1/******************************************************************************
2 *
3 * Filename:    ieeehalfprecision.c
4 * Programmer:  James Tursa
5 * Version:     1.0
6 * Date:        March 3, 2009
7 * Copyright:   (c) 2009 by James Tursa, All Rights Reserved
8 *
9 *  This code uses the BSD License:
10 *
11 *  Redistribution and use in source and binary forms, with or without
12 *  modification, are permitted provided that the following conditions are
13 *  met:
14 *
15 *     * Redistributions of source code must retain the above copyright
16 *       notice, this list of conditions and the following disclaimer.
17 *     * Redistributions in binary form must reproduce the above copyright
18 *       notice, this list of conditions and the following disclaimer in
19 *       the documentation and/or other materials provided with the distribution
20 *
21 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25 *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 *  POSSIBILITY OF SUCH DAMAGE.
32 *
33 * This file contains C code to convert between IEEE double, single, and half
34 * precision floating point formats. The intended use is for standalone C code
35 * that does not rely on MATLAB mex.h. The bit pattern for the half precision
36 * floating point format is stored in a 16-bit unsigned int variable. The half
37 * precision bit pattern definition is:
38 *
39 * 1 bit sign bit
40 * 5 bits exponent, biased by 15
41 * 10 bits mantissa, hidden leading bit, normalized to 1.0
42 *
43 * Special floating point bit patterns recognized and supported:
44 *
45 * All exponent bits zero:
46 * - If all mantissa bits are zero, then number is zero (possibly signed)
47 * - Otherwise, number is a denormalized bit pattern
48 *
49 * All exponent bits set to 1:
50 * - If all mantissa bits are zero, then number is +Infinity or -Infinity
51 * - Otherwise, number is NaN (Not a Number)
52 *
53 * For the denormalized cases, note that 2^(-24) is the smallest number that can
54 * be represented in half precision exactly. 2^(-25) will convert to 2^(-24)
55 * because of the rounding algorithm used, and 2^(-26) is too small and
56 * underflows to zero.
57 *
58 ******************************************************************************/
59
60/*
61  changes by K. Rogovin:
62  - changed macros UINT16_TYPE, etc to types from stdint.h
63    (i.e. UINT16_TYPE-->uint16_t, INT16_TYPE-->int16_t, etc)
64
65  - removed double conversion routines.
66
67  - changed run time checks of endianness to compile time macro.
68
69  - removed return value from routines
70
71  - changed source parameter type from * to const *
72
73  - changed pointer types from void ot uint16_t and uint32_t
74 */
75
76/*
77 * andy@warmcat.com:
78 *
79 *  - clean style and indenting
80 *  - convert to single operation
81 *  - export as lws_
82 */
83
84#include <string.h>
85#include <stdint.h>
86
87void
88lws_singles2halfp(uint16_t *hp, uint32_t x)
89{
90	uint32_t xs, xe, xm;
91	uint16_t hs, he, hm;
92	int hes;
93
94	if (!(x & 0x7FFFFFFFu)) {
95		/* Signed zero */
96		*hp = (uint16_t)(x >> 16);
97
98		return;
99	}
100
101	xs = x & 0x80000000u;  // Pick off sign bit
102	xe = x & 0x7F800000u;  // Pick off exponent bits
103	xm = x & 0x007FFFFFu;  // Pick off mantissa bits
104
105	if (xe == 0) {  // Denormal will underflow, return a signed zero
106		*hp = (uint16_t) (xs >> 16);
107		return;
108	}
109
110	if (xe == 0x7F800000u) {  // Inf or NaN (all the exponent bits are set)
111		if (!xm) { // If mantissa is zero ...
112			*hp = (uint16_t) ((xs >> 16) | 0x7C00u); // Signed Inf
113			return;
114		}
115
116		*hp = (uint16_t) 0xFE00u; // NaN, only 1st mantissa bit set
117
118		return;
119	}
120
121	/* Normalized number */
122
123	hs = (uint16_t) (xs >> 16); // Sign bit
124	/* Exponent unbias the single, then bias the halfp */
125	hes = ((int)(xe >> 23)) - 127 + 15;
126
127	if (hes >= 0x1F) {  // Overflow
128		*hp = (uint16_t) ((xs >> 16) | 0x7C00u); // Signed Inf
129		return;
130	}
131
132	if (hes <= 0) {  // Underflow
133		if ((14 - hes) > 24)
134			/*
135			 * Mantissa shifted all the way off & no
136			 * rounding possibility
137			 */
138			hm = (uint16_t) 0u;  // Set mantissa to zero
139		else {
140			xm |= 0x00800000u;  // Add the hidden leading bit
141			hm = (uint16_t) (xm >> (14 - hes)); // Mantissa
142			if ((xm >> (13 - hes)) & 1u) // Check for rounding
143				/* Round, might overflow into exp bit,
144				 * but this is OK */
145				hm = (uint16_t)(hm + 1u);
146		}
147		/* Combine sign bit and mantissa bits, biased exponent is 0 */
148		*hp = hs | hm;
149
150		return;
151	}
152
153	he = (uint16_t)(hes << 10); // Exponent
154	hm = (uint16_t)(xm >> 13); // Mantissa
155
156	if (xm & 0x00001000u) // Check for rounding
157		/* Round, might overflow to inf, this is OK */
158		*hp = (uint16_t)((hs | he | hm) + (uint16_t)1u);
159	else
160		*hp = hs | he | hm;  // No rounding
161}
162
163void
164lws_halfp2singles(uint32_t *xp, uint16_t h)
165{
166	uint16_t hs, he, hm;
167	uint32_t xs, xe, xm;
168	int32_t xes;
169	int e;
170
171	if (!(h & 0x7FFFu)) {  // Signed zero
172		*xp = ((uint32_t)h) << 16;  // Return the signed zero
173
174		return;
175	}
176
177	hs = h & 0x8000u;  // Pick off sign bit
178	he = h & 0x7C00u;  // Pick off exponent bits
179	hm = h & 0x03FFu;  // Pick off mantissa bits
180
181	if (!he) {  // Denormal will convert to normalized
182		e = -1;
183
184		/* figure out how much extra to adjust the exponent */
185		do {
186			e++;
187			hm = (uint16_t)(hm << 1);
188			/* Shift until leading bit overflows into exponent */
189		} while (!(hm & 0x0400u));
190
191		xs = ((uint32_t) hs) << 16; // Sign bit
192
193		/* Exponent unbias the halfp, then bias the single */
194		xes = ((int32_t)(he >> 10)) - 15 + 127 - e;
195		xe = (uint32_t)(xes << 23); // Exponent
196		xm = ((uint32_t)(hm & 0x03FFu)) << 13; // Mantissa
197
198		*xp = xs | xe | xm;
199
200		return;
201	}
202
203	if (he == 0x7C00u) {  /* Inf or NaN (all the exponent bits are set) */
204		if (!hm) { /* If mantissa is zero ...
205			  * Signed Inf
206			  */
207			*xp = (((uint32_t)hs) << 16) | ((uint32_t)0x7F800000u);
208
209			return;
210		}
211
212		 /* ... NaN, only 1st mantissa bit set */
213		*xp = (uint32_t)0xFFC00000u;
214
215		return;
216	}
217
218	/* Normalized number */
219
220	xs = ((uint32_t)hs) << 16; // Sign bit
221	/* Exponent unbias the halfp, then bias the single */
222	xes = ((int32_t)(he >> 10)) - 15 + 127;
223	xe = (uint32_t)(xes << 23); // Exponent
224	xm = ((uint32_t)hm) << 13; // Mantissa
225
226	/* Combine sign bit, exponent bits, and mantissa bits */
227	*xp = xs | xe | xm;
228}
229