1/*
2 * sparse/evaluate.c
3 *
4 * Copyright (C) 2003 Transmeta Corp.
5 *               2003-2004 Linus Torvalds
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
20 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 *
25 * Evaluate constant expressions.
26 */
27#include <stdlib.h>
28#include <stdarg.h>
29#include <stddef.h>
30#include <stdio.h>
31#include <string.h>
32#include <ctype.h>
33#include <unistd.h>
34#include <fcntl.h>
35#include <limits.h>
36
37#include "evaluate.h"
38#include "lib.h"
39#include "allocate.h"
40#include "parse.h"
41#include "token.h"
42#include "symbol.h"
43#include "target.h"
44#include "expression.h"
45
46struct symbol *current_fn;
47
48struct ident bad_address_space = { .len = 6, .name = "bad AS", };
49
50static struct symbol *degenerate(struct expression *expr);
51static struct symbol *evaluate_symbol(struct symbol *sym);
52
53static inline int valid_expr_type(struct expression *expr)
54{
55	return expr && valid_type(expr->ctype);
56}
57
58static inline int valid_subexpr_type(struct expression *expr)
59{
60	return valid_expr_type(expr->left)
61	    && valid_expr_type(expr->right);
62}
63
64static struct symbol *unqualify_type(struct symbol *ctype)
65{
66	if (!ctype)
67		return ctype;
68	if (ctype->type == SYM_NODE && (ctype->ctype.modifiers & MOD_QUALIFIER)) {
69		struct symbol *unqual = alloc_symbol(ctype->pos, 0);
70
71		*unqual = *ctype;
72		unqual->ctype.modifiers &= ~MOD_QUALIFIER;
73		return unqual;
74	}
75	return ctype;
76}
77
78static struct symbol *evaluate_symbol_expression(struct expression *expr)
79{
80	struct expression *addr;
81	struct symbol *sym = expr->symbol;
82	struct symbol *base_type;
83
84	if (!sym) {
85		expression_error(expr, "undefined identifier '%s'", show_ident(expr->symbol_name));
86		return NULL;
87	}
88
89	examine_symbol_type(sym);
90
91	base_type = get_base_type(sym);
92	if (!base_type) {
93		expression_error(expr, "identifier '%s' has no type", show_ident(expr->symbol_name));
94		return NULL;
95	}
96
97	addr = alloc_expression(expr->pos, EXPR_SYMBOL);
98	addr->symbol = sym;
99	addr->symbol_name = expr->symbol_name;
100	addr->ctype = &lazy_ptr_ctype;	/* Lazy evaluation: we need to do a proper job if somebody does &sym */
101	addr->flags = expr->flags;
102	expr->type = EXPR_PREOP;
103	expr->op = '*';
104	expr->unop = addr;
105	expr->flags = CEF_NONE;
106
107	/* The type of a symbol is the symbol itself! */
108	expr->ctype = sym;
109	return sym;
110}
111
112static struct symbol *evaluate_string(struct expression *expr)
113{
114	struct symbol *sym = alloc_symbol(expr->pos, SYM_NODE);
115	struct symbol *array = alloc_symbol(expr->pos, SYM_ARRAY);
116	struct expression *addr = alloc_expression(expr->pos, EXPR_SYMBOL);
117	struct expression *initstr = alloc_expression(expr->pos, EXPR_STRING);
118	unsigned int length = expr->string->length;
119	struct symbol *char_type = expr->wide ? wchar_ctype : &char_ctype;
120
121	sym->array_size = alloc_const_expression(expr->pos, length);
122	sym->bit_size = length * char_type->bit_size;
123	sym->ctype.alignment = 1;
124	sym->string = 1;
125	sym->ctype.modifiers = MOD_STATIC;
126	sym->ctype.base_type = array;
127	sym->initializer = initstr;
128	sym->examined = 1;
129	sym->evaluated = 1;
130
131	initstr->ctype = sym;
132	initstr->string = expr->string;
133
134	array->array_size = sym->array_size;
135	array->bit_size = sym->bit_size;
136	array->ctype.alignment = char_type->ctype.alignment;
137	array->ctype.modifiers = MOD_STATIC;
138	array->ctype.base_type = char_type;
139	array->examined = 1;
140	array->evaluated = 1;
141
142	addr->symbol = sym;
143	addr->ctype = &lazy_ptr_ctype;
144	addr->flags = CEF_ADDR;
145
146	expr->type = EXPR_PREOP;
147	expr->op = '*';
148	expr->unop = addr;
149	expr->ctype = sym;
150	return sym;
151}
152
153/* type has come from classify_type and is an integer type */
154static inline struct symbol *integer_promotion(struct symbol *type)
155{
156	unsigned long mod =  type->ctype.modifiers;
157	int width = type->bit_size;
158
159	/*
160	 * Bitfields always promote to the base type,
161	 * even if the bitfield might be bigger than
162	 * an "int".
163	 */
164	if (type->type == SYM_BITFIELD) {
165		type = type->ctype.base_type;
166	}
167	mod = type->ctype.modifiers;
168	if (width < bits_in_int)
169		return &int_ctype;
170
171	/* If char/short has as many bits as int, it still gets "promoted" */
172	if (type->rank < 0) {
173		if (mod & MOD_UNSIGNED)
174			return &uint_ctype;
175		return &int_ctype;
176	}
177	return type;
178}
179
180/*
181 * After integer promotons:
182 * If both types are the same
183 *   -> no conversion needed
184 * If the types have the same signedness (their rank must be different)
185 *   -> convert to the type of the highest rank
186 * If rank(unsigned type) >= rank(signed type)
187 *   -> convert to the unsigned type
188 * If size(signed type) > size(unsigned type)
189 *   -> convert to the signed type
190 * Otherwise
191 *   -> convert to the unsigned type corresponding to the signed type.
192 */
193static struct symbol *bigger_int_type(struct symbol *left, struct symbol *right)
194{
195	static struct symbol *unsigned_types[] = {
196		[0] = &uint_ctype,
197		[1] = &ulong_ctype,
198		[2] = &ullong_ctype,
199		[3] = &uint128_ctype,
200	};
201	unsigned long lmod, rmod;
202	struct symbol *stype, *utype;
203
204	left = integer_promotion(left);
205	right = integer_promotion(right);
206
207	if (left == right)
208		return left;
209
210	lmod = left->ctype.modifiers;
211	rmod = right->ctype.modifiers;
212	if (((lmod ^ rmod) & MOD_UNSIGNED) == 0)
213		return (left->rank > right->rank) ? left : right;
214	if (lmod & MOD_UNSIGNED) {
215		utype = left;
216		stype = right;
217	} else {
218		stype = left;
219		utype = right;
220	}
221	if (utype->rank >= stype->rank)
222		return utype;
223	if (stype->bit_size > utype->bit_size)
224		return stype;
225	utype = unsigned_types[stype->rank];
226	return utype;
227}
228
229static struct symbol *base_type(struct symbol *node, unsigned long *modp, struct ident **asp)
230{
231	unsigned long mod = 0;
232	struct ident *as = NULL;
233
234	while (node) {
235		mod |= node->ctype.modifiers;
236		combine_address_space(node->pos, &as, node->ctype.as);
237		if (node->type == SYM_NODE) {
238			node = node->ctype.base_type;
239			continue;
240		}
241		break;
242	}
243	*modp = mod & ~MOD_IGNORE;
244	*asp = as;
245	return node;
246}
247
248static int is_same_type(struct expression *expr, struct symbol *new)
249{
250	struct symbol *old = expr->ctype;
251	unsigned long oldmod, newmod;
252	struct ident *oldas, *newas;
253
254	old = base_type(old, &oldmod, &oldas);
255	new = base_type(new, &newmod, &newas);
256
257	/* Same base type, same address space? */
258	if (old == new && oldas == newas) {
259		unsigned long difmod;
260
261		/* Check the modifier bits. */
262		difmod = (oldmod ^ newmod) & ~MOD_NOCAST;
263
264		/* Exact same type? */
265		if (!difmod)
266			return 1;
267
268		/*
269		 * Not the same type, but differs only in "const".
270		 * Don't warn about MOD_NOCAST.
271		 */
272		if (difmod == MOD_CONST)
273			return 0;
274	}
275	if ((oldmod | newmod) & MOD_NOCAST) {
276		const char *tofrom = "to/from";
277		if (!(newmod & MOD_NOCAST))
278			tofrom = "from";
279		if (!(oldmod & MOD_NOCAST))
280			tofrom = "to";
281		warning(expr->pos, "implicit cast %s nocast type", tofrom);
282	}
283	return 0;
284}
285
286static void
287warn_for_different_enum_types (struct position pos,
288			       struct symbol *typea,
289			       struct symbol *typeb)
290{
291	if (!Wenum_mismatch)
292		return;
293	if (typea->type == SYM_NODE)
294		typea = typea->ctype.base_type;
295	if (typeb->type == SYM_NODE)
296		typeb = typeb->ctype.base_type;
297
298	if (typea == typeb)
299		return;
300
301	if (typea->type == SYM_ENUM && typeb->type == SYM_ENUM) {
302		warning(pos, "mixing different enum types:");
303		info(pos, "   %s", show_typename(typea));
304		info(pos, "   %s", show_typename(typeb));
305	}
306}
307
308static int cast_flags(struct expression *expr, struct expression *target);
309static struct symbol *cast_to_bool(struct expression *expr);
310
311/*
312 * This gets called for implicit casts in assignments and
313 * integer promotion.
314 */
315static struct expression * cast_to(struct expression *old, struct symbol *type)
316{
317	struct expression *expr;
318
319	warn_for_different_enum_types (old->pos, old->ctype, type);
320
321	if (old->ctype != &null_ctype && is_same_type(old, type))
322		return old;
323
324	expr = alloc_expression(old->pos, EXPR_IMPLIED_CAST);
325	expr->ctype = type;
326	expr->cast_type = type;
327	expr->cast_expression = old;
328	expr->flags = cast_flags(expr, old);
329
330	if (is_bool_type(type))
331		cast_to_bool(expr);
332
333	return expr;
334}
335
336enum {
337	TYPE_NUM = 1,
338	TYPE_BITFIELD = 2,
339	TYPE_RESTRICT = 4,
340	TYPE_FLOAT = 8,
341	TYPE_PTR = 16,
342	TYPE_COMPOUND = 32,
343	TYPE_FOULED = 64,
344	TYPE_FN = 128,
345};
346
347static inline int classify_type(struct symbol *type, struct symbol **base)
348{
349	static int type_class[SYM_BAD + 1] = {
350		[SYM_PTR] = TYPE_PTR,
351		[SYM_FN] = TYPE_PTR | TYPE_FN,
352		[SYM_ARRAY] = TYPE_PTR | TYPE_COMPOUND,
353		[SYM_STRUCT] = TYPE_COMPOUND,
354		[SYM_UNION] = TYPE_COMPOUND,
355		[SYM_BITFIELD] = TYPE_NUM | TYPE_BITFIELD,
356		[SYM_RESTRICT] = TYPE_NUM | TYPE_RESTRICT,
357		[SYM_FOULED] = TYPE_NUM | TYPE_RESTRICT | TYPE_FOULED,
358	};
359	if (type->type == SYM_NODE)
360		type = type->ctype.base_type;
361	if (type->type == SYM_TYPEOF) {
362		type = examine_symbol_type(type);
363		if (type->type == SYM_NODE)
364			type = type->ctype.base_type;
365	}
366	if (type->type == SYM_ENUM)
367		type = type->ctype.base_type;
368	*base = type;
369	if (type->type == SYM_BASETYPE) {
370		if (type->ctype.base_type == &int_type)
371			return TYPE_NUM;
372		if (type->ctype.base_type == &fp_type)
373			return TYPE_NUM | TYPE_FLOAT;
374	}
375	return type_class[type->type];
376}
377
378#define is_int(class) ((class & (TYPE_NUM | TYPE_FLOAT)) == TYPE_NUM)
379
380static inline int is_string_type(struct symbol *type)
381{
382	if (type->type == SYM_NODE)
383		type = type->ctype.base_type;
384	if (type->type != SYM_ARRAY)
385		return 0;
386	type = type->ctype.base_type;
387	return is_byte_type(type) || is_wchar_type(type);
388}
389
390static struct symbol *bad_expr_type(struct expression *expr)
391{
392	switch (expr->type) {
393	case EXPR_BINOP:
394	case EXPR_COMPARE:
395		if (!valid_subexpr_type(expr))
396			break;
397		sparse_error(expr->pos, "incompatible types for operation (%s):", show_special(expr->op));
398		info(expr->pos, "   %s", show_typename(expr->left->ctype));
399		info(expr->pos, "   %s", show_typename(expr->right->ctype));
400		break;
401	case EXPR_PREOP:
402	case EXPR_POSTOP:
403		if (!valid_expr_type(expr->unop))
404			break;
405		sparse_error(expr->pos, "incompatible type for operation (%s):", show_special(expr->op));
406		info(expr->pos, "   %s", show_typename(expr->unop->ctype));
407		break;
408	default:
409		break;
410	}
411
412	expr->flags = CEF_NONE;
413	return expr->ctype = &bad_ctype;
414}
415
416static int restricted_value(struct expression *v, struct symbol *type)
417{
418	if (v->type != EXPR_VALUE)
419		return 1;
420	if (v->value != 0)
421		return 1;
422	return 0;
423}
424
425static int restricted_binop(int op, struct symbol *type)
426{
427	switch (op) {
428		case '&':
429		case '=':
430		case SPECIAL_AND_ASSIGN:
431		case SPECIAL_OR_ASSIGN:
432		case SPECIAL_XOR_ASSIGN:
433			return 1;	/* unfoul */
434		case '|':
435		case '^':
436		case '?':
437			return 2;	/* keep fouled */
438		case SPECIAL_EQUAL:
439		case SPECIAL_NOTEQUAL:
440			return 3;	/* warn if fouled */
441		default:
442			return 0;	/* warn */
443	}
444}
445
446static int restricted_unop(int op, struct symbol **type)
447{
448	if (op == '~') {
449		if ((*type)->bit_size < bits_in_int)
450			*type = befoul(*type);
451		return 0;
452	} if (op == '+')
453		return 0;
454	return 1;
455}
456
457/* type should be SYM_FOULED */
458static inline struct symbol *unfoul(struct symbol *type)
459{
460	return type->ctype.base_type;
461}
462
463static struct symbol *restricted_binop_type(int op,
464					struct expression *left,
465					struct expression *right,
466					int lclass, int rclass,
467					struct symbol *ltype,
468					struct symbol *rtype)
469{
470	struct symbol *ctype = NULL;
471	if (lclass & TYPE_RESTRICT) {
472		if (rclass & TYPE_RESTRICT) {
473			if (ltype == rtype) {
474				ctype = ltype;
475			} else if (lclass & TYPE_FOULED) {
476				if (unfoul(ltype) == rtype)
477					ctype = ltype;
478			} else if (rclass & TYPE_FOULED) {
479				if (unfoul(rtype) == ltype)
480					ctype = rtype;
481			}
482		} else {
483			if (!restricted_value(right, ltype))
484				ctype = ltype;
485		}
486	} else if (!restricted_value(left, rtype))
487		ctype = rtype;
488
489	if (ctype) {
490		switch (restricted_binop(op, ctype)) {
491		case 1:
492			if ((lclass ^ rclass) & TYPE_FOULED)
493				ctype = unfoul(ctype);
494			break;
495		case 3:
496			if (!(lclass & rclass & TYPE_FOULED))
497				break;
498		case 0:
499			ctype = NULL;
500		default:
501			break;
502		}
503	}
504
505	return ctype;
506}
507
508static inline void unrestrict(struct expression *expr,
509			      int class, struct symbol **ctype)
510{
511	if (class & TYPE_RESTRICT) {
512		if (class & TYPE_FOULED)
513			*ctype = unfoul(*ctype);
514		warning(expr->pos, "%s degrades to integer",
515			show_typename(*ctype));
516		*ctype = (*ctype)->ctype.base_type; /* get to arithmetic type */
517	}
518}
519
520static struct symbol *usual_conversions(int op,
521					struct expression *left,
522					struct expression *right,
523					int lclass, int rclass,
524					struct symbol *ltype,
525					struct symbol *rtype)
526{
527	struct symbol *ctype;
528
529	warn_for_different_enum_types(right->pos, left->ctype, right->ctype);
530
531	if ((lclass | rclass) & TYPE_RESTRICT)
532		goto Restr;
533
534Normal:
535	if (!(lclass & TYPE_FLOAT)) {
536		if (!(rclass & TYPE_FLOAT))
537			return bigger_int_type(ltype, rtype);
538		else
539			return rtype;
540	} else if (rclass & TYPE_FLOAT) {
541		if (rtype->rank > ltype->rank)
542			return rtype;
543		else
544			return ltype;
545	} else
546		return ltype;
547
548Restr:
549	ctype = restricted_binop_type(op, left, right,
550				      lclass, rclass, ltype, rtype);
551	if (ctype)
552		return ctype;
553
554	unrestrict(left, lclass, &ltype);
555	unrestrict(right, rclass, &rtype);
556
557	goto Normal;
558}
559
560static inline int lvalue_expression(struct expression *expr)
561{
562	return expr->type == EXPR_PREOP && expr->op == '*';
563}
564
565static struct symbol *evaluate_ptr_add(struct expression *expr, struct symbol *itype)
566{
567	struct expression *index = expr->right;
568	struct symbol *ctype, *base;
569	int multiply;
570
571	classify_type(degenerate(expr->left), &ctype);
572	base = examine_pointer_target(ctype);
573
574	/*
575	 * An address constant +/- an integer constant expression
576	 * yields an address constant again [6.6(7)].
577	 */
578	if ((expr->left->flags & CEF_ADDR) && (expr->right->flags & CEF_ICE))
579		expr->flags = CEF_ADDR;
580
581	if (!base) {
582		expression_error(expr, "missing type information");
583		return NULL;
584	}
585	if (is_function(base)) {
586		expression_error(expr, "arithmetics on pointers to functions");
587		return NULL;
588	}
589
590	/* Get the size of whatever the pointer points to */
591	multiply = is_void_type(base) ? 1 : bits_to_bytes(base->bit_size);
592
593	if (ctype == &null_ctype)
594		ctype = &ptr_ctype;
595	expr->ctype = ctype;
596
597	if (multiply == 1 && itype->bit_size == bits_in_pointer)
598		return ctype;
599
600	if (index->type == EXPR_VALUE) {
601		struct expression *val = alloc_expression(expr->pos, EXPR_VALUE);
602		unsigned long long v = index->value, mask;
603		mask = 1ULL << (itype->bit_size - 1);
604		if (v & mask)
605			v |= -mask;
606		else
607			v &= mask - 1;
608		v *= multiply;
609		mask = 1ULL << (bits_in_pointer - 1);
610		v &= mask | (mask - 1);
611		val->value = v;
612		val->ctype = ssize_t_ctype;
613		expr->right = val;
614		return ctype;
615	}
616
617	if (itype->bit_size != bits_in_pointer)
618		index = cast_to(index, ssize_t_ctype);
619
620	if (multiply > 1) {
621		struct expression *val = alloc_expression(expr->pos, EXPR_VALUE);
622		struct expression *mul = alloc_expression(expr->pos, EXPR_BINOP);
623
624		val->ctype = ssize_t_ctype;
625		val->value = multiply;
626
627		mul->op = '*';
628		mul->ctype = ssize_t_ctype;
629		mul->left = index;
630		mul->right = val;
631		index = mul;
632	}
633
634	expr->right = index;
635	return ctype;
636}
637
638static void examine_fn_arguments(struct symbol *fn);
639
640#define MOD_IGN (MOD_QUALIFIER | MOD_FUN_ATTR)
641
642const char *type_difference(struct ctype *c1, struct ctype *c2,
643	unsigned long mod1, unsigned long mod2)
644{
645	struct ident *as1 = c1->as, *as2 = c2->as;
646	struct symbol *t1 = c1->base_type;
647	struct symbol *t2 = c2->base_type;
648	int move1 = 1, move2 = 1;
649	mod1 |= c1->modifiers;
650	mod2 |= c2->modifiers;
651	for (;;) {
652		unsigned long diff;
653		int type;
654		struct symbol *base1 = t1->ctype.base_type;
655		struct symbol *base2 = t2->ctype.base_type;
656
657		/*
658		 * FIXME! Collect alignment and context too here!
659		 */
660		if (move1) {
661			if (t1 && t1->type != SYM_PTR) {
662				mod1 |= t1->ctype.modifiers;
663				combine_address_space(t1->pos, &as1, t1->ctype.as);
664			}
665			move1 = 0;
666		}
667
668		if (move2) {
669			if (t2 && t2->type != SYM_PTR) {
670				mod2 |= t2->ctype.modifiers;
671				combine_address_space(t2->pos, &as2, t2->ctype.as);
672			}
673			move2 = 0;
674		}
675
676		if (t1 == t2)
677			break;
678		if (!t1 || !t2)
679			return "different types";
680
681		if (t1->type == SYM_NODE || t1->type == SYM_ENUM) {
682			t1 = base1;
683			move1 = 1;
684			if (!t1)
685				return "bad types";
686			continue;
687		}
688
689		if (t2->type == SYM_NODE || t2->type == SYM_ENUM) {
690			t2 = base2;
691			move2 = 1;
692			if (!t2)
693				return "bad types";
694			continue;
695		}
696
697		move1 = move2 = 1;
698		type = t1->type;
699		if (type != t2->type)
700			return "different base types";
701
702		switch (type) {
703		default:
704			sparse_error(t1->pos,
705				     "internal error: bad type in derived(%d)",
706				     type);
707			return "bad types";
708		case SYM_RESTRICT:
709			return "different base types";
710		case SYM_UNION:
711		case SYM_STRUCT:
712			/* allow definition of incomplete structs and unions */
713			if (t1->ident == t2->ident)
714			  return NULL;
715			return "different base types";
716		case SYM_ARRAY:
717			/* XXX: we ought to compare sizes */
718			break;
719		case SYM_PTR:
720			if (as1 != as2)
721				return "different address spaces";
722			/* MOD_SPECIFIER is due to idiocy in parse.c */
723			if ((mod1 ^ mod2) & ~MOD_IGNORE & ~MOD_SPECIFIER)
724				return "different modifiers";
725			/* we could be lazier here */
726			base1 = examine_pointer_target(t1);
727			base2 = examine_pointer_target(t2);
728			mod1 = t1->ctype.modifiers;
729			as1 = t1->ctype.as;
730			mod2 = t2->ctype.modifiers;
731			as2 = t2->ctype.as;
732			break;
733		case SYM_FN: {
734			struct symbol *arg1, *arg2;
735			int i;
736
737			if (as1 != as2)
738				return "different address spaces";
739			if ((mod1 ^ mod2) & ~MOD_IGNORE & ~MOD_SIGNEDNESS)
740				return "different modifiers";
741			mod1 = t1->ctype.modifiers;
742			as1 = t1->ctype.as;
743			mod2 = t2->ctype.modifiers;
744			as2 = t2->ctype.as;
745
746			if (t1->variadic != t2->variadic)
747				return "incompatible variadic arguments";
748			examine_fn_arguments(t1);
749			examine_fn_arguments(t2);
750			PREPARE_PTR_LIST(t1->arguments, arg1);
751			PREPARE_PTR_LIST(t2->arguments, arg2);
752			i = 1;
753			for (;;) {
754				const char *diffstr;
755				if (!arg1 && !arg2)
756					break;
757				if (!arg1 || !arg2)
758					return "different argument counts";
759				diffstr = type_difference(&arg1->ctype,
760							  &arg2->ctype,
761							  MOD_IGN, MOD_IGN);
762				if (diffstr) {
763					static char argdiff[80];
764					sprintf(argdiff, "incompatible argument %d (%s)", i, diffstr);
765					return argdiff;
766				}
767				NEXT_PTR_LIST(arg1);
768				NEXT_PTR_LIST(arg2);
769				i++;
770			}
771			FINISH_PTR_LIST(arg2);
772			FINISH_PTR_LIST(arg1);
773			break;
774		}
775		case SYM_BASETYPE:
776			if (as1 != as2)
777				return "different address spaces";
778			if (base1 != base2)
779				return "different base types";
780			if (t1->rank != t2->rank)
781				return "different type sizes";
782			diff = (mod1 ^ mod2) & ~MOD_IGNORE;
783			if (!diff)
784				return NULL;
785			else if (diff & ~MOD_SIGNEDNESS)
786				return "different modifiers";
787			else
788				return "different signedness";
789		}
790		t1 = base1;
791		t2 = base2;
792	}
793	if (as1 != as2)
794		return "different address spaces";
795	if ((mod1 ^ mod2) & ~MOD_IGNORE & ~MOD_SIGNEDNESS)
796		return "different modifiers";
797	return NULL;
798}
799
800static void bad_null(struct expression *expr)
801{
802	if (Wnon_pointer_null)
803		warning(expr->pos, "Using plain integer as NULL pointer");
804}
805
806static unsigned long target_qualifiers(struct symbol *type)
807{
808	unsigned long mod = type->ctype.modifiers & MOD_IGN;
809	if (type->ctype.base_type && type->ctype.base_type->type == SYM_ARRAY)
810		mod = 0;
811	return mod;
812}
813
814static struct symbol *evaluate_ptr_sub(struct expression *expr)
815{
816	const char *typediff;
817	struct symbol *ltype, *rtype;
818	struct expression *l = expr->left;
819	struct expression *r = expr->right;
820	struct symbol *lbase;
821
822	classify_type(degenerate(l), &ltype);
823	classify_type(degenerate(r), &rtype);
824
825	lbase = examine_pointer_target(ltype);
826	examine_pointer_target(rtype);
827	typediff = type_difference(&ltype->ctype, &rtype->ctype,
828				   target_qualifiers(rtype),
829				   target_qualifiers(ltype));
830	if (typediff)
831		expression_error(expr, "subtraction of different types can't work (%s)", typediff);
832
833	if (is_function(lbase)) {
834		expression_error(expr, "subtraction of functions? Share your drugs");
835		return NULL;
836	}
837
838	expr->ctype = ssize_t_ctype;
839	if (lbase->bit_size > bits_in_char) {
840		struct expression *sub = alloc_expression(expr->pos, EXPR_BINOP);
841		struct expression *div = expr;
842		struct expression *val = alloc_expression(expr->pos, EXPR_VALUE);
843		unsigned long value = bits_to_bytes(lbase->bit_size);
844
845		val->ctype = size_t_ctype;
846		val->value = value;
847
848		if (value & (value-1)) {
849			if (Wptr_subtraction_blows) {
850				warning(expr->pos, "potentially expensive pointer subtraction");
851				info(expr->pos, "    '%s' has a non-power-of-2 size: %lu", show_typename(lbase), value);
852			}
853		}
854
855		sub->op = '-';
856		sub->ctype = ssize_t_ctype;
857		sub->left = l;
858		sub->right = r;
859
860		div->op = '/';
861		div->left = sub;
862		div->right = val;
863	}
864
865	return ssize_t_ctype;
866}
867
868#define is_safe_type(type) ((type)->ctype.modifiers & MOD_SAFE)
869
870static struct symbol *evaluate_conditional(struct expression *expr, int iterator)
871{
872	struct symbol *ctype;
873
874	if (!expr)
875		return NULL;
876
877	if (!iterator && expr->type == EXPR_ASSIGNMENT && expr->op == '=')
878		warning(expr->pos, "assignment expression in conditional");
879
880	ctype = evaluate_expression(expr);
881	if (!valid_type(ctype))
882		return NULL;
883	if (is_safe_type(ctype))
884		warning(expr->pos, "testing a 'safe expression'");
885	if (is_func_type(ctype)) {
886		if (Waddress)
887			warning(expr->pos, "the address of %s will always evaluate as true", "a function");
888	} else if (is_array_type(ctype)) {
889		if (Waddress)
890			warning(expr->pos, "the address of %s will always evaluate as true", "an array");
891	} else if (!is_scalar_type(ctype)) {
892		sparse_error(expr->pos, "non-scalar type in conditional:");
893		info(expr->pos, "   %s", show_typename(ctype));
894		return NULL;
895	}
896
897	ctype = degenerate(expr);
898	return ctype;
899}
900
901static struct symbol *evaluate_logical(struct expression *expr)
902{
903	if (!evaluate_conditional(expr->left, 0))
904		return NULL;
905	if (!evaluate_conditional(expr->right, 0))
906		return NULL;
907
908	/* the result is int [6.5.13(3), 6.5.14(3)] */
909	expr->ctype = &int_ctype;
910	expr->flags = expr->left->flags & expr->right->flags;
911	expr->flags &= ~(CEF_CONST_MASK | CEF_ADDR);
912	return &int_ctype;
913}
914
915static struct symbol *evaluate_binop(struct expression *expr)
916{
917	struct symbol *ltype, *rtype, *ctype;
918	int lclass = classify_type(expr->left->ctype, &ltype);
919	int rclass = classify_type(expr->right->ctype, &rtype);
920	int op = expr->op;
921
922	/* number op number */
923	if (lclass & rclass & TYPE_NUM) {
924		expr->flags = expr->left->flags & expr->right->flags;
925		expr->flags &= ~CEF_CONST_MASK;
926
927		if ((lclass | rclass) & TYPE_FLOAT) {
928			switch (op) {
929			case '+': case '-': case '*': case '/':
930				break;
931			default:
932				return bad_expr_type(expr);
933			}
934		}
935
936		if (op == SPECIAL_LEFTSHIFT || op == SPECIAL_RIGHTSHIFT) {
937			// shifts do integer promotions, but that's it.
938			unrestrict(expr->left, lclass, &ltype);
939			unrestrict(expr->right, rclass, &rtype);
940			ctype = ltype = integer_promotion(ltype);
941			rtype = integer_promotion(rtype);
942		} else {
943			// The rest do usual conversions
944			const unsigned left_not  = expr->left->type == EXPR_PREOP
945			                           && expr->left->op == '!';
946			const unsigned right_not = expr->right->type == EXPR_PREOP
947			                           && expr->right->op == '!';
948			if ((op == '&' || op == '|') && (left_not || right_not))
949				warning(expr->pos, "dubious: %sx %c %sy",
950				        left_not ? "!" : "",
951					op,
952					right_not ? "!" : "");
953
954			ltype = usual_conversions(op, expr->left, expr->right,
955						  lclass, rclass, ltype, rtype);
956			ctype = rtype = ltype;
957		}
958
959		expr->left = cast_to(expr->left, ltype);
960		expr->right = cast_to(expr->right, rtype);
961		expr->ctype = ctype;
962		return ctype;
963	}
964
965	/* pointer (+|-) integer */
966	if (lclass & TYPE_PTR && is_int(rclass) && (op == '+' || op == '-')) {
967		unrestrict(expr->right, rclass, &rtype);
968		return evaluate_ptr_add(expr, rtype);
969	}
970
971	/* integer + pointer */
972	if (rclass & TYPE_PTR && is_int(lclass) && op == '+') {
973		struct expression *index = expr->left;
974		unrestrict(index, lclass, &ltype);
975		expr->left = expr->right;
976		expr->right = index;
977		return evaluate_ptr_add(expr, ltype);
978	}
979
980	/* pointer - pointer */
981	if (lclass & rclass & TYPE_PTR && expr->op == '-')
982		return evaluate_ptr_sub(expr);
983
984	return bad_expr_type(expr);
985}
986
987static struct symbol *evaluate_comma(struct expression *expr)
988{
989	expr->ctype = unqualify_type(degenerate(expr->right));
990	if (expr->ctype == &null_ctype)
991		expr->ctype = &ptr_ctype;
992	expr->flags &= expr->left->flags & expr->right->flags;
993	return expr->ctype;
994}
995
996static int modify_for_unsigned(int op)
997{
998	if (op == '<')
999		op = SPECIAL_UNSIGNED_LT;
1000	else if (op == '>')
1001		op = SPECIAL_UNSIGNED_GT;
1002	else if (op == SPECIAL_LTE)
1003		op = SPECIAL_UNSIGNED_LTE;
1004	else if (op == SPECIAL_GTE)
1005		op = SPECIAL_UNSIGNED_GTE;
1006	return op;
1007}
1008
1009enum null_constant_type {
1010	NON_NULL,
1011	NULL_PTR,
1012	NULL_ZERO,
1013};
1014
1015static inline int is_null_pointer_constant(struct expression *e)
1016{
1017	if (e->ctype == &null_ctype)
1018		return NULL_PTR;
1019	if (!(e->flags & CEF_ICE))
1020		return NON_NULL;
1021	return is_zero_constant(e) ? NULL_ZERO : NON_NULL;
1022}
1023
1024static struct symbol *evaluate_compare(struct expression *expr)
1025{
1026	struct expression *left = expr->left, *right = expr->right;
1027	struct symbol *ltype, *rtype, *lbase, *rbase;
1028	int lclass = classify_type(degenerate(left), &ltype);
1029	int rclass = classify_type(degenerate(right), &rtype);
1030	struct symbol *ctype;
1031	const char *typediff;
1032
1033	/* Type types? */
1034	if (is_type_type(ltype) && is_type_type(rtype)) {
1035		/*
1036		 * __builtin_types_compatible_p() yields an integer
1037		 * constant expression
1038		 */
1039		expr->flags = CEF_SET_ICE;
1040		goto OK;
1041	}
1042
1043	if (is_safe_type(left->ctype) || is_safe_type(right->ctype))
1044		warning(expr->pos, "testing a 'safe expression'");
1045
1046	expr->flags = left->flags & right->flags & ~CEF_CONST_MASK & ~CEF_ADDR;
1047
1048	/* number on number */
1049	if (lclass & rclass & TYPE_NUM) {
1050		ctype = usual_conversions(expr->op, expr->left, expr->right,
1051					  lclass, rclass, ltype, rtype);
1052		expr->left = cast_to(expr->left, ctype);
1053		expr->right = cast_to(expr->right, ctype);
1054		if (ctype->ctype.modifiers & MOD_UNSIGNED)
1055			expr->op = modify_for_unsigned(expr->op);
1056		goto OK;
1057	}
1058
1059	/* at least one must be a pointer */
1060	if (!((lclass | rclass) & TYPE_PTR))
1061		return bad_expr_type(expr);
1062
1063	/* equality comparisons can be with null pointer constants */
1064	if (expr->op == SPECIAL_EQUAL || expr->op == SPECIAL_NOTEQUAL) {
1065		int is_null1 = is_null_pointer_constant(left);
1066		int is_null2 = is_null_pointer_constant(right);
1067		if (is_null1 == NULL_ZERO)
1068			bad_null(left);
1069		if (is_null2 == NULL_ZERO)
1070			bad_null(right);
1071		if (is_null1 && is_null2) {
1072			int positive = expr->op == SPECIAL_EQUAL;
1073			expr->type = EXPR_VALUE;
1074			expr->value = positive;
1075			goto OK;
1076		}
1077		if (is_null1 && (rclass & TYPE_PTR)) {
1078			expr->left = cast_to(left, rtype);
1079			goto OK;
1080		}
1081		if (is_null2 && (lclass & TYPE_PTR)) {
1082			expr->right = cast_to(right, ltype);
1083			goto OK;
1084		}
1085	}
1086	/* both should be pointers */
1087	if (!(lclass & rclass & TYPE_PTR))
1088		return bad_expr_type(expr);
1089	expr->op = modify_for_unsigned(expr->op);
1090
1091	lbase = examine_pointer_target(ltype);
1092	rbase = examine_pointer_target(rtype);
1093
1094	/* they also have special treatment for pointers to void */
1095	if (expr->op == SPECIAL_EQUAL || expr->op == SPECIAL_NOTEQUAL) {
1096		if (ltype->ctype.as == rtype->ctype.as) {
1097			if (lbase == &void_ctype) {
1098				expr->right = cast_to(right, ltype);
1099				goto OK;
1100			}
1101			if (rbase == &void_ctype) {
1102				expr->left = cast_to(left, rtype);
1103				goto OK;
1104			}
1105		}
1106	}
1107
1108	typediff = type_difference(&ltype->ctype, &rtype->ctype,
1109				   target_qualifiers(rtype),
1110				   target_qualifiers(ltype));
1111	if (!typediff)
1112		goto OK;
1113
1114	expression_error(expr, "incompatible types in comparison expression (%s):", typediff);
1115	info(expr->pos, "   %s", show_typename(ltype));
1116	info(expr->pos, "   %s", show_typename(rtype));
1117	return NULL;
1118
1119OK:
1120	/* the result is int [6.5.8(6), 6.5.9(3)]*/
1121	expr->ctype = &int_ctype;
1122	return &int_ctype;
1123}
1124
1125/*
1126 * NOTE! The degenerate case of "x ? : y", where we don't
1127 * have a true case, this will possibly promote "x" to the
1128 * same type as "y", and thus _change_ the conditional
1129 * test in the expression. But since promotion is "safe"
1130 * for testing, that's OK.
1131 */
1132static struct symbol *evaluate_conditional_expression(struct expression *expr)
1133{
1134	struct expression **cond;
1135	struct symbol *ctype, *ltype, *rtype, *lbase, *rbase;
1136	int lclass, rclass;
1137	const char * typediff;
1138	int qual;
1139
1140	if (!evaluate_conditional(expr->conditional, 0))
1141		return NULL;
1142	if (!evaluate_expression(expr->cond_false))
1143		return NULL;
1144
1145	ctype = degenerate(expr->conditional);
1146	rtype = degenerate(expr->cond_false);
1147
1148	cond = &expr->conditional;
1149	ltype = ctype;
1150	if (expr->cond_true) {
1151		if (!evaluate_expression(expr->cond_true))
1152			return NULL;
1153		ltype = degenerate(expr->cond_true);
1154		cond = &expr->cond_true;
1155	}
1156
1157	expr->flags = (expr->conditional->flags & (*cond)->flags &
1158			expr->cond_false->flags & ~CEF_CONST_MASK);
1159	/*
1160	 * In the standard, it is defined that an integer constant expression
1161	 * shall only have operands that are themselves constant [6.6(6)].
1162	 * While this definition is very clear for expressions that need all
1163	 * their operands to be evaluated, for conditional expressions with a
1164	 * constant condition things are much less obvious.
1165	 * So, as an extension, do the same as GCC seems to do:
1166	 *	Consider a conditional expression with a constant condition
1167	 *	as having the same constantness as the argument corresponding
1168	 *	to the truth value (including in the case of address constants
1169	 *	which are defined more stricly [6.6(9)]).
1170	 */
1171	if (expr->conditional->flags & (CEF_ACE | CEF_ADDR)) {
1172		int is_true = expr_truth_value(expr->conditional);
1173		struct expression *arg = is_true ? *cond : expr->cond_false;
1174		expr->flags = arg->flags & ~CEF_CONST_MASK;
1175	}
1176
1177	lclass = classify_type(ltype, &ltype);
1178	rclass = classify_type(rtype, &rtype);
1179	if (lclass & rclass & TYPE_NUM) {
1180		ctype = usual_conversions('?', *cond, expr->cond_false,
1181					  lclass, rclass, ltype, rtype);
1182		*cond = cast_to(*cond, ctype);
1183		expr->cond_false = cast_to(expr->cond_false, ctype);
1184		goto out;
1185	}
1186
1187	if ((lclass | rclass) & TYPE_PTR) {
1188		int is_null1 = is_null_pointer_constant(*cond);
1189		int is_null2 = is_null_pointer_constant(expr->cond_false);
1190
1191		if (is_null1 && is_null2) {
1192			*cond = cast_to(*cond, &ptr_ctype);
1193			expr->cond_false = cast_to(expr->cond_false, &ptr_ctype);
1194			ctype = &ptr_ctype;
1195			goto out;
1196		}
1197		if (is_null1 && (rclass & TYPE_PTR)) {
1198			if (is_null1 == NULL_ZERO)
1199				bad_null(*cond);
1200			*cond = cast_to(*cond, rtype);
1201			ctype = rtype;
1202			goto out;
1203		}
1204		if (is_null2 && (lclass & TYPE_PTR)) {
1205			if (is_null2 == NULL_ZERO)
1206				bad_null(expr->cond_false);
1207			expr->cond_false = cast_to(expr->cond_false, ltype);
1208			ctype = ltype;
1209			goto out;
1210		}
1211		if (!(lclass & rclass & TYPE_PTR)) {
1212			typediff = "different types";
1213			goto Err;
1214		}
1215		/* OK, it's pointer on pointer */
1216		if (ltype->ctype.as != rtype->ctype.as) {
1217			typediff = "different address spaces";
1218			goto Err;
1219		}
1220
1221		/* need to be lazier here */
1222		lbase = examine_pointer_target(ltype);
1223		rbase = examine_pointer_target(rtype);
1224		qual = target_qualifiers(ltype) | target_qualifiers(rtype);
1225
1226		if (lbase == &void_ctype) {
1227			/* XXX: pointers to function should warn here */
1228			ctype = ltype;
1229			goto Qual;
1230
1231		}
1232		if (rbase == &void_ctype) {
1233			/* XXX: pointers to function should warn here */
1234			ctype = rtype;
1235			goto Qual;
1236		}
1237		/* XXX: that should be pointer to composite */
1238		ctype = ltype;
1239		typediff = type_difference(&ltype->ctype, &rtype->ctype,
1240					   qual, qual);
1241		if (!typediff)
1242			goto Qual;
1243		goto Err;
1244	}
1245
1246	/* void on void, struct on same struct, union on same union */
1247	if (ltype == rtype) {
1248		ctype = ltype;
1249		goto out;
1250	}
1251	typediff = "different base types";
1252
1253Err:
1254	expression_error(expr, "incompatible types in conditional expression (%s):", typediff);
1255	info(expr->pos, "   %s", show_typename(ltype));
1256	info(expr->pos, "   %s", show_typename(rtype));
1257	/*
1258	 * if the condition is constant, the type is in fact known
1259	 * so use it, as gcc & clang do.
1260	 */
1261	switch (expr_truth_value(expr->conditional)) {
1262	case 1:	expr->ctype = ltype;
1263		break;
1264	case 0: expr->ctype = rtype;
1265		break;
1266	default:
1267		break;
1268	}
1269	return NULL;
1270
1271out:
1272	expr->ctype = ctype;
1273	return ctype;
1274
1275Qual:
1276	if (qual & ~ctype->ctype.modifiers) {
1277		struct symbol *sym = alloc_symbol(ctype->pos, SYM_PTR);
1278		*sym = *ctype;
1279		sym->ctype.modifiers |= qual;
1280		ctype = sym;
1281	}
1282	*cond = cast_to(*cond, ctype);
1283	expr->cond_false = cast_to(expr->cond_false, ctype);
1284	goto out;
1285}
1286
1287/* FP assignments can not do modulo or bit operations */
1288static int compatible_float_op(int op)
1289{
1290	return	op == SPECIAL_ADD_ASSIGN ||
1291		op == SPECIAL_SUB_ASSIGN ||
1292		op == SPECIAL_MUL_ASSIGN ||
1293		op == SPECIAL_DIV_ASSIGN;
1294}
1295
1296static int evaluate_assign_op(struct expression *expr)
1297{
1298	struct symbol *target = expr->left->ctype;
1299	struct symbol *source = expr->right->ctype;
1300	struct symbol *t, *s;
1301	int tclass = classify_type(target, &t);
1302	int sclass = classify_type(source, &s);
1303	int op = expr->op;
1304
1305	if (tclass & sclass & TYPE_NUM) {
1306		if (tclass & TYPE_FLOAT && !compatible_float_op(op)) {
1307			expression_error(expr, "invalid assignment");
1308			return 0;
1309		}
1310		if (tclass & TYPE_RESTRICT) {
1311			if (!restricted_binop(op, t)) {
1312				warning(expr->pos, "bad assignment (%s) to %s",
1313					show_special(op), show_typename(t));
1314				expr->right = cast_to(expr->right, target);
1315				return 0;
1316			}
1317			/* allowed assignments unfoul */
1318			if (sclass & TYPE_FOULED && unfoul(s) == t)
1319				goto Cast;
1320			if (!restricted_value(expr->right, t))
1321				return 1;
1322		} else if (op == SPECIAL_SHR_ASSIGN || op == SPECIAL_SHL_ASSIGN) {
1323			// shifts do integer promotions, but that's it.
1324			unrestrict(expr->left, tclass, &t);
1325			target = integer_promotion(t);
1326
1327			unrestrict(expr->right, sclass, &s);
1328			source = integer_promotion(s);
1329			expr->right = cast_to(expr->right, source);
1330
1331			// both gcc & clang seems to do this, so ...
1332			if (target->bit_size > source->bit_size)
1333				expr->right = cast_to(expr->right, &uint_ctype);
1334
1335			goto Cast;
1336		} else if (!(sclass & TYPE_RESTRICT))
1337			goto usual;
1338		/* source and target would better be identical restricted */
1339		if (t == s)
1340			return 1;
1341		warning(expr->pos, "invalid assignment: %s", show_special(op));
1342		info(expr->pos, "   left side has type %s", show_typename(t));
1343		info(expr->pos, "   right side has type %s", show_typename(s));
1344		expr->right = cast_to(expr->right, target);
1345		return 0;
1346	}
1347	if (tclass == TYPE_PTR && is_int(sclass)) {
1348		if (op == SPECIAL_ADD_ASSIGN || op == SPECIAL_SUB_ASSIGN) {
1349			unrestrict(expr->right, sclass, &s);
1350			evaluate_ptr_add(expr, s);
1351			return 1;
1352		}
1353		expression_error(expr, "invalid pointer assignment");
1354		return 0;
1355	}
1356
1357	expression_error(expr, "invalid assignment");
1358	return 0;
1359
1360usual:
1361	target = usual_conversions(op, expr->left, expr->right,
1362				tclass, sclass, target, source);
1363Cast:
1364	expr->right = cast_to(expr->right, target);
1365	return 1;
1366}
1367
1368static int whitelist_pointers(struct symbol *t1, struct symbol *t2)
1369{
1370	if (t1 == t2)
1371		return 0;	/* yes, 0 - we don't want a cast_to here */
1372	if (t1 == &void_ctype)
1373		return 1;
1374	if (t2 == &void_ctype)
1375		return 1;
1376	if (classify_type(t1, &t1) != TYPE_NUM)
1377		return 0;
1378	if (classify_type(t2, &t2) != TYPE_NUM)
1379		return 0;
1380	if (t1 == t2)
1381		return 1;
1382	if (t1->rank == -2 && t2->rank == -2)
1383		return 1;
1384	if (t1->rank != t2->rank)
1385		return 0;
1386	return !Wtypesign;
1387}
1388
1389static int check_assignment_types(struct symbol *target, struct expression **rp,
1390	const char **typediff)
1391{
1392	struct symbol *source = degenerate(*rp);
1393	struct symbol *t, *s;
1394	int tclass = classify_type(target, &t);
1395	int sclass = classify_type(source, &s);
1396
1397	if (tclass & sclass & TYPE_NUM) {
1398		if (tclass & TYPE_RESTRICT) {
1399			/* allowed assignments unfoul */
1400			if (sclass & TYPE_FOULED && unfoul(s) == t)
1401				goto Cast;
1402			if (!restricted_value(*rp, target))
1403				goto Cast;
1404			if (s == t)
1405				return 1;
1406		} else if (!(sclass & TYPE_RESTRICT))
1407			goto Cast;
1408                if (t == &bool_ctype) {
1409                        if (is_fouled_type(s))
1410                                warning((*rp)->pos, "%s degrades to integer",
1411                                        show_typename(s->ctype.base_type));
1412                        goto Cast;
1413                }
1414		*typediff = "different base types";
1415		return 0;
1416	}
1417
1418	if (tclass == TYPE_PTR) {
1419		unsigned long mod1, mod2;
1420		unsigned long modl, modr;
1421		struct symbol *b1, *b2;
1422		// NULL pointer is always OK
1423		int is_null = is_null_pointer_constant(*rp);
1424		if (is_null) {
1425			if (is_null == NULL_ZERO)
1426				bad_null(*rp);
1427			goto Cast;
1428		}
1429		if (!(sclass & TYPE_PTR)) {
1430			*typediff = "different base types";
1431			return 0;
1432		}
1433		b1 = examine_pointer_target(t);
1434		b2 = examine_pointer_target(s);
1435		mod1 = t->ctype.modifiers & MOD_IGN;
1436		mod2 = s->ctype.modifiers & MOD_IGN;
1437		if (whitelist_pointers(b1, b2)) {
1438			/*
1439			 * assignments to/from void * are OK, provided that
1440			 * we do not remove qualifiers from pointed to [C]
1441			 * or mix address spaces [sparse].
1442			 */
1443			if (t->ctype.as != s->ctype.as) {
1444				*typediff = "different address spaces";
1445				return 0;
1446			}
1447			/*
1448			 * If this is a function pointer assignment, it is
1449			 * actually fine to assign a pointer to const data to
1450			 * it, as a function pointer points to const data
1451			 * implicitly, i.e., dereferencing it does not produce
1452			 * an lvalue.
1453			 */
1454			if (b1->type == SYM_FN)
1455				mod1 |= MOD_CONST;
1456			if (mod2 & ~mod1 & ~MOD_FUN_ATTR) {
1457				*typediff = "different modifiers";
1458				return 0;
1459			}
1460			goto Cast;
1461		}
1462		/* It's OK if the target is more volatile or const than the source */
1463		/* It's OK if the source is more pure/noreturn than the target */
1464		modr = mod1 & ~MOD_REV_QUAL;
1465		modl = mod2 &  MOD_REV_QUAL;
1466		*typediff = type_difference(&t->ctype, &s->ctype, modl, modr);
1467		if (*typediff)
1468			return 0;
1469		return 1;
1470	}
1471
1472	if ((tclass & TYPE_COMPOUND) && s == t)
1473		return 1;
1474
1475	if (tclass & TYPE_NUM) {
1476		/* XXX: need to turn into comparison with NULL */
1477		if (t == &bool_ctype && (sclass & TYPE_PTR))
1478			goto Cast;
1479		*typediff = "different base types";
1480		return 0;
1481	}
1482	*typediff = "invalid types";
1483	return 0;
1484
1485Cast:
1486	*rp = cast_to(*rp, target);
1487	return 1;
1488}
1489
1490static int compatible_assignment_types(struct expression *expr, struct symbol *target,
1491	struct expression **rp, const char *where)
1492{
1493	const char *typediff;
1494
1495	if (!check_assignment_types(target, rp, &typediff)) {
1496		struct symbol *source = *rp ? (*rp)->ctype : NULL;
1497		warning(expr->pos, "incorrect type in %s (%s)", where, typediff);
1498		info(expr->pos, "   expected %s", show_typename(target));
1499		info(expr->pos, "   got %s", show_typename(source));
1500		*rp = cast_to(*rp, target);
1501		return 0;
1502	}
1503
1504	return 1;
1505}
1506
1507static int compatible_transparent_union(struct symbol *target,
1508	struct expression **rp)
1509{
1510	struct symbol *t, *member;
1511	classify_type(target, &t);
1512	if (t->type != SYM_UNION || !t->transparent_union)
1513		return 0;
1514
1515	FOR_EACH_PTR(t->symbol_list, member) {
1516		const char *typediff;
1517		if (check_assignment_types(member, rp, &typediff))
1518			return 1;
1519	} END_FOR_EACH_PTR(member);
1520
1521	return 0;
1522}
1523
1524static int compatible_argument_type(struct expression *expr, struct symbol *target,
1525	struct expression **rp, const char *where)
1526{
1527	if (compatible_transparent_union(target, rp))
1528		return 1;
1529
1530	return compatible_assignment_types(expr, target, rp, where);
1531}
1532
1533static void mark_addressable(struct expression *expr)
1534{
1535	while (expr->type == EXPR_BINOP && expr->op == '+')
1536		expr = expr->left;
1537	if (expr->type == EXPR_SYMBOL) {
1538		struct symbol *sym = expr->symbol;
1539		sym->ctype.modifiers |= MOD_ADDRESSABLE;
1540	}
1541}
1542
1543static void mark_assigned(struct expression *expr)
1544{
1545	struct symbol *sym;
1546
1547	if (!expr)
1548		return;
1549	switch (expr->type) {
1550	case EXPR_SYMBOL:
1551		sym = expr->symbol;
1552		if (!sym)
1553			return;
1554		if (sym->type != SYM_NODE)
1555			return;
1556		sym->ctype.modifiers |= MOD_ASSIGNED;
1557		return;
1558
1559	case EXPR_BINOP:
1560		mark_assigned(expr->left);
1561		mark_assigned(expr->right);
1562		return;
1563	case EXPR_CAST:
1564	case EXPR_FORCE_CAST:
1565		mark_assigned(expr->cast_expression);
1566		return;
1567	case EXPR_SLICE:
1568		mark_assigned(expr->base);
1569		return;
1570	default:
1571		/* Hmm? */
1572		return;
1573	}
1574}
1575
1576static void evaluate_assign_to(struct expression *left, struct symbol *type)
1577{
1578	if (type->ctype.modifiers & MOD_CONST)
1579		expression_error(left, "assignment to const expression");
1580
1581	/* We know left is an lvalue, so it's a "preop-*" */
1582	mark_assigned(left->unop);
1583}
1584
1585static struct symbol *evaluate_assignment(struct expression *expr)
1586{
1587	struct expression *left = expr->left;
1588	struct symbol *ltype;
1589
1590	if (!lvalue_expression(left)) {
1591		expression_error(expr, "not an lvalue");
1592		return NULL;
1593	}
1594
1595	ltype = left->ctype;
1596
1597	if (expr->op != '=') {
1598		if (!evaluate_assign_op(expr))
1599			return NULL;
1600	} else {
1601		if (!compatible_assignment_types(expr, ltype, &expr->right, "assignment"))
1602			return NULL;
1603	}
1604
1605	evaluate_assign_to(left, ltype);
1606
1607	expr->ctype = ltype;
1608	return ltype;
1609}
1610
1611static void examine_fn_arguments(struct symbol *fn)
1612{
1613	struct symbol *s;
1614
1615	FOR_EACH_PTR(fn->arguments, s) {
1616		struct symbol *arg = evaluate_symbol(s);
1617		/* Array/function arguments silently degenerate into pointers */
1618		if (arg) {
1619			struct symbol *ptr;
1620			switch(arg->type) {
1621			case SYM_ARRAY:
1622			case SYM_FN:
1623				ptr = alloc_symbol(s->pos, SYM_PTR);
1624				if (arg->type == SYM_ARRAY)
1625					ptr->ctype = arg->ctype;
1626				else
1627					ptr->ctype.base_type = arg;
1628				combine_address_space(s->pos, &ptr->ctype.as, s->ctype.as);
1629				ptr->ctype.modifiers |= s->ctype.modifiers & MOD_PTRINHERIT;
1630
1631				s->ctype.base_type = ptr;
1632				s->ctype.as = NULL;
1633				s->ctype.modifiers &= ~MOD_PTRINHERIT;
1634				s->bit_size = 0;
1635				s->examined = 0;
1636				examine_symbol_type(s);
1637				break;
1638			default:
1639				/* nothing */
1640				break;
1641			}
1642		}
1643	} END_FOR_EACH_PTR(s);
1644}
1645
1646static struct symbol *convert_to_as_mod(struct symbol *sym, struct ident *as, int mod)
1647{
1648	/* Take the modifiers of the pointer, and apply them to the member */
1649	mod |= sym->ctype.modifiers;
1650	if (sym->ctype.as != as || sym->ctype.modifiers != mod) {
1651		struct symbol *newsym = alloc_symbol(sym->pos, SYM_NODE);
1652		*newsym = *sym;
1653		newsym->ctype.as = as;
1654		newsym->ctype.modifiers = mod;
1655		sym = newsym;
1656	}
1657	return sym;
1658}
1659
1660static struct symbol *create_pointer(struct expression *expr, struct symbol *sym, int degenerate)
1661{
1662	struct symbol *node = alloc_symbol(expr->pos, SYM_NODE);
1663	struct symbol *ptr = alloc_symbol(expr->pos, SYM_PTR);
1664
1665	node->ctype.base_type = ptr;
1666	ptr->bit_size = bits_in_pointer;
1667	ptr->ctype.alignment = pointer_alignment;
1668
1669	node->bit_size = bits_in_pointer;
1670	node->ctype.alignment = pointer_alignment;
1671
1672	access_symbol(sym);
1673	if (sym->ctype.modifiers & MOD_REGISTER) {
1674		warning(expr->pos, "taking address of 'register' variable '%s'", show_ident(sym->ident));
1675		sym->ctype.modifiers &= ~MOD_REGISTER;
1676	}
1677	if (sym->type == SYM_NODE) {
1678		combine_address_space(sym->pos, &ptr->ctype.as, sym->ctype.as);
1679		ptr->ctype.modifiers |= sym->ctype.modifiers & MOD_PTRINHERIT;
1680		sym = sym->ctype.base_type;
1681	}
1682	if (degenerate && sym->type == SYM_ARRAY) {
1683		combine_address_space(sym->pos, &ptr->ctype.as, sym->ctype.as);
1684		ptr->ctype.modifiers |= sym->ctype.modifiers & MOD_PTRINHERIT;
1685		sym = sym->ctype.base_type;
1686	}
1687	ptr->ctype.base_type = sym;
1688
1689	return node;
1690}
1691
1692/* Arrays degenerate into pointers on pointer arithmetic */
1693static struct symbol *degenerate(struct expression *expr)
1694{
1695	struct symbol *ctype, *base;
1696
1697	if (!expr)
1698		return NULL;
1699	ctype = expr->ctype;
1700	if (!ctype)
1701		return NULL;
1702	base = examine_symbol_type(ctype);
1703	if (ctype->type == SYM_NODE)
1704		base = ctype->ctype.base_type;
1705	/*
1706	 * Arrays degenerate into pointers to the entries, while
1707	 * functions degenerate into pointers to themselves.
1708	 * If array was part of non-lvalue compound, we create a copy
1709	 * of that compound first and then act as if we were dealing with
1710	 * the corresponding field in there.
1711	 */
1712	switch (base->type) {
1713	case SYM_ARRAY:
1714		if (expr->type == EXPR_SLICE) {
1715			struct symbol *a = alloc_symbol(expr->pos, SYM_NODE);
1716			struct expression *e0, *e1, *e2, *e3, *e4;
1717
1718			a->ctype.base_type = expr->base->ctype;
1719			a->bit_size = expr->base->ctype->bit_size;
1720			a->array_size = expr->base->ctype->array_size;
1721
1722			e0 = alloc_expression(expr->pos, EXPR_SYMBOL);
1723			e0->symbol = a;
1724			e0->ctype = &lazy_ptr_ctype;
1725
1726			e1 = alloc_expression(expr->pos, EXPR_PREOP);
1727			e1->unop = e0;
1728			e1->op = '*';
1729			e1->ctype = expr->base->ctype;	/* XXX */
1730
1731			e2 = alloc_expression(expr->pos, EXPR_ASSIGNMENT);
1732			e2->left = e1;
1733			e2->right = expr->base;
1734			e2->op = '=';
1735			e2->ctype = expr->base->ctype;
1736
1737			if (expr->r_bitpos) {
1738				e3 = alloc_expression(expr->pos, EXPR_BINOP);
1739				e3->op = '+';
1740				e3->left = e0;
1741				e3->right = alloc_const_expression(expr->pos,
1742							bits_to_bytes(expr->r_bitpos));
1743				e3->ctype = &lazy_ptr_ctype;
1744			} else {
1745				e3 = e0;
1746			}
1747
1748			e4 = alloc_expression(expr->pos, EXPR_COMMA);
1749			e4->left = e2;
1750			e4->right = e3;
1751			e4->ctype = &lazy_ptr_ctype;
1752
1753			expr->unop = e4;
1754			expr->type = EXPR_PREOP;
1755			expr->op = '*';
1756		}
1757	case SYM_FN:
1758		if (expr->op != '*' || expr->type != EXPR_PREOP) {
1759			expression_error(expr, "strange non-value function or array");
1760			return &bad_ctype;
1761		}
1762		if (ctype->builtin)
1763			sparse_error(expr->pos, "taking the address of built-in function '%s'", show_ident(ctype->ident));
1764		*expr = *expr->unop;
1765		ctype = create_pointer(expr, ctype, 1);
1766		expr->ctype = ctype;
1767		mark_addressable(expr);
1768	default:
1769		/* nothing */;
1770	}
1771	return ctype;
1772}
1773
1774static struct symbol *evaluate_addressof(struct expression *expr)
1775{
1776	struct expression *op = expr->unop;
1777	struct symbol *ctype;
1778
1779	if (op->op != '*' || op->type != EXPR_PREOP) {
1780		expression_error(expr, "not addressable");
1781		return NULL;
1782	}
1783	ctype = op->ctype;
1784	if (ctype->builtin)
1785		sparse_error(expr->pos, "taking the address of built-in function '%s'", show_ident(ctype->ident));
1786	*expr = *op->unop;
1787
1788	mark_addressable(expr);
1789
1790	/*
1791	 * symbol expression evaluation is lazy about the type
1792	 * of the sub-expression, so we may have to generate
1793	 * the type here if so..
1794	 */
1795	if (expr->ctype == &lazy_ptr_ctype) {
1796		ctype = create_pointer(expr, ctype, 0);
1797		expr->ctype = ctype;
1798	}
1799	return expr->ctype;
1800}
1801
1802
1803static struct symbol *evaluate_dereference(struct expression *expr)
1804{
1805	struct expression *op = expr->unop;
1806	struct symbol *ctype = op->ctype, *node, *target;
1807
1808	/* Simplify: *&(expr) => (expr) */
1809	if (op->type == EXPR_PREOP && op->op == '&') {
1810		*expr = *op->unop;
1811		expr->flags = CEF_NONE;
1812		return expr->ctype;
1813	}
1814
1815	examine_symbol_type(ctype);
1816
1817	/* Dereferencing a node drops all the node information. */
1818	if (ctype->type == SYM_NODE)
1819		ctype = ctype->ctype.base_type;
1820
1821	target = ctype->ctype.base_type;
1822
1823	switch (ctype->type) {
1824	default:
1825		expression_error(expr, "cannot dereference this type");
1826		return NULL;
1827	case SYM_FN:
1828		*expr = *op;
1829		return expr->ctype;
1830	case SYM_PTR:
1831		examine_symbol_type(target);
1832		node = alloc_symbol(expr->pos, SYM_NODE);
1833		node->ctype.modifiers = target->ctype.modifiers & MOD_SPECIFIER;
1834		merge_type(node, ctype);
1835		break;
1836
1837	case SYM_ARRAY:
1838		if (!lvalue_expression(op)) {
1839			expression_error(op, "non-lvalue array??");
1840			return NULL;
1841		}
1842
1843		/* Do the implied "addressof" on the array */
1844		*op = *op->unop;
1845
1846		/*
1847		 * When an array is dereferenced, we need to pick
1848		 * up the attributes of the original node too..
1849		 */
1850		node = alloc_symbol(expr->pos, SYM_NODE);
1851		merge_type(node, op->ctype);
1852		merge_type(node, ctype);
1853		break;
1854	}
1855
1856	node->bit_size = target->bit_size;
1857	node->array_size = target->array_size;
1858
1859	expr->ctype = node;
1860	return node;
1861}
1862
1863/*
1864 * Unary post-ops: x++ and x--
1865 */
1866static struct symbol *evaluate_postop(struct expression *expr)
1867{
1868	struct expression *op = expr->unop;
1869	struct symbol *ctype = op->ctype;
1870	int class = classify_type(ctype, &ctype);
1871	int multiply = 0;
1872
1873	if (!class || class & TYPE_COMPOUND) {
1874		expression_error(expr, "need scalar for ++/--");
1875		return NULL;
1876	}
1877	if (!lvalue_expression(expr->unop)) {
1878		expression_error(expr, "need lvalue expression for ++/--");
1879		return NULL;
1880	}
1881
1882	unrestrict(expr, class, &ctype);
1883
1884	if (class & TYPE_NUM) {
1885		multiply = 1;
1886	} else if (class == TYPE_PTR) {
1887		struct symbol *target = examine_pointer_target(ctype);
1888		if (!is_function(target))
1889			multiply = bits_to_bytes(target->bit_size);
1890	}
1891
1892	if (multiply) {
1893		evaluate_assign_to(op, op->ctype);
1894		expr->op_value = multiply;
1895		expr->ctype = ctype;
1896		return ctype;
1897	}
1898
1899	expression_error(expr, "bad argument type for ++/--");
1900	return NULL;
1901}
1902
1903static struct symbol *evaluate_sign(struct expression *expr)
1904{
1905	struct symbol *ctype = expr->unop->ctype;
1906	int class = classify_type(ctype, &ctype);
1907	unsigned char flags = expr->unop->flags & ~CEF_CONST_MASK;
1908
1909	/* should be an arithmetic type */
1910	if (!(class & TYPE_NUM))
1911		return bad_expr_type(expr);
1912	if (class & TYPE_RESTRICT)
1913		goto Restr;
1914Normal:
1915	if (!(class & TYPE_FLOAT)) {
1916		ctype = integer_promotion(ctype);
1917		expr->unop = cast_to(expr->unop, ctype);
1918	} else if (expr->op != '~') {
1919		/* no conversions needed */
1920	} else {
1921		return bad_expr_type(expr);
1922	}
1923	if (expr->op == '+')
1924		*expr = *expr->unop;
1925	expr->flags = flags;
1926	expr->ctype = ctype;
1927	return ctype;
1928Restr:
1929	if (restricted_unop(expr->op, &ctype))
1930		unrestrict(expr, class, &ctype);
1931	goto Normal;
1932}
1933
1934static struct symbol *evaluate_preop(struct expression *expr)
1935{
1936	struct symbol *ctype = expr->unop->ctype;
1937
1938	switch (expr->op) {
1939	case '(':
1940		*expr = *expr->unop;
1941		return ctype;
1942
1943	case '+':
1944	case '-':
1945	case '~':
1946		return evaluate_sign(expr);
1947
1948	case '*':
1949		return evaluate_dereference(expr);
1950
1951	case '&':
1952		return evaluate_addressof(expr);
1953
1954	case SPECIAL_INCREMENT:
1955	case SPECIAL_DECREMENT:
1956		/*
1957		 * From a type evaluation standpoint the preops are
1958		 * the same as the postops
1959		 */
1960		return evaluate_postop(expr);
1961
1962	case '!':
1963		ctype = degenerate(expr->unop);
1964		expr->flags = expr->unop->flags & ~CEF_CONST_MASK;
1965		/*
1966		 * A logical negation never yields an address constant
1967		 * [6.6(9)].
1968		 */
1969		expr->flags &= ~CEF_ADDR;
1970
1971		if (is_safe_type(ctype))
1972			warning(expr->pos, "testing a 'safe expression'");
1973		if (is_float_type(ctype)) {
1974			struct expression *arg = expr->unop;
1975			expr->type = EXPR_COMPARE;
1976			expr->op = SPECIAL_EQUAL;
1977			expr->left = arg;
1978			expr->right = alloc_expression(expr->pos, EXPR_FVALUE);
1979			expr->right->ctype = ctype;
1980			expr->right->fvalue = 0;
1981		} else if (is_fouled_type(ctype)) {
1982			warning(expr->pos, "%s degrades to integer",
1983				show_typename(ctype->ctype.base_type));
1984		}
1985		/* the result is int [6.5.3.3(5)]*/
1986		ctype = &int_ctype;
1987		break;
1988
1989	default:
1990		break;
1991	}
1992	expr->ctype = ctype;
1993	return ctype;
1994}
1995
1996static struct symbol *find_identifier(struct ident *ident, struct symbol_list *_list, int *offset)
1997{
1998	struct ptr_list *head = (struct ptr_list *)_list;
1999	struct ptr_list *list = head;
2000
2001	if (!head)
2002		return NULL;
2003	do {
2004		int i;
2005		for (i = 0; i < list->nr; i++) {
2006			struct symbol *sym = (struct symbol *) list->list[i];
2007			if (sym->ident) {
2008				if (sym->ident != ident)
2009					continue;
2010				*offset = sym->offset;
2011				return sym;
2012			} else {
2013				struct symbol *ctype = sym->ctype.base_type;
2014				struct symbol *sub;
2015				if (!ctype)
2016					continue;
2017				if (ctype->type != SYM_UNION && ctype->type != SYM_STRUCT)
2018					continue;
2019				sub = find_identifier(ident, ctype->symbol_list, offset);
2020				if (!sub)
2021					continue;
2022				*offset += sym->offset;
2023				return sub;
2024			}
2025		}
2026	} while ((list = list->next) != head);
2027	return NULL;
2028}
2029
2030static struct expression *evaluate_offset(struct expression *expr, unsigned long offset)
2031{
2032	struct expression *add;
2033
2034	/*
2035	 * Create a new add-expression
2036	 *
2037	 * NOTE! Even if we just add zero, we need a new node
2038	 * for the member pointer, since it has a different
2039	 * type than the original pointer. We could make that
2040	 * be just a cast, but the fact is, a node is a node,
2041	 * so we might as well just do the "add zero" here.
2042	 */
2043	add = alloc_expression(expr->pos, EXPR_BINOP);
2044	add->op = '+';
2045	add->left = expr;
2046	add->right = alloc_expression(expr->pos, EXPR_VALUE);
2047	add->right->ctype = &int_ctype;
2048	add->right->value = offset;
2049
2050	/*
2051	 * The ctype of the pointer will be lazily evaluated if
2052	 * we ever take the address of this member dereference..
2053	 */
2054	add->ctype = &lazy_ptr_ctype;
2055	/*
2056	 * The resulting address of a member access through an address
2057	 * constant is an address constant again [6.6(9)].
2058	 */
2059	add->flags = expr->flags;
2060
2061	return add;
2062}
2063
2064/* structure/union dereference */
2065static struct symbol *evaluate_member_dereference(struct expression *expr)
2066{
2067	int offset;
2068	struct symbol *ctype, *member;
2069	struct expression *deref = expr->deref, *add;
2070	struct ident *ident = expr->member;
2071	struct ident *address_space;
2072	unsigned int mod;
2073
2074	if (!evaluate_expression(deref))
2075		return NULL;
2076	if (!ident) {
2077		expression_error(expr, "bad member name");
2078		return NULL;
2079	}
2080
2081	ctype = deref->ctype;
2082	examine_symbol_type(ctype);
2083	address_space = ctype->ctype.as;
2084	mod = ctype->ctype.modifiers;
2085	if (ctype->type == SYM_NODE) {
2086		ctype = ctype->ctype.base_type;
2087		combine_address_space(deref->pos, &address_space, ctype->ctype.as);
2088		mod |= ctype->ctype.modifiers;
2089	}
2090	if (!ctype || (ctype->type != SYM_STRUCT && ctype->type != SYM_UNION)) {
2091		expression_error(expr, "expected structure or union");
2092		return NULL;
2093	}
2094	offset = 0;
2095	member = find_identifier(ident, ctype->symbol_list, &offset);
2096	if (!member) {
2097		const char *type = ctype->type == SYM_STRUCT ? "struct" : "union";
2098		const char *name = "<unnamed>";
2099		int namelen = 9;
2100		if (ctype->ident) {
2101			name = ctype->ident->name;
2102			namelen = ctype->ident->len;
2103		}
2104		if (ctype->symbol_list)
2105			expression_error(expr, "no member '%s' in %s %.*s",
2106				show_ident(ident), type, namelen, name);
2107		else
2108			expression_error(expr, "using member '%s' in "
2109				"incomplete %s %.*s", show_ident(ident),
2110				type, namelen, name);
2111		return NULL;
2112	}
2113
2114	/*
2115	 * The member needs to take on the address space and modifiers of
2116	 * the "parent" type.
2117	 */
2118	member = convert_to_as_mod(member, address_space, mod);
2119	ctype = get_base_type(member);
2120
2121	if (!lvalue_expression(deref)) {
2122		if (deref->type != EXPR_SLICE) {
2123			expr->base = deref;
2124			expr->r_bitpos = 0;
2125		} else {
2126			expr->base = deref->base;
2127			expr->r_bitpos = deref->r_bitpos;
2128		}
2129		expr->r_bitpos += bytes_to_bits(offset);
2130		expr->type = EXPR_SLICE;
2131		expr->r_bitpos += member->bit_offset;
2132		expr->ctype = member;
2133		return member;
2134	}
2135
2136	deref = deref->unop;
2137	expr->deref = deref;
2138
2139	add = evaluate_offset(deref, offset);
2140	expr->type = EXPR_PREOP;
2141	expr->op = '*';
2142	expr->unop = add;
2143
2144	expr->ctype = member;
2145	return member;
2146}
2147
2148static int is_promoted(struct expression *expr)
2149{
2150	while (1) {
2151		switch (expr->type) {
2152		case EXPR_BINOP:
2153		case EXPR_SELECT:
2154		case EXPR_CONDITIONAL:
2155			return 1;
2156		case EXPR_COMMA:
2157			expr = expr->right;
2158			continue;
2159		case EXPR_PREOP:
2160			switch (expr->op) {
2161			case '(':
2162				expr = expr->unop;
2163				continue;
2164			case '+':
2165			case '-':
2166			case '~':
2167				return 1;
2168			default:
2169				return 0;
2170			}
2171		default:
2172			return 0;
2173		}
2174	}
2175}
2176
2177
2178static struct symbol *evaluate_type_information(struct expression *expr)
2179{
2180	struct symbol *sym = expr->cast_type;
2181	if (!sym) {
2182		sym = evaluate_expression(expr->cast_expression);
2183		if (!sym)
2184			return NULL;
2185		/*
2186		 * Expressions of restricted types will possibly get
2187		 * promoted - check that here
2188		 */
2189		if (is_restricted_type(sym)) {
2190			if (sym->bit_size < bits_in_int && is_promoted(expr))
2191				sym = &int_ctype;
2192		} else if (is_fouled_type(sym)) {
2193			sym = &int_ctype;
2194		}
2195	}
2196	examine_symbol_type(sym);
2197	if (is_bitfield_type(sym)) {
2198		expression_error(expr, "trying to examine bitfield type");
2199		return NULL;
2200	}
2201	return sym;
2202}
2203
2204static struct symbol *evaluate_sizeof(struct expression *expr)
2205{
2206	struct symbol *type;
2207	int size;
2208
2209	type = evaluate_type_information(expr);
2210	if (!type)
2211		return NULL;
2212
2213	size = type->bit_size;
2214
2215	if (size < 0 && is_void_type(type)) {
2216		if (Wpointer_arith)
2217			warning(expr->pos, "expression using sizeof(void)");
2218		size = bits_in_char;
2219	}
2220
2221	if (is_bool_type(type)) {
2222		if (Wsizeof_bool)
2223			warning(expr->pos, "expression using sizeof _Bool");
2224		size = bits_to_bytes(bits_in_bool) * bits_in_char;
2225	}
2226
2227	if (is_function(type->ctype.base_type)) {
2228		if (Wpointer_arith)
2229			warning(expr->pos, "expression using sizeof on a function");
2230		size = bits_in_char;
2231	}
2232
2233	if (has_flexible_array(type) && Wflexible_array_sizeof)
2234		warning(expr->pos, "using sizeof on a flexible structure");
2235
2236	if (is_array_type(type) && size < 0) {	// VLA, 1-dimension only
2237		struct expression *base, *size;
2238		struct symbol *base_type;
2239
2240		if (type->type == SYM_NODE)
2241			type = type->ctype.base_type;	// strip the SYM_NODE
2242		base_type = get_base_type(type);
2243		if (!base_type)
2244			goto error;
2245		if (base_type->bit_size <= 0) {
2246			base = alloc_expression(expr->pos, EXPR_SIZEOF);
2247			base->cast_type = base_type;
2248			if (!evaluate_sizeof(base))
2249				goto error;
2250		} else {
2251			base = alloc_expression(expr->pos, EXPR_VALUE);
2252			base->value = bits_to_bytes(base_type->bit_size);
2253			base->ctype = size_t_ctype;
2254		}
2255		size = alloc_expression(expr->pos, EXPR_CAST);
2256		size->cast_type = size_t_ctype;
2257		size->cast_expression = type->array_size;
2258		if (!evaluate_expression(size))
2259			goto error;
2260		expr->left = size;
2261		expr->right = base;
2262		expr->type = EXPR_BINOP;
2263		expr->op = '*';
2264		return expr->ctype = size_t_ctype;
2265	}
2266
2267error:
2268	if ((size < 0) || (size & (bits_in_char - 1)))
2269		expression_error(expr, "cannot size expression");
2270
2271	expr->type = EXPR_VALUE;
2272	expr->value = bits_to_bytes(size);
2273	expr->taint = 0;
2274	expr->ctype = size_t_ctype;
2275	return size_t_ctype;
2276}
2277
2278static struct symbol *evaluate_ptrsizeof(struct expression *expr)
2279{
2280	struct symbol *type;
2281	int size;
2282
2283	type = evaluate_type_information(expr);
2284	if (!type)
2285		return NULL;
2286
2287	if (type->type == SYM_NODE)
2288		type = type->ctype.base_type;
2289	if (!type)
2290		return NULL;
2291	switch (type->type) {
2292	case SYM_ARRAY:
2293		break;
2294	case SYM_PTR:
2295		type = get_base_type(type);
2296		if (type)
2297			break;
2298	default:
2299		expression_error(expr, "expected pointer expression");
2300		return NULL;
2301	}
2302	size = type->bit_size;
2303	if (size & (bits_in_char-1))
2304		size = 0;
2305	expr->type = EXPR_VALUE;
2306	expr->value = bits_to_bytes(size);
2307	expr->taint = 0;
2308	expr->ctype = size_t_ctype;
2309	return size_t_ctype;
2310}
2311
2312static struct symbol *evaluate_alignof(struct expression *expr)
2313{
2314	struct symbol *type;
2315
2316	type = evaluate_type_information(expr);
2317	if (!type)
2318		return NULL;
2319
2320	expr->type = EXPR_VALUE;
2321	expr->value = type->ctype.alignment;
2322	expr->taint = 0;
2323	expr->ctype = size_t_ctype;
2324	return size_t_ctype;
2325}
2326
2327int evaluate_arguments(struct symbol_list *argtypes, struct expression_list *head)
2328{
2329	struct expression *expr;
2330	struct symbol *argtype;
2331	int i = 1;
2332
2333	PREPARE_PTR_LIST(argtypes, argtype);
2334	FOR_EACH_PTR (head, expr) {
2335		struct expression **p = THIS_ADDRESS(expr);
2336		struct symbol *ctype, *target;
2337		ctype = evaluate_expression(expr);
2338
2339		if (!ctype)
2340			return 0;
2341
2342		target = argtype;
2343		if (!target) {
2344			struct symbol *type;
2345			int class = classify_type(ctype, &type);
2346			if (is_int(class)) {
2347				*p = cast_to(expr, integer_promotion(type));
2348			} else if (class & TYPE_FLOAT) {
2349				if (type->rank < 0)
2350					*p = cast_to(expr, &double_ctype);
2351			} else if (class & TYPE_PTR) {
2352				if (expr->ctype == &null_ctype)
2353					*p = cast_to(expr, &ptr_ctype);
2354				else
2355					degenerate(expr);
2356			}
2357		} else if (!target->forced_arg){
2358			static char where[30];
2359			examine_symbol_type(target);
2360			sprintf(where, "argument %d", i);
2361			compatible_argument_type(expr, target, p, where);
2362		}
2363
2364		i++;
2365		NEXT_PTR_LIST(argtype);
2366	} END_FOR_EACH_PTR(expr);
2367	FINISH_PTR_LIST(argtype);
2368	return 1;
2369}
2370
2371static void convert_index(struct expression *e)
2372{
2373	struct expression *child = e->idx_expression;
2374	unsigned from = e->idx_from;
2375	unsigned to = e->idx_to + 1;
2376	e->type = EXPR_POS;
2377	e->init_offset = from * bits_to_bytes(e->ctype->bit_size);
2378	e->init_nr = to - from;
2379	e->init_expr = child;
2380}
2381
2382static void convert_ident(struct expression *e)
2383{
2384	struct expression *child = e->ident_expression;
2385	int offset = e->offset;
2386
2387	e->type = EXPR_POS;
2388	e->init_offset = offset;
2389	e->init_nr = 1;
2390	e->init_expr = child;
2391}
2392
2393static void convert_designators(struct expression *e)
2394{
2395	while (e) {
2396		if (e->type == EXPR_INDEX)
2397			convert_index(e);
2398		else if (e->type == EXPR_IDENTIFIER)
2399			convert_ident(e);
2400		else
2401			break;
2402		e = e->init_expr;
2403	}
2404}
2405
2406static void excess(struct expression *e, const char *s)
2407{
2408	warning(e->pos, "excessive elements in %s initializer", s);
2409}
2410
2411/*
2412 * implicit designator for the first element
2413 */
2414static struct expression *first_subobject(struct symbol *ctype, int class,
2415					  struct expression **v)
2416{
2417	struct expression *e = *v, *new;
2418
2419	if (ctype->type == SYM_NODE)
2420		ctype = ctype->ctype.base_type;
2421
2422	if (class & TYPE_PTR) { /* array */
2423		if (!ctype->bit_size)
2424			return NULL;
2425		new = alloc_expression(e->pos, EXPR_INDEX);
2426		new->idx_expression = e;
2427		new->ctype = ctype->ctype.base_type;
2428	} else  {
2429		struct symbol *field, *p;
2430		PREPARE_PTR_LIST(ctype->symbol_list, p);
2431		while (p && !p->ident && is_bitfield_type(p))
2432			NEXT_PTR_LIST(p);
2433		field = p;
2434		FINISH_PTR_LIST(p);
2435		if (!field)
2436			return NULL;
2437		new = alloc_expression(e->pos, EXPR_IDENTIFIER);
2438		new->ident_expression = e;
2439		new->field = new->ctype = field;
2440		new->offset = field->offset;
2441	}
2442	*v = new;
2443	return new;
2444}
2445
2446/*
2447 * sanity-check explicit designators; return the innermost one or NULL
2448 * in case of error.  Assign types.
2449 */
2450static struct expression *check_designators(struct expression *e,
2451					    struct symbol *ctype)
2452{
2453	struct expression *last = NULL;
2454	const char *err;
2455	while (1) {
2456		if (ctype->type == SYM_NODE)
2457			ctype = ctype->ctype.base_type;
2458		if (e->type == EXPR_INDEX) {
2459			struct symbol *type;
2460			if (ctype->type != SYM_ARRAY) {
2461				err = "array index in non-array";
2462				break;
2463			}
2464			type = ctype->ctype.base_type;
2465			if (ctype->bit_size >= 0 && type->bit_size >= 0) {
2466				unsigned offset = array_element_offset(type->bit_size, e->idx_to);
2467				if (offset >= ctype->bit_size) {
2468					err = "index out of bounds in";
2469					break;
2470				}
2471			}
2472			e->ctype = ctype = type;
2473			ctype = type;
2474			last = e;
2475			if (!e->idx_expression) {
2476				err = "invalid";
2477				break;
2478			}
2479			e = e->idx_expression;
2480		} else if (e->type == EXPR_IDENTIFIER) {
2481			int offset = 0;
2482			if (ctype->type != SYM_STRUCT && ctype->type != SYM_UNION) {
2483				err = "field name not in struct or union";
2484				break;
2485			}
2486			ctype = find_identifier(e->expr_ident, ctype->symbol_list, &offset);
2487			if (!ctype) {
2488				err = "unknown field name in";
2489				break;
2490			}
2491			e->offset = offset;
2492			e->field = e->ctype = ctype;
2493			last = e;
2494			if (!e->ident_expression) {
2495				err = "invalid";
2496				break;
2497			}
2498			e = e->ident_expression;
2499		} else if (e->type == EXPR_POS) {
2500			err = "internal front-end error: EXPR_POS in";
2501			break;
2502		} else
2503			return last;
2504	}
2505	expression_error(e, "%s initializer", err);
2506	return NULL;
2507}
2508
2509/*
2510 * choose the next subobject to initialize.
2511 *
2512 * Get designators for next element, switch old ones to EXPR_POS.
2513 * Return the resulting expression or NULL if we'd run out of subobjects.
2514 * The innermost designator is returned in *v.  Designators in old
2515 * are assumed to be already sanity-checked.
2516 */
2517static struct expression *next_designators(struct expression *old,
2518			     struct symbol *ctype,
2519			     struct expression *e, struct expression **v)
2520{
2521	struct expression *new = NULL;
2522
2523	if (!old)
2524		return NULL;
2525	if (old->type == EXPR_INDEX) {
2526		struct expression *copy;
2527		unsigned n;
2528
2529		copy = next_designators(old->idx_expression,
2530					old->ctype, e, v);
2531		if (!copy) {
2532			n = old->idx_to + 1;
2533			if (array_element_offset(old->ctype->bit_size, n) == ctype->bit_size) {
2534				convert_index(old);
2535				return NULL;
2536			}
2537			copy = e;
2538			*v = new = alloc_expression(e->pos, EXPR_INDEX);
2539		} else {
2540			n = old->idx_to;
2541			new = alloc_expression(e->pos, EXPR_INDEX);
2542		}
2543
2544		new->idx_from = new->idx_to = n;
2545		new->idx_expression = copy;
2546		new->ctype = old->ctype;
2547		convert_index(old);
2548	} else if (old->type == EXPR_IDENTIFIER) {
2549		struct expression *copy;
2550		struct symbol *field;
2551		int offset = 0;
2552
2553		copy = next_designators(old->ident_expression,
2554					old->ctype, e, v);
2555		if (!copy) {
2556			field = old->field->next_subobject;
2557			if (!field) {
2558				convert_ident(old);
2559				return NULL;
2560			}
2561			copy = e;
2562			*v = new = alloc_expression(e->pos, EXPR_IDENTIFIER);
2563			/*
2564			 * We can't necessarily trust "field->offset",
2565			 * because the field might be in an anonymous
2566			 * union, and the field offset is then the offset
2567			 * within that union.
2568			 *
2569			 * The "old->offset - old->field->offset"
2570			 * would be the offset of such an anonymous
2571			 * union.
2572			 */
2573			offset = old->offset - old->field->offset;
2574		} else {
2575			field = old->field;
2576			new = alloc_expression(e->pos, EXPR_IDENTIFIER);
2577		}
2578
2579		new->field = field;
2580		new->expr_ident = field->ident;
2581		new->ident_expression = copy;
2582		new->ctype = field;
2583		new->offset = field->offset + offset;
2584		convert_ident(old);
2585	}
2586	return new;
2587}
2588
2589static int handle_initializer(struct expression **ep, int nested,
2590		int class, struct symbol *ctype, unsigned long mods);
2591
2592/*
2593 * deal with traversing subobjects [6.7.8(17,18,20)]
2594 */
2595static void handle_list_initializer(struct expression *expr,
2596		int class, struct symbol *ctype, unsigned long mods)
2597{
2598	struct expression *e, *last = NULL, *top = NULL, *next;
2599	int jumped = 0;	// has the last designator multiple levels?
2600
2601	if (expr->zero_init)
2602		free_ptr_list(&expr->expr_list);
2603
2604	FOR_EACH_PTR(expr->expr_list, e) {
2605		struct expression **v;
2606		struct symbol *type;
2607		int lclass;
2608
2609		if (e->type != EXPR_INDEX && e->type != EXPR_IDENTIFIER) {
2610			struct symbol *struct_sym;
2611			if (!top) {
2612				top = e;
2613				last = first_subobject(ctype, class, &top);
2614			} else {
2615				last = next_designators(last, ctype, e, &top);
2616			}
2617			if (!last) {
2618				excess(e, class & TYPE_PTR ? "array" :
2619							"struct or union");
2620				DELETE_CURRENT_PTR(e);
2621				continue;
2622			}
2623			struct_sym = ctype->type == SYM_NODE ? ctype->ctype.base_type : ctype;
2624			if (Wdesignated_init && struct_sym->designated_init)
2625				warning(e->pos, "%s%.*s%spositional init of field in %s %s, declared with attribute designated_init",
2626					ctype->ident ? "in initializer for " : "",
2627					ctype->ident ? ctype->ident->len : 0,
2628					ctype->ident ? ctype->ident->name : "",
2629					ctype->ident ? ": " : "",
2630					get_type_name(struct_sym->type),
2631					show_ident(struct_sym->ident));
2632			if (jumped && Wpast_deep_designator) {
2633				warning(e->pos, "advancing past deep designator");
2634				jumped = 0;
2635			}
2636			REPLACE_CURRENT_PTR(e, last);
2637		} else {
2638			next = check_designators(e, ctype);
2639			if (!next) {
2640				DELETE_CURRENT_PTR(e);
2641				continue;
2642			}
2643			top = next;
2644			/* deeper than one designator? */
2645			jumped = top != e;
2646			convert_designators(last);
2647			last = e;
2648		}
2649
2650found:
2651		lclass = classify_type(top->ctype, &type);
2652		if (top->type == EXPR_INDEX)
2653			v = &top->idx_expression;
2654		else
2655			v = &top->ident_expression;
2656
2657		mods |= ctype->ctype.modifiers & MOD_STORAGE;
2658		if (handle_initializer(v, 1, lclass, top->ctype, mods))
2659			continue;
2660
2661		if (!(lclass & TYPE_COMPOUND)) {
2662			warning(e->pos, "bogus scalar initializer");
2663			DELETE_CURRENT_PTR(e);
2664			continue;
2665		}
2666
2667		next = first_subobject(type, lclass, v);
2668		if (next) {
2669			warning(e->pos, "missing braces around initializer");
2670			top = next;
2671			goto found;
2672		}
2673
2674		DELETE_CURRENT_PTR(e);
2675		excess(e, lclass & TYPE_PTR ? "array" : "struct or union");
2676
2677	} END_FOR_EACH_PTR(e);
2678
2679	convert_designators(last);
2680	expr->ctype = ctype;
2681}
2682
2683static int is_string_literal(struct expression **v)
2684{
2685	struct expression *e = *v;
2686	while (e && e->type == EXPR_PREOP && e->op == '(')
2687		e = e->unop;
2688	if (!e || e->type != EXPR_STRING)
2689		return 0;
2690	if (e != *v && Wparen_string)
2691		warning(e->pos,
2692			"array initialized from parenthesized string constant");
2693	*v = e;
2694	return 1;
2695}
2696
2697/*
2698 * We want a normal expression, possibly in one layer of braces.  Warn
2699 * if the latter happens inside a list (it's legal, but likely to be
2700 * an effect of screwup).  In case of anything not legal, we are definitely
2701 * having an effect of screwup, so just fail and let the caller warn.
2702 */
2703static struct expression *handle_scalar(struct expression *e, int nested)
2704{
2705	struct expression *v = NULL, *p;
2706	int count = 0;
2707
2708	/* normal case */
2709	if (e->type != EXPR_INITIALIZER)
2710		return e;
2711
2712	FOR_EACH_PTR(e->expr_list, p) {
2713		if (!v)
2714			v = p;
2715		count++;
2716	} END_FOR_EACH_PTR(p);
2717	if (count != 1)
2718		return NULL;
2719	switch(v->type) {
2720	case EXPR_INITIALIZER:
2721	case EXPR_INDEX:
2722	case EXPR_IDENTIFIER:
2723		return NULL;
2724	default:
2725		break;
2726	}
2727	if (nested)
2728		warning(e->pos, "braces around scalar initializer");
2729	return v;
2730}
2731
2732/*
2733 * deal with the cases that don't care about subobjects:
2734 * scalar <- assignment expression, possibly in braces [6.7.8(11)]
2735 * character array <- string literal, possibly in braces [6.7.8(14)]
2736 * struct or union <- assignment expression of compatible type [6.7.8(13)]
2737 * compound type <- initializer list in braces [6.7.8(16)]
2738 * The last one punts to handle_list_initializer() which, in turn will call
2739 * us for individual elements of the list.
2740 *
2741 * We do not handle 6.7.8(15) (wide char array <- wide string literal) for
2742 * the lack of support of wide char stuff in general.
2743 *
2744 * One note: we need to take care not to evaluate a string literal until
2745 * we know that we *will* handle it right here.  Otherwise we would screw
2746 * the cases like struct { struct {char s[10]; ...} ...} initialized with
2747 * { "string", ...} - we need to preserve that string literal recognizable
2748 * until we dig into the inner struct.
2749 */
2750static int handle_initializer(struct expression **ep, int nested,
2751		int class, struct symbol *ctype, unsigned long mods)
2752{
2753	struct expression *e = *ep, *p;
2754	struct symbol *type;
2755
2756	if (!e)
2757		return 0;
2758
2759	/* scalar */
2760	if (!(class & TYPE_COMPOUND)) {
2761		e = handle_scalar(e, nested);
2762		if (!e)
2763			return 0;
2764		*ep = e;
2765		if (!evaluate_expression(e))
2766			return 1;
2767		compatible_assignment_types(e, ctype, ep, "initializer");
2768		/*
2769		 * Initializers for static storage duration objects
2770		 * shall be constant expressions or a string literal [6.7.8(4)].
2771		 */
2772		mods |= ctype->ctype.modifiers;
2773		mods &= (MOD_TOPLEVEL | MOD_STATIC);
2774		if (mods && !(e->flags & (CEF_ACE | CEF_ADDR)))
2775			if (Wconstexpr_not_const)
2776				warning(e->pos, "non-constant initializer for static object");
2777
2778		return 1;
2779	}
2780
2781	/*
2782	 * sublist; either a string, or we dig in; the latter will deal with
2783	 * pathologies, so we don't need anything fancy here.
2784	 */
2785	if (e->type == EXPR_INITIALIZER) {
2786		if (is_string_type(ctype)) {
2787			struct expression *v = NULL;
2788			int count = 0;
2789
2790			FOR_EACH_PTR(e->expr_list, p) {
2791				if (!v)
2792					v = p;
2793				count++;
2794			} END_FOR_EACH_PTR(p);
2795			if (count == 1 && is_string_literal(&v)) {
2796				*ep = e = v;
2797				goto String;
2798			}
2799		}
2800		handle_list_initializer(e, class, ctype, mods);
2801		return 1;
2802	}
2803
2804	/* string */
2805	if (is_string_literal(&e)) {
2806		/* either we are doing array of char, or we'll have to dig in */
2807		if (is_string_type(ctype)) {
2808			*ep = e;
2809			goto String;
2810		}
2811		return 0;
2812	}
2813	/* struct or union can be initialized by compatible */
2814	if (class != TYPE_COMPOUND)
2815		return 0;
2816	type = evaluate_expression(e);
2817	if (!type)
2818		return 0;
2819	if (ctype->type == SYM_NODE)
2820		ctype = ctype->ctype.base_type;
2821	if (type->type == SYM_NODE)
2822		type = type->ctype.base_type;
2823	if (ctype == type)
2824		return 1;
2825	return 0;
2826
2827String:
2828	p = alloc_expression(e->pos, EXPR_STRING);
2829	*p = *e;
2830	type = evaluate_expression(p);
2831	if (ctype->bit_size != -1) {
2832		struct symbol *char_type = e->wide ? wchar_ctype : &char_ctype;
2833		unsigned int size_with_null = ctype->bit_size + char_type->bit_size;
2834		if (size_with_null < type->bit_size)
2835			warning(e->pos,
2836				"too long initializer-string for array of char");
2837		else if (Winit_cstring && size_with_null == type->bit_size) {
2838			warning(e->pos,
2839				"too long initializer-string for array of char(no space for nul char)");
2840		}
2841	}
2842	*ep = p;
2843	return 1;
2844}
2845
2846static void evaluate_initializer(struct symbol *ctype, struct expression **ep)
2847{
2848	struct symbol *type;
2849	int class = classify_type(ctype, &type);
2850	if (!handle_initializer(ep, 0, class, ctype, 0))
2851		expression_error(*ep, "invalid initializer");
2852}
2853
2854static struct symbol *cast_to_bool(struct expression *expr)
2855{
2856	struct expression *old = expr->cast_expression;
2857	struct expression *zero;
2858	struct symbol *otype;
2859	int oclass = classify_type(degenerate(old), &otype);
2860	struct symbol *ctype;
2861
2862	if (oclass & TYPE_COMPOUND)
2863		return NULL;
2864
2865	zero = alloc_const_expression(expr->pos, 0);
2866	if (oclass & TYPE_PTR)
2867		zero->ctype = otype;
2868	expr->op = SPECIAL_NOTEQUAL;
2869	ctype = usual_conversions(expr->op, old, zero,
2870			oclass, TYPE_NUM, otype, zero->ctype);
2871	expr->type = EXPR_COMPARE;
2872	expr->left = cast_to(old, ctype);
2873	expr->right = cast_to(zero, ctype);
2874
2875	return expr->ctype;
2876}
2877
2878static int cast_flags(struct expression *expr, struct expression *old)
2879{
2880	struct symbol *t;
2881	int class;
2882	int flags = CEF_NONE;
2883
2884	class = classify_type(expr->ctype, &t);
2885	if (class & TYPE_NUM) {
2886		flags = old->flags & ~CEF_CONST_MASK;
2887		/*
2888		 * Casts to numeric types never result in address
2889		 * constants [6.6(9)].
2890		 */
2891		flags &= ~CEF_ADDR;
2892
2893		/*
2894		 * As an extension, treat address constants cast to
2895		 * integer type as an arithmetic constant.
2896		 */
2897		if (old->flags & CEF_ADDR)
2898			flags = CEF_ACE;
2899
2900		/*
2901		 * Cast to float type -> not an integer constant
2902		 * expression [6.6(6)].
2903		 */
2904		if (class & TYPE_FLOAT)
2905			flags &= ~CEF_CLR_ICE;
2906		/*
2907		 * Casts of float literals to integer type results in
2908		 * a constant integer expression [6.6(6)].
2909		 */
2910		else if (old->flags & CEF_FLOAT)
2911			flags = CEF_SET_ICE;
2912	} else if (class & TYPE_PTR) {
2913		/*
2914		 * Casts of integer literals to pointer type yield
2915		 * address constants [6.6(9)].
2916		 *
2917		 * As an extension, treat address constants cast to a
2918		 * different pointer type as address constants again.
2919		 *
2920		 * As another extension, treat integer constant
2921		 * expressions (in contrast to literals) cast to
2922		 * pointer type as address constants.
2923		 */
2924		if (old->flags & (CEF_ICE | CEF_ADDR))
2925			flags = CEF_ADDR;
2926	}
2927
2928	return flags;
2929}
2930
2931///
2932// check if a type matches one of the members of a union type
2933// @utype: the union type
2934// @type: to type to check
2935// @return: to identifier of the matching type in the union.
2936static struct symbol *find_member_type(struct symbol *utype, struct symbol *type)
2937{
2938	struct symbol *t, *member;
2939
2940	if (utype->type != SYM_UNION)
2941		return NULL;
2942
2943	FOR_EACH_PTR(utype->symbol_list, member) {
2944		classify_type(member, &t);
2945		if (type == t)
2946			return member;
2947	} END_FOR_EACH_PTR(member);
2948	return NULL;
2949}
2950
2951static struct symbol *evaluate_compound_literal(struct expression *expr, struct expression *source)
2952{
2953	struct expression *addr = alloc_expression(expr->pos, EXPR_SYMBOL);
2954	struct symbol *sym = expr->cast_type;
2955
2956	sym->initializer = source;
2957	evaluate_symbol(sym);
2958
2959	addr->ctype = &lazy_ptr_ctype;	/* Lazy eval */
2960	addr->symbol = sym;
2961	if (sym->ctype.modifiers & MOD_TOPLEVEL)
2962		addr->flags |= CEF_ADDR;
2963
2964	expr->type = EXPR_PREOP;
2965	expr->op = '*';
2966	expr->deref = addr;
2967	expr->ctype = sym;
2968	return sym;
2969}
2970
2971static struct symbol *evaluate_cast(struct expression *expr)
2972{
2973	struct expression *source = expr->cast_expression;
2974	struct symbol *ctype;
2975	struct symbol *ttype, *stype;
2976	struct symbol *member;
2977	int tclass, sclass;
2978	struct ident *tas = NULL, *sas = NULL;
2979
2980	if (!source)
2981		return NULL;
2982
2983	/*
2984	 * Special case: a cast can be followed by an
2985	 * initializer, in which case we need to pass
2986	 * the type value down to that initializer rather
2987	 * than trying to evaluate it as an expression
2988	 * (cfr. compound literals: C99 & C11 6.5.2.5).
2989	 *
2990	 * A more complex case is when the initializer is
2991	 * dereferenced as part of a post-fix expression.
2992	 * We need to produce an expression that can be dereferenced.
2993	 */
2994	if (source->type == EXPR_INITIALIZER)
2995		return evaluate_compound_literal(expr, source);
2996
2997	ctype = examine_symbol_type(expr->cast_type);
2998	ctype = unqualify_type(ctype);
2999	expr->ctype = ctype;
3000	expr->cast_type = ctype;
3001
3002	evaluate_expression(source);
3003	degenerate(source);
3004
3005	tclass = classify_type(ctype, &ttype);
3006
3007	expr->flags = cast_flags(expr, source);
3008
3009	/*
3010	 * You can always throw a value away by casting to
3011	 * "void" - that's an implicit "force". Note that
3012	 * the same is _not_ true of "void *".
3013	 */
3014	if (ttype == &void_ctype)
3015		goto out;
3016
3017	stype = source->ctype;
3018	if (!stype) {
3019		expression_error(expr, "cast from unknown type");
3020		goto out;
3021	}
3022	sclass = classify_type(stype, &stype);
3023
3024	if (expr->type == EXPR_FORCE_CAST)
3025		goto out;
3026
3027	if (tclass & (TYPE_COMPOUND | TYPE_FN)) {
3028		/*
3029		 * Special case: cast to union type (GCC extension)
3030		 * The effect is similar to a compound literal except
3031		 * that the result is a rvalue.
3032		 */
3033		if ((member = find_member_type(ttype, stype))) {
3034			struct expression *item, *init;
3035
3036			if (Wunion_cast)
3037				warning(expr->pos, "cast to union type");
3038
3039			item = alloc_expression(source->pos, EXPR_IDENTIFIER);
3040			item->expr_ident = member->ident;
3041			item->ident_expression = source;
3042
3043			init = alloc_expression(source->pos, EXPR_INITIALIZER);
3044			add_expression(&init->expr_list, item);
3045
3046			// FIXME: this should be a rvalue
3047			evaluate_compound_literal(expr, init);
3048			return ctype;
3049		}
3050
3051		warning(expr->pos, "cast to non-scalar");
3052	}
3053
3054	if (sclass & TYPE_COMPOUND)
3055		warning(expr->pos, "cast from non-scalar");
3056
3057	/* allowed cast unfouls */
3058	if (sclass & TYPE_FOULED)
3059		stype = unfoul(stype);
3060
3061	if (ttype != stype) {
3062		if ((tclass & TYPE_RESTRICT) && restricted_value(source, ttype))
3063			warning(expr->pos, "cast to %s",
3064				show_typename(ttype));
3065		if (sclass & TYPE_RESTRICT) {
3066			if (ttype == &bool_ctype) {
3067				if (sclass & TYPE_FOULED)
3068					warning(expr->pos, "%s degrades to integer",
3069						show_typename(stype));
3070			} else {
3071				warning(expr->pos, "cast from %s",
3072					show_typename(stype));
3073			}
3074		}
3075	}
3076
3077	if ((ttype == &ulong_ctype || ttype == uintptr_ctype) && !Wcast_from_as)
3078		tas = &bad_address_space;
3079	else if (tclass == TYPE_PTR) {
3080		examine_pointer_target(ttype);
3081		tas = ttype->ctype.as;
3082	}
3083
3084	if ((stype == &ulong_ctype || stype == uintptr_ctype))
3085		sas = &bad_address_space;
3086	else if (sclass == TYPE_PTR) {
3087		examine_pointer_target(stype);
3088		sas = stype->ctype.as;
3089	}
3090
3091	if (!tas && valid_as(sas))
3092		warning(expr->pos, "cast removes address space '%s' of expression", show_as(sas));
3093	if (valid_as(tas) && valid_as(sas) && tas != sas)
3094		warning(expr->pos, "cast between address spaces (%s -> %s)", show_as(sas), show_as(tas));
3095	if (valid_as(tas) && !sas &&
3096	    !is_null_pointer_constant(source) && Wcast_to_as)
3097		warning(expr->pos,
3098			"cast adds address space '%s' to expression", show_as(tas));
3099
3100	if (!(ttype->ctype.modifiers & MOD_PTRINHERIT) && tclass == TYPE_PTR &&
3101	    !tas && (source->flags & CEF_ICE)) {
3102		if (ttype->ctype.base_type == &void_ctype) {
3103			if (is_zero_constant(source)) {
3104				/* NULL */
3105				expr->type = EXPR_VALUE;
3106				expr->ctype = &null_ctype;
3107				expr->value = 0;
3108				return expr->ctype;
3109			}
3110		}
3111	}
3112
3113	if (ttype == &bool_ctype)
3114		cast_to_bool(expr);
3115
3116	// checks pointers to restricted
3117	while (Wbitwise_pointer && tclass == TYPE_PTR && sclass == TYPE_PTR) {
3118		tclass = classify_type(ttype->ctype.base_type, &ttype);
3119		sclass = classify_type(stype->ctype.base_type, &stype);
3120		if (ttype == stype)
3121			break;
3122		if (!ttype || !stype)
3123			break;
3124		if (ttype == &void_ctype || stype == &void_ctype)
3125			break;
3126		if (tclass & TYPE_RESTRICT) {
3127			warning(expr->pos, "cast to %s", show_typename(ctype));
3128			break;
3129		}
3130		if (sclass & TYPE_RESTRICT) {
3131			warning(expr->pos, "cast from %s", show_typename(source->ctype));
3132			break;
3133		}
3134	}
3135out:
3136	return ctype;
3137}
3138
3139/*
3140 * Evaluate a call expression with a symbol. This
3141 * should expand inline functions, and evaluate
3142 * builtins.
3143 */
3144static int evaluate_symbol_call(struct expression *expr)
3145{
3146	struct expression *fn = expr->fn;
3147	struct symbol *ctype = fn->ctype;
3148
3149	if (fn->type != EXPR_PREOP)
3150		return 0;
3151
3152	if (ctype->op && ctype->op->evaluate)
3153		return ctype->op->evaluate(expr);
3154
3155	return 0;
3156}
3157
3158static struct symbol *evaluate_call(struct expression *expr)
3159{
3160	int args, fnargs;
3161	struct symbol *ctype, *sym;
3162	struct expression *fn = expr->fn;
3163	struct expression_list *arglist = expr->args;
3164
3165	if (!evaluate_expression(fn))
3166		return NULL;
3167	sym = ctype = fn->ctype;
3168	if (ctype->type == SYM_NODE)
3169		ctype = ctype->ctype.base_type;
3170	if (ctype->type == SYM_PTR)
3171		ctype = get_base_type(ctype);
3172
3173	if (ctype->type != SYM_FN) {
3174		struct expression *arg;
3175
3176		if (fn->ctype == &bad_ctype)
3177			return NULL;
3178
3179		expression_error(expr, "not a function %s",
3180			     show_ident(sym->ident));
3181		/* do typechecking in arguments */
3182		FOR_EACH_PTR (arglist, arg) {
3183			evaluate_expression(arg);
3184		} END_FOR_EACH_PTR(arg);
3185		return NULL;
3186	}
3187
3188	examine_fn_arguments(ctype);
3189        if (sym->type == SYM_NODE && fn->type == EXPR_PREOP &&
3190	    sym->op && sym->op->args) {
3191		if (!sym->op->args(expr))
3192			return NULL;
3193	} else {
3194		if (!evaluate_arguments(ctype->arguments, arglist))
3195			return NULL;
3196		args = expression_list_size(expr->args);
3197		fnargs = symbol_list_size(ctype->arguments);
3198		if (args < fnargs) {
3199			expression_error(expr,
3200				     "not enough arguments for function %s",
3201				     show_ident(sym->ident));
3202			return NULL;
3203		}
3204		if (args > fnargs && !ctype->variadic)
3205			expression_error(expr,
3206				     "too many arguments for function %s",
3207				     show_ident(sym->ident));
3208	}
3209	expr->ctype = ctype->ctype.base_type;
3210	if (sym->type == SYM_NODE) {
3211		if (evaluate_symbol_call(expr))
3212			return expr->ctype;
3213	}
3214	return expr->ctype;
3215}
3216
3217static struct symbol *evaluate_offsetof(struct expression *expr)
3218{
3219	struct expression *e = expr->down;
3220	struct symbol *ctype = expr->in;
3221	int class;
3222
3223	if (expr->op == '.') {
3224		struct symbol *field;
3225		int offset = 0;
3226		if (!ctype) {
3227			expression_error(expr, "expected structure or union");
3228			return NULL;
3229		}
3230		examine_symbol_type(ctype);
3231		class = classify_type(ctype, &ctype);
3232		if (class != TYPE_COMPOUND) {
3233			expression_error(expr, "expected structure or union");
3234			return NULL;
3235		}
3236
3237		field = find_identifier(expr->ident, ctype->symbol_list, &offset);
3238		if (!field) {
3239			expression_error(expr, "unknown member");
3240			return NULL;
3241		}
3242		ctype = field;
3243		expr->type = EXPR_VALUE;
3244		expr->flags = CEF_SET_ICE;
3245		expr->value = offset;
3246		expr->taint = 0;
3247		expr->ctype = size_t_ctype;
3248	} else {
3249		if (!ctype) {
3250			expression_error(expr, "expected structure or union");
3251			return NULL;
3252		}
3253		examine_symbol_type(ctype);
3254		class = classify_type(ctype, &ctype);
3255		if (class != (TYPE_COMPOUND | TYPE_PTR)) {
3256			expression_error(expr, "expected array");
3257			return NULL;
3258		}
3259		ctype = ctype->ctype.base_type;
3260		if (!expr->index) {
3261			expr->type = EXPR_VALUE;
3262			expr->flags = CEF_SET_ICE;
3263			expr->value = 0;
3264			expr->taint = 0;
3265			expr->ctype = size_t_ctype;
3266		} else {
3267			struct expression *idx = expr->index, *m;
3268			struct symbol *i_type = evaluate_expression(idx);
3269			unsigned old_idx_flags;
3270			int i_class = classify_type(i_type, &i_type);
3271
3272			if (!is_int(i_class)) {
3273				expression_error(expr, "non-integer index");
3274				return NULL;
3275			}
3276			unrestrict(idx, i_class, &i_type);
3277			old_idx_flags = idx->flags;
3278			idx = cast_to(idx, size_t_ctype);
3279			idx->flags = old_idx_flags;
3280			m = alloc_const_expression(expr->pos,
3281						   bits_to_bytes(ctype->bit_size));
3282			m->ctype = size_t_ctype;
3283			m->flags = CEF_SET_INT;
3284			expr->type = EXPR_BINOP;
3285			expr->left = idx;
3286			expr->right = m;
3287			expr->op = '*';
3288			expr->ctype = size_t_ctype;
3289			expr->flags = m->flags & idx->flags & ~CEF_CONST_MASK;
3290		}
3291	}
3292	if (e) {
3293		struct expression *copy = __alloc_expression(0);
3294		*copy = *expr;
3295		if (e->type == EXPR_OFFSETOF)
3296			e->in = ctype;
3297		if (!evaluate_expression(e))
3298			return NULL;
3299		expr->type = EXPR_BINOP;
3300		expr->flags = e->flags & copy->flags & ~CEF_CONST_MASK;
3301		expr->op = '+';
3302		expr->ctype = size_t_ctype;
3303		expr->left = copy;
3304		expr->right = e;
3305	}
3306	return size_t_ctype;
3307}
3308
3309static void check_label_declaration(struct position pos, struct symbol *label)
3310{
3311	switch (label->namespace) {
3312	case NS_LABEL:
3313		if (label->stmt)
3314			break;
3315		sparse_error(pos, "label '%s' was not declared", show_ident(label->ident));
3316		/* fallthrough */
3317	case NS_NONE:
3318		current_fn->bogus_linear = 1;
3319	default:
3320		break;
3321	}
3322}
3323
3324static int type_selection(struct symbol *ctrl, struct symbol *type)
3325{
3326	struct ctype c = { .base_type = ctrl };
3327	struct ctype t = { .base_type = type };
3328
3329	return !type_difference(&c, &t, 0, 0);
3330}
3331
3332static struct symbol *evaluate_generic_selection(struct expression *expr)
3333{
3334	struct type_expression *map;
3335	struct expression *res;
3336	struct symbol source;
3337	struct symbol *ctrl;
3338
3339	if (!evaluate_expression(expr->control))
3340		return NULL;
3341	if (!(ctrl = degenerate(expr->control)))
3342		return NULL;
3343
3344	source = *ctrl;
3345	source.ctype.modifiers &= ~(MOD_QUALIFIER|MOD_ATOMIC);
3346	for (map = expr->map; map; map = map->next) {
3347		struct symbol *stype = map->type;
3348		struct symbol *base;
3349
3350		if (!evaluate_symbol(stype))
3351			continue;
3352
3353		base = stype->ctype.base_type;
3354		if (base->type == SYM_ARRAY && base->array_size) {
3355			get_expression_value_silent(base->array_size);
3356			if (base->array_size->type == EXPR_VALUE)
3357				continue;
3358			sparse_error(stype->pos, "variable length array type in generic selection");
3359			continue;
3360		}
3361		if (is_func_type(stype)) {
3362			sparse_error(stype->pos, "function type in generic selection");
3363			continue;
3364		}
3365		if (stype->bit_size <= 0 || is_void_type(stype)) {
3366			sparse_error(stype->pos, "incomplete type in generic selection");
3367			continue;
3368		}
3369		if (!type_selection(&source, stype))
3370			continue;
3371
3372		res = map->expr;
3373		goto found;
3374	}
3375	res = expr->def;
3376	if (!res) {
3377		sparse_error(expr->pos, "no generic selection for '%s'", show_typename(ctrl));
3378		return NULL;
3379	}
3380
3381found:
3382	*expr = *res;
3383	return evaluate_expression(expr);
3384}
3385
3386struct symbol *evaluate_expression(struct expression *expr)
3387{
3388	if (!expr)
3389		return NULL;
3390	if (expr->ctype)
3391		return expr->ctype;
3392
3393	switch (expr->type) {
3394	case EXPR_VALUE:
3395	case EXPR_FVALUE:
3396		expression_error(expr, "value expression without a type");
3397		return NULL;
3398	case EXPR_STRING:
3399		return evaluate_string(expr);
3400	case EXPR_SYMBOL:
3401		return evaluate_symbol_expression(expr);
3402	case EXPR_BINOP:
3403		evaluate_expression(expr->left);
3404		evaluate_expression(expr->right);
3405		if (!valid_subexpr_type(expr))
3406			return NULL;
3407		return evaluate_binop(expr);
3408	case EXPR_LOGICAL:
3409		return evaluate_logical(expr);
3410	case EXPR_COMMA:
3411		evaluate_expression(expr->left);
3412		if (!evaluate_expression(expr->right))
3413			return NULL;
3414		return evaluate_comma(expr);
3415	case EXPR_COMPARE:
3416		evaluate_expression(expr->left);
3417		evaluate_expression(expr->right);
3418		if (!valid_subexpr_type(expr))
3419			return NULL;
3420		return evaluate_compare(expr);
3421	case EXPR_ASSIGNMENT:
3422		evaluate_expression(expr->left);
3423		evaluate_expression(expr->right);
3424		if (!valid_subexpr_type(expr))
3425			return NULL;
3426		return evaluate_assignment(expr);
3427	case EXPR_PREOP:
3428		if (!evaluate_expression(expr->unop))
3429			return NULL;
3430		return evaluate_preop(expr);
3431	case EXPR_POSTOP:
3432		if (!evaluate_expression(expr->unop))
3433			return NULL;
3434		return evaluate_postop(expr);
3435	case EXPR_CAST:
3436	case EXPR_FORCE_CAST:
3437	case EXPR_IMPLIED_CAST:
3438		return evaluate_cast(expr);
3439	case EXPR_SIZEOF:
3440		return evaluate_sizeof(expr);
3441	case EXPR_PTRSIZEOF:
3442		return evaluate_ptrsizeof(expr);
3443	case EXPR_ALIGNOF:
3444		return evaluate_alignof(expr);
3445	case EXPR_DEREF:
3446		return evaluate_member_dereference(expr);
3447	case EXPR_CALL:
3448		return evaluate_call(expr);
3449	case EXPR_SELECT:
3450	case EXPR_CONDITIONAL:
3451		return evaluate_conditional_expression(expr);
3452	case EXPR_STATEMENT:
3453		expr->ctype = evaluate_statement(expr->statement);
3454		return expr->ctype;
3455
3456	case EXPR_LABEL:
3457		expr->ctype = &ptr_ctype;
3458		check_label_declaration(expr->pos, expr->label_symbol);
3459		return &ptr_ctype;
3460
3461	case EXPR_TYPE:
3462		/* Evaluate the type of the symbol .. */
3463		evaluate_symbol(expr->symbol);
3464		/* .. but the type of the _expression_ is a "type" */
3465		expr->ctype = &type_ctype;
3466		return &type_ctype;
3467
3468	case EXPR_OFFSETOF:
3469		return evaluate_offsetof(expr);
3470
3471	case EXPR_GENERIC:
3472		return evaluate_generic_selection(expr);
3473
3474	/* These can not exist as stand-alone expressions */
3475	case EXPR_INITIALIZER:
3476	case EXPR_IDENTIFIER:
3477	case EXPR_INDEX:
3478	case EXPR_POS:
3479		expression_error(expr, "internal front-end error: initializer in expression");
3480		return NULL;
3481	case EXPR_SLICE:
3482		expression_error(expr, "internal front-end error: SLICE re-evaluated");
3483		return NULL;
3484	}
3485	return NULL;
3486}
3487
3488void check_duplicates(struct symbol *sym)
3489{
3490	int declared = 0;
3491	struct symbol *next = sym;
3492	int initialized = sym->initializer != NULL;
3493
3494	while ((next = next->same_symbol) != NULL) {
3495		const char *typediff;
3496		evaluate_symbol(next);
3497		if (initialized && next->initializer) {
3498			sparse_error(sym->pos, "symbol '%s' has multiple initializers (originally initialized at %s:%d)",
3499				show_ident(sym->ident),
3500				stream_name(next->pos.stream), next->pos.line);
3501			/* Only warn once */
3502			initialized = 0;
3503		}
3504		declared++;
3505		typediff = type_difference(&sym->ctype, &next->ctype, 0, 0);
3506		if (typediff) {
3507			sparse_error(sym->pos, "symbol '%s' redeclared with different type (%s):",
3508				show_ident(sym->ident), typediff);
3509			info(sym->pos, "   %s", show_typename(sym));
3510			info(next->pos, "note: previously declared as:");
3511			info(next->pos, "   %s", show_typename(next));
3512			return;
3513		}
3514	}
3515	if (!declared) {
3516		unsigned long mod = sym->ctype.modifiers;
3517		if (mod & (MOD_STATIC | MOD_REGISTER | MOD_EXT_VISIBLE))
3518			return;
3519		if (!(mod & MOD_TOPLEVEL))
3520			return;
3521		if (!Wdecl)
3522			return;
3523		if (sym->ident == &main_ident)
3524			return;
3525		warning(sym->pos, "symbol '%s' was not declared. Should it be static?", show_ident(sym->ident));
3526	}
3527}
3528
3529static struct symbol *evaluate_symbol(struct symbol *sym)
3530{
3531	struct symbol *base_type;
3532
3533	if (!sym)
3534		return sym;
3535	if (sym->evaluated)
3536		return sym;
3537	sym->evaluated = 1;
3538
3539	sym = examine_symbol_type(sym);
3540	base_type = get_base_type(sym);
3541	if (!base_type)
3542		return NULL;
3543
3544	/* Evaluate the initializers */
3545	if (sym->initializer)
3546		evaluate_initializer(sym, &sym->initializer);
3547
3548	/* And finally, evaluate the body of the symbol too */
3549	if (base_type->type == SYM_FN) {
3550		struct symbol *curr = current_fn;
3551
3552		if (sym->definition && sym->definition != sym)
3553			return evaluate_symbol(sym->definition);
3554
3555		current_fn = sym;
3556
3557		examine_fn_arguments(base_type);
3558		if (!base_type->stmt && base_type->inline_stmt)
3559			uninline(sym);
3560		if (base_type->stmt)
3561			evaluate_statement(base_type->stmt);
3562
3563		current_fn = curr;
3564	}
3565
3566	return base_type;
3567}
3568
3569void evaluate_symbol_list(struct symbol_list *list)
3570{
3571	struct symbol *sym;
3572
3573	FOR_EACH_PTR(list, sym) {
3574		has_error &= ~ERROR_CURR_PHASE;
3575		evaluate_symbol(sym);
3576		check_duplicates(sym);
3577	} END_FOR_EACH_PTR(sym);
3578}
3579
3580static struct symbol *evaluate_return_expression(struct statement *stmt)
3581{
3582	struct expression *expr = stmt->expression;
3583	struct symbol *fntype, *rettype;
3584
3585	evaluate_expression(expr);
3586	fntype = current_fn->ctype.base_type;
3587	rettype = fntype->ctype.base_type;
3588	if (!rettype || rettype == &void_ctype) {
3589		if (expr && expr->ctype && !is_void_type(expr->ctype))
3590			expression_error(expr, "return expression in %s function", rettype?"void":"typeless");
3591		if (expr && Wreturn_void)
3592			warning(stmt->pos, "returning void-valued expression");
3593		return NULL;
3594	}
3595
3596	if (!expr) {
3597		sparse_error(stmt->pos, "return with no return value");
3598		return NULL;
3599	}
3600	if (!expr->ctype)
3601		return NULL;
3602	compatible_assignment_types(expr, rettype, &stmt->expression, "return expression");
3603	return NULL;
3604}
3605
3606static void evaluate_if_statement(struct statement *stmt)
3607{
3608	if (!stmt->if_conditional)
3609		return;
3610
3611	evaluate_conditional(stmt->if_conditional, 0);
3612	evaluate_statement(stmt->if_true);
3613	evaluate_statement(stmt->if_false);
3614}
3615
3616static void evaluate_iterator(struct statement *stmt)
3617{
3618	evaluate_symbol_list(stmt->iterator_syms);
3619	evaluate_conditional(stmt->iterator_pre_condition, 1);
3620	evaluate_conditional(stmt->iterator_post_condition,1);
3621	evaluate_statement(stmt->iterator_pre_statement);
3622	evaluate_statement(stmt->iterator_statement);
3623	evaluate_statement(stmt->iterator_post_statement);
3624}
3625
3626
3627static void parse_asm_constraint(struct asm_operand *op)
3628{
3629	struct expression *constraint = op->constraint;
3630	const char *str = constraint->string->data;
3631	int c;
3632
3633	switch (str[0]) {
3634	case '\0':
3635		sparse_error(constraint->pos, "invalid ASM constraint (\"\")");
3636		break;
3637	case '+':
3638		op->is_modify = true;
3639		/* fall-through */
3640	case '=':
3641		op->is_assign = true;
3642		str++;
3643		break;
3644	}
3645
3646	while ((c = *str++)) {
3647		switch (c) {
3648		case '=':
3649		case '+':
3650			sparse_error(constraint->pos, "invalid ASM constraint '%c'", c);
3651			break;
3652
3653		case '&':
3654			op->is_earlyclobber = true;
3655			break;
3656		case '%':
3657			op->is_commutative = true;
3658			break;
3659		case 'r':
3660			op->is_register = true;
3661			break;
3662
3663		case 'm':
3664		case 'o':
3665		case 'V':
3666		case 'Q':
3667			op->is_memory = true;
3668			break;
3669
3670		case '<':
3671		case '>':
3672			// FIXME: ignored for now
3673			break;
3674
3675		case ',':
3676			// FIXME: multiple alternative constraints
3677			break;
3678
3679		case '0' ... '9':
3680			// FIXME: numeric  matching constraint?
3681			break;
3682		case '[':
3683			// FIXME: symbolic matching constraint
3684			return;
3685
3686		default:
3687			if (arch_target->asm_constraint)
3688				str = arch_target->asm_constraint(op, c, str);
3689
3690			// FIXME: multi-letter constraints
3691			break;
3692		}
3693	}
3694
3695	// FIXME: how to deal with multi-constraint?
3696	if (op->is_register)
3697		op->is_memory = 0;
3698}
3699
3700static void verify_output_constraint(struct asm_operand *op)
3701{
3702	struct expression *expr = op->constraint;
3703	const char *constraint = expr->string->data;
3704
3705	if (!op->is_assign)
3706		expression_error(expr, "output constraint is not an assignment constraint (\"%s\")", constraint);
3707}
3708
3709static void verify_input_constraint(struct asm_operand *op)
3710{
3711	struct expression *expr = op->constraint;
3712	const char *constraint = expr->string->data;
3713
3714	if (op->is_assign)
3715		expression_error(expr, "input constraint with assignment (\"%s\")", constraint);
3716}
3717
3718static void evaluate_asm_memop(struct asm_operand *op)
3719{
3720	if (op->is_memory) {
3721		struct expression *expr = op->expr;
3722		struct expression *addr;
3723
3724		// implicit addressof
3725		addr = alloc_expression(expr->pos, EXPR_PREOP);
3726		addr->op = '&';
3727		addr->unop = expr;
3728
3729		evaluate_addressof(addr);
3730		op->expr = addr;
3731	} else {
3732		evaluate_expression(op->expr);
3733		degenerate(op->expr);
3734	}
3735}
3736
3737static void evaluate_asm_statement(struct statement *stmt)
3738{
3739	struct expression *expr;
3740	struct asm_operand *op;
3741	struct symbol *sym;
3742
3743	if (!stmt->asm_string)
3744		return;
3745
3746	FOR_EACH_PTR(stmt->asm_outputs, op) {
3747		/* Identifier */
3748
3749		/* Constraint */
3750		if (op->constraint) {
3751			parse_asm_constraint(op);
3752			verify_output_constraint(op);
3753		}
3754
3755		/* Expression */
3756		expr = op->expr;
3757		if (!evaluate_expression(expr))
3758			return;
3759		if (!lvalue_expression(expr))
3760			warning(expr->pos, "asm output is not an lvalue");
3761		evaluate_assign_to(expr, expr->ctype);
3762		evaluate_asm_memop(op);
3763	} END_FOR_EACH_PTR(op);
3764
3765	FOR_EACH_PTR(stmt->asm_inputs, op) {
3766		/* Identifier */
3767
3768		/* Constraint */
3769		if (op->constraint) {
3770			parse_asm_constraint(op);
3771			verify_input_constraint(op);
3772		}
3773
3774		/* Expression */
3775		if (!evaluate_expression(op->expr))
3776			return;
3777		evaluate_asm_memop(op);
3778	} END_FOR_EACH_PTR(op);
3779
3780	FOR_EACH_PTR(stmt->asm_clobbers, expr) {
3781		if (!expr) {
3782			sparse_error(stmt->pos, "bad asm clobbers");
3783			return;
3784		}
3785		if (expr->type == EXPR_STRING)
3786			continue;
3787		expression_error(expr, "asm clobber is not a string");
3788	} END_FOR_EACH_PTR(expr);
3789
3790	FOR_EACH_PTR(stmt->asm_labels, sym) {
3791		if (!sym || sym->type != SYM_LABEL) {
3792			sparse_error(stmt->pos, "bad asm label");
3793			return;
3794		}
3795	} END_FOR_EACH_PTR(sym);
3796}
3797
3798static void evaluate_case_statement(struct statement *stmt)
3799{
3800	evaluate_expression(stmt->case_expression);
3801	evaluate_expression(stmt->case_to);
3802	evaluate_statement(stmt->case_statement);
3803}
3804
3805static void check_case_type(struct expression *switch_expr,
3806			    struct expression *case_expr,
3807			    struct expression **enumcase)
3808{
3809	struct symbol *switch_type, *case_type;
3810	int sclass, cclass;
3811
3812	if (!case_expr)
3813		return;
3814
3815	switch_type = switch_expr->ctype;
3816	case_type = evaluate_expression(case_expr);
3817
3818	if (!switch_type || !case_type)
3819		goto Bad;
3820	if (enumcase) {
3821		if (*enumcase)
3822			warn_for_different_enum_types(case_expr->pos, case_type, (*enumcase)->ctype);
3823		else if (is_enum_type(case_type))
3824			*enumcase = case_expr;
3825	}
3826
3827	sclass = classify_type(switch_type, &switch_type);
3828	cclass = classify_type(case_type, &case_type);
3829
3830	/* both should be arithmetic */
3831	if (!(sclass & cclass & TYPE_NUM))
3832		goto Bad;
3833
3834	/* neither should be floating */
3835	if ((sclass | cclass) & TYPE_FLOAT)
3836		goto Bad;
3837
3838	/* if neither is restricted, we are OK */
3839	if (!((sclass | cclass) & TYPE_RESTRICT))
3840		return;
3841
3842	if (!restricted_binop_type(SPECIAL_EQUAL, case_expr, switch_expr,
3843				   cclass, sclass, case_type, switch_type)) {
3844		unrestrict(case_expr, cclass, &case_type);
3845		unrestrict(switch_expr, sclass, &switch_type);
3846	}
3847	return;
3848
3849Bad:
3850	expression_error(case_expr, "incompatible types for 'case' statement");
3851}
3852
3853static void evaluate_switch_statement(struct statement *stmt)
3854{
3855	struct symbol *sym;
3856	struct expression *enumcase = NULL;
3857	struct expression **enumcase_holder = &enumcase;
3858	struct expression *sel = stmt->switch_expression;
3859
3860	evaluate_expression(sel);
3861	evaluate_statement(stmt->switch_statement);
3862	if (!sel)
3863		return;
3864	if (sel->ctype && is_enum_type(sel->ctype))
3865		enumcase_holder = NULL; /* Only check cases against switch */
3866
3867	FOR_EACH_PTR(stmt->switch_case->symbol_list, sym) {
3868		struct statement *case_stmt = sym->stmt;
3869		check_case_type(sel, case_stmt->case_expression, enumcase_holder);
3870		check_case_type(sel, case_stmt->case_to, enumcase_holder);
3871	} END_FOR_EACH_PTR(sym);
3872}
3873
3874static void evaluate_goto_statement(struct statement *stmt)
3875{
3876	struct symbol *label = stmt->goto_label;
3877
3878	if (!label) {
3879		// no label associated, may be a computed goto
3880		evaluate_expression(stmt->goto_expression);
3881		return;
3882	}
3883
3884	check_label_declaration(stmt->pos, label);
3885}
3886
3887struct symbol *evaluate_statement(struct statement *stmt)
3888{
3889	if (!stmt)
3890		return NULL;
3891
3892	switch (stmt->type) {
3893	case STMT_DECLARATION: {
3894		struct symbol *s;
3895		FOR_EACH_PTR(stmt->declaration, s) {
3896			evaluate_symbol(s);
3897		} END_FOR_EACH_PTR(s);
3898		return NULL;
3899	}
3900
3901	case STMT_RETURN:
3902		return evaluate_return_expression(stmt);
3903
3904	case STMT_EXPRESSION:
3905		if (!evaluate_expression(stmt->expression))
3906			return NULL;
3907		if (stmt->expression->ctype == &null_ctype)
3908			stmt->expression = cast_to(stmt->expression, &ptr_ctype);
3909		return unqualify_type(degenerate(stmt->expression));
3910
3911	case STMT_COMPOUND: {
3912		struct statement *s;
3913		struct symbol *type = NULL;
3914
3915		/* Evaluate the return symbol in the compound statement */
3916		evaluate_symbol(stmt->ret);
3917
3918		/*
3919		 * Then, evaluate each statement, making the type of the
3920		 * compound statement be the type of the last statement
3921		 */
3922		type = evaluate_statement(stmt->args);
3923		FOR_EACH_PTR(stmt->stmts, s) {
3924			type = evaluate_statement(s);
3925		} END_FOR_EACH_PTR(s);
3926		if (!type)
3927			type = &void_ctype;
3928		return type;
3929	}
3930	case STMT_IF:
3931		evaluate_if_statement(stmt);
3932		return NULL;
3933	case STMT_ITERATOR:
3934		evaluate_iterator(stmt);
3935		return NULL;
3936	case STMT_SWITCH:
3937		evaluate_switch_statement(stmt);
3938		return NULL;
3939	case STMT_CASE:
3940		evaluate_case_statement(stmt);
3941		return NULL;
3942	case STMT_LABEL:
3943		return evaluate_statement(stmt->label_statement);
3944	case STMT_GOTO:
3945		evaluate_goto_statement(stmt);
3946		return NULL;
3947	case STMT_NONE:
3948		break;
3949	case STMT_ASM:
3950		evaluate_asm_statement(stmt);
3951		return NULL;
3952	case STMT_CONTEXT:
3953		evaluate_expression(stmt->expression);
3954		return NULL;
3955	case STMT_RANGE:
3956		evaluate_expression(stmt->range_expression);
3957		evaluate_expression(stmt->range_low);
3958		evaluate_expression(stmt->range_high);
3959		return NULL;
3960	}
3961	return NULL;
3962}
3963