_pad` in the core, should be added to the specification. 1387a8e1175bSopenharmony_ci 1388a8e1175bSopenharmony_ci### Key management 1389a8e1175bSopenharmony_ci 1390a8e1175bSopenharmony_ci#### Mixing drivers in key derivation 1391a8e1175bSopenharmony_ci 1392a8e1175bSopenharmony_ciHow does `psa_key_derivation_output_key` work when the extraction part and the expansion part use different drivers? 1393a8e1175bSopenharmony_ci 1394a8e1175bSopenharmony_ci#### Public key calculation 1395a8e1175bSopenharmony_ci 1396a8e1175bSopenharmony_ciECC key pairs are represented as the private key value only. The public key needs to be calculated from that. Both transparent drivers and opaque drivers provide a function to calculate the public key (`"export_public_key"`). 1397a8e1175bSopenharmony_ci 1398a8e1175bSopenharmony_ciThe specification doesn't mention when the public key might be calculated. The core may calculate it on creation, on demand, or anything in between. Opaque drivers have a choice of storing the public key in the key context or calculating it on demand and can convey whether the core should store the public key with the `"store_public_key"` property. Is this good enough or should the specification include non-functional requirements? 1399a8e1175bSopenharmony_ci 1400a8e1175bSopenharmony_ci#### Symmetric key validation with transparent drivers 1401a8e1175bSopenharmony_ci 1402a8e1175bSopenharmony_ciShould the entry point be called for symmetric keys as well? 1403a8e1175bSopenharmony_ci 1404a8e1175bSopenharmony_ci#### Support for custom import formats 1405a8e1175bSopenharmony_ci 1406a8e1175bSopenharmony_ci[“Driver entry points for key management”](#driver-entry-points-for-key-management) states that the input to `"import_key"` can be an implementation-defined format. Is this a good idea? It reduces driver portability, since a core that accepts a custom format would not work with a driver that doesn't accept this format. On the other hand, if a driver accepts a custom format, the core should let it through because the driver presumably handles it more efficiently (in terms of speed and code size) than the core could. 1407a8e1175bSopenharmony_ci 1408a8e1175bSopenharmony_ciAllowing custom formats also causes a problem with import: the core can't know the size of the key representation until it knows the bit-size of the key, but determining the bit-size of the key is part of the job of the `"import_key"` entry point. For standard key types, this could plausibly be an issue for RSA private keys, where an implementation might accept a custom format that omits the CRT parameters (or that omits *d*). 1409a8e1175bSopenharmony_ci 1410a8e1175bSopenharmony_ci### Opaque drivers 1411a8e1175bSopenharmony_ci 1412a8e1175bSopenharmony_ci#### Opaque driver persistent state 1413a8e1175bSopenharmony_ci 1414a8e1175bSopenharmony_ciThe driver is allowed to update the state at any time. Is this ok? 1415a8e1175bSopenharmony_ci 1416a8e1175bSopenharmony_ciAn example use case for updating the persistent state at arbitrary times is to renew a key that is used to encrypt communications between the application processor and the secure element. 1417a8e1175bSopenharmony_ci 1418a8e1175bSopenharmony_ci`psa_crypto_driver_get_persistent_state` does not identify the calling driver, so the driver needs to remember which driver it's calling. This may require a thread-local variable in a multithreaded core. Is this ok? 1419a8e1175bSopenharmony_ci 1420a8e1175bSopenharmony_ci#### Open questions around cooked key derivation 1421a8e1175bSopenharmony_ci 1422a8e1175bSopenharmony_ci`"derive_key"` is not a clear name. Can we use a better one? 1423a8e1175bSopenharmony_ci 1424a8e1175bSopenharmony_ciFor the `"derive_key"` entry point, how does the core choose `input_length`? Doesn't the driver know better? Should there be a driver entry point to determine the length, or should there be a callback that allows the driver to retrieve the input? Note that for some key types, it's impossible to predict the amount of input in advance, because it depends on some complex calculation or even on random data, e.g. if doing a randomized pseudo-primality test. However, for all key types except RSA, the specification mandates how the key is derived, which practically dictates how the pseudorandom key stream is consumed. So it's probably ok. 1425a8e1175bSopenharmony_ci 1426a8e1175bSopenharmony_ci#### Fallback for key derivation in opaque drivers 1427a8e1175bSopenharmony_ci 1428a8e1175bSopenharmony_ciShould [dispatch to an opaque driver](#key-derivation-driver-dispatch-logic) allow fallback, so that if `"key_derivation_setup"` returns `PSA_ERROR_NOT_SUPPORTED` then the core exports the key from the secure element instead? 1429a8e1175bSopenharmony_ci 1430a8e1175bSopenharmony_ciShould the ["`key_derivation_output_key`"](#key-derivation-driver-outputs) capability indicate which key types the driver can derive? How should fallback work? For example, consider a secure element that implements HMAC, HKDF and ECDSA, and that can derive an HMAC key from HKDF without exporting intermediate material but can only import or randomly generate ECC keys. How does this driver convey that it can't derive an ECC key with HKDF, but it can let the core do this and import the resulting key? 1431a8e1175bSopenharmony_ci 1432a8e1175bSopenharmony_ci### Randomness 1433a8e1175bSopenharmony_ci 1434a8e1175bSopenharmony_ci#### Input to `"add_entropy"` 1435a8e1175bSopenharmony_ci 1436a8e1175bSopenharmony_ciShould the input to the [`"add_entropy"` entry point](#entropy-injection) be a full-entropy buffer (with data from all entropy sources already mixed), raw entropy direct from the entropy sources, or give the core a choice? 1437a8e1175bSopenharmony_ci 1438a8e1175bSopenharmony_ci* Raw data: drivers must implement entropy mixing. `"add_entropy"` needs an extra parameter to indicate the amount of entropy in the data. The core must not do any conditioning. 1439a8e1175bSopenharmony_ci* Choice: drivers must implement entropy mixing. `"add_entropy"` needs an extra parameter to indicate the amount of entropy in the data. The core may do conditioning if it wants, but doesn't have to. 1440a8e1175bSopenharmony_ci* Full entropy: drivers don't need to do entropy mixing. 1441a8e1175bSopenharmony_ci 1442a8e1175bSopenharmony_ci#### Flags for `"get_entropy"` 1443a8e1175bSopenharmony_ci 1444a8e1175bSopenharmony_ciAre the [entropy collection flags](#entropy-collection-flags) well-chosen? 1445a8e1175bSopenharmony_ci 1446a8e1175bSopenharmony_ci#### Random generator instantiations 1447a8e1175bSopenharmony_ci 1448a8e1175bSopenharmony_ciMay the core instantiate a random generation context more than once? In other words, can there be multiple objects of type `acme_random_context_t`? 1449a8e1175bSopenharmony_ci 1450a8e1175bSopenharmony_ciFunctionally, one RNG is as good as any. If the core wants some parts of the system to use a deterministic generator for reproducibility, it can't use this interface anyway, since the RNG is not necessarily deterministic. However, for performance on multiprocessor systems, a multithreaded core could prefer to use one RNG instance per thread. 1451a8e1175bSopenharmony_ci 1452a8e1175bSopenharmony_ci<!-- 1453a8e1175bSopenharmony_ciLocal Variables: 1454a8e1175bSopenharmony_citime-stamp-line-limit: 40 1455a8e1175bSopenharmony_citime-stamp-start: "Time-stamp: *\"" 1456a8e1175bSopenharmony_citime-stamp-end: "\"" 1457a8e1175bSopenharmony_citime-stamp-format: "%04Y/%02m/%02d %02H:%02M:%02S %Z" 1458a8e1175bSopenharmony_citime-stamp-time-zone: "GMT" 1459a8e1175bSopenharmony_ciEnd: 1460a8e1175bSopenharmony_ci--> 1461