1b815c7f3Sopenharmony_ci/*
2b815c7f3Sopenharmony_ci * This source code is a product of Sun Microsystems, Inc. and is provided
3b815c7f3Sopenharmony_ci * for unrestricted use.  Users may copy or modify this source code without
4b815c7f3Sopenharmony_ci * charge.
5b815c7f3Sopenharmony_ci *
6b815c7f3Sopenharmony_ci * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
7b815c7f3Sopenharmony_ci * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
8b815c7f3Sopenharmony_ci * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
9b815c7f3Sopenharmony_ci *
10b815c7f3Sopenharmony_ci * Sun source code is provided with no support and without any obligation on
11b815c7f3Sopenharmony_ci * the part of Sun Microsystems, Inc. to assist in its use, correction,
12b815c7f3Sopenharmony_ci * modification or enhancement.
13b815c7f3Sopenharmony_ci *
14b815c7f3Sopenharmony_ci * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
15b815c7f3Sopenharmony_ci * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
16b815c7f3Sopenharmony_ci * OR ANY PART THEREOF.
17b815c7f3Sopenharmony_ci *
18b815c7f3Sopenharmony_ci * In no event will Sun Microsystems, Inc. be liable for any lost revenue
19b815c7f3Sopenharmony_ci * or profits or other special, indirect and consequential damages, even if
20b815c7f3Sopenharmony_ci * Sun has been advised of the possibility of such damages.
21b815c7f3Sopenharmony_ci *
22b815c7f3Sopenharmony_ci * Sun Microsystems, Inc.
23b815c7f3Sopenharmony_ci * 2550 Garcia Avenue
24b815c7f3Sopenharmony_ci * Mountain View, California  94043
25b815c7f3Sopenharmony_ci */
26b815c7f3Sopenharmony_ci
27b815c7f3Sopenharmony_ci/*
28b815c7f3Sopenharmony_ci * g72x.c
29b815c7f3Sopenharmony_ci *
30b815c7f3Sopenharmony_ci * Common routines for G.721 and G.723 conversions.
31b815c7f3Sopenharmony_ci */
32b815c7f3Sopenharmony_ci
33b815c7f3Sopenharmony_ci#include <stdio.h>
34b815c7f3Sopenharmony_ci#include <stdlib.h>
35b815c7f3Sopenharmony_ci#include <string.h>
36b815c7f3Sopenharmony_ci
37b815c7f3Sopenharmony_ci#include "g72x.h"
38b815c7f3Sopenharmony_ci#include "g72x_priv.h"
39b815c7f3Sopenharmony_ci
40b815c7f3Sopenharmony_cistatic G72x_STATE * g72x_state_new (void) ;
41b815c7f3Sopenharmony_cistatic int unpack_bytes (int bits, int blocksize, const unsigned char * block, short * samples) ;
42b815c7f3Sopenharmony_cistatic int pack_bytes (int bits, const short * samples, unsigned char * block) ;
43b815c7f3Sopenharmony_ci
44b815c7f3Sopenharmony_cistatic
45b815c7f3Sopenharmony_cishort power2 [15] =
46b815c7f3Sopenharmony_ci{	1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80,
47b815c7f3Sopenharmony_ci	0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000
48b815c7f3Sopenharmony_ci} ;
49b815c7f3Sopenharmony_ci
50b815c7f3Sopenharmony_ci/*
51b815c7f3Sopenharmony_ci * quan ()
52b815c7f3Sopenharmony_ci *
53b815c7f3Sopenharmony_ci * quantizes the input val against the table of size short integers.
54b815c7f3Sopenharmony_ci * It returns i if table [i - 1] <= val < table [i].
55b815c7f3Sopenharmony_ci *
56b815c7f3Sopenharmony_ci * Using linear search for simple coding.
57b815c7f3Sopenharmony_ci */
58b815c7f3Sopenharmony_cistatic
59b815c7f3Sopenharmony_ciint quan (int val, short *table, int size)
60b815c7f3Sopenharmony_ci{
61b815c7f3Sopenharmony_ci	int		i ;
62b815c7f3Sopenharmony_ci
63b815c7f3Sopenharmony_ci	for (i = 0 ; i < size ; i++)
64b815c7f3Sopenharmony_ci		if (val < *table++)
65b815c7f3Sopenharmony_ci			break ;
66b815c7f3Sopenharmony_ci	return i ;
67b815c7f3Sopenharmony_ci}
68b815c7f3Sopenharmony_ci
69b815c7f3Sopenharmony_ci/*
70b815c7f3Sopenharmony_ci * fmult ()
71b815c7f3Sopenharmony_ci *
72b815c7f3Sopenharmony_ci * returns the integer product of the 14-bit integer "an" and
73b815c7f3Sopenharmony_ci * "floating point" representation (4-bit exponent, 6-bit mantessa) "srn".
74b815c7f3Sopenharmony_ci */
75b815c7f3Sopenharmony_cistatic
76b815c7f3Sopenharmony_ciint fmult (int an, int srn)
77b815c7f3Sopenharmony_ci{
78b815c7f3Sopenharmony_ci	short		anmag, anexp, anmant ;
79b815c7f3Sopenharmony_ci	short		wanexp, wanmant ;
80b815c7f3Sopenharmony_ci	short		retval ;
81b815c7f3Sopenharmony_ci
82b815c7f3Sopenharmony_ci	anmag = (an > 0) ? an : ((-an) & 0x1FFF) ;
83b815c7f3Sopenharmony_ci	anexp = quan (anmag, power2, 15) - 6 ;
84b815c7f3Sopenharmony_ci	anmant = (anmag == 0) ? 32 :
85b815c7f3Sopenharmony_ci				(anexp >= 0) ? anmag >> anexp : anmag << -anexp ;
86b815c7f3Sopenharmony_ci	wanexp = anexp + ((srn >> 6) & 0xF) - 13 ;
87b815c7f3Sopenharmony_ci
88b815c7f3Sopenharmony_ci	/*
89b815c7f3Sopenharmony_ci	** The original was :
90b815c7f3Sopenharmony_ci	**		wanmant = (anmant * (srn & 0x3F) + 0x30) >> 4 ;
91b815c7f3Sopenharmony_ci	** but could see no valid reason for the + 0x30.
92b815c7f3Sopenharmony_ci	** Removed it and it improved the SNR of the codec.
93b815c7f3Sopenharmony_ci	*/
94b815c7f3Sopenharmony_ci
95b815c7f3Sopenharmony_ci	wanmant = (anmant * (srn & 0x3F)) >> 4 ;
96b815c7f3Sopenharmony_ci
97b815c7f3Sopenharmony_ci	retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) : (wanmant >> -wanexp) ;
98b815c7f3Sopenharmony_ci
99b815c7f3Sopenharmony_ci	return (((an ^ srn) < 0) ? -retval : retval) ;
100b815c7f3Sopenharmony_ci}
101b815c7f3Sopenharmony_ci
102b815c7f3Sopenharmony_cistatic G72x_STATE * g72x_state_new (void)
103b815c7f3Sopenharmony_ci{	return calloc (1, sizeof (G72x_STATE)) ;
104b815c7f3Sopenharmony_ci}
105b815c7f3Sopenharmony_ci
106b815c7f3Sopenharmony_ci/*
107b815c7f3Sopenharmony_ci * private_init_state ()
108b815c7f3Sopenharmony_ci *
109b815c7f3Sopenharmony_ci * This routine initializes and/or resets the G72x_PRIVATE structure
110b815c7f3Sopenharmony_ci * pointed to by 'state_ptr'.
111b815c7f3Sopenharmony_ci * All the initial state values are specified in the CCITT G.721 document.
112b815c7f3Sopenharmony_ci */
113b815c7f3Sopenharmony_civoid private_init_state (G72x_STATE *state_ptr)
114b815c7f3Sopenharmony_ci{
115b815c7f3Sopenharmony_ci	int		cnta ;
116b815c7f3Sopenharmony_ci
117b815c7f3Sopenharmony_ci	state_ptr->yl = 34816 ;
118b815c7f3Sopenharmony_ci	state_ptr->yu = 544 ;
119b815c7f3Sopenharmony_ci	state_ptr->dms = 0 ;
120b815c7f3Sopenharmony_ci	state_ptr->dml = 0 ;
121b815c7f3Sopenharmony_ci	state_ptr->ap = 0 ;
122b815c7f3Sopenharmony_ci	for (cnta = 0 ; cnta < 2 ; cnta++)
123b815c7f3Sopenharmony_ci	{	state_ptr->a [cnta] = 0 ;
124b815c7f3Sopenharmony_ci		state_ptr->pk [cnta] = 0 ;
125b815c7f3Sopenharmony_ci		state_ptr->sr [cnta] = 32 ;
126b815c7f3Sopenharmony_ci		}
127b815c7f3Sopenharmony_ci	for (cnta = 0 ; cnta < 6 ; cnta++)
128b815c7f3Sopenharmony_ci	{	state_ptr->b [cnta] = 0 ;
129b815c7f3Sopenharmony_ci		state_ptr->dq [cnta] = 32 ;
130b815c7f3Sopenharmony_ci		}
131b815c7f3Sopenharmony_ci	state_ptr->td = 0 ;
132b815c7f3Sopenharmony_ci}	/* private_init_state */
133b815c7f3Sopenharmony_ci
134b815c7f3Sopenharmony_cistruct g72x_state * g72x_reader_init (int codec, int *blocksize, int *samplesperblock)
135b815c7f3Sopenharmony_ci{	G72x_STATE *pstate ;
136b815c7f3Sopenharmony_ci
137b815c7f3Sopenharmony_ci	if ((pstate = g72x_state_new ()) == NULL)
138b815c7f3Sopenharmony_ci		return NULL ;
139b815c7f3Sopenharmony_ci
140b815c7f3Sopenharmony_ci	private_init_state (pstate) ;
141b815c7f3Sopenharmony_ci
142b815c7f3Sopenharmony_ci	pstate->encoder = NULL ;
143b815c7f3Sopenharmony_ci
144b815c7f3Sopenharmony_ci	switch (codec)
145b815c7f3Sopenharmony_ci	{	case G723_16_BITS_PER_SAMPLE : /* 2 bits per sample. */
146b815c7f3Sopenharmony_ci				pstate->decoder = g723_16_decoder ;
147b815c7f3Sopenharmony_ci				*blocksize = G723_16_BYTES_PER_BLOCK ;
148b815c7f3Sopenharmony_ci				*samplesperblock = G723_16_SAMPLES_PER_BLOCK ;
149b815c7f3Sopenharmony_ci				pstate->codec_bits = 2 ;
150b815c7f3Sopenharmony_ci				pstate->blocksize = G723_16_BYTES_PER_BLOCK ;
151b815c7f3Sopenharmony_ci				pstate->samplesperblock = G723_16_SAMPLES_PER_BLOCK ;
152b815c7f3Sopenharmony_ci				break ;
153b815c7f3Sopenharmony_ci
154b815c7f3Sopenharmony_ci		case G723_24_BITS_PER_SAMPLE : /* 3 bits per sample. */
155b815c7f3Sopenharmony_ci				pstate->decoder = g723_24_decoder ;
156b815c7f3Sopenharmony_ci				*blocksize = G723_24_BYTES_PER_BLOCK ;
157b815c7f3Sopenharmony_ci				*samplesperblock = G723_24_SAMPLES_PER_BLOCK ;
158b815c7f3Sopenharmony_ci				pstate->codec_bits = 3 ;
159b815c7f3Sopenharmony_ci				pstate->blocksize = G723_24_BYTES_PER_BLOCK ;
160b815c7f3Sopenharmony_ci				pstate->samplesperblock = G723_24_SAMPLES_PER_BLOCK ;
161b815c7f3Sopenharmony_ci				break ;
162b815c7f3Sopenharmony_ci
163b815c7f3Sopenharmony_ci		case G721_32_BITS_PER_SAMPLE : /* 4 bits per sample. */
164b815c7f3Sopenharmony_ci				pstate->decoder = g721_decoder ;
165b815c7f3Sopenharmony_ci				*blocksize = G721_32_BYTES_PER_BLOCK ;
166b815c7f3Sopenharmony_ci				*samplesperblock = G721_32_SAMPLES_PER_BLOCK ;
167b815c7f3Sopenharmony_ci				pstate->codec_bits = 4 ;
168b815c7f3Sopenharmony_ci				pstate->blocksize = G721_32_BYTES_PER_BLOCK ;
169b815c7f3Sopenharmony_ci				pstate->samplesperblock = G721_32_SAMPLES_PER_BLOCK ;
170b815c7f3Sopenharmony_ci				break ;
171b815c7f3Sopenharmony_ci
172b815c7f3Sopenharmony_ci		case G721_40_BITS_PER_SAMPLE : /* 5 bits per sample. */
173b815c7f3Sopenharmony_ci				pstate->decoder = g723_40_decoder ;
174b815c7f3Sopenharmony_ci				*blocksize = G721_40_BYTES_PER_BLOCK ;
175b815c7f3Sopenharmony_ci				*samplesperblock = G721_40_SAMPLES_PER_BLOCK ;
176b815c7f3Sopenharmony_ci				pstate->codec_bits = 5 ;
177b815c7f3Sopenharmony_ci				pstate->blocksize = G721_40_BYTES_PER_BLOCK ;
178b815c7f3Sopenharmony_ci				pstate->samplesperblock = G721_40_SAMPLES_PER_BLOCK ;
179b815c7f3Sopenharmony_ci				break ;
180b815c7f3Sopenharmony_ci
181b815c7f3Sopenharmony_ci		default :
182b815c7f3Sopenharmony_ci				free (pstate) ;
183b815c7f3Sopenharmony_ci				return NULL ;
184b815c7f3Sopenharmony_ci		} ;
185b815c7f3Sopenharmony_ci
186b815c7f3Sopenharmony_ci	return pstate ;
187b815c7f3Sopenharmony_ci}	/* g72x_reader_init */
188b815c7f3Sopenharmony_ci
189b815c7f3Sopenharmony_cistruct g72x_state * g72x_writer_init (int codec, int *blocksize, int *samplesperblock)
190b815c7f3Sopenharmony_ci{	G72x_STATE *pstate ;
191b815c7f3Sopenharmony_ci
192b815c7f3Sopenharmony_ci	if ((pstate = g72x_state_new ()) == NULL)
193b815c7f3Sopenharmony_ci		return NULL ;
194b815c7f3Sopenharmony_ci
195b815c7f3Sopenharmony_ci	private_init_state (pstate) ;
196b815c7f3Sopenharmony_ci	pstate->decoder = NULL ;
197b815c7f3Sopenharmony_ci
198b815c7f3Sopenharmony_ci	switch (codec)
199b815c7f3Sopenharmony_ci	{	case G723_16_BITS_PER_SAMPLE : /* 2 bits per sample. */
200b815c7f3Sopenharmony_ci				pstate->encoder = g723_16_encoder ;
201b815c7f3Sopenharmony_ci				*blocksize = G723_16_BYTES_PER_BLOCK ;
202b815c7f3Sopenharmony_ci				*samplesperblock = G723_16_SAMPLES_PER_BLOCK ;
203b815c7f3Sopenharmony_ci				pstate->codec_bits = 2 ;
204b815c7f3Sopenharmony_ci				pstate->blocksize = G723_16_BYTES_PER_BLOCK ;
205b815c7f3Sopenharmony_ci				pstate->samplesperblock = G723_16_SAMPLES_PER_BLOCK ;
206b815c7f3Sopenharmony_ci				break ;
207b815c7f3Sopenharmony_ci
208b815c7f3Sopenharmony_ci		case G723_24_BITS_PER_SAMPLE : /* 3 bits per sample. */
209b815c7f3Sopenharmony_ci				pstate->encoder = g723_24_encoder ;
210b815c7f3Sopenharmony_ci				*blocksize = G723_24_BYTES_PER_BLOCK ;
211b815c7f3Sopenharmony_ci				*samplesperblock = G723_24_SAMPLES_PER_BLOCK ;
212b815c7f3Sopenharmony_ci				pstate->codec_bits = 3 ;
213b815c7f3Sopenharmony_ci				pstate->blocksize = G723_24_BYTES_PER_BLOCK ;
214b815c7f3Sopenharmony_ci				pstate->samplesperblock = G723_24_SAMPLES_PER_BLOCK ;
215b815c7f3Sopenharmony_ci				break ;
216b815c7f3Sopenharmony_ci
217b815c7f3Sopenharmony_ci		case G721_32_BITS_PER_SAMPLE : /* 4 bits per sample. */
218b815c7f3Sopenharmony_ci				pstate->encoder = g721_encoder ;
219b815c7f3Sopenharmony_ci				*blocksize = G721_32_BYTES_PER_BLOCK ;
220b815c7f3Sopenharmony_ci				*samplesperblock = G721_32_SAMPLES_PER_BLOCK ;
221b815c7f3Sopenharmony_ci				pstate->codec_bits = 4 ;
222b815c7f3Sopenharmony_ci				pstate->blocksize = G721_32_BYTES_PER_BLOCK ;
223b815c7f3Sopenharmony_ci				pstate->samplesperblock = G721_32_SAMPLES_PER_BLOCK ;
224b815c7f3Sopenharmony_ci				break ;
225b815c7f3Sopenharmony_ci
226b815c7f3Sopenharmony_ci		case G721_40_BITS_PER_SAMPLE : /* 5 bits per sample. */
227b815c7f3Sopenharmony_ci				pstate->encoder = g723_40_encoder ;
228b815c7f3Sopenharmony_ci				*blocksize = G721_40_BYTES_PER_BLOCK ;
229b815c7f3Sopenharmony_ci				*samplesperblock = G721_40_SAMPLES_PER_BLOCK ;
230b815c7f3Sopenharmony_ci				pstate->codec_bits = 5 ;
231b815c7f3Sopenharmony_ci				pstate->blocksize = G721_40_BYTES_PER_BLOCK ;
232b815c7f3Sopenharmony_ci				pstate->samplesperblock = G721_40_SAMPLES_PER_BLOCK ;
233b815c7f3Sopenharmony_ci				break ;
234b815c7f3Sopenharmony_ci
235b815c7f3Sopenharmony_ci		default :
236b815c7f3Sopenharmony_ci				free (pstate) ;
237b815c7f3Sopenharmony_ci				return NULL ;
238b815c7f3Sopenharmony_ci		} ;
239b815c7f3Sopenharmony_ci
240b815c7f3Sopenharmony_ci	return pstate ;
241b815c7f3Sopenharmony_ci}	/* g72x_writer_init */
242b815c7f3Sopenharmony_ci
243b815c7f3Sopenharmony_ciint g72x_decode_block (G72x_STATE *pstate, const unsigned char *block, short *samples)
244b815c7f3Sopenharmony_ci{	int	k, count ;
245b815c7f3Sopenharmony_ci
246b815c7f3Sopenharmony_ci	count = unpack_bytes (pstate->codec_bits, pstate->blocksize, block, samples) ;
247b815c7f3Sopenharmony_ci
248b815c7f3Sopenharmony_ci	for (k = 0 ; k < count ; k++)
249b815c7f3Sopenharmony_ci		samples [k] = pstate->decoder (samples [k], pstate) ;
250b815c7f3Sopenharmony_ci
251b815c7f3Sopenharmony_ci	return 0 ;
252b815c7f3Sopenharmony_ci}	/* g72x_decode_block */
253b815c7f3Sopenharmony_ci
254b815c7f3Sopenharmony_ciint g72x_encode_block (G72x_STATE *pstate, short *samples, unsigned char *block)
255b815c7f3Sopenharmony_ci{	int k, count ;
256b815c7f3Sopenharmony_ci
257b815c7f3Sopenharmony_ci	for (k = 0 ; k < pstate->samplesperblock ; k++)
258b815c7f3Sopenharmony_ci		samples [k] = pstate->encoder (samples [k], pstate) ;
259b815c7f3Sopenharmony_ci
260b815c7f3Sopenharmony_ci	count = pack_bytes (pstate->codec_bits, samples, block) ;
261b815c7f3Sopenharmony_ci
262b815c7f3Sopenharmony_ci	return count ;
263b815c7f3Sopenharmony_ci}	/* g72x_encode_block */
264b815c7f3Sopenharmony_ci
265b815c7f3Sopenharmony_ci/*
266b815c7f3Sopenharmony_ci * predictor_zero ()
267b815c7f3Sopenharmony_ci *
268b815c7f3Sopenharmony_ci * computes the estimated signal from 6-zero predictor.
269b815c7f3Sopenharmony_ci *
270b815c7f3Sopenharmony_ci */
271b815c7f3Sopenharmony_ciint predictor_zero (G72x_STATE *state_ptr)
272b815c7f3Sopenharmony_ci{
273b815c7f3Sopenharmony_ci	int		i ;
274b815c7f3Sopenharmony_ci	int		sezi ;
275b815c7f3Sopenharmony_ci
276b815c7f3Sopenharmony_ci	sezi = fmult (state_ptr->b [0] >> 2, state_ptr->dq [0]) ;
277b815c7f3Sopenharmony_ci	for (i = 1 ; i < 6 ; i++)			/* ACCUM */
278b815c7f3Sopenharmony_ci		sezi += fmult (state_ptr->b [i] >> 2, state_ptr->dq [i]) ;
279b815c7f3Sopenharmony_ci	return sezi ;
280b815c7f3Sopenharmony_ci}
281b815c7f3Sopenharmony_ci/*
282b815c7f3Sopenharmony_ci * predictor_pole ()
283b815c7f3Sopenharmony_ci *
284b815c7f3Sopenharmony_ci * computes the estimated signal from 2-pole predictor.
285b815c7f3Sopenharmony_ci *
286b815c7f3Sopenharmony_ci */
287b815c7f3Sopenharmony_ciint predictor_pole (G72x_STATE *state_ptr)
288b815c7f3Sopenharmony_ci{
289b815c7f3Sopenharmony_ci	return (fmult (state_ptr->a [1] >> 2, state_ptr->sr [1]) +
290b815c7f3Sopenharmony_ci			fmult (state_ptr->a [0] >> 2, state_ptr->sr [0])) ;
291b815c7f3Sopenharmony_ci}
292b815c7f3Sopenharmony_ci/*
293b815c7f3Sopenharmony_ci * step_size ()
294b815c7f3Sopenharmony_ci *
295b815c7f3Sopenharmony_ci * computes the quantization step size of the adaptive quantizer.
296b815c7f3Sopenharmony_ci *
297b815c7f3Sopenharmony_ci */
298b815c7f3Sopenharmony_ciint step_size (G72x_STATE *state_ptr)
299b815c7f3Sopenharmony_ci{
300b815c7f3Sopenharmony_ci	int		y ;
301b815c7f3Sopenharmony_ci	int		dif ;
302b815c7f3Sopenharmony_ci	int		al ;
303b815c7f3Sopenharmony_ci
304b815c7f3Sopenharmony_ci	if (state_ptr->ap >= 256)
305b815c7f3Sopenharmony_ci		return (state_ptr->yu) ;
306b815c7f3Sopenharmony_ci	else {
307b815c7f3Sopenharmony_ci		y = state_ptr->yl >> 6 ;
308b815c7f3Sopenharmony_ci		dif = state_ptr->yu - y ;
309b815c7f3Sopenharmony_ci		al = state_ptr->ap >> 2 ;
310b815c7f3Sopenharmony_ci		if (dif > 0)
311b815c7f3Sopenharmony_ci			y += (dif * al) >> 6 ;
312b815c7f3Sopenharmony_ci		else if (dif < 0)
313b815c7f3Sopenharmony_ci			y += (dif * al + 0x3F) >> 6 ;
314b815c7f3Sopenharmony_ci		return y ;
315b815c7f3Sopenharmony_ci	}
316b815c7f3Sopenharmony_ci}
317b815c7f3Sopenharmony_ci
318b815c7f3Sopenharmony_ci/*
319b815c7f3Sopenharmony_ci * quantize ()
320b815c7f3Sopenharmony_ci *
321b815c7f3Sopenharmony_ci * Given a raw sample, 'd', of the difference signal and a
322b815c7f3Sopenharmony_ci * quantization step size scale factor, 'y', this routine returns the
323b815c7f3Sopenharmony_ci * ADPCM codeword to which that sample gets quantized.  The step
324b815c7f3Sopenharmony_ci * size scale factor division operation is done in the log base 2 domain
325b815c7f3Sopenharmony_ci * as a subtraction.
326b815c7f3Sopenharmony_ci */
327b815c7f3Sopenharmony_ciint quantize (
328b815c7f3Sopenharmony_ci	int		d,	/* Raw difference signal sample */
329b815c7f3Sopenharmony_ci	int		y,	/* Step size multiplier */
330b815c7f3Sopenharmony_ci	short	*table,	/* quantization table */
331b815c7f3Sopenharmony_ci	int		size)	/* table size of short integers */
332b815c7f3Sopenharmony_ci{
333b815c7f3Sopenharmony_ci	short		dqm ;	/* Magnitude of 'd' */
334b815c7f3Sopenharmony_ci	short		expon ;	/* Integer part of base 2 log of 'd' */
335b815c7f3Sopenharmony_ci	short		mant ;	/* Fractional part of base 2 log */
336b815c7f3Sopenharmony_ci	short		dl ;	/* Log of magnitude of 'd' */
337b815c7f3Sopenharmony_ci	short		dln ;	/* Step size scale factor normalized log */
338b815c7f3Sopenharmony_ci	int		i ;
339b815c7f3Sopenharmony_ci
340b815c7f3Sopenharmony_ci	/*
341b815c7f3Sopenharmony_ci	 * LOG
342b815c7f3Sopenharmony_ci	 *
343b815c7f3Sopenharmony_ci	 * Compute base 2 log of 'd', and store in 'dl'.
344b815c7f3Sopenharmony_ci	 */
345b815c7f3Sopenharmony_ci	dqm = abs (d) ;
346b815c7f3Sopenharmony_ci	expon = quan (dqm >> 1, power2, 15) ;
347b815c7f3Sopenharmony_ci	mant = ((dqm << 7) >> expon) & 0x7F ;	/* Fractional portion. */
348b815c7f3Sopenharmony_ci	dl = (expon << 7) + mant ;
349b815c7f3Sopenharmony_ci
350b815c7f3Sopenharmony_ci	/*
351b815c7f3Sopenharmony_ci	 * SUBTB
352b815c7f3Sopenharmony_ci	 *
353b815c7f3Sopenharmony_ci	 * "Divide" by step size multiplier.
354b815c7f3Sopenharmony_ci	 */
355b815c7f3Sopenharmony_ci	dln = dl - (y >> 2) ;
356b815c7f3Sopenharmony_ci
357b815c7f3Sopenharmony_ci	/*
358b815c7f3Sopenharmony_ci	 * QUAN
359b815c7f3Sopenharmony_ci	 *
360b815c7f3Sopenharmony_ci	 * Obtain codword i for 'd'.
361b815c7f3Sopenharmony_ci	 */
362b815c7f3Sopenharmony_ci	i = quan (dln, table, size) ;
363b815c7f3Sopenharmony_ci	if (d < 0)			/* take 1's complement of i */
364b815c7f3Sopenharmony_ci		return ((size << 1) + 1 - i) ;
365b815c7f3Sopenharmony_ci	else if (i == 0)		/* take 1's complement of 0 */
366b815c7f3Sopenharmony_ci		return ((size << 1) + 1) ; /* new in 1988 */
367b815c7f3Sopenharmony_ci
368b815c7f3Sopenharmony_ci	return i ;
369b815c7f3Sopenharmony_ci}
370b815c7f3Sopenharmony_ci/*
371b815c7f3Sopenharmony_ci * reconstruct ()
372b815c7f3Sopenharmony_ci *
373b815c7f3Sopenharmony_ci * Returns reconstructed difference signal 'dq' obtained from
374b815c7f3Sopenharmony_ci * codeword 'i' and quantization step size scale factor 'y'.
375b815c7f3Sopenharmony_ci * Multiplication is performed in log base 2 domain as addition.
376b815c7f3Sopenharmony_ci */
377b815c7f3Sopenharmony_ciint
378b815c7f3Sopenharmony_cireconstruct (
379b815c7f3Sopenharmony_ci	int		sign,	/* 0 for non-negative value */
380b815c7f3Sopenharmony_ci	int		dqln,	/* G.72x codeword */
381b815c7f3Sopenharmony_ci	int		y)	/* Step size multiplier */
382b815c7f3Sopenharmony_ci{
383b815c7f3Sopenharmony_ci	short		dql ;	/* Log of 'dq' magnitude */
384b815c7f3Sopenharmony_ci	short		dex ;	/* Integer part of log */
385b815c7f3Sopenharmony_ci	short		dqt ;
386b815c7f3Sopenharmony_ci	short		dq ;	/* Reconstructed difference signal sample */
387b815c7f3Sopenharmony_ci
388b815c7f3Sopenharmony_ci	dql = dqln + (y >> 2) ;	/* ADDA */
389b815c7f3Sopenharmony_ci
390b815c7f3Sopenharmony_ci	if (dql < 0)
391b815c7f3Sopenharmony_ci		return ((sign) ? -0x8000 : 0) ;
392b815c7f3Sopenharmony_ci	else		/* ANTILOG */
393b815c7f3Sopenharmony_ci	{	dex = (dql >> 7) & 15 ;
394b815c7f3Sopenharmony_ci		dqt = 128 + (dql & 127) ;
395b815c7f3Sopenharmony_ci		dq = (dqt << 7) >> (14 - dex) ;
396b815c7f3Sopenharmony_ci		return ((sign) ? (dq - 0x8000) : dq) ;
397b815c7f3Sopenharmony_ci		}
398b815c7f3Sopenharmony_ci}
399b815c7f3Sopenharmony_ci
400b815c7f3Sopenharmony_ci
401b815c7f3Sopenharmony_ci/*
402b815c7f3Sopenharmony_ci * update ()
403b815c7f3Sopenharmony_ci *
404b815c7f3Sopenharmony_ci * updates the state variables for each output code
405b815c7f3Sopenharmony_ci */
406b815c7f3Sopenharmony_civoid
407b815c7f3Sopenharmony_ciupdate (
408b815c7f3Sopenharmony_ci	int		code_size,	/* distinguish 723_40 with others */
409b815c7f3Sopenharmony_ci	int		y,		/* quantizer step size */
410b815c7f3Sopenharmony_ci	int		wi,		/* scale factor multiplier */
411b815c7f3Sopenharmony_ci	int		fi,		/* for long/short term energies */
412b815c7f3Sopenharmony_ci	int		dq,		/* quantized prediction difference */
413b815c7f3Sopenharmony_ci	int		sr,		/* reconstructed signal */
414b815c7f3Sopenharmony_ci	int		dqsez,		/* difference from 2-pole predictor */
415b815c7f3Sopenharmony_ci	G72x_STATE *state_ptr)	/* coder state pointer */
416b815c7f3Sopenharmony_ci{
417b815c7f3Sopenharmony_ci	int		cnt ;
418b815c7f3Sopenharmony_ci	short		mag, expon ;	/* Adaptive predictor, FLOAT A */
419b815c7f3Sopenharmony_ci	short		a2p = 0 ;	/* LIMC */
420b815c7f3Sopenharmony_ci	short		a1ul ;		/* UPA1 */
421b815c7f3Sopenharmony_ci	short		pks1 ;		/* UPA2 */
422b815c7f3Sopenharmony_ci	short		fa1 ;
423b815c7f3Sopenharmony_ci	char		tr ;		/* tone/transition detector */
424b815c7f3Sopenharmony_ci	short		ylint, thr2, dqthr ;
425b815c7f3Sopenharmony_ci	short		ylfrac, thr1 ;
426b815c7f3Sopenharmony_ci	short		pk0 ;
427b815c7f3Sopenharmony_ci
428b815c7f3Sopenharmony_ci	pk0 = (dqsez < 0) ? 1 : 0 ;	/* needed in updating predictor poles */
429b815c7f3Sopenharmony_ci
430b815c7f3Sopenharmony_ci	mag = dq & 0x7FFF ;		/* prediction difference magnitude */
431b815c7f3Sopenharmony_ci	/* TRANS */
432b815c7f3Sopenharmony_ci	ylint = state_ptr->yl >> 15 ;	/* exponent part of yl */
433b815c7f3Sopenharmony_ci	ylfrac = (state_ptr->yl >> 10) & 0x1F ;	/* fractional part of yl */
434b815c7f3Sopenharmony_ci	thr1 = (32 + ylfrac) << ylint ;		/* threshold */
435b815c7f3Sopenharmony_ci	thr2 = (ylint > 9) ? 31 << 10 : thr1 ;	/* limit thr2 to 31 << 10 */
436b815c7f3Sopenharmony_ci	dqthr = (thr2 + (thr2 >> 1)) >> 1 ;	/* dqthr = 0.75 * thr2 */
437b815c7f3Sopenharmony_ci	if (state_ptr->td == 0)		/* signal supposed voice */
438b815c7f3Sopenharmony_ci		tr = 0 ;
439b815c7f3Sopenharmony_ci	else if (mag <= dqthr)		/* supposed data, but small mag */
440b815c7f3Sopenharmony_ci		tr = 0 ;			/* treated as voice */
441b815c7f3Sopenharmony_ci	else				/* signal is data (modem) */
442b815c7f3Sopenharmony_ci		tr = 1 ;
443b815c7f3Sopenharmony_ci
444b815c7f3Sopenharmony_ci	/*
445b815c7f3Sopenharmony_ci	 * Quantizer scale factor adaptation.
446b815c7f3Sopenharmony_ci	 */
447b815c7f3Sopenharmony_ci
448b815c7f3Sopenharmony_ci	/* FUNCTW & FILTD & DELAY */
449b815c7f3Sopenharmony_ci	/* update non-steady state step size multiplier */
450b815c7f3Sopenharmony_ci	state_ptr->yu = y + ((wi - y) >> 5) ;
451b815c7f3Sopenharmony_ci
452b815c7f3Sopenharmony_ci	/* LIMB */
453b815c7f3Sopenharmony_ci	if (state_ptr->yu < 544)	/* 544 <= yu <= 5120 */
454b815c7f3Sopenharmony_ci		state_ptr->yu = 544 ;
455b815c7f3Sopenharmony_ci	else if (state_ptr->yu > 5120)
456b815c7f3Sopenharmony_ci		state_ptr->yu = 5120 ;
457b815c7f3Sopenharmony_ci
458b815c7f3Sopenharmony_ci	/* FILTE & DELAY */
459b815c7f3Sopenharmony_ci	/* update steady state step size multiplier */
460b815c7f3Sopenharmony_ci	state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6) ;
461b815c7f3Sopenharmony_ci
462b815c7f3Sopenharmony_ci	/*
463b815c7f3Sopenharmony_ci	 * Adaptive predictor coefficients.
464b815c7f3Sopenharmony_ci	 */
465b815c7f3Sopenharmony_ci	if (tr == 1) {			/* reset a's and b's for modem signal */
466b815c7f3Sopenharmony_ci		state_ptr->a [0] = 0 ;
467b815c7f3Sopenharmony_ci		state_ptr->a [1] = 0 ;
468b815c7f3Sopenharmony_ci		state_ptr->b [0] = 0 ;
469b815c7f3Sopenharmony_ci		state_ptr->b [1] = 0 ;
470b815c7f3Sopenharmony_ci		state_ptr->b [2] = 0 ;
471b815c7f3Sopenharmony_ci		state_ptr->b [3] = 0 ;
472b815c7f3Sopenharmony_ci		state_ptr->b [4] = 0 ;
473b815c7f3Sopenharmony_ci		state_ptr->b [5] = 0 ;
474b815c7f3Sopenharmony_ci		}
475b815c7f3Sopenharmony_ci	else			/* update a's and b's */
476b815c7f3Sopenharmony_ci	{	pks1 = pk0 ^ state_ptr->pk [0] ;		/* UPA2 */
477b815c7f3Sopenharmony_ci
478b815c7f3Sopenharmony_ci		/* update predictor pole a [1] */
479b815c7f3Sopenharmony_ci		a2p = state_ptr->a [1] - (state_ptr->a [1] >> 7) ;
480b815c7f3Sopenharmony_ci		if (dqsez != 0)
481b815c7f3Sopenharmony_ci		{	fa1 = (pks1) ? state_ptr->a [0] : -state_ptr->a [0] ;
482b815c7f3Sopenharmony_ci			if (fa1 < -8191)	/* a2p = function of fa1 */
483b815c7f3Sopenharmony_ci				a2p -= 0x100 ;
484b815c7f3Sopenharmony_ci			else if (fa1 > 8191)
485b815c7f3Sopenharmony_ci				a2p += 0xFF ;
486b815c7f3Sopenharmony_ci			else
487b815c7f3Sopenharmony_ci				a2p += fa1 >> 5 ;
488b815c7f3Sopenharmony_ci
489b815c7f3Sopenharmony_ci			if (pk0 ^ state_ptr->pk [1])
490b815c7f3Sopenharmony_ci			{	/* LIMC */
491b815c7f3Sopenharmony_ci				if (a2p <= -12160)
492b815c7f3Sopenharmony_ci					a2p = -12288 ;
493b815c7f3Sopenharmony_ci				else if (a2p >= 12416)
494b815c7f3Sopenharmony_ci					a2p = 12288 ;
495b815c7f3Sopenharmony_ci				else
496b815c7f3Sopenharmony_ci					a2p -= 0x80 ;
497b815c7f3Sopenharmony_ci				}
498b815c7f3Sopenharmony_ci			else if (a2p <= -12416)
499b815c7f3Sopenharmony_ci				a2p = -12288 ;
500b815c7f3Sopenharmony_ci			else if (a2p >= 12160)
501b815c7f3Sopenharmony_ci				a2p = 12288 ;
502b815c7f3Sopenharmony_ci			else
503b815c7f3Sopenharmony_ci				a2p += 0x80 ;
504b815c7f3Sopenharmony_ci		}
505b815c7f3Sopenharmony_ci
506b815c7f3Sopenharmony_ci		/* TRIGB & DELAY */
507b815c7f3Sopenharmony_ci		state_ptr->a [1] = a2p ;
508b815c7f3Sopenharmony_ci
509b815c7f3Sopenharmony_ci		/* UPA1 */
510b815c7f3Sopenharmony_ci		/* update predictor pole a [0] */
511b815c7f3Sopenharmony_ci		state_ptr->a [0] -= state_ptr->a [0] >> 8 ;
512b815c7f3Sopenharmony_ci		if (dqsez != 0)
513b815c7f3Sopenharmony_ci		{	if (pks1 == 0)
514b815c7f3Sopenharmony_ci				state_ptr->a [0] += 192 ;
515b815c7f3Sopenharmony_ci			else
516b815c7f3Sopenharmony_ci				state_ptr->a [0] -= 192 ;
517b815c7f3Sopenharmony_ci			} ;
518b815c7f3Sopenharmony_ci
519b815c7f3Sopenharmony_ci		/* LIMD */
520b815c7f3Sopenharmony_ci		a1ul = 15360 - a2p ;
521b815c7f3Sopenharmony_ci		if (state_ptr->a [0] < -a1ul)
522b815c7f3Sopenharmony_ci			state_ptr->a [0] = -a1ul ;
523b815c7f3Sopenharmony_ci		else if (state_ptr->a [0] > a1ul)
524b815c7f3Sopenharmony_ci			state_ptr->a [0] = a1ul ;
525b815c7f3Sopenharmony_ci
526b815c7f3Sopenharmony_ci		/* UPB : update predictor zeros b [6] */
527b815c7f3Sopenharmony_ci		for (cnt = 0 ; cnt < 6 ; cnt++)
528b815c7f3Sopenharmony_ci		{	if (code_size == 5)		/* for 40Kbps G.723 */
529b815c7f3Sopenharmony_ci				state_ptr->b [cnt] -= state_ptr->b [cnt] >> 9 ;
530b815c7f3Sopenharmony_ci			else			/* for G.721 and 24Kbps G.723 */
531b815c7f3Sopenharmony_ci				state_ptr->b [cnt] -= state_ptr->b [cnt] >> 8 ;
532b815c7f3Sopenharmony_ci			if (dq & 0x7FFF)			/* XOR */
533b815c7f3Sopenharmony_ci			{	if ((dq ^ state_ptr->dq [cnt]) >= 0)
534b815c7f3Sopenharmony_ci					state_ptr->b [cnt] += 128 ;
535b815c7f3Sopenharmony_ci				else
536b815c7f3Sopenharmony_ci					state_ptr->b [cnt] -= 128 ;
537b815c7f3Sopenharmony_ci				}
538b815c7f3Sopenharmony_ci			}
539b815c7f3Sopenharmony_ci		}
540b815c7f3Sopenharmony_ci
541b815c7f3Sopenharmony_ci	for (cnt = 5 ; cnt > 0 ; cnt--)
542b815c7f3Sopenharmony_ci		state_ptr->dq [cnt] = state_ptr->dq [cnt - 1] ;
543b815c7f3Sopenharmony_ci	/* FLOAT A : convert dq [0] to 4-bit exp, 6-bit mantissa f.p. */
544b815c7f3Sopenharmony_ci	if (mag == 0)
545b815c7f3Sopenharmony_ci		state_ptr->dq [0] = (dq >= 0) ? 0x20 : 0xFC20 ;
546b815c7f3Sopenharmony_ci	else
547b815c7f3Sopenharmony_ci	{	expon = quan (mag, power2, 15) ;
548b815c7f3Sopenharmony_ci		state_ptr->dq [0] = (dq >= 0) ?
549b815c7f3Sopenharmony_ci			(expon << 6) + ((mag << 6) >> expon) :
550b815c7f3Sopenharmony_ci			(expon << 6) + ((mag << 6) >> expon) - 0x400 ;
551b815c7f3Sopenharmony_ci		}
552b815c7f3Sopenharmony_ci
553b815c7f3Sopenharmony_ci	state_ptr->sr [1] = state_ptr->sr [0] ;
554b815c7f3Sopenharmony_ci	/* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */
555b815c7f3Sopenharmony_ci	if (sr == 0)
556b815c7f3Sopenharmony_ci		state_ptr->sr [0] = 0x20 ;
557b815c7f3Sopenharmony_ci	else if (sr > 0)
558b815c7f3Sopenharmony_ci	{	expon = quan (sr, power2, 15) ;
559b815c7f3Sopenharmony_ci		state_ptr->sr [0] = (expon << 6) + ((sr << 6) >> expon) ;
560b815c7f3Sopenharmony_ci		}
561b815c7f3Sopenharmony_ci	else if (sr > -32768)
562b815c7f3Sopenharmony_ci	{	mag = -sr ;
563b815c7f3Sopenharmony_ci		expon = quan (mag, power2, 15) ;
564b815c7f3Sopenharmony_ci		state_ptr->sr [0] = (expon << 6) + ((mag << 6) >> expon) - 0x400 ;
565b815c7f3Sopenharmony_ci		}
566b815c7f3Sopenharmony_ci	else
567b815c7f3Sopenharmony_ci		state_ptr->sr [0] = (short) 0xFC20 ;
568b815c7f3Sopenharmony_ci
569b815c7f3Sopenharmony_ci	/* DELAY A */
570b815c7f3Sopenharmony_ci	state_ptr->pk [1] = state_ptr->pk [0] ;
571b815c7f3Sopenharmony_ci	state_ptr->pk [0] = pk0 ;
572b815c7f3Sopenharmony_ci
573b815c7f3Sopenharmony_ci	/* TONE */
574b815c7f3Sopenharmony_ci	if (tr == 1)		/* this sample has been treated as data */
575b815c7f3Sopenharmony_ci		state_ptr->td = 0 ;	/* next one will be treated as voice */
576b815c7f3Sopenharmony_ci	else if (a2p < -11776)	/* small sample-to-sample correlation */
577b815c7f3Sopenharmony_ci		state_ptr->td = 1 ;	/* signal may be data */
578b815c7f3Sopenharmony_ci	else				/* signal is voice */
579b815c7f3Sopenharmony_ci		state_ptr->td = 0 ;
580b815c7f3Sopenharmony_ci
581b815c7f3Sopenharmony_ci	/*
582b815c7f3Sopenharmony_ci	 * Adaptation speed control.
583b815c7f3Sopenharmony_ci	 */
584b815c7f3Sopenharmony_ci	state_ptr->dms += (fi - state_ptr->dms) >> 5 ;		/* FILTA */
585b815c7f3Sopenharmony_ci	state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7) ;	/* FILTB */
586b815c7f3Sopenharmony_ci
587b815c7f3Sopenharmony_ci	if (tr == 1)
588b815c7f3Sopenharmony_ci		state_ptr->ap = 256 ;
589b815c7f3Sopenharmony_ci	else if (y < 1536)					/* SUBTC */
590b815c7f3Sopenharmony_ci		state_ptr->ap += (0x200 - state_ptr->ap) >> 4 ;
591b815c7f3Sopenharmony_ci	else if (state_ptr->td == 1)
592b815c7f3Sopenharmony_ci		state_ptr->ap += (0x200 - state_ptr->ap) >> 4 ;
593b815c7f3Sopenharmony_ci	else if (abs ((state_ptr->dms << 2) - state_ptr->dml) >= (state_ptr->dml >> 3))
594b815c7f3Sopenharmony_ci		state_ptr->ap += (0x200 - state_ptr->ap) >> 4 ;
595b815c7f3Sopenharmony_ci	else
596b815c7f3Sopenharmony_ci		state_ptr->ap += (-state_ptr->ap) >> 4 ;
597b815c7f3Sopenharmony_ci
598b815c7f3Sopenharmony_ci	return ;
599b815c7f3Sopenharmony_ci} /* update */
600b815c7f3Sopenharmony_ci
601b815c7f3Sopenharmony_ci/*------------------------------------------------------------------------------
602b815c7f3Sopenharmony_ci*/
603b815c7f3Sopenharmony_ci
604b815c7f3Sopenharmony_cistatic int
605b815c7f3Sopenharmony_ciunpack_bytes (int bits, int blocksize, const unsigned char * block, short * samples)
606b815c7f3Sopenharmony_ci{	unsigned int	in_buffer = 0 ;
607b815c7f3Sopenharmony_ci	unsigned char	in_byte ;
608b815c7f3Sopenharmony_ci	int				k, in_bits = 0, bindex = 0 ;
609b815c7f3Sopenharmony_ci
610b815c7f3Sopenharmony_ci	for (k = 0 ; bindex <= blocksize && k < G72x_BLOCK_SIZE ; k++)
611b815c7f3Sopenharmony_ci	{	if (in_bits < bits)
612b815c7f3Sopenharmony_ci		{	in_byte = block [bindex++] ;
613b815c7f3Sopenharmony_ci
614b815c7f3Sopenharmony_ci			in_buffer |= (in_byte << in_bits) ;
615b815c7f3Sopenharmony_ci			in_bits += 8 ;
616b815c7f3Sopenharmony_ci			}
617b815c7f3Sopenharmony_ci		samples [k] = in_buffer & ((1 << bits) - 1) ;
618b815c7f3Sopenharmony_ci		in_buffer >>= bits ;
619b815c7f3Sopenharmony_ci		in_bits -= bits ;
620b815c7f3Sopenharmony_ci		} ;
621b815c7f3Sopenharmony_ci
622b815c7f3Sopenharmony_ci	return k ;
623b815c7f3Sopenharmony_ci} /* unpack_bytes */
624b815c7f3Sopenharmony_ci
625b815c7f3Sopenharmony_cistatic int
626b815c7f3Sopenharmony_cipack_bytes (int bits, const short * samples, unsigned char * block)
627b815c7f3Sopenharmony_ci{
628b815c7f3Sopenharmony_ci	unsigned int	out_buffer = 0 ;
629b815c7f3Sopenharmony_ci	int				k, bindex = 0, out_bits = 0 ;
630b815c7f3Sopenharmony_ci	unsigned char	out_byte ;
631b815c7f3Sopenharmony_ci
632b815c7f3Sopenharmony_ci	for (k = 0 ; k < G72x_BLOCK_SIZE ; k++)
633b815c7f3Sopenharmony_ci	{	out_buffer |= (samples [k] << out_bits) ;
634b815c7f3Sopenharmony_ci		out_bits += bits ;
635b815c7f3Sopenharmony_ci		if (out_bits >= 8)
636b815c7f3Sopenharmony_ci		{	out_byte = out_buffer & 0xFF ;
637b815c7f3Sopenharmony_ci			out_bits -= 8 ;
638b815c7f3Sopenharmony_ci			out_buffer >>= 8 ;
639b815c7f3Sopenharmony_ci			block [bindex++] = out_byte ;
640b815c7f3Sopenharmony_ci			}
641b815c7f3Sopenharmony_ci		} ;
642b815c7f3Sopenharmony_ci
643b815c7f3Sopenharmony_ci	return bindex ;
644b815c7f3Sopenharmony_ci} /* pack_bytes */
645b815c7f3Sopenharmony_ci
646