1/* deflate.c -- compress data using the deflation algorithm
2 * Copyright (C) 1995-2010 Jean-loup Gailly and Mark Adler
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6/*
7 *  ALGORITHM
8 *
9 *      The "deflation" process depends on being able to identify portions
10 *      of the input text which are identical to earlier input (within a
11 *      sliding window trailing behind the input currently being processed).
12 *
13 *      The most straightforward technique turns out to be the fastest for
14 *      most input files: try all possible matches and select the longest.
15 *      The key feature of this algorithm is that insertions into the string
16 *      dictionary are very simple and thus fast, and deletions are avoided
17 *      completely. Insertions are performed at each input character, whereas
18 *      string matches are performed only when the previous match ends. So it
19 *      is preferable to spend more time in matches to allow very fast string
20 *      insertions and avoid deletions. The matching algorithm for small
21 *      strings is inspired from that of Rabin & Karp. A brute force approach
22 *      is used to find longer strings when a small match has been found.
23 *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
24 *      (by Leonid Broukhis).
25 *         A previous version of this file used a more sophisticated algorithm
26 *      (by Fiala and Greene) which is guaranteed to run in linear amortized
27 *      time, but has a larger average cost, uses more memory and is patented.
28 *      However the F&G algorithm may be faster for some highly redundant
29 *      files if the parameter max_chain_length (described below) is too large.
30 *
31 *  ACKNOWLEDGEMENTS
32 *
33 *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
34 *      I found it in 'freeze' written by Leonid Broukhis.
35 *      Thanks to many people for bug reports and testing.
36 *
37 *  REFERENCES
38 *
39 *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
40 *      Available in http://www.ietf.org/rfc/rfc1951.txt
41 *
42 *      A description of the Rabin and Karp algorithm is given in the book
43 *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
44 *
45 *      Fiala,E.R., and Greene,D.H.
46 *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
47 *
48 */
49
50/* \param (#) $Id$ */
51
52#include "deflate.h"
53
54const char deflate_copyright[] =
55   " deflate 1.2.5 Copyright 1995-2010 Jean-loup Gailly and Mark Adler ";
56/*
57  If you use the zlib library in a product, an acknowledgment is welcome
58  in the documentation of your product. If for some reason you cannot
59  include such an acknowledgment, I would appreciate that you keep this
60  copyright string in the executable of your product.
61 */
62
63/* ===========================================================================
64 *  Function prototypes.
65 */
66typedef enum {
67    need_more,      /* block not completed, need more input or more output */
68    block_done,     /* block flush performed */
69    finish_started, /* finish started, need only more output at next deflate */
70    finish_done     /* finish done, accept no more input or output */
71} block_state;
72
73typedef block_state (*compress_func) OF((deflate_state *s, int flush));
74/* Compression function. Returns the block state after the call. */
75
76local void fill_window    OF((deflate_state *s));
77local block_state deflate_stored OF((deflate_state *s, int flush));
78local block_state deflate_fast   OF((deflate_state *s, int flush));
79#ifndef FASTEST
80local block_state deflate_slow   OF((deflate_state *s, int flush));
81#endif
82local block_state deflate_rle    OF((deflate_state *s, int flush));
83local block_state deflate_huff   OF((deflate_state *s, int flush));
84local void lm_init        OF((deflate_state *s));
85local void putShortMSB    OF((deflate_state *s, uInt b));
86local void flush_pending  OF((z_streamp strm));
87local int read_buf        OF((z_streamp strm, Bytef *buf, unsigned size));
88#ifdef ASMV
89      void match_init OF((void)); /* asm code initialization */
90      uInt longest_match  OF((deflate_state *s, IPos cur_match));
91#else
92local uInt longest_match  OF((deflate_state *s, IPos cur_match));
93#endif
94
95#ifdef DEBUG
96local  void check_match OF((deflate_state *s, IPos start, IPos match,
97                            int length));
98#endif
99
100/* ===========================================================================
101 * Local data
102 */
103
104#define NIL 0
105/* Tail of hash chains */
106
107#ifndef TOO_FAR
108#  define TOO_FAR 4096
109#endif
110/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
111
112/* Values for max_lazy_match, good_match and max_chain_length, depending on
113 * the desired pack level (0..9). The values given below have been tuned to
114 * exclude worst case performance for pathological files. Better values may be
115 * found for specific files.
116 */
117typedef struct config_s {
118   ush good_length; /* reduce lazy search above this match length */
119   ush max_lazy;    /* do not perform lazy search above this match length */
120   ush nice_length; /* quit search above this match length */
121   ush max_chain;
122   compress_func func;
123} config;
124
125#ifdef FASTEST
126local const config configuration_table[2] = {
127/*      good lazy nice chain */
128/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
129/* 1 */ {4,    4,  8,    4, deflate_fast}}; /* max speed, no lazy matches */
130#else
131local const config configuration_table[10] = {
132/*      good lazy nice chain */
133/* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
134/* 1 */ {4,    4,  8,    4, deflate_fast}, /* max speed, no lazy matches */
135/* 2 */ {4,    5, 16,    8, deflate_fast},
136/* 3 */ {4,    6, 32,   32, deflate_fast},
137
138/* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
139/* 5 */ {8,   16, 32,   32, deflate_slow},
140/* 6 */ {8,   16, 128, 128, deflate_slow},
141/* 7 */ {8,   32, 128, 256, deflate_slow},
142/* 8 */ {32, 128, 258, 1024, deflate_slow},
143/* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* max compression */
144#endif
145
146/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
147 * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
148 * meaning.
149 */
150
151#define EQUAL 0
152/* result of memcmp for equal strings */
153
154#ifndef NO_DUMMY_DECL
155struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
156#endif
157
158/* ===========================================================================
159 * Update a hash value with the given input byte
160 * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
161 *    input characters, so that a running hash key can be computed from the
162 *    previous key instead of complete recalculation each time.
163 */
164#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
165
166
167/* ===========================================================================
168 * Insert string str in the dictionary and set match_head to the previous head
169 * of the hash chain (the most recent string with same hash key). Return
170 * the previous length of the hash chain.
171 * If this file is compiled with -DFASTEST, the compression level is forced
172 * to 1, and no hash chains are maintained.
173 * IN  assertion: all calls to to INSERT_STRING are made with consecutive
174 *    input characters and the first MIN_MATCH bytes of str are valid
175 *    (except for the last MIN_MATCH-1 bytes of the input file).
176 */
177#ifdef FASTEST
178#define INSERT_STRING(s, str, match_head) \
179   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
180    match_head = s->head[s->ins_h], \
181    s->head[s->ins_h] = (Pos)(str))
182#else
183#define INSERT_STRING(s, str, match_head) \
184   (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
185    match_head = s->prev[(str) & s->w_mask] = s->head[s->ins_h], \
186    s->head[s->ins_h] = (Pos)(str))
187#endif
188
189/* ===========================================================================
190 * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
191 * prev[] will be initialized on the fly.
192 */
193#define CLEAR_HASH(s) \
194    s->head[s->hash_size-1] = NIL; \
195    zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
196
197/* ========================================================================= */
198int ZEXPORT deflateInit_(strm, level, version, stream_size)
199    z_streamp strm;
200    int level;
201    const char *version;
202    int stream_size;
203{
204    return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
205                         Z_DEFAULT_STRATEGY, version, stream_size);
206    /* To do: ignore strm->next_in if we use it as window */
207}
208
209/* ========================================================================= */
210int ZEXPORT deflateInit2_(strm, level, method, windowBits, memLevel, strategy,
211                  version, stream_size)
212    z_streamp strm;
213    int  level;
214    int  method;
215    int  windowBits;
216    int  memLevel;
217    int  strategy;
218    const char *version;
219    int stream_size;
220{
221    deflate_state *s;
222    int wrap = 1;
223    static const char my_version[] = ZLIB_VERSION;
224
225    if (version == Z_NULL || version[0] != my_version[0] ||
226        stream_size != sizeof(z_stream)) {
227        return Z_VERSION_ERROR;
228    }
229    if (strm == Z_NULL) return Z_STREAM_ERROR;
230
231    strm->msg = Z_NULL;
232    if (strm->zalloc == (alloc_func)0) {
233        strm->zalloc = zcalloc;
234        strm->opaque = (voidpf)0;
235    }
236    if (strm->zfree == (free_func)0) strm->zfree = zcfree;
237
238#ifdef FASTEST
239    if (level != 0) level = 1;
240#else
241    if (level == Z_DEFAULT_COMPRESSION) level = 6;
242#endif
243
244    if (windowBits < 0) { /* suppress zlib wrapper */
245        wrap = 0;
246        windowBits = -windowBits;
247    }
248#ifdef GZIP
249    else if (windowBits > 15) {
250        wrap = 2;       /* write gzip wrapper instead */
251        windowBits -= 16;
252    }
253#endif
254    if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
255        windowBits < 8 || windowBits > 15 || level < 0 || level > 9 ||
256        strategy < 0 || strategy > Z_FIXED) {
257        return Z_STREAM_ERROR;
258    }
259    if (windowBits == 8) windowBits = 9;  /* until 256-byte window bug fixed */
260    s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
261    if (s == Z_NULL) return Z_MEM_ERROR;
262    strm->state = (struct internal_state FAR *)s;
263    s->strm = strm;
264
265    s->wrap = wrap;
266    s->gzhead = Z_NULL;
267    s->w_bits = windowBits;
268    s->w_size = 1 << s->w_bits;
269    s->w_mask = s->w_size - 1;
270
271    s->hash_bits = memLevel + 7;
272    s->hash_size = 1 << s->hash_bits;
273    s->hash_mask = s->hash_size - 1;
274    s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
275
276    s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
277    s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
278    s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
279
280    s->high_water = 0;      /* nothing written to s->window yet */
281
282    s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
283
284    /* We overlay pending_buf and sym_buf. This works since the average size
285     * for length/distance pairs over any compressed block is assured to be 31
286     * bits or less.
287     *
288     * Analysis: The longest fixed codes are a length code of 8 bits plus 5
289     * extra bits, for lengths 131 to 257. The longest fixed distance codes are
290     * 5 bits plus 13 extra bits, for distances 16385 to 32768. The longest
291     * possible fixed-codes length/distance pair is then 31 bits total.
292     *
293     * sym_buf starts one-fourth of the way into pending_buf. So there are
294     * three bytes in sym_buf for every four bytes in pending_buf. Each symbol
295     * in sym_buf is three bytes -- two for the distance and one for the
296     * literal/length. As each symbol is consumed, the pointer to the next
297     * sym_buf value to read moves forward three bytes. From that symbol, up to
298     * 31 bits are written to pending_buf. The closest the written pending_buf
299     * bits gets to the next sym_buf symbol to read is just before the last
300     * code is written. At that time, 31*(n-2) bits have been written, just
301     * after 24*(n-2) bits have been consumed from sym_buf. sym_buf starts at
302     * 8*n bits into pending_buf. (Note that the symbol buffer fills when n-1
303     * symbols are written.) The closest the writing gets to what is unread is
304     * then n+14 bits. Here n is lit_bufsize, which is 16384 by default, and
305     * can range from 128 to 32768.
306     *
307     * Therefore, at a minimum, there are 142 bits of space between what is
308     * written and what is read in the overlain buffers, so the symbols cannot
309     * be overwritten by the compressed data. That space is actually 139 bits,
310     * due to the three-bit fixed-code block header.
311     *
312     * That covers the case where either Z_FIXED is specified, forcing fixed
313     * codes, or when the use of fixed codes is chosen, because that choice
314     * results in a smaller compressed block than dynamic codes. That latter
315     * condition then assures that the above analysis also covers all dynamic
316     * blocks. A dynamic-code block will only be chosen to be emitted if it has
317     * fewer bits than a fixed-code block would for the same set of symbols.
318     * Therefore its average symbol length is assured to be less than 31. So
319     * the compressed data for a dynamic block also cannot overwrite the
320     * symbols from which it is being constructed.
321     */
322
323    s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 4);
324    s->pending_buf_size = (ulg)s->lit_bufsize * 4;
325
326    if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
327        s->pending_buf == Z_NULL) {
328        s->status = FINISH_STATE;
329        strm->msg = (char*)ERR_MSG(Z_MEM_ERROR);
330        deflateEnd (strm);
331        return Z_MEM_ERROR;
332    }
333    s->sym_buf = s->pending_buf + s->lit_bufsize;
334    s->sym_end = (s->lit_bufsize - 1) * 3;
335    /* We avoid equality with lit_bufsize*3 because of wraparound at 64K
336     * on 16 bit machines and because stored blocks are restricted to
337     * 64K-1 bytes.
338     */
339
340    s->level = level;
341    s->strategy = strategy;
342    s->method = (Byte)method;
343
344    return deflateReset(strm);
345}
346
347/* ========================================================================= */
348int ZEXPORT deflateSetDictionary (strm, dictionary, dictLength)
349    z_streamp strm;
350    const Bytef *dictionary;
351    uInt  dictLength;
352{
353    deflate_state *s;
354    uInt length = dictLength;
355    uInt n;
356    IPos hash_head = 0;
357
358    if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL ||
359        strm->state->wrap == 2 ||
360        (strm->state->wrap == 1 && strm->state->status != INIT_STATE))
361        return Z_STREAM_ERROR;
362
363    s = strm->state;
364    if (s->wrap)
365        strm->adler = adler32(strm->adler, dictionary, dictLength);
366
367    if (length < MIN_MATCH) return Z_OK;
368    if (length > s->w_size) {
369        length = s->w_size;
370        dictionary += dictLength - length; /* use the tail of the dictionary */
371    }
372    zmemcpy(s->window, dictionary, length);
373    s->strstart = length;
374    s->block_start = (long)length;
375
376    /* Insert all strings in the hash table (except for the last two bytes).
377     * s->lookahead stays null, so s->ins_h will be recomputed at the next
378     * call of fill_window.
379     */
380    s->ins_h = s->window[0];
381    UPDATE_HASH(s, s->ins_h, s->window[1]);
382    for (n = 0; n <= length - MIN_MATCH; n++) {
383        INSERT_STRING(s, n, hash_head);
384    }
385    if (hash_head) hash_head = 0;  /* to make compiler happy */
386    return Z_OK;
387}
388
389/* ========================================================================= */
390int ZEXPORT deflateReset (strm)
391    z_streamp strm;
392{
393    deflate_state *s;
394
395    if (strm == Z_NULL || strm->state == Z_NULL ||
396        strm->zalloc == (alloc_func)0 || strm->zfree == (free_func)0) {
397        return Z_STREAM_ERROR;
398    }
399
400    strm->total_in = strm->total_out = 0;
401    strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
402    strm->data_type = Z_UNKNOWN;
403
404    s = (deflate_state *)strm->state;
405    s->pending = 0;
406    s->pending_out = s->pending_buf;
407
408    if (s->wrap < 0) {
409        s->wrap = -s->wrap; /* was made negative by deflate(..., Z_FINISH); */
410    }
411    s->status = s->wrap ? INIT_STATE : BUSY_STATE;
412    strm->adler =
413#ifdef GZIP
414        s->wrap == 2 ? crc32(0L, Z_NULL, 0) :
415#endif
416        adler32(0L, Z_NULL, 0);
417    s->last_flush = Z_NO_FLUSH;
418
419    _tr_init(s);
420    lm_init(s);
421
422    return Z_OK;
423}
424
425/* ========================================================================= */
426int ZEXPORT deflateSetHeader (strm, head)
427    z_streamp strm;
428    gz_headerp head;
429{
430    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
431    if (strm->state->wrap != 2) return Z_STREAM_ERROR;
432    strm->state->gzhead = head;
433    return Z_OK;
434}
435
436/* ========================================================================= */
437int ZEXPORT deflatePending (strm, pending, bits)
438    unsigned *pending;
439    int *bits;
440    z_streamp strm;
441{
442    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
443    *pending = strm->state->pending;
444    *bits = strm->state->bi_valid;
445    return Z_OK;
446}
447
448/* ========================================================================= */
449int ZEXPORT deflatePrime (strm, bits, value)
450    z_streamp strm;
451    int bits;
452    int value;
453{
454    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
455    strm->state->bi_valid = bits;
456    strm->state->bi_buf = (ush)(value & ((1 << bits) - 1));
457    return Z_OK;
458}
459
460/* ========================================================================= */
461int ZEXPORT deflateParams(strm, level, strategy)
462    z_streamp strm;
463    int level;
464    int strategy;
465{
466    deflate_state *s;
467    compress_func func;
468    int err = Z_OK;
469
470    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
471    s = strm->state;
472
473#ifdef FASTEST
474    if (level != 0) level = 1;
475#else
476    if (level == Z_DEFAULT_COMPRESSION) level = 6;
477#endif
478    if (level < 0 || level > 9 || strategy < 0 || strategy > Z_FIXED) {
479        return Z_STREAM_ERROR;
480    }
481    func = configuration_table[s->level].func;
482
483    if ((strategy != s->strategy || func != configuration_table[level].func) &&
484        strm->total_in != 0) {
485        /* Flush the last buffer: */
486        err = deflate(strm, Z_BLOCK);
487    }
488    if (s->level != level) {
489        s->level = level;
490        s->max_lazy_match   = configuration_table[level].max_lazy;
491        s->good_match       = configuration_table[level].good_length;
492        s->nice_match       = configuration_table[level].nice_length;
493        s->max_chain_length = configuration_table[level].max_chain;
494    }
495    s->strategy = strategy;
496    return err;
497}
498
499/* ========================================================================= */
500int ZEXPORT deflateTune(strm, good_length, max_lazy, nice_length, max_chain)
501    z_streamp strm;
502    int good_length;
503    int max_lazy;
504    int nice_length;
505    int max_chain;
506{
507    deflate_state *s;
508
509    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
510    s = strm->state;
511    s->good_match = good_length;
512    s->max_lazy_match = max_lazy;
513    s->nice_match = nice_length;
514    s->max_chain_length = max_chain;
515    return Z_OK;
516}
517
518/* =========================================================================
519 * For the default windowBits of 15 and memLevel of 8, this function returns
520 * a close to exact, as well as small, upper bound on the compressed size.
521 * They are coded as constants here for a reason--if the #define's are
522 * changed, then this function needs to be changed as well.  The return
523 * value for 15 and 8 only works for those exact settings.
524 *
525 * For any setting other than those defaults for windowBits and memLevel,
526 * the value returned is a conservative worst case for the maximum expansion
527 * resulting from using fixed blocks instead of stored blocks, which deflate
528 * can emit on compressed data for some combinations of the parameters.
529 *
530 * This function could be more sophisticated to provide closer upper bounds for
531 * every combination of windowBits and memLevel.  But even the conservative
532 * upper bound of about 14% expansion does not seem onerous for output buffer
533 * allocation.
534 */
535uLong ZEXPORT deflateBound(strm, sourceLen)
536    z_streamp strm;
537    uLong sourceLen;
538{
539    deflate_state *s;
540    uLong complen, wraplen;
541    Bytef *str;
542
543    /* conservative upper bound for compressed data */
544    complen = sourceLen +
545              ((sourceLen + 7) >> 3) + ((sourceLen + 63) >> 6) + 5;
546
547    /* if can't get parameters, return conservative bound plus zlib wrapper */
548    if (strm == Z_NULL || strm->state == Z_NULL)
549        return complen + 6;
550
551    /* compute wrapper length */
552    s = strm->state;
553    switch (s->wrap) {
554    case 0:                                 /* raw deflate */
555        wraplen = 0;
556        break;
557    case 1:                                 /* zlib wrapper */
558        wraplen = 6 + (s->strstart ? 4 : 0);
559        break;
560    case 2:                                 /* gzip wrapper */
561        wraplen = 18;
562        if (s->gzhead != Z_NULL) {          /* user-supplied gzip header */
563            if (s->gzhead->extra != Z_NULL)
564                wraplen += 2 + s->gzhead->extra_len;
565            str = s->gzhead->name;
566            if (str != Z_NULL)
567                do {
568                    wraplen++;
569                } while (*str++);
570            str = s->gzhead->comment;
571            if (str != Z_NULL)
572                do {
573                    wraplen++;
574                } while (*str++);
575            if (s->gzhead->hcrc)
576                wraplen += 2;
577        }
578        break;
579    default:                                /* for compiler happiness */
580        wraplen = 6;
581    }
582
583    /* if not default parameters, return conservative bound */
584    if (s->w_bits != 15 || s->hash_bits != 8 + 7)
585        return complen + wraplen;
586
587    /* default settings: return tight bound for that case */
588    return sourceLen + (sourceLen >> 12) + (sourceLen >> 14) +
589           (sourceLen >> 25) + 13 - 6 + wraplen;
590}
591
592/* =========================================================================
593 * Put a short in the pending buffer. The 16-bit value is put in MSB order.
594 * IN assertion: the stream state is correct and there is enough room in
595 * pending_buf.
596 */
597local void putShortMSB (s, b)
598    deflate_state *s;
599    uInt b;
600{
601    put_byte(s, (Byte)(b >> 8));
602    put_byte(s, (Byte)(b & 0xff));
603}
604
605/* =========================================================================
606 * Flush as much pending output as possible. All deflate() output goes
607 * through this function so some applications may wish to modify it
608 * to avoid allocating a large strm->next_out buffer and copying into it.
609 * (See also read_buf()).
610 */
611local void flush_pending(strm)
612    z_streamp strm;
613{
614    unsigned len = strm->state->pending;
615
616    if (len > strm->avail_out) len = strm->avail_out;
617    if (len == 0) return;
618
619    zmemcpy(strm->next_out, strm->state->pending_out, len);
620    strm->next_out  += len;
621    strm->state->pending_out  += len;
622    strm->total_out += len;
623    strm->avail_out  -= len;
624    strm->state->pending -= len;
625    if (strm->state->pending == 0) {
626        strm->state->pending_out = strm->state->pending_buf;
627    }
628}
629
630/* ========================================================================= */
631int ZEXPORT deflate (strm, flush)
632    z_streamp strm;
633    int flush;
634{
635    int old_flush; /* value of flush param for previous deflate call */
636    deflate_state *s;
637
638    if (strm == Z_NULL || strm->state == Z_NULL ||
639        flush > Z_BLOCK || flush < 0) {
640        return Z_STREAM_ERROR;
641    }
642    s = strm->state;
643
644    if (strm->next_out == Z_NULL ||
645        (strm->next_in == Z_NULL && strm->avail_in != 0) ||
646        (s->status == FINISH_STATE && flush != Z_FINISH)) {
647        ERR_RETURN(strm, Z_STREAM_ERROR);
648    }
649    if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
650
651    s->strm = strm; /* just in case */
652    old_flush = s->last_flush;
653    s->last_flush = flush;
654
655    /* Write the header */
656    if (s->status == INIT_STATE) {
657#ifdef GZIP
658        if (s->wrap == 2) {
659            strm->adler = crc32(0L, Z_NULL, 0);
660            put_byte(s, 31);
661            put_byte(s, 139);
662            put_byte(s, 8);
663            if (s->gzhead == Z_NULL) {
664                put_byte(s, 0);
665                put_byte(s, 0);
666                put_byte(s, 0);
667                put_byte(s, 0);
668                put_byte(s, 0);
669                put_byte(s, s->level == 9 ? 2 :
670                            (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
671                             4 : 0));
672                put_byte(s, OS_CODE);
673                s->status = BUSY_STATE;
674            }
675            else {
676                put_byte(s, (s->gzhead->text ? 1 : 0) +
677                            (s->gzhead->hcrc ? 2 : 0) +
678                            (s->gzhead->extra == Z_NULL ? 0 : 4) +
679                            (s->gzhead->name == Z_NULL ? 0 : 8) +
680                            (s->gzhead->comment == Z_NULL ? 0 : 16)
681                        );
682                put_byte(s, (Byte)(s->gzhead->time & 0xff));
683                put_byte(s, (Byte)((s->gzhead->time >> 8) & 0xff));
684                put_byte(s, (Byte)((s->gzhead->time >> 16) & 0xff));
685                put_byte(s, (Byte)((s->gzhead->time >> 24) & 0xff));
686                put_byte(s, s->level == 9 ? 2 :
687                            (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2 ?
688                             4 : 0));
689                put_byte(s, s->gzhead->os & 0xff);
690                if (s->gzhead->extra != Z_NULL) {
691                    put_byte(s, s->gzhead->extra_len & 0xff);
692                    put_byte(s, (s->gzhead->extra_len >> 8) & 0xff);
693                }
694                if (s->gzhead->hcrc)
695                    strm->adler = crc32(strm->adler, s->pending_buf,
696                                        s->pending);
697                s->gzindex = 0;
698                s->status = EXTRA_STATE;
699            }
700        }
701        else
702#endif
703        {
704            uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
705            uInt level_flags;
706
707            if (s->strategy >= Z_HUFFMAN_ONLY || s->level < 2)
708                level_flags = 0;
709            else if (s->level < 6)
710                level_flags = 1;
711            else if (s->level == 6)
712                level_flags = 2;
713            else
714                level_flags = 3;
715            header |= (level_flags << 6);
716            if (s->strstart != 0) header |= PRESET_DICT;
717            header += 31 - (header % 31);
718
719            s->status = BUSY_STATE;
720            putShortMSB(s, header);
721
722            /* Save the adler32 of the preset dictionary: */
723            if (s->strstart != 0) {
724                putShortMSB(s, (uInt)(strm->adler >> 16));
725                putShortMSB(s, (uInt)(strm->adler & 0xffff));
726            }
727            strm->adler = adler32(0L, Z_NULL, 0);
728        }
729    }
730#ifdef GZIP
731    if (s->status == EXTRA_STATE) {
732        if (s->gzhead->extra != Z_NULL) {
733            uInt beg = s->pending;  /* start of bytes to update crc */
734
735            while (s->gzindex < (s->gzhead->extra_len & 0xffff)) {
736                if (s->pending == s->pending_buf_size) {
737                    if (s->gzhead->hcrc && s->pending > beg)
738                        strm->adler = crc32(strm->adler, s->pending_buf + beg,
739                                            s->pending - beg);
740                    flush_pending(strm);
741                    beg = s->pending;
742                    if (s->pending == s->pending_buf_size)
743                        break;
744                }
745                put_byte(s, s->gzhead->extra[s->gzindex]);
746                s->gzindex++;
747            }
748            if (s->gzhead->hcrc && s->pending > beg)
749                strm->adler = crc32(strm->adler, s->pending_buf + beg,
750                                    s->pending - beg);
751            if (s->gzindex == s->gzhead->extra_len) {
752                s->gzindex = 0;
753                s->status = NAME_STATE;
754            }
755        }
756        else
757            s->status = NAME_STATE;
758    }
759    if (s->status == NAME_STATE) {
760        if (s->gzhead->name != Z_NULL) {
761            uInt beg = s->pending;  /* start of bytes to update crc */
762            int val;
763
764            do {
765                if (s->pending == s->pending_buf_size) {
766                    if (s->gzhead->hcrc && s->pending > beg)
767                        strm->adler = crc32(strm->adler, s->pending_buf + beg,
768                                            s->pending - beg);
769                    flush_pending(strm);
770                    beg = s->pending;
771                    if (s->pending == s->pending_buf_size) {
772                        val = 1;
773                        break;
774                    }
775                }
776                val = s->gzhead->name[s->gzindex++];
777                put_byte(s, val);
778            } while (val != 0);
779            if (s->gzhead->hcrc && s->pending > beg)
780                strm->adler = crc32(strm->adler, s->pending_buf + beg,
781                                    s->pending - beg);
782            if (val == 0) {
783                s->gzindex = 0;
784                s->status = COMMENT_STATE;
785            }
786        }
787        else
788            s->status = COMMENT_STATE;
789    }
790    if (s->status == COMMENT_STATE) {
791        if (s->gzhead->comment != Z_NULL) {
792            uInt beg = s->pending;  /* start of bytes to update crc */
793            int val;
794
795            do {
796                if (s->pending == s->pending_buf_size) {
797                    if (s->gzhead->hcrc && s->pending > beg)
798                        strm->adler = crc32(strm->adler, s->pending_buf + beg,
799                                            s->pending - beg);
800                    flush_pending(strm);
801                    beg = s->pending;
802                    if (s->pending == s->pending_buf_size) {
803                        val = 1;
804                        break;
805                    }
806                }
807                val = s->gzhead->comment[s->gzindex++];
808                put_byte(s, val);
809            } while (val != 0);
810            if (s->gzhead->hcrc && s->pending > beg)
811                strm->adler = crc32(strm->adler, s->pending_buf + beg,
812                                    s->pending - beg);
813            if (val == 0)
814                s->status = HCRC_STATE;
815        }
816        else
817            s->status = HCRC_STATE;
818    }
819    if (s->status == HCRC_STATE) {
820        if (s->gzhead->hcrc) {
821            if (s->pending + 2 > s->pending_buf_size)
822                flush_pending(strm);
823            if (s->pending + 2 <= s->pending_buf_size) {
824                put_byte(s, (Byte)(strm->adler & 0xff));
825                put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
826                strm->adler = crc32(0L, Z_NULL, 0);
827                s->status = BUSY_STATE;
828            }
829        }
830        else
831            s->status = BUSY_STATE;
832    }
833#endif
834
835    /* Flush as much pending output as possible */
836    if (s->pending != 0) {
837        flush_pending(strm);
838        if (strm->avail_out == 0) {
839            /* Since avail_out is 0, deflate will be called again with
840             * more output space, but possibly with both pending and
841             * avail_in equal to zero. There won't be anything to do,
842             * but this is not an error situation so make sure we
843             * return OK instead of BUF_ERROR at next call of deflate:
844             */
845            s->last_flush = -1;
846            return Z_OK;
847        }
848
849    /* Make sure there is something to do and avoid duplicate consecutive
850     * flushes. For repeated and useless calls with Z_FINISH, we keep
851     * returning Z_STREAM_END instead of Z_BUF_ERROR.
852     */
853    } else if (strm->avail_in == 0 && flush <= old_flush &&
854               flush != Z_FINISH) {
855        ERR_RETURN(strm, Z_BUF_ERROR);
856    }
857
858    /* User must not provide more input after the first FINISH: */
859    if (s->status == FINISH_STATE && strm->avail_in != 0) {
860        ERR_RETURN(strm, Z_BUF_ERROR);
861    }
862
863    /* Start a new block or continue the current one.
864     */
865    if (strm->avail_in != 0 || s->lookahead != 0 ||
866        (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
867        block_state bstate;
868
869        bstate = s->strategy == Z_HUFFMAN_ONLY ? deflate_huff(s, flush) :
870                    (s->strategy == Z_RLE ? deflate_rle(s, flush) :
871                        (*(configuration_table[s->level].func))(s, flush));
872
873        if (bstate == finish_started || bstate == finish_done) {
874            s->status = FINISH_STATE;
875        }
876        if (bstate == need_more || bstate == finish_started) {
877            if (strm->avail_out == 0) {
878                s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
879            }
880            return Z_OK;
881            /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
882             * of deflate should use the same flush parameter to make sure
883             * that the flush is complete. So we don't have to output an
884             * empty block here, this will be done at next call. This also
885             * ensures that for a very small output buffer, we emit at most
886             * one empty block.
887             */
888        }
889        if (bstate == block_done) {
890            if (flush == Z_PARTIAL_FLUSH) {
891                _tr_align(s);
892            } else if (flush != Z_BLOCK) { /* FULL_FLUSH or SYNC_FLUSH */
893                _tr_stored_block(s, (char*)0, 0L, 0);
894                /* For a full flush, this empty block will be recognized
895                 * as a special marker by inflate_sync().
896                 */
897                if (flush == Z_FULL_FLUSH) {
898                    CLEAR_HASH(s);             /* forget history */
899                    if (s->lookahead == 0) {
900                        s->strstart = 0;
901                        s->block_start = 0L;
902                    }
903                }
904            }
905            flush_pending(strm);
906            if (strm->avail_out == 0) {
907              s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
908              return Z_OK;
909            }
910        }
911    }
912    Assert(strm->avail_out > 0, "bug2");
913
914    if (flush != Z_FINISH) return Z_OK;
915    if (s->wrap <= 0) return Z_STREAM_END;
916
917    /* Write the trailer */
918#ifdef GZIP
919    if (s->wrap == 2) {
920        put_byte(s, (Byte)(strm->adler & 0xff));
921        put_byte(s, (Byte)((strm->adler >> 8) & 0xff));
922        put_byte(s, (Byte)((strm->adler >> 16) & 0xff));
923        put_byte(s, (Byte)((strm->adler >> 24) & 0xff));
924        put_byte(s, (Byte)(strm->total_in & 0xff));
925        put_byte(s, (Byte)((strm->total_in >> 8) & 0xff));
926        put_byte(s, (Byte)((strm->total_in >> 16) & 0xff));
927        put_byte(s, (Byte)((strm->total_in >> 24) & 0xff));
928    }
929    else
930#endif
931    {
932        putShortMSB(s, (uInt)(strm->adler >> 16));
933        putShortMSB(s, (uInt)(strm->adler & 0xffff));
934    }
935    flush_pending(strm);
936    /* If avail_out is zero, the application will call deflate again
937     * to flush the rest.
938     */
939    if (s->wrap > 0) s->wrap = -s->wrap; /* write the trailer only once! */
940    return s->pending != 0 ? Z_OK : Z_STREAM_END;
941}
942
943/* ========================================================================= */
944int ZEXPORT deflateEnd (strm)
945    z_streamp strm;
946{
947    int status;
948
949    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
950
951    status = strm->state->status;
952    if (status != INIT_STATE &&
953        status != EXTRA_STATE &&
954        status != NAME_STATE &&
955        status != COMMENT_STATE &&
956        status != HCRC_STATE &&
957        status != BUSY_STATE &&
958        status != FINISH_STATE) {
959      return Z_STREAM_ERROR;
960    }
961
962    /* Deallocate in reverse order of allocations: */
963    TRY_FREE(strm, strm->state->pending_buf);
964    TRY_FREE(strm, strm->state->head);
965    TRY_FREE(strm, strm->state->prev);
966    TRY_FREE(strm, strm->state->window);
967
968    ZFREE(strm, strm->state);
969    strm->state = Z_NULL;
970
971    return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
972}
973
974/* =========================================================================
975 * Copy the source state to the destination state.
976 * To simplify the source, this is not supported for 16-bit MSDOS (which
977 * doesn't have enough memory anyway to duplicate compression states).
978 */
979int ZEXPORT deflateCopy (dest, source)
980    z_streamp dest;
981    z_streamp source;
982{
983#ifdef MAXSEG_64K
984    return Z_STREAM_ERROR;
985#else
986    deflate_state *ds;
987    deflate_state *ss;
988
989
990    if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
991        return Z_STREAM_ERROR;
992    }
993
994    ss = source->state;
995
996    zmemcpy(dest, source, sizeof(z_stream));
997
998    ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
999    if (ds == Z_NULL) return Z_MEM_ERROR;
1000    dest->state = (struct internal_state FAR *) ds;
1001    zmemcpy(ds, ss, sizeof(deflate_state));
1002    ds->strm = dest;
1003
1004    ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1005    ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1006    ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1007    ds->pending_buf = (uchf *) ZALLOC(dest, ds->lit_bufsize, 4);
1008
1009    if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1010        ds->pending_buf == Z_NULL) {
1011        deflateEnd (dest);
1012        return Z_MEM_ERROR;
1013    }
1014    /* following zmemcpy do not work for 16-bit MSDOS */
1015    zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1016    zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
1017    zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
1018    zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1019
1020    ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1021    ds->sym_buf = ds->pending_buf + ds->lit_bufsize;
1022
1023    ds->l_desc.dyn_tree = ds->dyn_ltree;
1024    ds->d_desc.dyn_tree = ds->dyn_dtree;
1025    ds->bl_desc.dyn_tree = ds->bl_tree;
1026
1027    return Z_OK;
1028#endif /* MAXSEG_64K */
1029}
1030
1031/* ===========================================================================
1032 * Read a new buffer from the current input stream, update the adler32
1033 * and total number of bytes read.  All deflate() input goes through
1034 * this function so some applications may wish to modify it to avoid
1035 * allocating a large strm->next_in buffer and copying from it.
1036 * (See also flush_pending()).
1037 */
1038local int read_buf(strm, buf, size)
1039    z_streamp strm;
1040    Bytef *buf;
1041    unsigned size;
1042{
1043    unsigned len = strm->avail_in;
1044
1045    if (len > size) len = size;
1046    if (len == 0) return 0;
1047
1048    strm->avail_in  -= len;
1049
1050    if (strm->state->wrap == 1) {
1051        strm->adler = adler32(strm->adler, strm->next_in, len);
1052    }
1053#ifdef GZIP
1054    else if (strm->state->wrap == 2) {
1055        strm->adler = crc32(strm->adler, strm->next_in, len);
1056    }
1057#endif
1058    zmemcpy(buf, strm->next_in, len);
1059    strm->next_in  += len;
1060    strm->total_in += len;
1061
1062    return (int)len;
1063}
1064
1065/* ===========================================================================
1066 * Initialize the "longest match" routines for a new zlib stream
1067 */
1068local void lm_init (s)
1069    deflate_state *s;
1070{
1071    s->window_size = (ulg)2L*s->w_size;
1072
1073    CLEAR_HASH(s);
1074
1075    /* Set the default configuration parameters:
1076     */
1077    s->max_lazy_match   = configuration_table[s->level].max_lazy;
1078    s->good_match       = configuration_table[s->level].good_length;
1079    s->nice_match       = configuration_table[s->level].nice_length;
1080    s->max_chain_length = configuration_table[s->level].max_chain;
1081
1082    s->strstart = 0;
1083    s->block_start = 0L;
1084    s->lookahead = 0;
1085    s->match_length = s->prev_length = MIN_MATCH-1;
1086    s->match_available = 0;
1087    s->ins_h = 0;
1088#ifndef FASTEST
1089#ifdef ASMV
1090    match_init(); /* initialize the asm code */
1091#endif
1092#endif
1093}
1094
1095#ifndef FASTEST
1096/* ===========================================================================
1097 * Set match_start to the longest match starting at the given string and
1098 * return its length. Matches shorter or equal to prev_length are discarded,
1099 * in which case the result is equal to prev_length and match_start is
1100 * garbage.
1101 * IN assertions: cur_match is the head of the hash chain for the current
1102 *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1103 * OUT assertion: the match length is not greater than s->lookahead.
1104 */
1105#ifndef ASMV
1106/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1107 * match.S. The code will be functionally equivalent.
1108 */
1109local uInt longest_match(s, cur_match)
1110    deflate_state *s;
1111    IPos cur_match;                             /* current match */
1112{
1113    unsigned chain_length = s->max_chain_length;/* max hash chain length */
1114    register Bytef *scan = s->window + s->strstart; /* current string */
1115    register Bytef *match;                       /* matched string */
1116    register int len;                           /* length of current match */
1117    int best_len = s->prev_length;              /* best match length so far */
1118    int nice_match = s->nice_match;             /* stop if match long enough */
1119    IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1120        s->strstart - (IPos)MAX_DIST(s) : NIL;
1121    /* Stop when cur_match becomes <= limit. To simplify the code,
1122     * we prevent matches with the string of window index 0.
1123     */
1124    Posf *prev = s->prev;
1125    uInt wmask = s->w_mask;
1126
1127#ifdef UNALIGNED_OK
1128    /* Compare two bytes at a time. Note: this is not always beneficial.
1129     * Try with and without -DUNALIGNED_OK to check.
1130     */
1131    register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1132    register ush scan_start = *(ushf*)scan;
1133    register ush scan_end   = *(ushf*)(scan+best_len-1);
1134#else
1135    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1136    register Byte scan_end1  = scan[best_len-1];
1137    register Byte scan_end   = scan[best_len];
1138#endif
1139
1140    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1141     * It is easy to get rid of this optimization if necessary.
1142     */
1143    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1144
1145    /* Do not waste too much time if we already have a good match: */
1146    if (s->prev_length >= s->good_match) {
1147        chain_length >>= 2;
1148    }
1149    /* Do not look for matches beyond the end of the input. This is necessary
1150     * to make deflate deterministic.
1151     */
1152    if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1153
1154    Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1155
1156    do {
1157        Assert(cur_match < s->strstart, "no future");
1158        match = s->window + cur_match;
1159
1160        /* Skip to next match if the match length cannot increase
1161         * or if the match length is less than 2.  Note that the checks below
1162         * for insufficient lookahead only occur occasionally for performance
1163         * reasons.  Therefore uninitialized memory will be accessed, and
1164         * conditional jumps will be made that depend on those values.
1165         * However the length of the match is limited to the lookahead, so
1166         * the output of deflate is not affected by the uninitialized values.
1167         */
1168#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1169        /* This code assumes sizeof(unsigned short) == 2. Do not use
1170         * UNALIGNED_OK if your compiler uses a different size.
1171         */
1172        if (*(ushf*)(match+best_len-1) != scan_end ||
1173            *(ushf*)match != scan_start) continue;
1174
1175        /* It is not necessary to compare scan[2] and match[2] since they are
1176         * always equal when the other bytes match, given that the hash keys
1177         * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1178         * strstart+3, +5, ... up to strstart+257. We check for insufficient
1179         * lookahead only every 4th comparison; the 128th check will be made
1180         * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1181         * necessary to put more guard bytes at the end of the window, or
1182         * to check more often for insufficient lookahead.
1183         */
1184        Assert(scan[2] == match[2], "scan[2]?");
1185        scan++, match++;
1186        do {
1187        } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1188                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1189                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1190                 *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1191                 scan < strend);
1192        /* The funny "do {}" generates better code on most compilers */
1193
1194        /* Here, scan <= window+strstart+257 */
1195        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1196        if (*scan == *match) scan++;
1197
1198        len = (MAX_MATCH - 1) - (int)(strend-scan);
1199        scan = strend - (MAX_MATCH-1);
1200
1201#else /* UNALIGNED_OK */
1202
1203        if (match[best_len]   != scan_end  ||
1204            match[best_len-1] != scan_end1 ||
1205            *match            != *scan     ||
1206            *++match          != scan[1])      continue;
1207
1208        /* The check at best_len-1 can be removed because it will be made
1209         * again later. (This heuristic is not always a win.)
1210         * It is not necessary to compare scan[2] and match[2] since they
1211         * are always equal when the other bytes match, given that
1212         * the hash keys are equal and that HASH_BITS >= 8.
1213         */
1214        scan += 2, match++;
1215        Assert(*scan == *match, "match[2]?");
1216
1217        /* We check for insufficient lookahead only every 8th comparison;
1218         * the 256th check will be made at strstart+258.
1219         */
1220        do {
1221        } while (*++scan == *++match && *++scan == *++match &&
1222                 *++scan == *++match && *++scan == *++match &&
1223                 *++scan == *++match && *++scan == *++match &&
1224                 *++scan == *++match && *++scan == *++match &&
1225                 scan < strend);
1226
1227        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1228
1229        len = MAX_MATCH - (int)(strend - scan);
1230        scan = strend - MAX_MATCH;
1231
1232#endif /* UNALIGNED_OK */
1233
1234        if (len > best_len) {
1235            s->match_start = cur_match;
1236            best_len = len;
1237            if (len >= nice_match) break;
1238#ifdef UNALIGNED_OK
1239            scan_end = *(ushf*)(scan+best_len-1);
1240#else
1241            scan_end1  = scan[best_len-1];
1242            scan_end   = scan[best_len];
1243#endif
1244        }
1245    } while ((cur_match = prev[cur_match & wmask]) > limit
1246             && --chain_length != 0);
1247
1248    if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1249    return s->lookahead;
1250}
1251#endif /* ASMV */
1252
1253#else /* FASTEST */
1254
1255/* ---------------------------------------------------------------------------
1256 * Optimized version for FASTEST only
1257 */
1258local uInt longest_match(s, cur_match)
1259    deflate_state *s;
1260    IPos cur_match;                             /* current match */
1261{
1262    register Bytef *scan = s->window + s->strstart; /* current string */
1263    register Bytef *match;                       /* matched string */
1264    register int len;                           /* length of current match */
1265    register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1266
1267    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1268     * It is easy to get rid of this optimization if necessary.
1269     */
1270    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1271
1272    Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1273
1274    Assert(cur_match < s->strstart, "no future");
1275
1276    match = s->window + cur_match;
1277
1278    /* Return failure if the match length is less than 2:
1279     */
1280    if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1281
1282    /* The check at best_len-1 can be removed because it will be made
1283     * again later. (This heuristic is not always a win.)
1284     * It is not necessary to compare scan[2] and match[2] since they
1285     * are always equal when the other bytes match, given that
1286     * the hash keys are equal and that HASH_BITS >= 8.
1287     */
1288    scan += 2, match += 2;
1289    Assert(*scan == *match, "match[2]?");
1290
1291    /* We check for insufficient lookahead only every 8th comparison;
1292     * the 256th check will be made at strstart+258.
1293     */
1294    do {
1295    } while (*++scan == *++match && *++scan == *++match &&
1296             *++scan == *++match && *++scan == *++match &&
1297             *++scan == *++match && *++scan == *++match &&
1298             *++scan == *++match && *++scan == *++match &&
1299             scan < strend);
1300
1301    Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1302
1303    len = MAX_MATCH - (int)(strend - scan);
1304
1305    if (len < MIN_MATCH) return MIN_MATCH - 1;
1306
1307    s->match_start = cur_match;
1308    return (uInt)len <= s->lookahead ? (uInt)len : s->lookahead;
1309}
1310
1311#endif /* FASTEST */
1312
1313#ifdef DEBUG
1314/* ===========================================================================
1315 * Check that the match at match_start is indeed a match.
1316 */
1317local void check_match(s, start, match, length)
1318    deflate_state *s;
1319    IPos start, match;
1320    int length;
1321{
1322    /* check that the match is indeed a match */
1323    if (zmemcmp(s->window + match,
1324                s->window + start, length) != EQUAL) {
1325        fprintf(stderr, " start %u, match %u, length %d\n",
1326                start, match, length);
1327        do {
1328            fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1329        } while (--length != 0);
1330        z_error("invalid match");
1331    }
1332    if (z_verbose > 1) {
1333        fprintf(stderr,"\\[%d,%d]", start-match, length);
1334        do { putc(s->window[start++], stderr); } while (--length != 0);
1335    }
1336}
1337#else
1338#  define check_match(s, start, match, length)
1339#endif /* DEBUG */
1340
1341/* ===========================================================================
1342 * Fill the window when the lookahead becomes insufficient.
1343 * Updates strstart and lookahead.
1344 *
1345 * IN assertion: lookahead < MIN_LOOKAHEAD
1346 * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1347 *    At least one byte has been read, or avail_in == 0; reads are
1348 *    performed for at least two bytes (required for the zip translate_eol
1349 *    option -- not supported here).
1350 */
1351local void fill_window(s)
1352    deflate_state *s;
1353{
1354    register unsigned n, m;
1355    register Posf *p;
1356    unsigned more;    /* Amount of free space at the end of the window. */
1357    uInt wsize = s->w_size;
1358
1359    do {
1360        more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1361
1362        /* Deal with !@#$% 64K limit: */
1363        if (sizeof(int) <= 2) {
1364            if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1365                more = wsize;
1366
1367            } else if (more == (unsigned)(-1)) {
1368                /* Very unlikely, but possible on 16 bit machine if
1369                 * strstart == 0 && lookahead == 1 (input done a byte at time)
1370                 */
1371                more--;
1372            }
1373        }
1374
1375        /* If the window is almost full and there is insufficient lookahead,
1376         * move the upper half to the lower one to make room in the upper half.
1377         */
1378        if (s->strstart >= wsize+MAX_DIST(s)) {
1379
1380            zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
1381            s->match_start -= wsize;
1382            s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1383            s->block_start -= (long) wsize;
1384
1385            /* Slide the hash table (could be avoided with 32 bit values
1386               at the expense of memory usage). We slide even when level == 0
1387               to keep the hash table consistent if we switch back to level > 0
1388               later. (Using level 0 permanently is not an optimal usage of
1389               zlib, so we don't care about this pathological case.)
1390             */
1391            n = s->hash_size;
1392            p = &s->head[n];
1393            do {
1394                m = *--p;
1395                *p = (Pos)(m >= wsize ? m-wsize : NIL);
1396            } while (--n);
1397
1398            n = wsize;
1399#ifndef FASTEST
1400            p = &s->prev[n];
1401            do {
1402                m = *--p;
1403                *p = (Pos)(m >= wsize ? m-wsize : NIL);
1404                /* If n is not on any hash chain, prev[n] is garbage but
1405                 * its value will never be used.
1406                 */
1407            } while (--n);
1408#endif
1409            more += wsize;
1410        }
1411        if (s->strm->avail_in == 0) return;
1412
1413        /* If there was no sliding:
1414         *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1415         *    more == window_size - lookahead - strstart
1416         * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1417         * => more >= window_size - 2*WSIZE + 2
1418         * In the BIG_MEM or MMAP case (not yet supported),
1419         *   window_size == input_size + MIN_LOOKAHEAD  &&
1420         *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1421         * Otherwise, window_size == 2*WSIZE so more >= 2.
1422         * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1423         */
1424        Assert(more >= 2, "more < 2");
1425
1426        n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1427        s->lookahead += n;
1428
1429        /* Initialize the hash value now that we have some input: */
1430        if (s->lookahead >= MIN_MATCH) {
1431            s->ins_h = s->window[s->strstart];
1432            UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1433#if MIN_MATCH != 3
1434            Call UPDATE_HASH() MIN_MATCH-3 more times
1435#endif
1436        }
1437        /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1438         * but this is not important since only literal bytes will be emitted.
1439         */
1440
1441    } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1442
1443    /* If the WIN_INIT bytes after the end of the current data have never been
1444     * written, then zero those bytes in order to avoid memory check reports of
1445     * the use of uninitialized (or uninitialised as Julian writes) bytes by
1446     * the longest match routines.  Update the high water mark for the next
1447     * time through here.  WIN_INIT is set to MAX_MATCH since the longest match
1448     * routines allow scanning to strstart + MAX_MATCH, ignoring lookahead.
1449     */
1450    if (s->high_water < s->window_size) {
1451        ulg curr = s->strstart + (ulg)(s->lookahead);
1452        ulg init;
1453
1454        if (s->high_water < curr) {
1455            /* Previous high water mark below current data -- zero WIN_INIT
1456             * bytes or up to end of window, whichever is less.
1457             */
1458            init = s->window_size - curr;
1459            if (init > WIN_INIT)
1460                init = WIN_INIT;
1461            zmemzero(s->window + curr, (unsigned)init);
1462            s->high_water = curr + init;
1463        }
1464        else if (s->high_water < (ulg)curr + WIN_INIT) {
1465            /* High water mark at or above current data, but below current data
1466             * plus WIN_INIT -- zero out to current data plus WIN_INIT, or up
1467             * to end of window, whichever is less.
1468             */
1469            init = (ulg)curr + WIN_INIT - s->high_water;
1470            if (init > s->window_size - s->high_water)
1471                init = s->window_size - s->high_water;
1472            zmemzero(s->window + s->high_water, (unsigned)init);
1473            s->high_water += init;
1474        }
1475    }
1476}
1477
1478/* ===========================================================================
1479 * Flush the current block, with given end-of-file flag.
1480 * IN assertion: strstart is set to the end of the current match.
1481 */
1482#define FLUSH_BLOCK_ONLY(s, last) { \
1483   _tr_flush_block(s, (s->block_start >= 0L ? \
1484                   (charf *)&s->window[(unsigned)s->block_start] : \
1485                   (charf *)Z_NULL), \
1486                (ulg)((long)s->strstart - s->block_start), \
1487                (last)); \
1488   s->block_start = s->strstart; \
1489   flush_pending(s->strm); \
1490   Tracev((stderr,"[FLUSH]")); \
1491}
1492
1493/* Same but force premature exit if necessary. */
1494#define FLUSH_BLOCK(s, last) { \
1495   FLUSH_BLOCK_ONLY(s, last); \
1496   if (s->strm->avail_out == 0) return (last) ? finish_started : need_more; \
1497}
1498
1499/* ===========================================================================
1500 * Copy without compression as much as possible from the input stream, return
1501 * the current block state.
1502 * This function does not insert new strings in the dictionary since
1503 * uncompressible data is probably not useful. This function is used
1504 * only for the level=0 compression option.
1505 * NOTE: this function should be optimized to avoid extra copying from
1506 * window to pending_buf.
1507 */
1508local block_state deflate_stored(s, flush)
1509    deflate_state *s;
1510    int flush;
1511{
1512    /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1513     * to pending_buf_size, and each stored block has a 5 byte header:
1514     */
1515    ulg max_block_size = 0xffff;
1516    ulg max_start;
1517
1518    if (max_block_size > s->pending_buf_size - 5) {
1519        max_block_size = s->pending_buf_size - 5;
1520    }
1521
1522    /* Copy as much as possible from input to output: */
1523    for (;;) {
1524        /* Fill the window as much as possible: */
1525        if (s->lookahead <= 1) {
1526
1527            Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1528                   s->block_start >= (long)s->w_size, "slide too late");
1529
1530            fill_window(s);
1531            if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1532
1533            if (s->lookahead == 0) break; /* flush the current block */
1534        }
1535        Assert(s->block_start >= 0L, "block gone");
1536
1537        s->strstart += s->lookahead;
1538        s->lookahead = 0;
1539
1540        /* Emit a stored block if pending_buf will be full: */
1541        max_start = s->block_start + max_block_size;
1542        if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1543            /* strstart == 0 is possible when wraparound on 16-bit machine */
1544            s->lookahead = (uInt)(s->strstart - max_start);
1545            s->strstart = (uInt)max_start;
1546            FLUSH_BLOCK(s, 0);
1547        }
1548        /* Flush if we may have to slide, otherwise block_start may become
1549         * negative and the data will be gone:
1550         */
1551        if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1552            FLUSH_BLOCK(s, 0);
1553        }
1554    }
1555    FLUSH_BLOCK(s, flush == Z_FINISH);
1556    return flush == Z_FINISH ? finish_done : block_done;
1557}
1558
1559/* ===========================================================================
1560 * Compress as much as possible from the input stream, return the current
1561 * block state.
1562 * This function does not perform lazy evaluation of matches and inserts
1563 * new strings in the dictionary only for unmatched strings or for short
1564 * matches. It is used only for the fast compression options.
1565 */
1566local block_state deflate_fast(s, flush)
1567    deflate_state *s;
1568    int flush;
1569{
1570    IPos hash_head;       /* head of the hash chain */
1571    int bflush;           /* set if current block must be flushed */
1572
1573    for (;;) {
1574        /* Make sure that we always have enough lookahead, except
1575         * at the end of the input file. We need MAX_MATCH bytes
1576         * for the next match, plus MIN_MATCH bytes to insert the
1577         * string following the next match.
1578         */
1579        if (s->lookahead < MIN_LOOKAHEAD) {
1580            fill_window(s);
1581            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1582                return need_more;
1583            }
1584            if (s->lookahead == 0) break; /* flush the current block */
1585        }
1586
1587        /* Insert the string window[strstart .. strstart+2] in the
1588         * dictionary, and set hash_head to the head of the hash chain:
1589         */
1590        hash_head = NIL;
1591        if (s->lookahead >= MIN_MATCH) {
1592            INSERT_STRING(s, s->strstart, hash_head);
1593        }
1594
1595        /* Find the longest match, discarding those <= prev_length.
1596         * At this point we have always match_length < MIN_MATCH
1597         */
1598        if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1599            /* To simplify the code, we prevent matches with the string
1600             * of window index 0 (in particular we have to avoid a match
1601             * of the string with itself at the start of the input file).
1602             */
1603            s->match_length = longest_match (s, hash_head);
1604            /* longest_match() sets match_start */
1605        }
1606        if (s->match_length >= MIN_MATCH) {
1607            check_match(s, s->strstart, s->match_start, s->match_length);
1608
1609            _tr_tally_dist(s, s->strstart - s->match_start,
1610                           s->match_length - MIN_MATCH, bflush);
1611
1612            s->lookahead -= s->match_length;
1613
1614            /* Insert new strings in the hash table only if the match length
1615             * is not too large. This saves time but degrades compression.
1616             */
1617#ifndef FASTEST
1618            if (s->match_length <= s->max_insert_length &&
1619                s->lookahead >= MIN_MATCH) {
1620                s->match_length--; /* string at strstart already in table */
1621                do {
1622                    s->strstart++;
1623                    INSERT_STRING(s, s->strstart, hash_head);
1624                    /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1625                     * always MIN_MATCH bytes ahead.
1626                     */
1627                } while (--s->match_length != 0);
1628                s->strstart++;
1629            } else
1630#endif
1631            {
1632                s->strstart += s->match_length;
1633                s->match_length = 0;
1634                s->ins_h = s->window[s->strstart];
1635                UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1636#if MIN_MATCH != 3
1637                Call UPDATE_HASH() MIN_MATCH-3 more times
1638#endif
1639                /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1640                 * matter since it will be recomputed at next deflate call.
1641                 */
1642            }
1643        } else {
1644            /* No match, output a literal byte */
1645            Tracevv((stderr,"%c", s->window[s->strstart]));
1646            _tr_tally_lit (s, s->window[s->strstart], bflush);
1647            s->lookahead--;
1648            s->strstart++;
1649        }
1650        if (bflush) FLUSH_BLOCK(s, 0);
1651    }
1652    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1653    if (flush == Z_FINISH) {
1654        FLUSH_BLOCK(s, 1);
1655        return finish_done;
1656    }
1657    if (s->sym_next)
1658        FLUSH_BLOCK(s, 0);
1659    return block_done;
1660}
1661
1662#ifndef FASTEST
1663/* ===========================================================================
1664 * Same as above, but achieves better compression. We use a lazy
1665 * evaluation for matches: a match is finally adopted only if there is
1666 * no better match at the next window position.
1667 */
1668local block_state deflate_slow(s, flush)
1669    deflate_state *s;
1670    int flush;
1671{
1672    IPos hash_head;          /* head of hash chain */
1673    int bflush;              /* set if current block must be flushed */
1674
1675    /* Process the input block. */
1676    for (;;) {
1677        /* Make sure that we always have enough lookahead, except
1678         * at the end of the input file. We need MAX_MATCH bytes
1679         * for the next match, plus MIN_MATCH bytes to insert the
1680         * string following the next match.
1681         */
1682        if (s->lookahead < MIN_LOOKAHEAD) {
1683            fill_window(s);
1684            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1685                return need_more;
1686            }
1687            if (s->lookahead == 0) break; /* flush the current block */
1688        }
1689
1690        /* Insert the string window[strstart .. strstart+2] in the
1691         * dictionary, and set hash_head to the head of the hash chain:
1692         */
1693        hash_head = NIL;
1694        if (s->lookahead >= MIN_MATCH) {
1695            INSERT_STRING(s, s->strstart, hash_head);
1696        }
1697
1698        /* Find the longest match, discarding those <= prev_length.
1699         */
1700        s->prev_length = s->match_length, s->prev_match = s->match_start;
1701        s->match_length = MIN_MATCH-1;
1702
1703        if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1704            s->strstart - hash_head <= MAX_DIST(s)) {
1705            /* To simplify the code, we prevent matches with the string
1706             * of window index 0 (in particular we have to avoid a match
1707             * of the string with itself at the start of the input file).
1708             */
1709            s->match_length = longest_match (s, hash_head);
1710            /* longest_match() sets match_start */
1711
1712            if (s->match_length <= 5 && (s->strategy == Z_FILTERED
1713#if TOO_FAR <= 32767
1714                || (s->match_length == MIN_MATCH &&
1715                    s->strstart - s->match_start > TOO_FAR)
1716#endif
1717                )) {
1718
1719                /* If prev_match is also MIN_MATCH, match_start is garbage
1720                 * but we will ignore the current match anyway.
1721                 */
1722                s->match_length = MIN_MATCH-1;
1723            }
1724        }
1725        /* If there was a match at the previous step and the current
1726         * match is not better, output the previous match:
1727         */
1728        if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1729            uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1730            /* Do not insert strings in hash table beyond this. */
1731
1732            check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1733
1734            _tr_tally_dist(s, s->strstart -1 - s->prev_match,
1735                           s->prev_length - MIN_MATCH, bflush);
1736
1737            /* Insert in hash table all strings up to the end of the match.
1738             * strstart-1 and strstart are already inserted. If there is not
1739             * enough lookahead, the last two strings are not inserted in
1740             * the hash table.
1741             */
1742            s->lookahead -= s->prev_length-1;
1743            s->prev_length -= 2;
1744            do {
1745                if (++s->strstart <= max_insert) {
1746                    INSERT_STRING(s, s->strstart, hash_head);
1747                }
1748            } while (--s->prev_length != 0);
1749            s->match_available = 0;
1750            s->match_length = MIN_MATCH-1;
1751            s->strstart++;
1752
1753            if (bflush) FLUSH_BLOCK(s, 0);
1754
1755        } else if (s->match_available) {
1756            /* If there was no match at the previous position, output a
1757             * single literal. If there was a match but the current match
1758             * is longer, truncate the previous match to a single literal.
1759             */
1760            Tracevv((stderr,"%c", s->window[s->strstart-1]));
1761            _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1762            if (bflush) {
1763                FLUSH_BLOCK_ONLY(s, 0);
1764            }
1765            s->strstart++;
1766            s->lookahead--;
1767            if (s->strm->avail_out == 0) return need_more;
1768        } else {
1769            /* There is no previous match to compare with, wait for
1770             * the next step to decide.
1771             */
1772            s->match_available = 1;
1773            s->strstart++;
1774            s->lookahead--;
1775        }
1776    }
1777    Assert (flush != Z_NO_FLUSH, "no flush?");
1778    if (s->match_available) {
1779        Tracevv((stderr,"%c", s->window[s->strstart-1]));
1780        _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1781        s->match_available = 0;
1782    }
1783    s->insert = s->strstart < MIN_MATCH-1 ? s->strstart : MIN_MATCH-1;
1784    if (flush == Z_FINISH) {
1785        FLUSH_BLOCK(s, 1);
1786        return finish_done;
1787    }
1788    if (s->sym_next)
1789        FLUSH_BLOCK(s, 0);
1790    return block_done;
1791}
1792#endif /* FASTEST */
1793
1794/* ===========================================================================
1795 * For Z_RLE, simply look for runs of bytes, generate matches only of distance
1796 * one.  Do not maintain a hash table.  (It will be regenerated if this run of
1797 * deflate switches away from Z_RLE.)
1798 */
1799local block_state deflate_rle(s, flush)
1800    deflate_state *s;
1801    int flush;
1802{
1803    int bflush;             /* set if current block must be flushed */
1804    uInt prev;              /* byte at distance one to match */
1805    Bytef *scan, *strend;   /* scan goes up to strend for length of run */
1806
1807    for (;;) {
1808        /* Make sure that we always have enough lookahead, except
1809         * at the end of the input file. We need MAX_MATCH bytes
1810         * for the longest encodable run.
1811         */
1812        if (s->lookahead < MAX_MATCH) {
1813            fill_window(s);
1814            if (s->lookahead < MAX_MATCH && flush == Z_NO_FLUSH) {
1815                return need_more;
1816            }
1817            if (s->lookahead == 0) break; /* flush the current block */
1818        }
1819
1820        /* See how many times the previous byte repeats */
1821        s->match_length = 0;
1822        if (s->lookahead >= MIN_MATCH && s->strstart > 0) {
1823            scan = s->window + s->strstart - 1;
1824            prev = *scan;
1825            if (prev == *++scan && prev == *++scan && prev == *++scan) {
1826                strend = s->window + s->strstart + MAX_MATCH;
1827                do {
1828                } while (prev == *++scan && prev == *++scan &&
1829                         prev == *++scan && prev == *++scan &&
1830                         prev == *++scan && prev == *++scan &&
1831                         prev == *++scan && prev == *++scan &&
1832                         scan < strend);
1833                s->match_length = MAX_MATCH - (int)(strend - scan);
1834                if (s->match_length > s->lookahead)
1835                    s->match_length = s->lookahead;
1836            }
1837        }
1838
1839        /* Emit match if have run of MIN_MATCH or longer, else emit literal */
1840        if (s->match_length >= MIN_MATCH) {
1841            check_match(s, s->strstart, s->strstart - 1, s->match_length);
1842
1843            _tr_tally_dist(s, 1, s->match_length - MIN_MATCH, bflush);
1844
1845            s->lookahead -= s->match_length;
1846            s->strstart += s->match_length;
1847            s->match_length = 0;
1848        } else {
1849            /* No match, output a literal byte */
1850            Tracevv((stderr,"%c", s->window[s->strstart]));
1851            _tr_tally_lit (s, s->window[s->strstart], bflush);
1852            s->lookahead--;
1853            s->strstart++;
1854        }
1855        if (bflush) FLUSH_BLOCK(s, 0);
1856    }
1857    s->insert = 0;
1858    if (flush == Z_FINISH) {
1859        FLUSH_BLOCK(s, 1);
1860        return finish_done;
1861    }
1862    if (s->sym_next)
1863        FLUSH_BLOCK(s, 0);
1864    return block_done;
1865}
1866
1867/* ===========================================================================
1868 * For Z_HUFFMAN_ONLY, do not look for matches.  Do not maintain a hash table.
1869 * (It will be regenerated if this run of deflate switches away from Huffman.)
1870 */
1871local block_state deflate_huff(s, flush)
1872    deflate_state *s;
1873    int flush;
1874{
1875    int bflush;             /* set if current block must be flushed */
1876
1877    for (;;) {
1878        /* Make sure that we have a literal to write. */
1879        if (s->lookahead == 0) {
1880            fill_window(s);
1881            if (s->lookahead == 0) {
1882                if (flush == Z_NO_FLUSH)
1883                    return need_more;
1884                break;      /* flush the current block */
1885            }
1886        }
1887
1888        /* Output a literal byte */
1889        s->match_length = 0;
1890        Tracevv((stderr,"%c", s->window[s->strstart]));
1891        _tr_tally_lit (s, s->window[s->strstart], bflush);
1892        s->lookahead--;
1893        s->strstart++;
1894        if (bflush) FLUSH_BLOCK(s, 0);
1895    }
1896    s->insert = 0;
1897    if (flush == Z_FINISH) {
1898        FLUSH_BLOCK(s, 1);
1899        return finish_done;
1900    }
1901    if (s->sym_next)
1902        FLUSH_BLOCK(s, 0);
1903    return block_done;
1904}
1905