1/* 2 * sparse/evaluate.c 3 * 4 * Copyright (C) 2003 Transmeta Corp. 5 * 2003-2004 Linus Torvalds 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 20 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 * 25 * Evaluate constant expressions. 26 */ 27#include <stdlib.h> 28#include <stdarg.h> 29#include <stddef.h> 30#include <stdio.h> 31#include <string.h> 32#include <ctype.h> 33#include <unistd.h> 34#include <fcntl.h> 35#include <limits.h> 36 37#include "evaluate.h" 38#include "lib.h" 39#include "allocate.h" 40#include "parse.h" 41#include "token.h" 42#include "symbol.h" 43#include "target.h" 44#include "expression.h" 45 46struct symbol *current_fn; 47 48struct ident bad_address_space = { .len = 6, .name = "bad AS", }; 49 50static struct symbol *degenerate(struct expression *expr); 51static struct symbol *evaluate_symbol(struct symbol *sym); 52 53static inline int valid_expr_type(struct expression *expr) 54{ 55 return expr && valid_type(expr->ctype); 56} 57 58static inline int valid_subexpr_type(struct expression *expr) 59{ 60 return valid_expr_type(expr->left) 61 && valid_expr_type(expr->right); 62} 63 64static struct symbol *unqualify_type(struct symbol *ctype) 65{ 66 if (!ctype) 67 return ctype; 68 if (ctype->type == SYM_NODE && (ctype->ctype.modifiers & MOD_QUALIFIER)) { 69 struct symbol *unqual = alloc_symbol(ctype->pos, 0); 70 71 *unqual = *ctype; 72 unqual->ctype.modifiers &= ~MOD_QUALIFIER; 73 return unqual; 74 } 75 return ctype; 76} 77 78static struct symbol *evaluate_symbol_expression(struct expression *expr) 79{ 80 struct expression *addr; 81 struct symbol *sym = expr->symbol; 82 struct symbol *base_type; 83 84 if (!sym) { 85 expression_error(expr, "undefined identifier '%s'", show_ident(expr->symbol_name)); 86 return NULL; 87 } 88 89 examine_symbol_type(sym); 90 91 base_type = get_base_type(sym); 92 if (!base_type) { 93 expression_error(expr, "identifier '%s' has no type", show_ident(expr->symbol_name)); 94 return NULL; 95 } 96 97 addr = alloc_expression(expr->pos, EXPR_SYMBOL); 98 addr->symbol = sym; 99 addr->symbol_name = expr->symbol_name; 100 addr->ctype = &lazy_ptr_ctype; /* Lazy evaluation: we need to do a proper job if somebody does &sym */ 101 addr->flags = expr->flags; 102 expr->type = EXPR_PREOP; 103 expr->op = '*'; 104 expr->unop = addr; 105 expr->flags = CEF_NONE; 106 107 /* The type of a symbol is the symbol itself! */ 108 expr->ctype = sym; 109 return sym; 110} 111 112static struct symbol *evaluate_string(struct expression *expr) 113{ 114 struct symbol *sym = alloc_symbol(expr->pos, SYM_NODE); 115 struct symbol *array = alloc_symbol(expr->pos, SYM_ARRAY); 116 struct expression *addr = alloc_expression(expr->pos, EXPR_SYMBOL); 117 struct expression *initstr = alloc_expression(expr->pos, EXPR_STRING); 118 unsigned int length = expr->string->length; 119 struct symbol *char_type = expr->wide ? wchar_ctype : &char_ctype; 120 121 sym->array_size = alloc_const_expression(expr->pos, length); 122 sym->bit_size = length * char_type->bit_size; 123 sym->ctype.alignment = 1; 124 sym->string = 1; 125 sym->ctype.modifiers = MOD_STATIC; 126 sym->ctype.base_type = array; 127 sym->initializer = initstr; 128 sym->examined = 1; 129 sym->evaluated = 1; 130 131 initstr->ctype = sym; 132 initstr->string = expr->string; 133 134 array->array_size = sym->array_size; 135 array->bit_size = sym->bit_size; 136 array->ctype.alignment = char_type->ctype.alignment; 137 array->ctype.modifiers = MOD_STATIC; 138 array->ctype.base_type = char_type; 139 array->examined = 1; 140 array->evaluated = 1; 141 142 addr->symbol = sym; 143 addr->ctype = &lazy_ptr_ctype; 144 addr->flags = CEF_ADDR; 145 146 expr->type = EXPR_PREOP; 147 expr->op = '*'; 148 expr->unop = addr; 149 expr->ctype = sym; 150 return sym; 151} 152 153/* type has come from classify_type and is an integer type */ 154static inline struct symbol *integer_promotion(struct symbol *type) 155{ 156 unsigned long mod = type->ctype.modifiers; 157 int width = type->bit_size; 158 159 /* 160 * Bitfields always promote to the base type, 161 * even if the bitfield might be bigger than 162 * an "int". 163 */ 164 if (type->type == SYM_BITFIELD) { 165 type = type->ctype.base_type; 166 } 167 mod = type->ctype.modifiers; 168 if (width < bits_in_int) 169 return &int_ctype; 170 171 /* If char/short has as many bits as int, it still gets "promoted" */ 172 if (type->rank < 0) { 173 if (mod & MOD_UNSIGNED) 174 return &uint_ctype; 175 return &int_ctype; 176 } 177 return type; 178} 179 180/* 181 * After integer promotons: 182 * If both types are the same 183 * -> no conversion needed 184 * If the types have the same signedness (their rank must be different) 185 * -> convert to the type of the highest rank 186 * If rank(unsigned type) >= rank(signed type) 187 * -> convert to the unsigned type 188 * If size(signed type) > size(unsigned type) 189 * -> convert to the signed type 190 * Otherwise 191 * -> convert to the unsigned type corresponding to the signed type. 192 */ 193static struct symbol *bigger_int_type(struct symbol *left, struct symbol *right) 194{ 195 static struct symbol *unsigned_types[] = { 196 [0] = &uint_ctype, 197 [1] = &ulong_ctype, 198 [2] = &ullong_ctype, 199 [3] = &uint128_ctype, 200 }; 201 unsigned long lmod, rmod; 202 struct symbol *stype, *utype; 203 204 left = integer_promotion(left); 205 right = integer_promotion(right); 206 207 if (left == right) 208 return left; 209 210 lmod = left->ctype.modifiers; 211 rmod = right->ctype.modifiers; 212 if (((lmod ^ rmod) & MOD_UNSIGNED) == 0) 213 return (left->rank > right->rank) ? left : right; 214 if (lmod & MOD_UNSIGNED) { 215 utype = left; 216 stype = right; 217 } else { 218 stype = left; 219 utype = right; 220 } 221 if (utype->rank >= stype->rank) 222 return utype; 223 if (stype->bit_size > utype->bit_size) 224 return stype; 225 utype = unsigned_types[stype->rank]; 226 return utype; 227} 228 229static struct symbol *base_type(struct symbol *node, unsigned long *modp, struct ident **asp) 230{ 231 unsigned long mod = 0; 232 struct ident *as = NULL; 233 234 while (node) { 235 mod |= node->ctype.modifiers; 236 combine_address_space(node->pos, &as, node->ctype.as); 237 if (node->type == SYM_NODE) { 238 node = node->ctype.base_type; 239 continue; 240 } 241 break; 242 } 243 *modp = mod & ~MOD_IGNORE; 244 *asp = as; 245 return node; 246} 247 248static int is_same_type(struct expression *expr, struct symbol *new) 249{ 250 struct symbol *old = expr->ctype; 251 unsigned long oldmod, newmod; 252 struct ident *oldas, *newas; 253 254 old = base_type(old, &oldmod, &oldas); 255 new = base_type(new, &newmod, &newas); 256 257 /* Same base type, same address space? */ 258 if (old == new && oldas == newas) { 259 unsigned long difmod; 260 261 /* Check the modifier bits. */ 262 difmod = (oldmod ^ newmod) & ~MOD_NOCAST; 263 264 /* Exact same type? */ 265 if (!difmod) 266 return 1; 267 268 /* 269 * Not the same type, but differs only in "const". 270 * Don't warn about MOD_NOCAST. 271 */ 272 if (difmod == MOD_CONST) 273 return 0; 274 } 275 if ((oldmod | newmod) & MOD_NOCAST) { 276 const char *tofrom = "to/from"; 277 if (!(newmod & MOD_NOCAST)) 278 tofrom = "from"; 279 if (!(oldmod & MOD_NOCAST)) 280 tofrom = "to"; 281 warning(expr->pos, "implicit cast %s nocast type", tofrom); 282 } 283 return 0; 284} 285 286static void 287warn_for_different_enum_types (struct position pos, 288 struct symbol *typea, 289 struct symbol *typeb) 290{ 291 if (!Wenum_mismatch) 292 return; 293 if (typea->type == SYM_NODE) 294 typea = typea->ctype.base_type; 295 if (typeb->type == SYM_NODE) 296 typeb = typeb->ctype.base_type; 297 298 if (typea == typeb) 299 return; 300 301 if (typea->type == SYM_ENUM && typeb->type == SYM_ENUM) { 302 warning(pos, "mixing different enum types:"); 303 info(pos, " %s", show_typename(typea)); 304 info(pos, " %s", show_typename(typeb)); 305 } 306} 307 308static int cast_flags(struct expression *expr, struct expression *target); 309static struct symbol *cast_to_bool(struct expression *expr); 310 311/* 312 * This gets called for implicit casts in assignments and 313 * integer promotion. 314 */ 315static struct expression * cast_to(struct expression *old, struct symbol *type) 316{ 317 struct expression *expr; 318 319 warn_for_different_enum_types (old->pos, old->ctype, type); 320 321 if (old->ctype != &null_ctype && is_same_type(old, type)) 322 return old; 323 324 expr = alloc_expression(old->pos, EXPR_IMPLIED_CAST); 325 expr->ctype = type; 326 expr->cast_type = type; 327 expr->cast_expression = old; 328 expr->flags = cast_flags(expr, old); 329 330 if (is_bool_type(type)) 331 cast_to_bool(expr); 332 333 return expr; 334} 335 336enum { 337 TYPE_NUM = 1, 338 TYPE_BITFIELD = 2, 339 TYPE_RESTRICT = 4, 340 TYPE_FLOAT = 8, 341 TYPE_PTR = 16, 342 TYPE_COMPOUND = 32, 343 TYPE_FOULED = 64, 344 TYPE_FN = 128, 345}; 346 347static inline int classify_type(struct symbol *type, struct symbol **base) 348{ 349 static int type_class[SYM_BAD + 1] = { 350 [SYM_PTR] = TYPE_PTR, 351 [SYM_FN] = TYPE_PTR | TYPE_FN, 352 [SYM_ARRAY] = TYPE_PTR | TYPE_COMPOUND, 353 [SYM_STRUCT] = TYPE_COMPOUND, 354 [SYM_UNION] = TYPE_COMPOUND, 355 [SYM_BITFIELD] = TYPE_NUM | TYPE_BITFIELD, 356 [SYM_RESTRICT] = TYPE_NUM | TYPE_RESTRICT, 357 [SYM_FOULED] = TYPE_NUM | TYPE_RESTRICT | TYPE_FOULED, 358 }; 359 if (type->type == SYM_NODE) 360 type = type->ctype.base_type; 361 if (type->type == SYM_TYPEOF) { 362 type = examine_symbol_type(type); 363 if (type->type == SYM_NODE) 364 type = type->ctype.base_type; 365 } 366 if (type->type == SYM_ENUM) 367 type = type->ctype.base_type; 368 *base = type; 369 if (type->type == SYM_BASETYPE) { 370 if (type->ctype.base_type == &int_type) 371 return TYPE_NUM; 372 if (type->ctype.base_type == &fp_type) 373 return TYPE_NUM | TYPE_FLOAT; 374 } 375 return type_class[type->type]; 376} 377 378#define is_int(class) ((class & (TYPE_NUM | TYPE_FLOAT)) == TYPE_NUM) 379 380static inline int is_string_type(struct symbol *type) 381{ 382 if (type->type == SYM_NODE) 383 type = type->ctype.base_type; 384 if (type->type != SYM_ARRAY) 385 return 0; 386 type = type->ctype.base_type; 387 return is_byte_type(type) || is_wchar_type(type); 388} 389 390static struct symbol *bad_expr_type(struct expression *expr) 391{ 392 switch (expr->type) { 393 case EXPR_BINOP: 394 case EXPR_COMPARE: 395 if (!valid_subexpr_type(expr)) 396 break; 397 sparse_error(expr->pos, "incompatible types for operation (%s):", show_special(expr->op)); 398 info(expr->pos, " %s", show_typename(expr->left->ctype)); 399 info(expr->pos, " %s", show_typename(expr->right->ctype)); 400 break; 401 case EXPR_PREOP: 402 case EXPR_POSTOP: 403 if (!valid_expr_type(expr->unop)) 404 break; 405 sparse_error(expr->pos, "incompatible type for operation (%s):", show_special(expr->op)); 406 info(expr->pos, " %s", show_typename(expr->unop->ctype)); 407 break; 408 default: 409 break; 410 } 411 412 expr->flags = CEF_NONE; 413 return expr->ctype = &bad_ctype; 414} 415 416static int restricted_value(struct expression *v, struct symbol *type) 417{ 418 if (v->type != EXPR_VALUE) 419 return 1; 420 if (v->value != 0) 421 return 1; 422 return 0; 423} 424 425static int restricted_binop(int op, struct symbol *type) 426{ 427 switch (op) { 428 case '&': 429 case '=': 430 case SPECIAL_AND_ASSIGN: 431 case SPECIAL_OR_ASSIGN: 432 case SPECIAL_XOR_ASSIGN: 433 return 1; /* unfoul */ 434 case '|': 435 case '^': 436 case '?': 437 return 2; /* keep fouled */ 438 case SPECIAL_EQUAL: 439 case SPECIAL_NOTEQUAL: 440 return 3; /* warn if fouled */ 441 default: 442 return 0; /* warn */ 443 } 444} 445 446static int restricted_unop(int op, struct symbol **type) 447{ 448 if (op == '~') { 449 if ((*type)->bit_size < bits_in_int) 450 *type = befoul(*type); 451 return 0; 452 } if (op == '+') 453 return 0; 454 return 1; 455} 456 457/* type should be SYM_FOULED */ 458static inline struct symbol *unfoul(struct symbol *type) 459{ 460 return type->ctype.base_type; 461} 462 463static struct symbol *restricted_binop_type(int op, 464 struct expression *left, 465 struct expression *right, 466 int lclass, int rclass, 467 struct symbol *ltype, 468 struct symbol *rtype) 469{ 470 struct symbol *ctype = NULL; 471 if (lclass & TYPE_RESTRICT) { 472 if (rclass & TYPE_RESTRICT) { 473 if (ltype == rtype) { 474 ctype = ltype; 475 } else if (lclass & TYPE_FOULED) { 476 if (unfoul(ltype) == rtype) 477 ctype = ltype; 478 } else if (rclass & TYPE_FOULED) { 479 if (unfoul(rtype) == ltype) 480 ctype = rtype; 481 } 482 } else { 483 if (!restricted_value(right, ltype)) 484 ctype = ltype; 485 } 486 } else if (!restricted_value(left, rtype)) 487 ctype = rtype; 488 489 if (ctype) { 490 switch (restricted_binop(op, ctype)) { 491 case 1: 492 if ((lclass ^ rclass) & TYPE_FOULED) 493 ctype = unfoul(ctype); 494 break; 495 case 3: 496 if (!(lclass & rclass & TYPE_FOULED)) 497 break; 498 case 0: 499 ctype = NULL; 500 default: 501 break; 502 } 503 } 504 505 return ctype; 506} 507 508static inline void unrestrict(struct expression *expr, 509 int class, struct symbol **ctype) 510{ 511 if (class & TYPE_RESTRICT) { 512 if (class & TYPE_FOULED) 513 *ctype = unfoul(*ctype); 514 warning(expr->pos, "%s degrades to integer", 515 show_typename(*ctype)); 516 *ctype = (*ctype)->ctype.base_type; /* get to arithmetic type */ 517 } 518} 519 520static struct symbol *usual_conversions(int op, 521 struct expression *left, 522 struct expression *right, 523 int lclass, int rclass, 524 struct symbol *ltype, 525 struct symbol *rtype) 526{ 527 struct symbol *ctype; 528 529 warn_for_different_enum_types(right->pos, left->ctype, right->ctype); 530 531 if ((lclass | rclass) & TYPE_RESTRICT) 532 goto Restr; 533 534Normal: 535 if (!(lclass & TYPE_FLOAT)) { 536 if (!(rclass & TYPE_FLOAT)) 537 return bigger_int_type(ltype, rtype); 538 else 539 return rtype; 540 } else if (rclass & TYPE_FLOAT) { 541 if (rtype->rank > ltype->rank) 542 return rtype; 543 else 544 return ltype; 545 } else 546 return ltype; 547 548Restr: 549 ctype = restricted_binop_type(op, left, right, 550 lclass, rclass, ltype, rtype); 551 if (ctype) 552 return ctype; 553 554 unrestrict(left, lclass, <ype); 555 unrestrict(right, rclass, &rtype); 556 557 goto Normal; 558} 559 560static inline int lvalue_expression(struct expression *expr) 561{ 562 return expr->type == EXPR_PREOP && expr->op == '*'; 563} 564 565static struct symbol *evaluate_ptr_add(struct expression *expr, struct symbol *itype) 566{ 567 struct expression *index = expr->right; 568 struct symbol *ctype, *base; 569 int multiply; 570 571 classify_type(degenerate(expr->left), &ctype); 572 base = examine_pointer_target(ctype); 573 574 /* 575 * An address constant +/- an integer constant expression 576 * yields an address constant again [6.6(7)]. 577 */ 578 if ((expr->left->flags & CEF_ADDR) && (expr->right->flags & CEF_ICE)) 579 expr->flags = CEF_ADDR; 580 581 if (!base) { 582 expression_error(expr, "missing type information"); 583 return NULL; 584 } 585 if (is_function(base)) { 586 expression_error(expr, "arithmetics on pointers to functions"); 587 return NULL; 588 } 589 590 /* Get the size of whatever the pointer points to */ 591 multiply = is_void_type(base) ? 1 : bits_to_bytes(base->bit_size); 592 593 if (ctype == &null_ctype) 594 ctype = &ptr_ctype; 595 expr->ctype = ctype; 596 597 if (multiply == 1 && itype->bit_size == bits_in_pointer) 598 return ctype; 599 600 if (index->type == EXPR_VALUE) { 601 struct expression *val = alloc_expression(expr->pos, EXPR_VALUE); 602 unsigned long long v = index->value, mask; 603 mask = 1ULL << (itype->bit_size - 1); 604 if (v & mask) 605 v |= -mask; 606 else 607 v &= mask - 1; 608 v *= multiply; 609 mask = 1ULL << (bits_in_pointer - 1); 610 v &= mask | (mask - 1); 611 val->value = v; 612 val->ctype = ssize_t_ctype; 613 expr->right = val; 614 return ctype; 615 } 616 617 if (itype->bit_size != bits_in_pointer) 618 index = cast_to(index, ssize_t_ctype); 619 620 if (multiply > 1) { 621 struct expression *val = alloc_expression(expr->pos, EXPR_VALUE); 622 struct expression *mul = alloc_expression(expr->pos, EXPR_BINOP); 623 624 val->ctype = ssize_t_ctype; 625 val->value = multiply; 626 627 mul->op = '*'; 628 mul->ctype = ssize_t_ctype; 629 mul->left = index; 630 mul->right = val; 631 index = mul; 632 } 633 634 expr->right = index; 635 return ctype; 636} 637 638static void examine_fn_arguments(struct symbol *fn); 639 640#define MOD_IGN (MOD_QUALIFIER | MOD_FUN_ATTR) 641 642const char *type_difference(struct ctype *c1, struct ctype *c2, 643 unsigned long mod1, unsigned long mod2) 644{ 645 struct ident *as1 = c1->as, *as2 = c2->as; 646 struct symbol *t1 = c1->base_type; 647 struct symbol *t2 = c2->base_type; 648 int move1 = 1, move2 = 1; 649 mod1 |= c1->modifiers; 650 mod2 |= c2->modifiers; 651 for (;;) { 652 unsigned long diff; 653 int type; 654 struct symbol *base1 = t1->ctype.base_type; 655 struct symbol *base2 = t2->ctype.base_type; 656 657 /* 658 * FIXME! Collect alignment and context too here! 659 */ 660 if (move1) { 661 if (t1 && t1->type != SYM_PTR) { 662 mod1 |= t1->ctype.modifiers; 663 combine_address_space(t1->pos, &as1, t1->ctype.as); 664 } 665 move1 = 0; 666 } 667 668 if (move2) { 669 if (t2 && t2->type != SYM_PTR) { 670 mod2 |= t2->ctype.modifiers; 671 combine_address_space(t2->pos, &as2, t2->ctype.as); 672 } 673 move2 = 0; 674 } 675 676 if (t1 == t2) 677 break; 678 if (!t1 || !t2) 679 return "different types"; 680 681 if (t1->type == SYM_NODE || t1->type == SYM_ENUM) { 682 t1 = base1; 683 move1 = 1; 684 if (!t1) 685 return "bad types"; 686 continue; 687 } 688 689 if (t2->type == SYM_NODE || t2->type == SYM_ENUM) { 690 t2 = base2; 691 move2 = 1; 692 if (!t2) 693 return "bad types"; 694 continue; 695 } 696 697 move1 = move2 = 1; 698 type = t1->type; 699 if (type != t2->type) 700 return "different base types"; 701 702 switch (type) { 703 default: 704 sparse_error(t1->pos, 705 "internal error: bad type in derived(%d)", 706 type); 707 return "bad types"; 708 case SYM_RESTRICT: 709 return "different base types"; 710 case SYM_UNION: 711 case SYM_STRUCT: 712 /* allow definition of incomplete structs and unions */ 713 if (t1->ident == t2->ident) 714 return NULL; 715 return "different base types"; 716 case SYM_ARRAY: 717 /* XXX: we ought to compare sizes */ 718 break; 719 case SYM_PTR: 720 if (as1 != as2) 721 return "different address spaces"; 722 /* MOD_SPECIFIER is due to idiocy in parse.c */ 723 if ((mod1 ^ mod2) & ~MOD_IGNORE & ~MOD_SPECIFIER) 724 return "different modifiers"; 725 /* we could be lazier here */ 726 base1 = examine_pointer_target(t1); 727 base2 = examine_pointer_target(t2); 728 mod1 = t1->ctype.modifiers; 729 as1 = t1->ctype.as; 730 mod2 = t2->ctype.modifiers; 731 as2 = t2->ctype.as; 732 break; 733 case SYM_FN: { 734 struct symbol *arg1, *arg2; 735 int i; 736 737 if (as1 != as2) 738 return "different address spaces"; 739 if ((mod1 ^ mod2) & ~MOD_IGNORE & ~MOD_SIGNEDNESS) 740 return "different modifiers"; 741 mod1 = t1->ctype.modifiers; 742 as1 = t1->ctype.as; 743 mod2 = t2->ctype.modifiers; 744 as2 = t2->ctype.as; 745 746 if (t1->variadic != t2->variadic) 747 return "incompatible variadic arguments"; 748 examine_fn_arguments(t1); 749 examine_fn_arguments(t2); 750 PREPARE_PTR_LIST(t1->arguments, arg1); 751 PREPARE_PTR_LIST(t2->arguments, arg2); 752 i = 1; 753 for (;;) { 754 const char *diffstr; 755 if (!arg1 && !arg2) 756 break; 757 if (!arg1 || !arg2) 758 return "different argument counts"; 759 diffstr = type_difference(&arg1->ctype, 760 &arg2->ctype, 761 MOD_IGN, MOD_IGN); 762 if (diffstr) { 763 static char argdiff[80]; 764 sprintf(argdiff, "incompatible argument %d (%s)", i, diffstr); 765 return argdiff; 766 } 767 NEXT_PTR_LIST(arg1); 768 NEXT_PTR_LIST(arg2); 769 i++; 770 } 771 FINISH_PTR_LIST(arg2); 772 FINISH_PTR_LIST(arg1); 773 break; 774 } 775 case SYM_BASETYPE: 776 if (as1 != as2) 777 return "different address spaces"; 778 if (base1 != base2) 779 return "different base types"; 780 if (t1->rank != t2->rank) 781 return "different type sizes"; 782 diff = (mod1 ^ mod2) & ~MOD_IGNORE; 783 if (!diff) 784 return NULL; 785 else if (diff & ~MOD_SIGNEDNESS) 786 return "different modifiers"; 787 else 788 return "different signedness"; 789 } 790 t1 = base1; 791 t2 = base2; 792 } 793 if (as1 != as2) 794 return "different address spaces"; 795 if ((mod1 ^ mod2) & ~MOD_IGNORE & ~MOD_SIGNEDNESS) 796 return "different modifiers"; 797 return NULL; 798} 799 800static void bad_null(struct expression *expr) 801{ 802 if (Wnon_pointer_null) 803 warning(expr->pos, "Using plain integer as NULL pointer"); 804} 805 806static unsigned long target_qualifiers(struct symbol *type) 807{ 808 unsigned long mod = type->ctype.modifiers & MOD_IGN; 809 if (type->ctype.base_type && type->ctype.base_type->type == SYM_ARRAY) 810 mod = 0; 811 return mod; 812} 813 814static struct symbol *evaluate_ptr_sub(struct expression *expr) 815{ 816 const char *typediff; 817 struct symbol *ltype, *rtype; 818 struct expression *l = expr->left; 819 struct expression *r = expr->right; 820 struct symbol *lbase; 821 822 classify_type(degenerate(l), <ype); 823 classify_type(degenerate(r), &rtype); 824 825 lbase = examine_pointer_target(ltype); 826 examine_pointer_target(rtype); 827 typediff = type_difference(<ype->ctype, &rtype->ctype, 828 target_qualifiers(rtype), 829 target_qualifiers(ltype)); 830 if (typediff) 831 expression_error(expr, "subtraction of different types can't work (%s)", typediff); 832 833 if (is_function(lbase)) { 834 expression_error(expr, "subtraction of functions? Share your drugs"); 835 return NULL; 836 } 837 838 expr->ctype = ssize_t_ctype; 839 if (lbase->bit_size > bits_in_char) { 840 struct expression *sub = alloc_expression(expr->pos, EXPR_BINOP); 841 struct expression *div = expr; 842 struct expression *val = alloc_expression(expr->pos, EXPR_VALUE); 843 unsigned long value = bits_to_bytes(lbase->bit_size); 844 845 val->ctype = size_t_ctype; 846 val->value = value; 847 848 if (value & (value-1)) { 849 if (Wptr_subtraction_blows) { 850 warning(expr->pos, "potentially expensive pointer subtraction"); 851 info(expr->pos, " '%s' has a non-power-of-2 size: %lu", show_typename(lbase), value); 852 } 853 } 854 855 sub->op = '-'; 856 sub->ctype = ssize_t_ctype; 857 sub->left = l; 858 sub->right = r; 859 860 div->op = '/'; 861 div->left = sub; 862 div->right = val; 863 } 864 865 return ssize_t_ctype; 866} 867 868#define is_safe_type(type) ((type)->ctype.modifiers & MOD_SAFE) 869 870static struct symbol *evaluate_conditional(struct expression *expr, int iterator) 871{ 872 struct symbol *ctype; 873 874 if (!expr) 875 return NULL; 876 877 if (!iterator && expr->type == EXPR_ASSIGNMENT && expr->op == '=') 878 warning(expr->pos, "assignment expression in conditional"); 879 880 ctype = evaluate_expression(expr); 881 if (!valid_type(ctype)) 882 return NULL; 883 if (is_safe_type(ctype)) 884 warning(expr->pos, "testing a 'safe expression'"); 885 if (is_func_type(ctype)) { 886 if (Waddress) 887 warning(expr->pos, "the address of %s will always evaluate as true", "a function"); 888 } else if (is_array_type(ctype)) { 889 if (Waddress) 890 warning(expr->pos, "the address of %s will always evaluate as true", "an array"); 891 } else if (!is_scalar_type(ctype)) { 892 sparse_error(expr->pos, "non-scalar type in conditional:"); 893 info(expr->pos, " %s", show_typename(ctype)); 894 return NULL; 895 } 896 897 ctype = degenerate(expr); 898 return ctype; 899} 900 901static struct symbol *evaluate_logical(struct expression *expr) 902{ 903 if (!evaluate_conditional(expr->left, 0)) 904 return NULL; 905 if (!evaluate_conditional(expr->right, 0)) 906 return NULL; 907 908 /* the result is int [6.5.13(3), 6.5.14(3)] */ 909 expr->ctype = &int_ctype; 910 expr->flags = expr->left->flags & expr->right->flags; 911 expr->flags &= ~(CEF_CONST_MASK | CEF_ADDR); 912 return &int_ctype; 913} 914 915static struct symbol *evaluate_binop(struct expression *expr) 916{ 917 struct symbol *ltype, *rtype, *ctype; 918 int lclass = classify_type(expr->left->ctype, <ype); 919 int rclass = classify_type(expr->right->ctype, &rtype); 920 int op = expr->op; 921 922 /* number op number */ 923 if (lclass & rclass & TYPE_NUM) { 924 expr->flags = expr->left->flags & expr->right->flags; 925 expr->flags &= ~CEF_CONST_MASK; 926 927 if ((lclass | rclass) & TYPE_FLOAT) { 928 switch (op) { 929 case '+': case '-': case '*': case '/': 930 break; 931 default: 932 return bad_expr_type(expr); 933 } 934 } 935 936 if (op == SPECIAL_LEFTSHIFT || op == SPECIAL_RIGHTSHIFT) { 937 // shifts do integer promotions, but that's it. 938 unrestrict(expr->left, lclass, <ype); 939 unrestrict(expr->right, rclass, &rtype); 940 ctype = ltype = integer_promotion(ltype); 941 rtype = integer_promotion(rtype); 942 } else { 943 // The rest do usual conversions 944 const unsigned left_not = expr->left->type == EXPR_PREOP 945 && expr->left->op == '!'; 946 const unsigned right_not = expr->right->type == EXPR_PREOP 947 && expr->right->op == '!'; 948 if ((op == '&' || op == '|') && (left_not || right_not)) 949 warning(expr->pos, "dubious: %sx %c %sy", 950 left_not ? "!" : "", 951 op, 952 right_not ? "!" : ""); 953 954 ltype = usual_conversions(op, expr->left, expr->right, 955 lclass, rclass, ltype, rtype); 956 ctype = rtype = ltype; 957 } 958 959 expr->left = cast_to(expr->left, ltype); 960 expr->right = cast_to(expr->right, rtype); 961 expr->ctype = ctype; 962 return ctype; 963 } 964 965 /* pointer (+|-) integer */ 966 if (lclass & TYPE_PTR && is_int(rclass) && (op == '+' || op == '-')) { 967 unrestrict(expr->right, rclass, &rtype); 968 return evaluate_ptr_add(expr, rtype); 969 } 970 971 /* integer + pointer */ 972 if (rclass & TYPE_PTR && is_int(lclass) && op == '+') { 973 struct expression *index = expr->left; 974 unrestrict(index, lclass, <ype); 975 expr->left = expr->right; 976 expr->right = index; 977 return evaluate_ptr_add(expr, ltype); 978 } 979 980 /* pointer - pointer */ 981 if (lclass & rclass & TYPE_PTR && expr->op == '-') 982 return evaluate_ptr_sub(expr); 983 984 return bad_expr_type(expr); 985} 986 987static struct symbol *evaluate_comma(struct expression *expr) 988{ 989 expr->ctype = unqualify_type(degenerate(expr->right)); 990 if (expr->ctype == &null_ctype) 991 expr->ctype = &ptr_ctype; 992 expr->flags &= expr->left->flags & expr->right->flags; 993 return expr->ctype; 994} 995 996static int modify_for_unsigned(int op) 997{ 998 if (op == '<') 999 op = SPECIAL_UNSIGNED_LT; 1000 else if (op == '>') 1001 op = SPECIAL_UNSIGNED_GT; 1002 else if (op == SPECIAL_LTE) 1003 op = SPECIAL_UNSIGNED_LTE; 1004 else if (op == SPECIAL_GTE) 1005 op = SPECIAL_UNSIGNED_GTE; 1006 return op; 1007} 1008 1009enum null_constant_type { 1010 NON_NULL, 1011 NULL_PTR, 1012 NULL_ZERO, 1013}; 1014 1015static inline int is_null_pointer_constant(struct expression *e) 1016{ 1017 if (e->ctype == &null_ctype) 1018 return NULL_PTR; 1019 if (!(e->flags & CEF_ICE)) 1020 return NON_NULL; 1021 return is_zero_constant(e) ? NULL_ZERO : NON_NULL; 1022} 1023 1024static struct symbol *evaluate_compare(struct expression *expr) 1025{ 1026 struct expression *left = expr->left, *right = expr->right; 1027 struct symbol *ltype, *rtype, *lbase, *rbase; 1028 int lclass = classify_type(degenerate(left), <ype); 1029 int rclass = classify_type(degenerate(right), &rtype); 1030 struct symbol *ctype; 1031 const char *typediff; 1032 1033 /* Type types? */ 1034 if (is_type_type(ltype) && is_type_type(rtype)) { 1035 /* 1036 * __builtin_types_compatible_p() yields an integer 1037 * constant expression 1038 */ 1039 expr->flags = CEF_SET_ICE; 1040 goto OK; 1041 } 1042 1043 if (is_safe_type(left->ctype) || is_safe_type(right->ctype)) 1044 warning(expr->pos, "testing a 'safe expression'"); 1045 1046 expr->flags = left->flags & right->flags & ~CEF_CONST_MASK & ~CEF_ADDR; 1047 1048 /* number on number */ 1049 if (lclass & rclass & TYPE_NUM) { 1050 ctype = usual_conversions(expr->op, expr->left, expr->right, 1051 lclass, rclass, ltype, rtype); 1052 expr->left = cast_to(expr->left, ctype); 1053 expr->right = cast_to(expr->right, ctype); 1054 if (ctype->ctype.modifiers & MOD_UNSIGNED) 1055 expr->op = modify_for_unsigned(expr->op); 1056 goto OK; 1057 } 1058 1059 /* at least one must be a pointer */ 1060 if (!((lclass | rclass) & TYPE_PTR)) 1061 return bad_expr_type(expr); 1062 1063 /* equality comparisons can be with null pointer constants */ 1064 if (expr->op == SPECIAL_EQUAL || expr->op == SPECIAL_NOTEQUAL) { 1065 int is_null1 = is_null_pointer_constant(left); 1066 int is_null2 = is_null_pointer_constant(right); 1067 if (is_null1 == NULL_ZERO) 1068 bad_null(left); 1069 if (is_null2 == NULL_ZERO) 1070 bad_null(right); 1071 if (is_null1 && is_null2) { 1072 int positive = expr->op == SPECIAL_EQUAL; 1073 expr->type = EXPR_VALUE; 1074 expr->value = positive; 1075 goto OK; 1076 } 1077 if (is_null1 && (rclass & TYPE_PTR)) { 1078 expr->left = cast_to(left, rtype); 1079 goto OK; 1080 } 1081 if (is_null2 && (lclass & TYPE_PTR)) { 1082 expr->right = cast_to(right, ltype); 1083 goto OK; 1084 } 1085 } 1086 /* both should be pointers */ 1087 if (!(lclass & rclass & TYPE_PTR)) 1088 return bad_expr_type(expr); 1089 expr->op = modify_for_unsigned(expr->op); 1090 1091 lbase = examine_pointer_target(ltype); 1092 rbase = examine_pointer_target(rtype); 1093 1094 /* they also have special treatment for pointers to void */ 1095 if (expr->op == SPECIAL_EQUAL || expr->op == SPECIAL_NOTEQUAL) { 1096 if (ltype->ctype.as == rtype->ctype.as) { 1097 if (lbase == &void_ctype) { 1098 expr->right = cast_to(right, ltype); 1099 goto OK; 1100 } 1101 if (rbase == &void_ctype) { 1102 expr->left = cast_to(left, rtype); 1103 goto OK; 1104 } 1105 } 1106 } 1107 1108 typediff = type_difference(<ype->ctype, &rtype->ctype, 1109 target_qualifiers(rtype), 1110 target_qualifiers(ltype)); 1111 if (!typediff) 1112 goto OK; 1113 1114 expression_error(expr, "incompatible types in comparison expression (%s):", typediff); 1115 info(expr->pos, " %s", show_typename(ltype)); 1116 info(expr->pos, " %s", show_typename(rtype)); 1117 return NULL; 1118 1119OK: 1120 /* the result is int [6.5.8(6), 6.5.9(3)]*/ 1121 expr->ctype = &int_ctype; 1122 return &int_ctype; 1123} 1124 1125/* 1126 * NOTE! The degenerate case of "x ? : y", where we don't 1127 * have a true case, this will possibly promote "x" to the 1128 * same type as "y", and thus _change_ the conditional 1129 * test in the expression. But since promotion is "safe" 1130 * for testing, that's OK. 1131 */ 1132static struct symbol *evaluate_conditional_expression(struct expression *expr) 1133{ 1134 struct expression **cond; 1135 struct symbol *ctype, *ltype, *rtype, *lbase, *rbase; 1136 int lclass, rclass; 1137 const char * typediff; 1138 int qual; 1139 1140 if (!evaluate_conditional(expr->conditional, 0)) 1141 return NULL; 1142 if (!evaluate_expression(expr->cond_false)) 1143 return NULL; 1144 1145 ctype = degenerate(expr->conditional); 1146 rtype = degenerate(expr->cond_false); 1147 1148 cond = &expr->conditional; 1149 ltype = ctype; 1150 if (expr->cond_true) { 1151 if (!evaluate_expression(expr->cond_true)) 1152 return NULL; 1153 ltype = degenerate(expr->cond_true); 1154 cond = &expr->cond_true; 1155 } 1156 1157 expr->flags = (expr->conditional->flags & (*cond)->flags & 1158 expr->cond_false->flags & ~CEF_CONST_MASK); 1159 /* 1160 * In the standard, it is defined that an integer constant expression 1161 * shall only have operands that are themselves constant [6.6(6)]. 1162 * While this definition is very clear for expressions that need all 1163 * their operands to be evaluated, for conditional expressions with a 1164 * constant condition things are much less obvious. 1165 * So, as an extension, do the same as GCC seems to do: 1166 * Consider a conditional expression with a constant condition 1167 * as having the same constantness as the argument corresponding 1168 * to the truth value (including in the case of address constants 1169 * which are defined more stricly [6.6(9)]). 1170 */ 1171 if (expr->conditional->flags & (CEF_ACE | CEF_ADDR)) { 1172 int is_true = expr_truth_value(expr->conditional); 1173 struct expression *arg = is_true ? *cond : expr->cond_false; 1174 expr->flags = arg->flags & ~CEF_CONST_MASK; 1175 } 1176 1177 lclass = classify_type(ltype, <ype); 1178 rclass = classify_type(rtype, &rtype); 1179 if (lclass & rclass & TYPE_NUM) { 1180 ctype = usual_conversions('?', *cond, expr->cond_false, 1181 lclass, rclass, ltype, rtype); 1182 *cond = cast_to(*cond, ctype); 1183 expr->cond_false = cast_to(expr->cond_false, ctype); 1184 goto out; 1185 } 1186 1187 if ((lclass | rclass) & TYPE_PTR) { 1188 int is_null1 = is_null_pointer_constant(*cond); 1189 int is_null2 = is_null_pointer_constant(expr->cond_false); 1190 1191 if (is_null1 && is_null2) { 1192 *cond = cast_to(*cond, &ptr_ctype); 1193 expr->cond_false = cast_to(expr->cond_false, &ptr_ctype); 1194 ctype = &ptr_ctype; 1195 goto out; 1196 } 1197 if (is_null1 && (rclass & TYPE_PTR)) { 1198 if (is_null1 == NULL_ZERO) 1199 bad_null(*cond); 1200 *cond = cast_to(*cond, rtype); 1201 ctype = rtype; 1202 goto out; 1203 } 1204 if (is_null2 && (lclass & TYPE_PTR)) { 1205 if (is_null2 == NULL_ZERO) 1206 bad_null(expr->cond_false); 1207 expr->cond_false = cast_to(expr->cond_false, ltype); 1208 ctype = ltype; 1209 goto out; 1210 } 1211 if (!(lclass & rclass & TYPE_PTR)) { 1212 typediff = "different types"; 1213 goto Err; 1214 } 1215 /* OK, it's pointer on pointer */ 1216 if (ltype->ctype.as != rtype->ctype.as) { 1217 typediff = "different address spaces"; 1218 goto Err; 1219 } 1220 1221 /* need to be lazier here */ 1222 lbase = examine_pointer_target(ltype); 1223 rbase = examine_pointer_target(rtype); 1224 qual = target_qualifiers(ltype) | target_qualifiers(rtype); 1225 1226 if (lbase == &void_ctype) { 1227 /* XXX: pointers to function should warn here */ 1228 ctype = ltype; 1229 goto Qual; 1230 1231 } 1232 if (rbase == &void_ctype) { 1233 /* XXX: pointers to function should warn here */ 1234 ctype = rtype; 1235 goto Qual; 1236 } 1237 /* XXX: that should be pointer to composite */ 1238 ctype = ltype; 1239 typediff = type_difference(<ype->ctype, &rtype->ctype, 1240 qual, qual); 1241 if (!typediff) 1242 goto Qual; 1243 goto Err; 1244 } 1245 1246 /* void on void, struct on same struct, union on same union */ 1247 if (ltype == rtype) { 1248 ctype = ltype; 1249 goto out; 1250 } 1251 typediff = "different base types"; 1252 1253Err: 1254 expression_error(expr, "incompatible types in conditional expression (%s):", typediff); 1255 info(expr->pos, " %s", show_typename(ltype)); 1256 info(expr->pos, " %s", show_typename(rtype)); 1257 /* 1258 * if the condition is constant, the type is in fact known 1259 * so use it, as gcc & clang do. 1260 */ 1261 switch (expr_truth_value(expr->conditional)) { 1262 case 1: expr->ctype = ltype; 1263 break; 1264 case 0: expr->ctype = rtype; 1265 break; 1266 default: 1267 break; 1268 } 1269 return NULL; 1270 1271out: 1272 expr->ctype = ctype; 1273 return ctype; 1274 1275Qual: 1276 if (qual & ~ctype->ctype.modifiers) { 1277 struct symbol *sym = alloc_symbol(ctype->pos, SYM_PTR); 1278 *sym = *ctype; 1279 sym->ctype.modifiers |= qual; 1280 ctype = sym; 1281 } 1282 *cond = cast_to(*cond, ctype); 1283 expr->cond_false = cast_to(expr->cond_false, ctype); 1284 goto out; 1285} 1286 1287/* FP assignments can not do modulo or bit operations */ 1288static int compatible_float_op(int op) 1289{ 1290 return op == SPECIAL_ADD_ASSIGN || 1291 op == SPECIAL_SUB_ASSIGN || 1292 op == SPECIAL_MUL_ASSIGN || 1293 op == SPECIAL_DIV_ASSIGN; 1294} 1295 1296static int evaluate_assign_op(struct expression *expr) 1297{ 1298 struct symbol *target = expr->left->ctype; 1299 struct symbol *source = expr->right->ctype; 1300 struct symbol *t, *s; 1301 int tclass = classify_type(target, &t); 1302 int sclass = classify_type(source, &s); 1303 int op = expr->op; 1304 1305 if (tclass & sclass & TYPE_NUM) { 1306 if (tclass & TYPE_FLOAT && !compatible_float_op(op)) { 1307 expression_error(expr, "invalid assignment"); 1308 return 0; 1309 } 1310 if (tclass & TYPE_RESTRICT) { 1311 if (!restricted_binop(op, t)) { 1312 warning(expr->pos, "bad assignment (%s) to %s", 1313 show_special(op), show_typename(t)); 1314 expr->right = cast_to(expr->right, target); 1315 return 0; 1316 } 1317 /* allowed assignments unfoul */ 1318 if (sclass & TYPE_FOULED && unfoul(s) == t) 1319 goto Cast; 1320 if (!restricted_value(expr->right, t)) 1321 return 1; 1322 } else if (op == SPECIAL_SHR_ASSIGN || op == SPECIAL_SHL_ASSIGN) { 1323 // shifts do integer promotions, but that's it. 1324 unrestrict(expr->left, tclass, &t); 1325 target = integer_promotion(t); 1326 1327 unrestrict(expr->right, sclass, &s); 1328 source = integer_promotion(s); 1329 expr->right = cast_to(expr->right, source); 1330 1331 // both gcc & clang seems to do this, so ... 1332 if (target->bit_size > source->bit_size) 1333 expr->right = cast_to(expr->right, &uint_ctype); 1334 1335 goto Cast; 1336 } else if (!(sclass & TYPE_RESTRICT)) 1337 goto usual; 1338 /* source and target would better be identical restricted */ 1339 if (t == s) 1340 return 1; 1341 warning(expr->pos, "invalid assignment: %s", show_special(op)); 1342 info(expr->pos, " left side has type %s", show_typename(t)); 1343 info(expr->pos, " right side has type %s", show_typename(s)); 1344 expr->right = cast_to(expr->right, target); 1345 return 0; 1346 } 1347 if (tclass == TYPE_PTR && is_int(sclass)) { 1348 if (op == SPECIAL_ADD_ASSIGN || op == SPECIAL_SUB_ASSIGN) { 1349 unrestrict(expr->right, sclass, &s); 1350 evaluate_ptr_add(expr, s); 1351 return 1; 1352 } 1353 expression_error(expr, "invalid pointer assignment"); 1354 return 0; 1355 } 1356 1357 expression_error(expr, "invalid assignment"); 1358 return 0; 1359 1360usual: 1361 target = usual_conversions(op, expr->left, expr->right, 1362 tclass, sclass, target, source); 1363Cast: 1364 expr->right = cast_to(expr->right, target); 1365 return 1; 1366} 1367 1368static int whitelist_pointers(struct symbol *t1, struct symbol *t2) 1369{ 1370 if (t1 == t2) 1371 return 0; /* yes, 0 - we don't want a cast_to here */ 1372 if (t1 == &void_ctype) 1373 return 1; 1374 if (t2 == &void_ctype) 1375 return 1; 1376 if (classify_type(t1, &t1) != TYPE_NUM) 1377 return 0; 1378 if (classify_type(t2, &t2) != TYPE_NUM) 1379 return 0; 1380 if (t1 == t2) 1381 return 1; 1382 if (t1->rank == -2 && t2->rank == -2) 1383 return 1; 1384 if (t1->rank != t2->rank) 1385 return 0; 1386 return !Wtypesign; 1387} 1388 1389static int check_assignment_types(struct symbol *target, struct expression **rp, 1390 const char **typediff) 1391{ 1392 struct symbol *source = degenerate(*rp); 1393 struct symbol *t, *s; 1394 int tclass = classify_type(target, &t); 1395 int sclass = classify_type(source, &s); 1396 1397 if (tclass & sclass & TYPE_NUM) { 1398 if (tclass & TYPE_RESTRICT) { 1399 /* allowed assignments unfoul */ 1400 if (sclass & TYPE_FOULED && unfoul(s) == t) 1401 goto Cast; 1402 if (!restricted_value(*rp, target)) 1403 goto Cast; 1404 if (s == t) 1405 return 1; 1406 } else if (!(sclass & TYPE_RESTRICT)) 1407 goto Cast; 1408 if (t == &bool_ctype) { 1409 if (is_fouled_type(s)) 1410 warning((*rp)->pos, "%s degrades to integer", 1411 show_typename(s->ctype.base_type)); 1412 goto Cast; 1413 } 1414 *typediff = "different base types"; 1415 return 0; 1416 } 1417 1418 if (tclass == TYPE_PTR) { 1419 unsigned long mod1, mod2; 1420 unsigned long modl, modr; 1421 struct symbol *b1, *b2; 1422 // NULL pointer is always OK 1423 int is_null = is_null_pointer_constant(*rp); 1424 if (is_null) { 1425 if (is_null == NULL_ZERO) 1426 bad_null(*rp); 1427 goto Cast; 1428 } 1429 if (!(sclass & TYPE_PTR)) { 1430 *typediff = "different base types"; 1431 return 0; 1432 } 1433 b1 = examine_pointer_target(t); 1434 b2 = examine_pointer_target(s); 1435 mod1 = t->ctype.modifiers & MOD_IGN; 1436 mod2 = s->ctype.modifiers & MOD_IGN; 1437 if (whitelist_pointers(b1, b2)) { 1438 /* 1439 * assignments to/from void * are OK, provided that 1440 * we do not remove qualifiers from pointed to [C] 1441 * or mix address spaces [sparse]. 1442 */ 1443 if (t->ctype.as != s->ctype.as) { 1444 *typediff = "different address spaces"; 1445 return 0; 1446 } 1447 /* 1448 * If this is a function pointer assignment, it is 1449 * actually fine to assign a pointer to const data to 1450 * it, as a function pointer points to const data 1451 * implicitly, i.e., dereferencing it does not produce 1452 * an lvalue. 1453 */ 1454 if (b1->type == SYM_FN) 1455 mod1 |= MOD_CONST; 1456 if (mod2 & ~mod1 & ~MOD_FUN_ATTR) { 1457 *typediff = "different modifiers"; 1458 return 0; 1459 } 1460 goto Cast; 1461 } 1462 /* It's OK if the target is more volatile or const than the source */ 1463 /* It's OK if the source is more pure/noreturn than the target */ 1464 modr = mod1 & ~MOD_REV_QUAL; 1465 modl = mod2 & MOD_REV_QUAL; 1466 *typediff = type_difference(&t->ctype, &s->ctype, modl, modr); 1467 if (*typediff) 1468 return 0; 1469 return 1; 1470 } 1471 1472 if ((tclass & TYPE_COMPOUND) && s == t) 1473 return 1; 1474 1475 if (tclass & TYPE_NUM) { 1476 /* XXX: need to turn into comparison with NULL */ 1477 if (t == &bool_ctype && (sclass & TYPE_PTR)) 1478 goto Cast; 1479 *typediff = "different base types"; 1480 return 0; 1481 } 1482 *typediff = "invalid types"; 1483 return 0; 1484 1485Cast: 1486 *rp = cast_to(*rp, target); 1487 return 1; 1488} 1489 1490static int compatible_assignment_types(struct expression *expr, struct symbol *target, 1491 struct expression **rp, const char *where) 1492{ 1493 const char *typediff; 1494 1495 if (!check_assignment_types(target, rp, &typediff)) { 1496 struct symbol *source = *rp ? (*rp)->ctype : NULL; 1497 warning(expr->pos, "incorrect type in %s (%s)", where, typediff); 1498 info(expr->pos, " expected %s", show_typename(target)); 1499 info(expr->pos, " got %s", show_typename(source)); 1500 *rp = cast_to(*rp, target); 1501 return 0; 1502 } 1503 1504 return 1; 1505} 1506 1507static int compatible_transparent_union(struct symbol *target, 1508 struct expression **rp) 1509{ 1510 struct symbol *t, *member; 1511 classify_type(target, &t); 1512 if (t->type != SYM_UNION || !t->transparent_union) 1513 return 0; 1514 1515 FOR_EACH_PTR(t->symbol_list, member) { 1516 const char *typediff; 1517 if (check_assignment_types(member, rp, &typediff)) 1518 return 1; 1519 } END_FOR_EACH_PTR(member); 1520 1521 return 0; 1522} 1523 1524static int compatible_argument_type(struct expression *expr, struct symbol *target, 1525 struct expression **rp, const char *where) 1526{ 1527 if (compatible_transparent_union(target, rp)) 1528 return 1; 1529 1530 return compatible_assignment_types(expr, target, rp, where); 1531} 1532 1533static void mark_addressable(struct expression *expr) 1534{ 1535 while (expr->type == EXPR_BINOP && expr->op == '+') 1536 expr = expr->left; 1537 if (expr->type == EXPR_SYMBOL) { 1538 struct symbol *sym = expr->symbol; 1539 sym->ctype.modifiers |= MOD_ADDRESSABLE; 1540 } 1541} 1542 1543static void mark_assigned(struct expression *expr) 1544{ 1545 struct symbol *sym; 1546 1547 if (!expr) 1548 return; 1549 switch (expr->type) { 1550 case EXPR_SYMBOL: 1551 sym = expr->symbol; 1552 if (!sym) 1553 return; 1554 if (sym->type != SYM_NODE) 1555 return; 1556 sym->ctype.modifiers |= MOD_ASSIGNED; 1557 return; 1558 1559 case EXPR_BINOP: 1560 mark_assigned(expr->left); 1561 mark_assigned(expr->right); 1562 return; 1563 case EXPR_CAST: 1564 case EXPR_FORCE_CAST: 1565 mark_assigned(expr->cast_expression); 1566 return; 1567 case EXPR_SLICE: 1568 mark_assigned(expr->base); 1569 return; 1570 default: 1571 /* Hmm? */ 1572 return; 1573 } 1574} 1575 1576static void evaluate_assign_to(struct expression *left, struct symbol *type) 1577{ 1578 if (type->ctype.modifiers & MOD_CONST) 1579 expression_error(left, "assignment to const expression"); 1580 1581 /* We know left is an lvalue, so it's a "preop-*" */ 1582 mark_assigned(left->unop); 1583} 1584 1585static struct symbol *evaluate_assignment(struct expression *expr) 1586{ 1587 struct expression *left = expr->left; 1588 struct symbol *ltype; 1589 1590 if (!lvalue_expression(left)) { 1591 expression_error(expr, "not an lvalue"); 1592 return NULL; 1593 } 1594 1595 ltype = left->ctype; 1596 1597 if (expr->op != '=') { 1598 if (!evaluate_assign_op(expr)) 1599 return NULL; 1600 } else { 1601 if (!compatible_assignment_types(expr, ltype, &expr->right, "assignment")) 1602 return NULL; 1603 } 1604 1605 evaluate_assign_to(left, ltype); 1606 1607 expr->ctype = ltype; 1608 return ltype; 1609} 1610 1611static void examine_fn_arguments(struct symbol *fn) 1612{ 1613 struct symbol *s; 1614 1615 FOR_EACH_PTR(fn->arguments, s) { 1616 struct symbol *arg = evaluate_symbol(s); 1617 /* Array/function arguments silently degenerate into pointers */ 1618 if (arg) { 1619 struct symbol *ptr; 1620 switch(arg->type) { 1621 case SYM_ARRAY: 1622 case SYM_FN: 1623 ptr = alloc_symbol(s->pos, SYM_PTR); 1624 if (arg->type == SYM_ARRAY) 1625 ptr->ctype = arg->ctype; 1626 else 1627 ptr->ctype.base_type = arg; 1628 combine_address_space(s->pos, &ptr->ctype.as, s->ctype.as); 1629 ptr->ctype.modifiers |= s->ctype.modifiers & MOD_PTRINHERIT; 1630 1631 s->ctype.base_type = ptr; 1632 s->ctype.as = NULL; 1633 s->ctype.modifiers &= ~MOD_PTRINHERIT; 1634 s->bit_size = 0; 1635 s->examined = 0; 1636 examine_symbol_type(s); 1637 break; 1638 default: 1639 /* nothing */ 1640 break; 1641 } 1642 } 1643 } END_FOR_EACH_PTR(s); 1644} 1645 1646static struct symbol *convert_to_as_mod(struct symbol *sym, struct ident *as, int mod) 1647{ 1648 /* Take the modifiers of the pointer, and apply them to the member */ 1649 mod |= sym->ctype.modifiers; 1650 if (sym->ctype.as != as || sym->ctype.modifiers != mod) { 1651 struct symbol *newsym = alloc_symbol(sym->pos, SYM_NODE); 1652 *newsym = *sym; 1653 newsym->ctype.as = as; 1654 newsym->ctype.modifiers = mod; 1655 sym = newsym; 1656 } 1657 return sym; 1658} 1659 1660static struct symbol *create_pointer(struct expression *expr, struct symbol *sym, int degenerate) 1661{ 1662 struct symbol *node = alloc_symbol(expr->pos, SYM_NODE); 1663 struct symbol *ptr = alloc_symbol(expr->pos, SYM_PTR); 1664 1665 node->ctype.base_type = ptr; 1666 ptr->bit_size = bits_in_pointer; 1667 ptr->ctype.alignment = pointer_alignment; 1668 1669 node->bit_size = bits_in_pointer; 1670 node->ctype.alignment = pointer_alignment; 1671 1672 access_symbol(sym); 1673 if (sym->ctype.modifiers & MOD_REGISTER) { 1674 warning(expr->pos, "taking address of 'register' variable '%s'", show_ident(sym->ident)); 1675 sym->ctype.modifiers &= ~MOD_REGISTER; 1676 } 1677 if (sym->type == SYM_NODE) { 1678 combine_address_space(sym->pos, &ptr->ctype.as, sym->ctype.as); 1679 ptr->ctype.modifiers |= sym->ctype.modifiers & MOD_PTRINHERIT; 1680 sym = sym->ctype.base_type; 1681 } 1682 if (degenerate && sym->type == SYM_ARRAY) { 1683 combine_address_space(sym->pos, &ptr->ctype.as, sym->ctype.as); 1684 ptr->ctype.modifiers |= sym->ctype.modifiers & MOD_PTRINHERIT; 1685 sym = sym->ctype.base_type; 1686 } 1687 ptr->ctype.base_type = sym; 1688 1689 return node; 1690} 1691 1692/* Arrays degenerate into pointers on pointer arithmetic */ 1693static struct symbol *degenerate(struct expression *expr) 1694{ 1695 struct symbol *ctype, *base; 1696 1697 if (!expr) 1698 return NULL; 1699 ctype = expr->ctype; 1700 if (!ctype) 1701 return NULL; 1702 base = examine_symbol_type(ctype); 1703 if (ctype->type == SYM_NODE) 1704 base = ctype->ctype.base_type; 1705 /* 1706 * Arrays degenerate into pointers to the entries, while 1707 * functions degenerate into pointers to themselves. 1708 * If array was part of non-lvalue compound, we create a copy 1709 * of that compound first and then act as if we were dealing with 1710 * the corresponding field in there. 1711 */ 1712 switch (base->type) { 1713 case SYM_ARRAY: 1714 if (expr->type == EXPR_SLICE) { 1715 struct symbol *a = alloc_symbol(expr->pos, SYM_NODE); 1716 struct expression *e0, *e1, *e2, *e3, *e4; 1717 1718 a->ctype.base_type = expr->base->ctype; 1719 a->bit_size = expr->base->ctype->bit_size; 1720 a->array_size = expr->base->ctype->array_size; 1721 1722 e0 = alloc_expression(expr->pos, EXPR_SYMBOL); 1723 e0->symbol = a; 1724 e0->ctype = &lazy_ptr_ctype; 1725 1726 e1 = alloc_expression(expr->pos, EXPR_PREOP); 1727 e1->unop = e0; 1728 e1->op = '*'; 1729 e1->ctype = expr->base->ctype; /* XXX */ 1730 1731 e2 = alloc_expression(expr->pos, EXPR_ASSIGNMENT); 1732 e2->left = e1; 1733 e2->right = expr->base; 1734 e2->op = '='; 1735 e2->ctype = expr->base->ctype; 1736 1737 if (expr->r_bitpos) { 1738 e3 = alloc_expression(expr->pos, EXPR_BINOP); 1739 e3->op = '+'; 1740 e3->left = e0; 1741 e3->right = alloc_const_expression(expr->pos, 1742 bits_to_bytes(expr->r_bitpos)); 1743 e3->ctype = &lazy_ptr_ctype; 1744 } else { 1745 e3 = e0; 1746 } 1747 1748 e4 = alloc_expression(expr->pos, EXPR_COMMA); 1749 e4->left = e2; 1750 e4->right = e3; 1751 e4->ctype = &lazy_ptr_ctype; 1752 1753 expr->unop = e4; 1754 expr->type = EXPR_PREOP; 1755 expr->op = '*'; 1756 } 1757 case SYM_FN: 1758 if (expr->op != '*' || expr->type != EXPR_PREOP) { 1759 expression_error(expr, "strange non-value function or array"); 1760 return &bad_ctype; 1761 } 1762 if (ctype->builtin) 1763 sparse_error(expr->pos, "taking the address of built-in function '%s'", show_ident(ctype->ident)); 1764 *expr = *expr->unop; 1765 ctype = create_pointer(expr, ctype, 1); 1766 expr->ctype = ctype; 1767 mark_addressable(expr); 1768 default: 1769 /* nothing */; 1770 } 1771 return ctype; 1772} 1773 1774static struct symbol *evaluate_addressof(struct expression *expr) 1775{ 1776 struct expression *op = expr->unop; 1777 struct symbol *ctype; 1778 1779 if (op->op != '*' || op->type != EXPR_PREOP) { 1780 expression_error(expr, "not addressable"); 1781 return NULL; 1782 } 1783 ctype = op->ctype; 1784 if (ctype->builtin) 1785 sparse_error(expr->pos, "taking the address of built-in function '%s'", show_ident(ctype->ident)); 1786 *expr = *op->unop; 1787 1788 mark_addressable(expr); 1789 1790 /* 1791 * symbol expression evaluation is lazy about the type 1792 * of the sub-expression, so we may have to generate 1793 * the type here if so.. 1794 */ 1795 if (expr->ctype == &lazy_ptr_ctype) { 1796 ctype = create_pointer(expr, ctype, 0); 1797 expr->ctype = ctype; 1798 } 1799 return expr->ctype; 1800} 1801 1802 1803static struct symbol *evaluate_dereference(struct expression *expr) 1804{ 1805 struct expression *op = expr->unop; 1806 struct symbol *ctype = op->ctype, *node, *target; 1807 1808 /* Simplify: *&(expr) => (expr) */ 1809 if (op->type == EXPR_PREOP && op->op == '&') { 1810 *expr = *op->unop; 1811 expr->flags = CEF_NONE; 1812 return expr->ctype; 1813 } 1814 1815 examine_symbol_type(ctype); 1816 1817 /* Dereferencing a node drops all the node information. */ 1818 if (ctype->type == SYM_NODE) 1819 ctype = ctype->ctype.base_type; 1820 1821 target = ctype->ctype.base_type; 1822 1823 switch (ctype->type) { 1824 default: 1825 expression_error(expr, "cannot dereference this type"); 1826 return NULL; 1827 case SYM_FN: 1828 *expr = *op; 1829 return expr->ctype; 1830 case SYM_PTR: 1831 examine_symbol_type(target); 1832 node = alloc_symbol(expr->pos, SYM_NODE); 1833 node->ctype.modifiers = target->ctype.modifiers & MOD_SPECIFIER; 1834 merge_type(node, ctype); 1835 break; 1836 1837 case SYM_ARRAY: 1838 if (!lvalue_expression(op)) { 1839 expression_error(op, "non-lvalue array??"); 1840 return NULL; 1841 } 1842 1843 /* Do the implied "addressof" on the array */ 1844 *op = *op->unop; 1845 1846 /* 1847 * When an array is dereferenced, we need to pick 1848 * up the attributes of the original node too.. 1849 */ 1850 node = alloc_symbol(expr->pos, SYM_NODE); 1851 merge_type(node, op->ctype); 1852 merge_type(node, ctype); 1853 break; 1854 } 1855 1856 node->bit_size = target->bit_size; 1857 node->array_size = target->array_size; 1858 1859 expr->ctype = node; 1860 return node; 1861} 1862 1863/* 1864 * Unary post-ops: x++ and x-- 1865 */ 1866static struct symbol *evaluate_postop(struct expression *expr) 1867{ 1868 struct expression *op = expr->unop; 1869 struct symbol *ctype = op->ctype; 1870 int class = classify_type(ctype, &ctype); 1871 int multiply = 0; 1872 1873 if (!class || class & TYPE_COMPOUND) { 1874 expression_error(expr, "need scalar for ++/--"); 1875 return NULL; 1876 } 1877 if (!lvalue_expression(expr->unop)) { 1878 expression_error(expr, "need lvalue expression for ++/--"); 1879 return NULL; 1880 } 1881 1882 unrestrict(expr, class, &ctype); 1883 1884 if (class & TYPE_NUM) { 1885 multiply = 1; 1886 } else if (class == TYPE_PTR) { 1887 struct symbol *target = examine_pointer_target(ctype); 1888 if (!is_function(target)) 1889 multiply = bits_to_bytes(target->bit_size); 1890 } 1891 1892 if (multiply) { 1893 evaluate_assign_to(op, op->ctype); 1894 expr->op_value = multiply; 1895 expr->ctype = ctype; 1896 return ctype; 1897 } 1898 1899 expression_error(expr, "bad argument type for ++/--"); 1900 return NULL; 1901} 1902 1903static struct symbol *evaluate_sign(struct expression *expr) 1904{ 1905 struct symbol *ctype = expr->unop->ctype; 1906 int class = classify_type(ctype, &ctype); 1907 unsigned char flags = expr->unop->flags & ~CEF_CONST_MASK; 1908 1909 /* should be an arithmetic type */ 1910 if (!(class & TYPE_NUM)) 1911 return bad_expr_type(expr); 1912 if (class & TYPE_RESTRICT) 1913 goto Restr; 1914Normal: 1915 if (!(class & TYPE_FLOAT)) { 1916 ctype = integer_promotion(ctype); 1917 expr->unop = cast_to(expr->unop, ctype); 1918 } else if (expr->op != '~') { 1919 /* no conversions needed */ 1920 } else { 1921 return bad_expr_type(expr); 1922 } 1923 if (expr->op == '+') 1924 *expr = *expr->unop; 1925 expr->flags = flags; 1926 expr->ctype = ctype; 1927 return ctype; 1928Restr: 1929 if (restricted_unop(expr->op, &ctype)) 1930 unrestrict(expr, class, &ctype); 1931 goto Normal; 1932} 1933 1934static struct symbol *evaluate_preop(struct expression *expr) 1935{ 1936 struct symbol *ctype = expr->unop->ctype; 1937 1938 switch (expr->op) { 1939 case '(': 1940 *expr = *expr->unop; 1941 return ctype; 1942 1943 case '+': 1944 case '-': 1945 case '~': 1946 return evaluate_sign(expr); 1947 1948 case '*': 1949 return evaluate_dereference(expr); 1950 1951 case '&': 1952 return evaluate_addressof(expr); 1953 1954 case SPECIAL_INCREMENT: 1955 case SPECIAL_DECREMENT: 1956 /* 1957 * From a type evaluation standpoint the preops are 1958 * the same as the postops 1959 */ 1960 return evaluate_postop(expr); 1961 1962 case '!': 1963 ctype = degenerate(expr->unop); 1964 expr->flags = expr->unop->flags & ~CEF_CONST_MASK; 1965 /* 1966 * A logical negation never yields an address constant 1967 * [6.6(9)]. 1968 */ 1969 expr->flags &= ~CEF_ADDR; 1970 1971 if (is_safe_type(ctype)) 1972 warning(expr->pos, "testing a 'safe expression'"); 1973 if (is_float_type(ctype)) { 1974 struct expression *arg = expr->unop; 1975 expr->type = EXPR_COMPARE; 1976 expr->op = SPECIAL_EQUAL; 1977 expr->left = arg; 1978 expr->right = alloc_expression(expr->pos, EXPR_FVALUE); 1979 expr->right->ctype = ctype; 1980 expr->right->fvalue = 0; 1981 } else if (is_fouled_type(ctype)) { 1982 warning(expr->pos, "%s degrades to integer", 1983 show_typename(ctype->ctype.base_type)); 1984 } 1985 /* the result is int [6.5.3.3(5)]*/ 1986 ctype = &int_ctype; 1987 break; 1988 1989 default: 1990 break; 1991 } 1992 expr->ctype = ctype; 1993 return ctype; 1994} 1995 1996static struct symbol *find_identifier(struct ident *ident, struct symbol_list *_list, int *offset) 1997{ 1998 struct ptr_list *head = (struct ptr_list *)_list; 1999 struct ptr_list *list = head; 2000 2001 if (!head) 2002 return NULL; 2003 do { 2004 int i; 2005 for (i = 0; i < list->nr; i++) { 2006 struct symbol *sym = (struct symbol *) list->list[i]; 2007 if (sym->ident) { 2008 if (sym->ident != ident) 2009 continue; 2010 *offset = sym->offset; 2011 return sym; 2012 } else { 2013 struct symbol *ctype = sym->ctype.base_type; 2014 struct symbol *sub; 2015 if (!ctype) 2016 continue; 2017 if (ctype->type != SYM_UNION && ctype->type != SYM_STRUCT) 2018 continue; 2019 sub = find_identifier(ident, ctype->symbol_list, offset); 2020 if (!sub) 2021 continue; 2022 *offset += sym->offset; 2023 return sub; 2024 } 2025 } 2026 } while ((list = list->next) != head); 2027 return NULL; 2028} 2029 2030static struct expression *evaluate_offset(struct expression *expr, unsigned long offset) 2031{ 2032 struct expression *add; 2033 2034 /* 2035 * Create a new add-expression 2036 * 2037 * NOTE! Even if we just add zero, we need a new node 2038 * for the member pointer, since it has a different 2039 * type than the original pointer. We could make that 2040 * be just a cast, but the fact is, a node is a node, 2041 * so we might as well just do the "add zero" here. 2042 */ 2043 add = alloc_expression(expr->pos, EXPR_BINOP); 2044 add->op = '+'; 2045 add->left = expr; 2046 add->right = alloc_expression(expr->pos, EXPR_VALUE); 2047 add->right->ctype = &int_ctype; 2048 add->right->value = offset; 2049 2050 /* 2051 * The ctype of the pointer will be lazily evaluated if 2052 * we ever take the address of this member dereference.. 2053 */ 2054 add->ctype = &lazy_ptr_ctype; 2055 /* 2056 * The resulting address of a member access through an address 2057 * constant is an address constant again [6.6(9)]. 2058 */ 2059 add->flags = expr->flags; 2060 2061 return add; 2062} 2063 2064/* structure/union dereference */ 2065static struct symbol *evaluate_member_dereference(struct expression *expr) 2066{ 2067 int offset; 2068 struct symbol *ctype, *member; 2069 struct expression *deref = expr->deref, *add; 2070 struct ident *ident = expr->member; 2071 struct ident *address_space; 2072 unsigned int mod; 2073 2074 if (!evaluate_expression(deref)) 2075 return NULL; 2076 if (!ident) { 2077 expression_error(expr, "bad member name"); 2078 return NULL; 2079 } 2080 2081 ctype = deref->ctype; 2082 examine_symbol_type(ctype); 2083 address_space = ctype->ctype.as; 2084 mod = ctype->ctype.modifiers; 2085 if (ctype->type == SYM_NODE) { 2086 ctype = ctype->ctype.base_type; 2087 combine_address_space(deref->pos, &address_space, ctype->ctype.as); 2088 mod |= ctype->ctype.modifiers; 2089 } 2090 if (!ctype || (ctype->type != SYM_STRUCT && ctype->type != SYM_UNION)) { 2091 expression_error(expr, "expected structure or union"); 2092 return NULL; 2093 } 2094 offset = 0; 2095 member = find_identifier(ident, ctype->symbol_list, &offset); 2096 if (!member) { 2097 const char *type = ctype->type == SYM_STRUCT ? "struct" : "union"; 2098 const char *name = "<unnamed>"; 2099 int namelen = 9; 2100 if (ctype->ident) { 2101 name = ctype->ident->name; 2102 namelen = ctype->ident->len; 2103 } 2104 if (ctype->symbol_list) 2105 expression_error(expr, "no member '%s' in %s %.*s", 2106 show_ident(ident), type, namelen, name); 2107 else 2108 expression_error(expr, "using member '%s' in " 2109 "incomplete %s %.*s", show_ident(ident), 2110 type, namelen, name); 2111 return NULL; 2112 } 2113 2114 /* 2115 * The member needs to take on the address space and modifiers of 2116 * the "parent" type. 2117 */ 2118 member = convert_to_as_mod(member, address_space, mod); 2119 ctype = get_base_type(member); 2120 2121 if (!lvalue_expression(deref)) { 2122 if (deref->type != EXPR_SLICE) { 2123 expr->base = deref; 2124 expr->r_bitpos = 0; 2125 } else { 2126 expr->base = deref->base; 2127 expr->r_bitpos = deref->r_bitpos; 2128 } 2129 expr->r_bitpos += bytes_to_bits(offset); 2130 expr->type = EXPR_SLICE; 2131 expr->r_bitpos += member->bit_offset; 2132 expr->ctype = member; 2133 return member; 2134 } 2135 2136 deref = deref->unop; 2137 expr->deref = deref; 2138 2139 add = evaluate_offset(deref, offset); 2140 expr->type = EXPR_PREOP; 2141 expr->op = '*'; 2142 expr->unop = add; 2143 2144 expr->ctype = member; 2145 return member; 2146} 2147 2148static int is_promoted(struct expression *expr) 2149{ 2150 while (1) { 2151 switch (expr->type) { 2152 case EXPR_BINOP: 2153 case EXPR_SELECT: 2154 case EXPR_CONDITIONAL: 2155 return 1; 2156 case EXPR_COMMA: 2157 expr = expr->right; 2158 continue; 2159 case EXPR_PREOP: 2160 switch (expr->op) { 2161 case '(': 2162 expr = expr->unop; 2163 continue; 2164 case '+': 2165 case '-': 2166 case '~': 2167 return 1; 2168 default: 2169 return 0; 2170 } 2171 default: 2172 return 0; 2173 } 2174 } 2175} 2176 2177 2178static struct symbol *evaluate_type_information(struct expression *expr) 2179{ 2180 struct symbol *sym = expr->cast_type; 2181 if (!sym) { 2182 sym = evaluate_expression(expr->cast_expression); 2183 if (!sym) 2184 return NULL; 2185 /* 2186 * Expressions of restricted types will possibly get 2187 * promoted - check that here 2188 */ 2189 if (is_restricted_type(sym)) { 2190 if (sym->bit_size < bits_in_int && is_promoted(expr)) 2191 sym = &int_ctype; 2192 } else if (is_fouled_type(sym)) { 2193 sym = &int_ctype; 2194 } 2195 } 2196 examine_symbol_type(sym); 2197 if (is_bitfield_type(sym)) { 2198 expression_error(expr, "trying to examine bitfield type"); 2199 return NULL; 2200 } 2201 return sym; 2202} 2203 2204static struct symbol *evaluate_sizeof(struct expression *expr) 2205{ 2206 struct symbol *type; 2207 int size; 2208 2209 type = evaluate_type_information(expr); 2210 if (!type) 2211 return NULL; 2212 2213 size = type->bit_size; 2214 2215 if (size < 0 && is_void_type(type)) { 2216 if (Wpointer_arith) 2217 warning(expr->pos, "expression using sizeof(void)"); 2218 size = bits_in_char; 2219 } 2220 2221 if (is_bool_type(type)) { 2222 if (Wsizeof_bool) 2223 warning(expr->pos, "expression using sizeof _Bool"); 2224 size = bits_to_bytes(bits_in_bool) * bits_in_char; 2225 } 2226 2227 if (is_function(type->ctype.base_type)) { 2228 if (Wpointer_arith) 2229 warning(expr->pos, "expression using sizeof on a function"); 2230 size = bits_in_char; 2231 } 2232 2233 if (has_flexible_array(type) && Wflexible_array_sizeof) 2234 warning(expr->pos, "using sizeof on a flexible structure"); 2235 2236 if (is_array_type(type) && size < 0) { // VLA, 1-dimension only 2237 struct expression *base, *size; 2238 struct symbol *base_type; 2239 2240 if (type->type == SYM_NODE) 2241 type = type->ctype.base_type; // strip the SYM_NODE 2242 base_type = get_base_type(type); 2243 if (!base_type) 2244 goto error; 2245 if (base_type->bit_size <= 0) { 2246 base = alloc_expression(expr->pos, EXPR_SIZEOF); 2247 base->cast_type = base_type; 2248 if (!evaluate_sizeof(base)) 2249 goto error; 2250 } else { 2251 base = alloc_expression(expr->pos, EXPR_VALUE); 2252 base->value = bits_to_bytes(base_type->bit_size); 2253 base->ctype = size_t_ctype; 2254 } 2255 size = alloc_expression(expr->pos, EXPR_CAST); 2256 size->cast_type = size_t_ctype; 2257 size->cast_expression = type->array_size; 2258 if (!evaluate_expression(size)) 2259 goto error; 2260 expr->left = size; 2261 expr->right = base; 2262 expr->type = EXPR_BINOP; 2263 expr->op = '*'; 2264 return expr->ctype = size_t_ctype; 2265 } 2266 2267error: 2268 if ((size < 0) || (size & (bits_in_char - 1))) 2269 expression_error(expr, "cannot size expression"); 2270 2271 expr->type = EXPR_VALUE; 2272 expr->value = bits_to_bytes(size); 2273 expr->taint = 0; 2274 expr->ctype = size_t_ctype; 2275 return size_t_ctype; 2276} 2277 2278static struct symbol *evaluate_ptrsizeof(struct expression *expr) 2279{ 2280 struct symbol *type; 2281 int size; 2282 2283 type = evaluate_type_information(expr); 2284 if (!type) 2285 return NULL; 2286 2287 if (type->type == SYM_NODE) 2288 type = type->ctype.base_type; 2289 if (!type) 2290 return NULL; 2291 switch (type->type) { 2292 case SYM_ARRAY: 2293 break; 2294 case SYM_PTR: 2295 type = get_base_type(type); 2296 if (type) 2297 break; 2298 default: 2299 expression_error(expr, "expected pointer expression"); 2300 return NULL; 2301 } 2302 size = type->bit_size; 2303 if (size & (bits_in_char-1)) 2304 size = 0; 2305 expr->type = EXPR_VALUE; 2306 expr->value = bits_to_bytes(size); 2307 expr->taint = 0; 2308 expr->ctype = size_t_ctype; 2309 return size_t_ctype; 2310} 2311 2312static struct symbol *evaluate_alignof(struct expression *expr) 2313{ 2314 struct symbol *type; 2315 2316 type = evaluate_type_information(expr); 2317 if (!type) 2318 return NULL; 2319 2320 expr->type = EXPR_VALUE; 2321 expr->value = type->ctype.alignment; 2322 expr->taint = 0; 2323 expr->ctype = size_t_ctype; 2324 return size_t_ctype; 2325} 2326 2327int evaluate_arguments(struct symbol_list *argtypes, struct expression_list *head) 2328{ 2329 struct expression *expr; 2330 struct symbol *argtype; 2331 int i = 1; 2332 2333 PREPARE_PTR_LIST(argtypes, argtype); 2334 FOR_EACH_PTR (head, expr) { 2335 struct expression **p = THIS_ADDRESS(expr); 2336 struct symbol *ctype, *target; 2337 ctype = evaluate_expression(expr); 2338 2339 if (!ctype) 2340 return 0; 2341 2342 target = argtype; 2343 if (!target) { 2344 struct symbol *type; 2345 int class = classify_type(ctype, &type); 2346 if (is_int(class)) { 2347 *p = cast_to(expr, integer_promotion(type)); 2348 } else if (class & TYPE_FLOAT) { 2349 if (type->rank < 0) 2350 *p = cast_to(expr, &double_ctype); 2351 } else if (class & TYPE_PTR) { 2352 if (expr->ctype == &null_ctype) 2353 *p = cast_to(expr, &ptr_ctype); 2354 else 2355 degenerate(expr); 2356 } 2357 } else if (!target->forced_arg){ 2358 static char where[30]; 2359 examine_symbol_type(target); 2360 sprintf(where, "argument %d", i); 2361 compatible_argument_type(expr, target, p, where); 2362 } 2363 2364 i++; 2365 NEXT_PTR_LIST(argtype); 2366 } END_FOR_EACH_PTR(expr); 2367 FINISH_PTR_LIST(argtype); 2368 return 1; 2369} 2370 2371static void convert_index(struct expression *e) 2372{ 2373 struct expression *child = e->idx_expression; 2374 unsigned from = e->idx_from; 2375 unsigned to = e->idx_to + 1; 2376 e->type = EXPR_POS; 2377 e->init_offset = from * bits_to_bytes(e->ctype->bit_size); 2378 e->init_nr = to - from; 2379 e->init_expr = child; 2380} 2381 2382static void convert_ident(struct expression *e) 2383{ 2384 struct expression *child = e->ident_expression; 2385 int offset = e->offset; 2386 2387 e->type = EXPR_POS; 2388 e->init_offset = offset; 2389 e->init_nr = 1; 2390 e->init_expr = child; 2391} 2392 2393static void convert_designators(struct expression *e) 2394{ 2395 while (e) { 2396 if (e->type == EXPR_INDEX) 2397 convert_index(e); 2398 else if (e->type == EXPR_IDENTIFIER) 2399 convert_ident(e); 2400 else 2401 break; 2402 e = e->init_expr; 2403 } 2404} 2405 2406static void excess(struct expression *e, const char *s) 2407{ 2408 warning(e->pos, "excessive elements in %s initializer", s); 2409} 2410 2411/* 2412 * implicit designator for the first element 2413 */ 2414static struct expression *first_subobject(struct symbol *ctype, int class, 2415 struct expression **v) 2416{ 2417 struct expression *e = *v, *new; 2418 2419 if (ctype->type == SYM_NODE) 2420 ctype = ctype->ctype.base_type; 2421 2422 if (class & TYPE_PTR) { /* array */ 2423 if (!ctype->bit_size) 2424 return NULL; 2425 new = alloc_expression(e->pos, EXPR_INDEX); 2426 new->idx_expression = e; 2427 new->ctype = ctype->ctype.base_type; 2428 } else { 2429 struct symbol *field, *p; 2430 PREPARE_PTR_LIST(ctype->symbol_list, p); 2431 while (p && !p->ident && is_bitfield_type(p)) 2432 NEXT_PTR_LIST(p); 2433 field = p; 2434 FINISH_PTR_LIST(p); 2435 if (!field) 2436 return NULL; 2437 new = alloc_expression(e->pos, EXPR_IDENTIFIER); 2438 new->ident_expression = e; 2439 new->field = new->ctype = field; 2440 new->offset = field->offset; 2441 } 2442 *v = new; 2443 return new; 2444} 2445 2446/* 2447 * sanity-check explicit designators; return the innermost one or NULL 2448 * in case of error. Assign types. 2449 */ 2450static struct expression *check_designators(struct expression *e, 2451 struct symbol *ctype) 2452{ 2453 struct expression *last = NULL; 2454 const char *err; 2455 while (1) { 2456 if (ctype->type == SYM_NODE) 2457 ctype = ctype->ctype.base_type; 2458 if (e->type == EXPR_INDEX) { 2459 struct symbol *type; 2460 if (ctype->type != SYM_ARRAY) { 2461 err = "array index in non-array"; 2462 break; 2463 } 2464 type = ctype->ctype.base_type; 2465 if (ctype->bit_size >= 0 && type->bit_size >= 0) { 2466 unsigned offset = array_element_offset(type->bit_size, e->idx_to); 2467 if (offset >= ctype->bit_size) { 2468 err = "index out of bounds in"; 2469 break; 2470 } 2471 } 2472 e->ctype = ctype = type; 2473 ctype = type; 2474 last = e; 2475 if (!e->idx_expression) { 2476 err = "invalid"; 2477 break; 2478 } 2479 e = e->idx_expression; 2480 } else if (e->type == EXPR_IDENTIFIER) { 2481 int offset = 0; 2482 if (ctype->type != SYM_STRUCT && ctype->type != SYM_UNION) { 2483 err = "field name not in struct or union"; 2484 break; 2485 } 2486 ctype = find_identifier(e->expr_ident, ctype->symbol_list, &offset); 2487 if (!ctype) { 2488 err = "unknown field name in"; 2489 break; 2490 } 2491 e->offset = offset; 2492 e->field = e->ctype = ctype; 2493 last = e; 2494 if (!e->ident_expression) { 2495 err = "invalid"; 2496 break; 2497 } 2498 e = e->ident_expression; 2499 } else if (e->type == EXPR_POS) { 2500 err = "internal front-end error: EXPR_POS in"; 2501 break; 2502 } else 2503 return last; 2504 } 2505 expression_error(e, "%s initializer", err); 2506 return NULL; 2507} 2508 2509/* 2510 * choose the next subobject to initialize. 2511 * 2512 * Get designators for next element, switch old ones to EXPR_POS. 2513 * Return the resulting expression or NULL if we'd run out of subobjects. 2514 * The innermost designator is returned in *v. Designators in old 2515 * are assumed to be already sanity-checked. 2516 */ 2517static struct expression *next_designators(struct expression *old, 2518 struct symbol *ctype, 2519 struct expression *e, struct expression **v) 2520{ 2521 struct expression *new = NULL; 2522 2523 if (!old) 2524 return NULL; 2525 if (old->type == EXPR_INDEX) { 2526 struct expression *copy; 2527 unsigned n; 2528 2529 copy = next_designators(old->idx_expression, 2530 old->ctype, e, v); 2531 if (!copy) { 2532 n = old->idx_to + 1; 2533 if (array_element_offset(old->ctype->bit_size, n) == ctype->bit_size) { 2534 convert_index(old); 2535 return NULL; 2536 } 2537 copy = e; 2538 *v = new = alloc_expression(e->pos, EXPR_INDEX); 2539 } else { 2540 n = old->idx_to; 2541 new = alloc_expression(e->pos, EXPR_INDEX); 2542 } 2543 2544 new->idx_from = new->idx_to = n; 2545 new->idx_expression = copy; 2546 new->ctype = old->ctype; 2547 convert_index(old); 2548 } else if (old->type == EXPR_IDENTIFIER) { 2549 struct expression *copy; 2550 struct symbol *field; 2551 int offset = 0; 2552 2553 copy = next_designators(old->ident_expression, 2554 old->ctype, e, v); 2555 if (!copy) { 2556 field = old->field->next_subobject; 2557 if (!field) { 2558 convert_ident(old); 2559 return NULL; 2560 } 2561 copy = e; 2562 *v = new = alloc_expression(e->pos, EXPR_IDENTIFIER); 2563 /* 2564 * We can't necessarily trust "field->offset", 2565 * because the field might be in an anonymous 2566 * union, and the field offset is then the offset 2567 * within that union. 2568 * 2569 * The "old->offset - old->field->offset" 2570 * would be the offset of such an anonymous 2571 * union. 2572 */ 2573 offset = old->offset - old->field->offset; 2574 } else { 2575 field = old->field; 2576 new = alloc_expression(e->pos, EXPR_IDENTIFIER); 2577 } 2578 2579 new->field = field; 2580 new->expr_ident = field->ident; 2581 new->ident_expression = copy; 2582 new->ctype = field; 2583 new->offset = field->offset + offset; 2584 convert_ident(old); 2585 } 2586 return new; 2587} 2588 2589static int handle_initializer(struct expression **ep, int nested, 2590 int class, struct symbol *ctype, unsigned long mods); 2591 2592/* 2593 * deal with traversing subobjects [6.7.8(17,18,20)] 2594 */ 2595static void handle_list_initializer(struct expression *expr, 2596 int class, struct symbol *ctype, unsigned long mods) 2597{ 2598 struct expression *e, *last = NULL, *top = NULL, *next; 2599 int jumped = 0; // has the last designator multiple levels? 2600 2601 if (expr->zero_init) 2602 free_ptr_list(&expr->expr_list); 2603 2604 FOR_EACH_PTR(expr->expr_list, e) { 2605 struct expression **v; 2606 struct symbol *type; 2607 int lclass; 2608 2609 if (e->type != EXPR_INDEX && e->type != EXPR_IDENTIFIER) { 2610 struct symbol *struct_sym; 2611 if (!top) { 2612 top = e; 2613 last = first_subobject(ctype, class, &top); 2614 } else { 2615 last = next_designators(last, ctype, e, &top); 2616 } 2617 if (!last) { 2618 excess(e, class & TYPE_PTR ? "array" : 2619 "struct or union"); 2620 DELETE_CURRENT_PTR(e); 2621 continue; 2622 } 2623 struct_sym = ctype->type == SYM_NODE ? ctype->ctype.base_type : ctype; 2624 if (Wdesignated_init && struct_sym->designated_init) 2625 warning(e->pos, "%s%.*s%spositional init of field in %s %s, declared with attribute designated_init", 2626 ctype->ident ? "in initializer for " : "", 2627 ctype->ident ? ctype->ident->len : 0, 2628 ctype->ident ? ctype->ident->name : "", 2629 ctype->ident ? ": " : "", 2630 get_type_name(struct_sym->type), 2631 show_ident(struct_sym->ident)); 2632 if (jumped && Wpast_deep_designator) { 2633 warning(e->pos, "advancing past deep designator"); 2634 jumped = 0; 2635 } 2636 REPLACE_CURRENT_PTR(e, last); 2637 } else { 2638 next = check_designators(e, ctype); 2639 if (!next) { 2640 DELETE_CURRENT_PTR(e); 2641 continue; 2642 } 2643 top = next; 2644 /* deeper than one designator? */ 2645 jumped = top != e; 2646 convert_designators(last); 2647 last = e; 2648 } 2649 2650found: 2651 lclass = classify_type(top->ctype, &type); 2652 if (top->type == EXPR_INDEX) 2653 v = &top->idx_expression; 2654 else 2655 v = &top->ident_expression; 2656 2657 mods |= ctype->ctype.modifiers & MOD_STORAGE; 2658 if (handle_initializer(v, 1, lclass, top->ctype, mods)) 2659 continue; 2660 2661 if (!(lclass & TYPE_COMPOUND)) { 2662 warning(e->pos, "bogus scalar initializer"); 2663 DELETE_CURRENT_PTR(e); 2664 continue; 2665 } 2666 2667 next = first_subobject(type, lclass, v); 2668 if (next) { 2669 warning(e->pos, "missing braces around initializer"); 2670 top = next; 2671 goto found; 2672 } 2673 2674 DELETE_CURRENT_PTR(e); 2675 excess(e, lclass & TYPE_PTR ? "array" : "struct or union"); 2676 2677 } END_FOR_EACH_PTR(e); 2678 2679 convert_designators(last); 2680 expr->ctype = ctype; 2681} 2682 2683static int is_string_literal(struct expression **v) 2684{ 2685 struct expression *e = *v; 2686 while (e && e->type == EXPR_PREOP && e->op == '(') 2687 e = e->unop; 2688 if (!e || e->type != EXPR_STRING) 2689 return 0; 2690 if (e != *v && Wparen_string) 2691 warning(e->pos, 2692 "array initialized from parenthesized string constant"); 2693 *v = e; 2694 return 1; 2695} 2696 2697/* 2698 * We want a normal expression, possibly in one layer of braces. Warn 2699 * if the latter happens inside a list (it's legal, but likely to be 2700 * an effect of screwup). In case of anything not legal, we are definitely 2701 * having an effect of screwup, so just fail and let the caller warn. 2702 */ 2703static struct expression *handle_scalar(struct expression *e, int nested) 2704{ 2705 struct expression *v = NULL, *p; 2706 int count = 0; 2707 2708 /* normal case */ 2709 if (e->type != EXPR_INITIALIZER) 2710 return e; 2711 2712 FOR_EACH_PTR(e->expr_list, p) { 2713 if (!v) 2714 v = p; 2715 count++; 2716 } END_FOR_EACH_PTR(p); 2717 if (count != 1) 2718 return NULL; 2719 switch(v->type) { 2720 case EXPR_INITIALIZER: 2721 case EXPR_INDEX: 2722 case EXPR_IDENTIFIER: 2723 return NULL; 2724 default: 2725 break; 2726 } 2727 if (nested) 2728 warning(e->pos, "braces around scalar initializer"); 2729 return v; 2730} 2731 2732/* 2733 * deal with the cases that don't care about subobjects: 2734 * scalar <- assignment expression, possibly in braces [6.7.8(11)] 2735 * character array <- string literal, possibly in braces [6.7.8(14)] 2736 * struct or union <- assignment expression of compatible type [6.7.8(13)] 2737 * compound type <- initializer list in braces [6.7.8(16)] 2738 * The last one punts to handle_list_initializer() which, in turn will call 2739 * us for individual elements of the list. 2740 * 2741 * We do not handle 6.7.8(15) (wide char array <- wide string literal) for 2742 * the lack of support of wide char stuff in general. 2743 * 2744 * One note: we need to take care not to evaluate a string literal until 2745 * we know that we *will* handle it right here. Otherwise we would screw 2746 * the cases like struct { struct {char s[10]; ...} ...} initialized with 2747 * { "string", ...} - we need to preserve that string literal recognizable 2748 * until we dig into the inner struct. 2749 */ 2750static int handle_initializer(struct expression **ep, int nested, 2751 int class, struct symbol *ctype, unsigned long mods) 2752{ 2753 struct expression *e = *ep, *p; 2754 struct symbol *type; 2755 2756 if (!e) 2757 return 0; 2758 2759 /* scalar */ 2760 if (!(class & TYPE_COMPOUND)) { 2761 e = handle_scalar(e, nested); 2762 if (!e) 2763 return 0; 2764 *ep = e; 2765 if (!evaluate_expression(e)) 2766 return 1; 2767 compatible_assignment_types(e, ctype, ep, "initializer"); 2768 /* 2769 * Initializers for static storage duration objects 2770 * shall be constant expressions or a string literal [6.7.8(4)]. 2771 */ 2772 mods |= ctype->ctype.modifiers; 2773 mods &= (MOD_TOPLEVEL | MOD_STATIC); 2774 if (mods && !(e->flags & (CEF_ACE | CEF_ADDR))) 2775 if (Wconstexpr_not_const) 2776 warning(e->pos, "non-constant initializer for static object"); 2777 2778 return 1; 2779 } 2780 2781 /* 2782 * sublist; either a string, or we dig in; the latter will deal with 2783 * pathologies, so we don't need anything fancy here. 2784 */ 2785 if (e->type == EXPR_INITIALIZER) { 2786 if (is_string_type(ctype)) { 2787 struct expression *v = NULL; 2788 int count = 0; 2789 2790 FOR_EACH_PTR(e->expr_list, p) { 2791 if (!v) 2792 v = p; 2793 count++; 2794 } END_FOR_EACH_PTR(p); 2795 if (count == 1 && is_string_literal(&v)) { 2796 *ep = e = v; 2797 goto String; 2798 } 2799 } 2800 handle_list_initializer(e, class, ctype, mods); 2801 return 1; 2802 } 2803 2804 /* string */ 2805 if (is_string_literal(&e)) { 2806 /* either we are doing array of char, or we'll have to dig in */ 2807 if (is_string_type(ctype)) { 2808 *ep = e; 2809 goto String; 2810 } 2811 return 0; 2812 } 2813 /* struct or union can be initialized by compatible */ 2814 if (class != TYPE_COMPOUND) 2815 return 0; 2816 type = evaluate_expression(e); 2817 if (!type) 2818 return 0; 2819 if (ctype->type == SYM_NODE) 2820 ctype = ctype->ctype.base_type; 2821 if (type->type == SYM_NODE) 2822 type = type->ctype.base_type; 2823 if (ctype == type) 2824 return 1; 2825 return 0; 2826 2827String: 2828 p = alloc_expression(e->pos, EXPR_STRING); 2829 *p = *e; 2830 type = evaluate_expression(p); 2831 if (ctype->bit_size != -1) { 2832 struct symbol *char_type = e->wide ? wchar_ctype : &char_ctype; 2833 unsigned int size_with_null = ctype->bit_size + char_type->bit_size; 2834 if (size_with_null < type->bit_size) 2835 warning(e->pos, 2836 "too long initializer-string for array of char"); 2837 else if (Winit_cstring && size_with_null == type->bit_size) { 2838 warning(e->pos, 2839 "too long initializer-string for array of char(no space for nul char)"); 2840 } 2841 } 2842 *ep = p; 2843 return 1; 2844} 2845 2846static void evaluate_initializer(struct symbol *ctype, struct expression **ep) 2847{ 2848 struct symbol *type; 2849 int class = classify_type(ctype, &type); 2850 if (!handle_initializer(ep, 0, class, ctype, 0)) 2851 expression_error(*ep, "invalid initializer"); 2852} 2853 2854static struct symbol *cast_to_bool(struct expression *expr) 2855{ 2856 struct expression *old = expr->cast_expression; 2857 struct expression *zero; 2858 struct symbol *otype; 2859 int oclass = classify_type(degenerate(old), &otype); 2860 struct symbol *ctype; 2861 2862 if (oclass & TYPE_COMPOUND) 2863 return NULL; 2864 2865 zero = alloc_const_expression(expr->pos, 0); 2866 if (oclass & TYPE_PTR) 2867 zero->ctype = otype; 2868 expr->op = SPECIAL_NOTEQUAL; 2869 ctype = usual_conversions(expr->op, old, zero, 2870 oclass, TYPE_NUM, otype, zero->ctype); 2871 expr->type = EXPR_COMPARE; 2872 expr->left = cast_to(old, ctype); 2873 expr->right = cast_to(zero, ctype); 2874 2875 return expr->ctype; 2876} 2877 2878static int cast_flags(struct expression *expr, struct expression *old) 2879{ 2880 struct symbol *t; 2881 int class; 2882 int flags = CEF_NONE; 2883 2884 class = classify_type(expr->ctype, &t); 2885 if (class & TYPE_NUM) { 2886 flags = old->flags & ~CEF_CONST_MASK; 2887 /* 2888 * Casts to numeric types never result in address 2889 * constants [6.6(9)]. 2890 */ 2891 flags &= ~CEF_ADDR; 2892 2893 /* 2894 * As an extension, treat address constants cast to 2895 * integer type as an arithmetic constant. 2896 */ 2897 if (old->flags & CEF_ADDR) 2898 flags = CEF_ACE; 2899 2900 /* 2901 * Cast to float type -> not an integer constant 2902 * expression [6.6(6)]. 2903 */ 2904 if (class & TYPE_FLOAT) 2905 flags &= ~CEF_CLR_ICE; 2906 /* 2907 * Casts of float literals to integer type results in 2908 * a constant integer expression [6.6(6)]. 2909 */ 2910 else if (old->flags & CEF_FLOAT) 2911 flags = CEF_SET_ICE; 2912 } else if (class & TYPE_PTR) { 2913 /* 2914 * Casts of integer literals to pointer type yield 2915 * address constants [6.6(9)]. 2916 * 2917 * As an extension, treat address constants cast to a 2918 * different pointer type as address constants again. 2919 * 2920 * As another extension, treat integer constant 2921 * expressions (in contrast to literals) cast to 2922 * pointer type as address constants. 2923 */ 2924 if (old->flags & (CEF_ICE | CEF_ADDR)) 2925 flags = CEF_ADDR; 2926 } 2927 2928 return flags; 2929} 2930 2931/// 2932// check if a type matches one of the members of a union type 2933// @utype: the union type 2934// @type: to type to check 2935// @return: to identifier of the matching type in the union. 2936static struct symbol *find_member_type(struct symbol *utype, struct symbol *type) 2937{ 2938 struct symbol *t, *member; 2939 2940 if (utype->type != SYM_UNION) 2941 return NULL; 2942 2943 FOR_EACH_PTR(utype->symbol_list, member) { 2944 classify_type(member, &t); 2945 if (type == t) 2946 return member; 2947 } END_FOR_EACH_PTR(member); 2948 return NULL; 2949} 2950 2951static struct symbol *evaluate_compound_literal(struct expression *expr, struct expression *source) 2952{ 2953 struct expression *addr = alloc_expression(expr->pos, EXPR_SYMBOL); 2954 struct symbol *sym = expr->cast_type; 2955 2956 sym->initializer = source; 2957 evaluate_symbol(sym); 2958 2959 addr->ctype = &lazy_ptr_ctype; /* Lazy eval */ 2960 addr->symbol = sym; 2961 if (sym->ctype.modifiers & MOD_TOPLEVEL) 2962 addr->flags |= CEF_ADDR; 2963 2964 expr->type = EXPR_PREOP; 2965 expr->op = '*'; 2966 expr->deref = addr; 2967 expr->ctype = sym; 2968 return sym; 2969} 2970 2971static struct symbol *evaluate_cast(struct expression *expr) 2972{ 2973 struct expression *source = expr->cast_expression; 2974 struct symbol *ctype; 2975 struct symbol *ttype, *stype; 2976 struct symbol *member; 2977 int tclass, sclass; 2978 struct ident *tas = NULL, *sas = NULL; 2979 2980 if (!source) 2981 return NULL; 2982 2983 /* 2984 * Special case: a cast can be followed by an 2985 * initializer, in which case we need to pass 2986 * the type value down to that initializer rather 2987 * than trying to evaluate it as an expression 2988 * (cfr. compound literals: C99 & C11 6.5.2.5). 2989 * 2990 * A more complex case is when the initializer is 2991 * dereferenced as part of a post-fix expression. 2992 * We need to produce an expression that can be dereferenced. 2993 */ 2994 if (source->type == EXPR_INITIALIZER) 2995 return evaluate_compound_literal(expr, source); 2996 2997 ctype = examine_symbol_type(expr->cast_type); 2998 ctype = unqualify_type(ctype); 2999 expr->ctype = ctype; 3000 expr->cast_type = ctype; 3001 3002 evaluate_expression(source); 3003 degenerate(source); 3004 3005 tclass = classify_type(ctype, &ttype); 3006 3007 expr->flags = cast_flags(expr, source); 3008 3009 /* 3010 * You can always throw a value away by casting to 3011 * "void" - that's an implicit "force". Note that 3012 * the same is _not_ true of "void *". 3013 */ 3014 if (ttype == &void_ctype) 3015 goto out; 3016 3017 stype = source->ctype; 3018 if (!stype) { 3019 expression_error(expr, "cast from unknown type"); 3020 goto out; 3021 } 3022 sclass = classify_type(stype, &stype); 3023 3024 if (expr->type == EXPR_FORCE_CAST) 3025 goto out; 3026 3027 if (tclass & (TYPE_COMPOUND | TYPE_FN)) { 3028 /* 3029 * Special case: cast to union type (GCC extension) 3030 * The effect is similar to a compound literal except 3031 * that the result is a rvalue. 3032 */ 3033 if ((member = find_member_type(ttype, stype))) { 3034 struct expression *item, *init; 3035 3036 if (Wunion_cast) 3037 warning(expr->pos, "cast to union type"); 3038 3039 item = alloc_expression(source->pos, EXPR_IDENTIFIER); 3040 item->expr_ident = member->ident; 3041 item->ident_expression = source; 3042 3043 init = alloc_expression(source->pos, EXPR_INITIALIZER); 3044 add_expression(&init->expr_list, item); 3045 3046 // FIXME: this should be a rvalue 3047 evaluate_compound_literal(expr, init); 3048 return ctype; 3049 } 3050 3051 warning(expr->pos, "cast to non-scalar"); 3052 } 3053 3054 if (sclass & TYPE_COMPOUND) 3055 warning(expr->pos, "cast from non-scalar"); 3056 3057 /* allowed cast unfouls */ 3058 if (sclass & TYPE_FOULED) 3059 stype = unfoul(stype); 3060 3061 if (ttype != stype) { 3062 if ((tclass & TYPE_RESTRICT) && restricted_value(source, ttype)) 3063 warning(expr->pos, "cast to %s", 3064 show_typename(ttype)); 3065 if (sclass & TYPE_RESTRICT) { 3066 if (ttype == &bool_ctype) { 3067 if (sclass & TYPE_FOULED) 3068 warning(expr->pos, "%s degrades to integer", 3069 show_typename(stype)); 3070 } else { 3071 warning(expr->pos, "cast from %s", 3072 show_typename(stype)); 3073 } 3074 } 3075 } 3076 3077 if ((ttype == &ulong_ctype || ttype == uintptr_ctype) && !Wcast_from_as) 3078 tas = &bad_address_space; 3079 else if (tclass == TYPE_PTR) { 3080 examine_pointer_target(ttype); 3081 tas = ttype->ctype.as; 3082 } 3083 3084 if ((stype == &ulong_ctype || stype == uintptr_ctype)) 3085 sas = &bad_address_space; 3086 else if (sclass == TYPE_PTR) { 3087 examine_pointer_target(stype); 3088 sas = stype->ctype.as; 3089 } 3090 3091 if (!tas && valid_as(sas)) 3092 warning(expr->pos, "cast removes address space '%s' of expression", show_as(sas)); 3093 if (valid_as(tas) && valid_as(sas) && tas != sas) 3094 warning(expr->pos, "cast between address spaces (%s -> %s)", show_as(sas), show_as(tas)); 3095 if (valid_as(tas) && !sas && 3096 !is_null_pointer_constant(source) && Wcast_to_as) 3097 warning(expr->pos, 3098 "cast adds address space '%s' to expression", show_as(tas)); 3099 3100 if (!(ttype->ctype.modifiers & MOD_PTRINHERIT) && tclass == TYPE_PTR && 3101 !tas && (source->flags & CEF_ICE)) { 3102 if (ttype->ctype.base_type == &void_ctype) { 3103 if (is_zero_constant(source)) { 3104 /* NULL */ 3105 expr->type = EXPR_VALUE; 3106 expr->ctype = &null_ctype; 3107 expr->value = 0; 3108 return expr->ctype; 3109 } 3110 } 3111 } 3112 3113 if (ttype == &bool_ctype) 3114 cast_to_bool(expr); 3115 3116 // checks pointers to restricted 3117 while (Wbitwise_pointer && tclass == TYPE_PTR && sclass == TYPE_PTR) { 3118 tclass = classify_type(ttype->ctype.base_type, &ttype); 3119 sclass = classify_type(stype->ctype.base_type, &stype); 3120 if (ttype == stype) 3121 break; 3122 if (!ttype || !stype) 3123 break; 3124 if (ttype == &void_ctype || stype == &void_ctype) 3125 break; 3126 if (tclass & TYPE_RESTRICT) { 3127 warning(expr->pos, "cast to %s", show_typename(ctype)); 3128 break; 3129 } 3130 if (sclass & TYPE_RESTRICT) { 3131 warning(expr->pos, "cast from %s", show_typename(source->ctype)); 3132 break; 3133 } 3134 } 3135out: 3136 return ctype; 3137} 3138 3139/* 3140 * Evaluate a call expression with a symbol. This 3141 * should expand inline functions, and evaluate 3142 * builtins. 3143 */ 3144static int evaluate_symbol_call(struct expression *expr) 3145{ 3146 struct expression *fn = expr->fn; 3147 struct symbol *ctype = fn->ctype; 3148 3149 if (fn->type != EXPR_PREOP) 3150 return 0; 3151 3152 if (ctype->op && ctype->op->evaluate) 3153 return ctype->op->evaluate(expr); 3154 3155 return 0; 3156} 3157 3158static struct symbol *evaluate_call(struct expression *expr) 3159{ 3160 int args, fnargs; 3161 struct symbol *ctype, *sym; 3162 struct expression *fn = expr->fn; 3163 struct expression_list *arglist = expr->args; 3164 3165 if (!evaluate_expression(fn)) 3166 return NULL; 3167 sym = ctype = fn->ctype; 3168 if (ctype->type == SYM_NODE) 3169 ctype = ctype->ctype.base_type; 3170 if (ctype->type == SYM_PTR) 3171 ctype = get_base_type(ctype); 3172 3173 if (ctype->type != SYM_FN) { 3174 struct expression *arg; 3175 3176 if (fn->ctype == &bad_ctype) 3177 return NULL; 3178 3179 expression_error(expr, "not a function %s", 3180 show_ident(sym->ident)); 3181 /* do typechecking in arguments */ 3182 FOR_EACH_PTR (arglist, arg) { 3183 evaluate_expression(arg); 3184 } END_FOR_EACH_PTR(arg); 3185 return NULL; 3186 } 3187 3188 examine_fn_arguments(ctype); 3189 if (sym->type == SYM_NODE && fn->type == EXPR_PREOP && 3190 sym->op && sym->op->args) { 3191 if (!sym->op->args(expr)) 3192 return NULL; 3193 } else { 3194 if (!evaluate_arguments(ctype->arguments, arglist)) 3195 return NULL; 3196 args = expression_list_size(expr->args); 3197 fnargs = symbol_list_size(ctype->arguments); 3198 if (args < fnargs) { 3199 expression_error(expr, 3200 "not enough arguments for function %s", 3201 show_ident(sym->ident)); 3202 return NULL; 3203 } 3204 if (args > fnargs && !ctype->variadic) 3205 expression_error(expr, 3206 "too many arguments for function %s", 3207 show_ident(sym->ident)); 3208 } 3209 expr->ctype = ctype->ctype.base_type; 3210 if (sym->type == SYM_NODE) { 3211 if (evaluate_symbol_call(expr)) 3212 return expr->ctype; 3213 } 3214 return expr->ctype; 3215} 3216 3217static struct symbol *evaluate_offsetof(struct expression *expr) 3218{ 3219 struct expression *e = expr->down; 3220 struct symbol *ctype = expr->in; 3221 int class; 3222 3223 if (expr->op == '.') { 3224 struct symbol *field; 3225 int offset = 0; 3226 if (!ctype) { 3227 expression_error(expr, "expected structure or union"); 3228 return NULL; 3229 } 3230 examine_symbol_type(ctype); 3231 class = classify_type(ctype, &ctype); 3232 if (class != TYPE_COMPOUND) { 3233 expression_error(expr, "expected structure or union"); 3234 return NULL; 3235 } 3236 3237 field = find_identifier(expr->ident, ctype->symbol_list, &offset); 3238 if (!field) { 3239 expression_error(expr, "unknown member"); 3240 return NULL; 3241 } 3242 ctype = field; 3243 expr->type = EXPR_VALUE; 3244 expr->flags = CEF_SET_ICE; 3245 expr->value = offset; 3246 expr->taint = 0; 3247 expr->ctype = size_t_ctype; 3248 } else { 3249 if (!ctype) { 3250 expression_error(expr, "expected structure or union"); 3251 return NULL; 3252 } 3253 examine_symbol_type(ctype); 3254 class = classify_type(ctype, &ctype); 3255 if (class != (TYPE_COMPOUND | TYPE_PTR)) { 3256 expression_error(expr, "expected array"); 3257 return NULL; 3258 } 3259 ctype = ctype->ctype.base_type; 3260 if (!expr->index) { 3261 expr->type = EXPR_VALUE; 3262 expr->flags = CEF_SET_ICE; 3263 expr->value = 0; 3264 expr->taint = 0; 3265 expr->ctype = size_t_ctype; 3266 } else { 3267 struct expression *idx = expr->index, *m; 3268 struct symbol *i_type = evaluate_expression(idx); 3269 unsigned old_idx_flags; 3270 int i_class = classify_type(i_type, &i_type); 3271 3272 if (!is_int(i_class)) { 3273 expression_error(expr, "non-integer index"); 3274 return NULL; 3275 } 3276 unrestrict(idx, i_class, &i_type); 3277 old_idx_flags = idx->flags; 3278 idx = cast_to(idx, size_t_ctype); 3279 idx->flags = old_idx_flags; 3280 m = alloc_const_expression(expr->pos, 3281 bits_to_bytes(ctype->bit_size)); 3282 m->ctype = size_t_ctype; 3283 m->flags = CEF_SET_INT; 3284 expr->type = EXPR_BINOP; 3285 expr->left = idx; 3286 expr->right = m; 3287 expr->op = '*'; 3288 expr->ctype = size_t_ctype; 3289 expr->flags = m->flags & idx->flags & ~CEF_CONST_MASK; 3290 } 3291 } 3292 if (e) { 3293 struct expression *copy = __alloc_expression(0); 3294 *copy = *expr; 3295 if (e->type == EXPR_OFFSETOF) 3296 e->in = ctype; 3297 if (!evaluate_expression(e)) 3298 return NULL; 3299 expr->type = EXPR_BINOP; 3300 expr->flags = e->flags & copy->flags & ~CEF_CONST_MASK; 3301 expr->op = '+'; 3302 expr->ctype = size_t_ctype; 3303 expr->left = copy; 3304 expr->right = e; 3305 } 3306 return size_t_ctype; 3307} 3308 3309static void check_label_declaration(struct position pos, struct symbol *label) 3310{ 3311 switch (label->namespace) { 3312 case NS_LABEL: 3313 if (label->stmt) 3314 break; 3315 sparse_error(pos, "label '%s' was not declared", show_ident(label->ident)); 3316 /* fallthrough */ 3317 case NS_NONE: 3318 current_fn->bogus_linear = 1; 3319 default: 3320 break; 3321 } 3322} 3323 3324static int type_selection(struct symbol *ctrl, struct symbol *type) 3325{ 3326 struct ctype c = { .base_type = ctrl }; 3327 struct ctype t = { .base_type = type }; 3328 3329 return !type_difference(&c, &t, 0, 0); 3330} 3331 3332static struct symbol *evaluate_generic_selection(struct expression *expr) 3333{ 3334 struct type_expression *map; 3335 struct expression *res; 3336 struct symbol source; 3337 struct symbol *ctrl; 3338 3339 if (!evaluate_expression(expr->control)) 3340 return NULL; 3341 if (!(ctrl = degenerate(expr->control))) 3342 return NULL; 3343 3344 source = *ctrl; 3345 source.ctype.modifiers &= ~(MOD_QUALIFIER|MOD_ATOMIC); 3346 for (map = expr->map; map; map = map->next) { 3347 struct symbol *stype = map->type; 3348 struct symbol *base; 3349 3350 if (!evaluate_symbol(stype)) 3351 continue; 3352 3353 base = stype->ctype.base_type; 3354 if (base->type == SYM_ARRAY && base->array_size) { 3355 get_expression_value_silent(base->array_size); 3356 if (base->array_size->type == EXPR_VALUE) 3357 continue; 3358 sparse_error(stype->pos, "variable length array type in generic selection"); 3359 continue; 3360 } 3361 if (is_func_type(stype)) { 3362 sparse_error(stype->pos, "function type in generic selection"); 3363 continue; 3364 } 3365 if (stype->bit_size <= 0 || is_void_type(stype)) { 3366 sparse_error(stype->pos, "incomplete type in generic selection"); 3367 continue; 3368 } 3369 if (!type_selection(&source, stype)) 3370 continue; 3371 3372 res = map->expr; 3373 goto found; 3374 } 3375 res = expr->def; 3376 if (!res) { 3377 sparse_error(expr->pos, "no generic selection for '%s'", show_typename(ctrl)); 3378 return NULL; 3379 } 3380 3381found: 3382 *expr = *res; 3383 return evaluate_expression(expr); 3384} 3385 3386struct symbol *evaluate_expression(struct expression *expr) 3387{ 3388 if (!expr) 3389 return NULL; 3390 if (expr->ctype) 3391 return expr->ctype; 3392 3393 switch (expr->type) { 3394 case EXPR_VALUE: 3395 case EXPR_FVALUE: 3396 expression_error(expr, "value expression without a type"); 3397 return NULL; 3398 case EXPR_STRING: 3399 return evaluate_string(expr); 3400 case EXPR_SYMBOL: 3401 return evaluate_symbol_expression(expr); 3402 case EXPR_BINOP: 3403 evaluate_expression(expr->left); 3404 evaluate_expression(expr->right); 3405 if (!valid_subexpr_type(expr)) 3406 return NULL; 3407 return evaluate_binop(expr); 3408 case EXPR_LOGICAL: 3409 return evaluate_logical(expr); 3410 case EXPR_COMMA: 3411 evaluate_expression(expr->left); 3412 if (!evaluate_expression(expr->right)) 3413 return NULL; 3414 return evaluate_comma(expr); 3415 case EXPR_COMPARE: 3416 evaluate_expression(expr->left); 3417 evaluate_expression(expr->right); 3418 if (!valid_subexpr_type(expr)) 3419 return NULL; 3420 return evaluate_compare(expr); 3421 case EXPR_ASSIGNMENT: 3422 evaluate_expression(expr->left); 3423 evaluate_expression(expr->right); 3424 if (!valid_subexpr_type(expr)) 3425 return NULL; 3426 return evaluate_assignment(expr); 3427 case EXPR_PREOP: 3428 if (!evaluate_expression(expr->unop)) 3429 return NULL; 3430 return evaluate_preop(expr); 3431 case EXPR_POSTOP: 3432 if (!evaluate_expression(expr->unop)) 3433 return NULL; 3434 return evaluate_postop(expr); 3435 case EXPR_CAST: 3436 case EXPR_FORCE_CAST: 3437 case EXPR_IMPLIED_CAST: 3438 return evaluate_cast(expr); 3439 case EXPR_SIZEOF: 3440 return evaluate_sizeof(expr); 3441 case EXPR_PTRSIZEOF: 3442 return evaluate_ptrsizeof(expr); 3443 case EXPR_ALIGNOF: 3444 return evaluate_alignof(expr); 3445 case EXPR_DEREF: 3446 return evaluate_member_dereference(expr); 3447 case EXPR_CALL: 3448 return evaluate_call(expr); 3449 case EXPR_SELECT: 3450 case EXPR_CONDITIONAL: 3451 return evaluate_conditional_expression(expr); 3452 case EXPR_STATEMENT: 3453 expr->ctype = evaluate_statement(expr->statement); 3454 return expr->ctype; 3455 3456 case EXPR_LABEL: 3457 expr->ctype = &ptr_ctype; 3458 check_label_declaration(expr->pos, expr->label_symbol); 3459 return &ptr_ctype; 3460 3461 case EXPR_TYPE: 3462 /* Evaluate the type of the symbol .. */ 3463 evaluate_symbol(expr->symbol); 3464 /* .. but the type of the _expression_ is a "type" */ 3465 expr->ctype = &type_ctype; 3466 return &type_ctype; 3467 3468 case EXPR_OFFSETOF: 3469 return evaluate_offsetof(expr); 3470 3471 case EXPR_GENERIC: 3472 return evaluate_generic_selection(expr); 3473 3474 /* These can not exist as stand-alone expressions */ 3475 case EXPR_INITIALIZER: 3476 case EXPR_IDENTIFIER: 3477 case EXPR_INDEX: 3478 case EXPR_POS: 3479 expression_error(expr, "internal front-end error: initializer in expression"); 3480 return NULL; 3481 case EXPR_SLICE: 3482 expression_error(expr, "internal front-end error: SLICE re-evaluated"); 3483 return NULL; 3484 } 3485 return NULL; 3486} 3487 3488void check_duplicates(struct symbol *sym) 3489{ 3490 int declared = 0; 3491 struct symbol *next = sym; 3492 int initialized = sym->initializer != NULL; 3493 3494 while ((next = next->same_symbol) != NULL) { 3495 const char *typediff; 3496 evaluate_symbol(next); 3497 if (initialized && next->initializer) { 3498 sparse_error(sym->pos, "symbol '%s' has multiple initializers (originally initialized at %s:%d)", 3499 show_ident(sym->ident), 3500 stream_name(next->pos.stream), next->pos.line); 3501 /* Only warn once */ 3502 initialized = 0; 3503 } 3504 declared++; 3505 typediff = type_difference(&sym->ctype, &next->ctype, 0, 0); 3506 if (typediff) { 3507 sparse_error(sym->pos, "symbol '%s' redeclared with different type (%s):", 3508 show_ident(sym->ident), typediff); 3509 info(sym->pos, " %s", show_typename(sym)); 3510 info(next->pos, "note: previously declared as:"); 3511 info(next->pos, " %s", show_typename(next)); 3512 return; 3513 } 3514 } 3515 if (!declared) { 3516 unsigned long mod = sym->ctype.modifiers; 3517 if (mod & (MOD_STATIC | MOD_REGISTER | MOD_EXT_VISIBLE)) 3518 return; 3519 if (!(mod & MOD_TOPLEVEL)) 3520 return; 3521 if (!Wdecl) 3522 return; 3523 if (sym->ident == &main_ident) 3524 return; 3525 warning(sym->pos, "symbol '%s' was not declared. Should it be static?", show_ident(sym->ident)); 3526 } 3527} 3528 3529static struct symbol *evaluate_symbol(struct symbol *sym) 3530{ 3531 struct symbol *base_type; 3532 3533 if (!sym) 3534 return sym; 3535 if (sym->evaluated) 3536 return sym; 3537 sym->evaluated = 1; 3538 3539 sym = examine_symbol_type(sym); 3540 base_type = get_base_type(sym); 3541 if (!base_type) 3542 return NULL; 3543 3544 /* Evaluate the initializers */ 3545 if (sym->initializer) 3546 evaluate_initializer(sym, &sym->initializer); 3547 3548 /* And finally, evaluate the body of the symbol too */ 3549 if (base_type->type == SYM_FN) { 3550 struct symbol *curr = current_fn; 3551 3552 if (sym->definition && sym->definition != sym) 3553 return evaluate_symbol(sym->definition); 3554 3555 current_fn = sym; 3556 3557 examine_fn_arguments(base_type); 3558 if (!base_type->stmt && base_type->inline_stmt) 3559 uninline(sym); 3560 if (base_type->stmt) 3561 evaluate_statement(base_type->stmt); 3562 3563 current_fn = curr; 3564 } 3565 3566 return base_type; 3567} 3568 3569void evaluate_symbol_list(struct symbol_list *list) 3570{ 3571 struct symbol *sym; 3572 3573 FOR_EACH_PTR(list, sym) { 3574 has_error &= ~ERROR_CURR_PHASE; 3575 evaluate_symbol(sym); 3576 check_duplicates(sym); 3577 } END_FOR_EACH_PTR(sym); 3578} 3579 3580static struct symbol *evaluate_return_expression(struct statement *stmt) 3581{ 3582 struct expression *expr = stmt->expression; 3583 struct symbol *fntype, *rettype; 3584 3585 evaluate_expression(expr); 3586 fntype = current_fn->ctype.base_type; 3587 rettype = fntype->ctype.base_type; 3588 if (!rettype || rettype == &void_ctype) { 3589 if (expr && expr->ctype && !is_void_type(expr->ctype)) 3590 expression_error(expr, "return expression in %s function", rettype?"void":"typeless"); 3591 if (expr && Wreturn_void) 3592 warning(stmt->pos, "returning void-valued expression"); 3593 return NULL; 3594 } 3595 3596 if (!expr) { 3597 sparse_error(stmt->pos, "return with no return value"); 3598 return NULL; 3599 } 3600 if (!expr->ctype) 3601 return NULL; 3602 compatible_assignment_types(expr, rettype, &stmt->expression, "return expression"); 3603 return NULL; 3604} 3605 3606static void evaluate_if_statement(struct statement *stmt) 3607{ 3608 if (!stmt->if_conditional) 3609 return; 3610 3611 evaluate_conditional(stmt->if_conditional, 0); 3612 evaluate_statement(stmt->if_true); 3613 evaluate_statement(stmt->if_false); 3614} 3615 3616static void evaluate_iterator(struct statement *stmt) 3617{ 3618 evaluate_symbol_list(stmt->iterator_syms); 3619 evaluate_conditional(stmt->iterator_pre_condition, 1); 3620 evaluate_conditional(stmt->iterator_post_condition,1); 3621 evaluate_statement(stmt->iterator_pre_statement); 3622 evaluate_statement(stmt->iterator_statement); 3623 evaluate_statement(stmt->iterator_post_statement); 3624} 3625 3626 3627static void parse_asm_constraint(struct asm_operand *op) 3628{ 3629 struct expression *constraint = op->constraint; 3630 const char *str = constraint->string->data; 3631 int c; 3632 3633 switch (str[0]) { 3634 case '\0': 3635 sparse_error(constraint->pos, "invalid ASM constraint (\"\")"); 3636 break; 3637 case '+': 3638 op->is_modify = true; 3639 /* fall-through */ 3640 case '=': 3641 op->is_assign = true; 3642 str++; 3643 break; 3644 } 3645 3646 while ((c = *str++)) { 3647 switch (c) { 3648 case '=': 3649 case '+': 3650 sparse_error(constraint->pos, "invalid ASM constraint '%c'", c); 3651 break; 3652 3653 case '&': 3654 op->is_earlyclobber = true; 3655 break; 3656 case '%': 3657 op->is_commutative = true; 3658 break; 3659 case 'r': 3660 op->is_register = true; 3661 break; 3662 3663 case 'm': 3664 case 'o': 3665 case 'V': 3666 case 'Q': 3667 op->is_memory = true; 3668 break; 3669 3670 case '<': 3671 case '>': 3672 // FIXME: ignored for now 3673 break; 3674 3675 case ',': 3676 // FIXME: multiple alternative constraints 3677 break; 3678 3679 case '0' ... '9': 3680 // FIXME: numeric matching constraint? 3681 break; 3682 case '[': 3683 // FIXME: symbolic matching constraint 3684 return; 3685 3686 default: 3687 if (arch_target->asm_constraint) 3688 str = arch_target->asm_constraint(op, c, str); 3689 3690 // FIXME: multi-letter constraints 3691 break; 3692 } 3693 } 3694 3695 // FIXME: how to deal with multi-constraint? 3696 if (op->is_register) 3697 op->is_memory = 0; 3698} 3699 3700static void verify_output_constraint(struct asm_operand *op) 3701{ 3702 struct expression *expr = op->constraint; 3703 const char *constraint = expr->string->data; 3704 3705 if (!op->is_assign) 3706 expression_error(expr, "output constraint is not an assignment constraint (\"%s\")", constraint); 3707} 3708 3709static void verify_input_constraint(struct asm_operand *op) 3710{ 3711 struct expression *expr = op->constraint; 3712 const char *constraint = expr->string->data; 3713 3714 if (op->is_assign) 3715 expression_error(expr, "input constraint with assignment (\"%s\")", constraint); 3716} 3717 3718static void evaluate_asm_memop(struct asm_operand *op) 3719{ 3720 if (op->is_memory) { 3721 struct expression *expr = op->expr; 3722 struct expression *addr; 3723 3724 // implicit addressof 3725 addr = alloc_expression(expr->pos, EXPR_PREOP); 3726 addr->op = '&'; 3727 addr->unop = expr; 3728 3729 evaluate_addressof(addr); 3730 op->expr = addr; 3731 } else { 3732 evaluate_expression(op->expr); 3733 degenerate(op->expr); 3734 } 3735} 3736 3737static void evaluate_asm_statement(struct statement *stmt) 3738{ 3739 struct expression *expr; 3740 struct asm_operand *op; 3741 struct symbol *sym; 3742 3743 if (!stmt->asm_string) 3744 return; 3745 3746 FOR_EACH_PTR(stmt->asm_outputs, op) { 3747 /* Identifier */ 3748 3749 /* Constraint */ 3750 if (op->constraint) { 3751 parse_asm_constraint(op); 3752 verify_output_constraint(op); 3753 } 3754 3755 /* Expression */ 3756 expr = op->expr; 3757 if (!evaluate_expression(expr)) 3758 return; 3759 if (!lvalue_expression(expr)) 3760 warning(expr->pos, "asm output is not an lvalue"); 3761 evaluate_assign_to(expr, expr->ctype); 3762 evaluate_asm_memop(op); 3763 } END_FOR_EACH_PTR(op); 3764 3765 FOR_EACH_PTR(stmt->asm_inputs, op) { 3766 /* Identifier */ 3767 3768 /* Constraint */ 3769 if (op->constraint) { 3770 parse_asm_constraint(op); 3771 verify_input_constraint(op); 3772 } 3773 3774 /* Expression */ 3775 if (!evaluate_expression(op->expr)) 3776 return; 3777 evaluate_asm_memop(op); 3778 } END_FOR_EACH_PTR(op); 3779 3780 FOR_EACH_PTR(stmt->asm_clobbers, expr) { 3781 if (!expr) { 3782 sparse_error(stmt->pos, "bad asm clobbers"); 3783 return; 3784 } 3785 if (expr->type == EXPR_STRING) 3786 continue; 3787 expression_error(expr, "asm clobber is not a string"); 3788 } END_FOR_EACH_PTR(expr); 3789 3790 FOR_EACH_PTR(stmt->asm_labels, sym) { 3791 if (!sym || sym->type != SYM_LABEL) { 3792 sparse_error(stmt->pos, "bad asm label"); 3793 return; 3794 } 3795 } END_FOR_EACH_PTR(sym); 3796} 3797 3798static void evaluate_case_statement(struct statement *stmt) 3799{ 3800 evaluate_expression(stmt->case_expression); 3801 evaluate_expression(stmt->case_to); 3802 evaluate_statement(stmt->case_statement); 3803} 3804 3805static void check_case_type(struct expression *switch_expr, 3806 struct expression *case_expr, 3807 struct expression **enumcase) 3808{ 3809 struct symbol *switch_type, *case_type; 3810 int sclass, cclass; 3811 3812 if (!case_expr) 3813 return; 3814 3815 switch_type = switch_expr->ctype; 3816 case_type = evaluate_expression(case_expr); 3817 3818 if (!switch_type || !case_type) 3819 goto Bad; 3820 if (enumcase) { 3821 if (*enumcase) 3822 warn_for_different_enum_types(case_expr->pos, case_type, (*enumcase)->ctype); 3823 else if (is_enum_type(case_type)) 3824 *enumcase = case_expr; 3825 } 3826 3827 sclass = classify_type(switch_type, &switch_type); 3828 cclass = classify_type(case_type, &case_type); 3829 3830 /* both should be arithmetic */ 3831 if (!(sclass & cclass & TYPE_NUM)) 3832 goto Bad; 3833 3834 /* neither should be floating */ 3835 if ((sclass | cclass) & TYPE_FLOAT) 3836 goto Bad; 3837 3838 /* if neither is restricted, we are OK */ 3839 if (!((sclass | cclass) & TYPE_RESTRICT)) 3840 return; 3841 3842 if (!restricted_binop_type(SPECIAL_EQUAL, case_expr, switch_expr, 3843 cclass, sclass, case_type, switch_type)) { 3844 unrestrict(case_expr, cclass, &case_type); 3845 unrestrict(switch_expr, sclass, &switch_type); 3846 } 3847 return; 3848 3849Bad: 3850 expression_error(case_expr, "incompatible types for 'case' statement"); 3851} 3852 3853static void evaluate_switch_statement(struct statement *stmt) 3854{ 3855 struct symbol *sym; 3856 struct expression *enumcase = NULL; 3857 struct expression **enumcase_holder = &enumcase; 3858 struct expression *sel = stmt->switch_expression; 3859 3860 evaluate_expression(sel); 3861 evaluate_statement(stmt->switch_statement); 3862 if (!sel) 3863 return; 3864 if (sel->ctype && is_enum_type(sel->ctype)) 3865 enumcase_holder = NULL; /* Only check cases against switch */ 3866 3867 FOR_EACH_PTR(stmt->switch_case->symbol_list, sym) { 3868 struct statement *case_stmt = sym->stmt; 3869 check_case_type(sel, case_stmt->case_expression, enumcase_holder); 3870 check_case_type(sel, case_stmt->case_to, enumcase_holder); 3871 } END_FOR_EACH_PTR(sym); 3872} 3873 3874static void evaluate_goto_statement(struct statement *stmt) 3875{ 3876 struct symbol *label = stmt->goto_label; 3877 3878 if (!label) { 3879 // no label associated, may be a computed goto 3880 evaluate_expression(stmt->goto_expression); 3881 return; 3882 } 3883 3884 check_label_declaration(stmt->pos, label); 3885} 3886 3887struct symbol *evaluate_statement(struct statement *stmt) 3888{ 3889 if (!stmt) 3890 return NULL; 3891 3892 switch (stmt->type) { 3893 case STMT_DECLARATION: { 3894 struct symbol *s; 3895 FOR_EACH_PTR(stmt->declaration, s) { 3896 evaluate_symbol(s); 3897 } END_FOR_EACH_PTR(s); 3898 return NULL; 3899 } 3900 3901 case STMT_RETURN: 3902 return evaluate_return_expression(stmt); 3903 3904 case STMT_EXPRESSION: 3905 if (!evaluate_expression(stmt->expression)) 3906 return NULL; 3907 if (stmt->expression->ctype == &null_ctype) 3908 stmt->expression = cast_to(stmt->expression, &ptr_ctype); 3909 return unqualify_type(degenerate(stmt->expression)); 3910 3911 case STMT_COMPOUND: { 3912 struct statement *s; 3913 struct symbol *type = NULL; 3914 3915 /* Evaluate the return symbol in the compound statement */ 3916 evaluate_symbol(stmt->ret); 3917 3918 /* 3919 * Then, evaluate each statement, making the type of the 3920 * compound statement be the type of the last statement 3921 */ 3922 type = evaluate_statement(stmt->args); 3923 FOR_EACH_PTR(stmt->stmts, s) { 3924 type = evaluate_statement(s); 3925 } END_FOR_EACH_PTR(s); 3926 if (!type) 3927 type = &void_ctype; 3928 return type; 3929 } 3930 case STMT_IF: 3931 evaluate_if_statement(stmt); 3932 return NULL; 3933 case STMT_ITERATOR: 3934 evaluate_iterator(stmt); 3935 return NULL; 3936 case STMT_SWITCH: 3937 evaluate_switch_statement(stmt); 3938 return NULL; 3939 case STMT_CASE: 3940 evaluate_case_statement(stmt); 3941 return NULL; 3942 case STMT_LABEL: 3943 return evaluate_statement(stmt->label_statement); 3944 case STMT_GOTO: 3945 evaluate_goto_statement(stmt); 3946 return NULL; 3947 case STMT_NONE: 3948 break; 3949 case STMT_ASM: 3950 evaluate_asm_statement(stmt); 3951 return NULL; 3952 case STMT_CONTEXT: 3953 evaluate_expression(stmt->expression); 3954 return NULL; 3955 case STMT_RANGE: 3956 evaluate_expression(stmt->range_expression); 3957 evaluate_expression(stmt->range_low); 3958 evaluate_expression(stmt->range_high); 3959 return NULL; 3960 } 3961 return NULL; 3962} 3963