xref: /third_party/libsnd/src/G72x/g723_40.c (revision b815c7f3)
1/*
2 * This source code is a product of Sun Microsystems, Inc. and is provided
3 * for unrestricted use.  Users may copy or modify this source code without
4 * charge.
5 *
6 * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
7 * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
8 * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
9 *
10 * Sun source code is provided with no support and without any obligation on
11 * the part of Sun Microsystems, Inc. to assist in its use, correction,
12 * modification or enhancement.
13 *
14 * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
15 * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
16 * OR ANY PART THEREOF.
17 *
18 * In no event will Sun Microsystems, Inc. be liable for any lost revenue
19 * or profits or other special, indirect and consequential damages, even if
20 * Sun has been advised of the possibility of such damages.
21 *
22 * Sun Microsystems, Inc.
23 * 2550 Garcia Avenue
24 * Mountain View, California  94043
25 */
26
27/*
28 * g723_40.c
29 *
30 * Description:
31 *
32 * g723_40_encoder (), g723_40_decoder ()
33 *
34 * These routines comprise an implementation of the CCITT G.723 40Kbps
35 * ADPCM coding algorithm.  Essentially, this implementation is identical to
36 * the bit level description except for a few deviations which
37 * take advantage of workstation attributes, such as hardware 2's
38 * complement arithmetic.
39 *
40 * The deviation from the bit level specification (lookup tables),
41 * preserves the bit level performance specifications.
42 *
43 * As outlined in the G.723 Recommendation, the algorithm is broken
44 * down into modules.  Each section of code below is preceded by
45 * the name of the module which it is implementing.
46 *
47 */
48
49#include "g72x.h"
50#include "g72x_priv.h"
51
52/*
53 * Maps G.723_40 code word to ructeconstructed scale factor normalized log
54 * magnitude values.
55 */
56static short	_dqlntab [32] = { -2048, -66, 28, 104, 169, 224, 274, 318,
57				358, 395, 429, 459, 488, 514, 539, 566,
58				566, 539, 514, 488, 459, 429, 395, 358,
59				318, 274, 224, 169, 104, 28, -66, -2048 } ;
60
61/* Maps G.723_40 code word to log of scale factor multiplier. */
62static short	_witab [32] = { 448, 448, 768, 1248, 1280, 1312, 1856, 3200,
63			4512, 5728, 7008, 8960, 11456, 14080, 16928, 22272,
64			22272, 16928, 14080, 11456, 8960, 7008, 5728, 4512,
65			3200, 1856, 1312, 1280, 1248, 768, 448, 448 } ;
66
67/*
68 * Maps G.723_40 code words to a set of values whose long and short
69 * term averages are computed and then compared to give an indication
70 * how stationary (steady state) the signal is.
71 */
72static short	_fitab [32] = { 0, 0, 0, 0, 0, 0x200, 0x200, 0x200,
73			0x200, 0x200, 0x400, 0x600, 0x800, 0xA00, 0xC00, 0xC00,
74			0xC00, 0xC00, 0xA00, 0x800, 0x600, 0x400, 0x200, 0x200,
75			0x200, 0x200, 0x200, 0, 0, 0, 0, 0 } ;
76
77static short qtab_723_40 [15] = { -122, -16, 68, 139, 198, 250, 298, 339,
78				378, 413, 445, 475, 502, 528, 553 } ;
79
80/*
81 * g723_40_encoder ()
82 *
83 * Encodes a 16-bit linear PCM, A-law or u-law input sample and retuens
84 * the resulting 5-bit CCITT G.723 40Kbps code.
85 * Returns -1 if the input coding value is invalid.
86 */
87int	g723_40_encoder (int sl, G72x_STATE *state_ptr)
88{
89	short		sei, sezi, se, sez ;	/* ACCUM */
90	short		d ;			/* SUBTA */
91	short		y ;			/* MIX */
92	short		sr ;			/* ADDB */
93	short		dqsez ;			/* ADDC */
94	short		dq, i ;
95
96	/* linearize input sample to 14-bit PCM */
97	sl >>= 2 ;		/* sl of 14-bit dynamic range */
98
99	sezi = predictor_zero (state_ptr) ;
100	sez = sezi >> 1 ;
101	sei = sezi + predictor_pole (state_ptr) ;
102	se = sei >> 1 ;			/* se = estimated signal */
103
104	d = sl - se ;			/* d = estimation difference */
105
106	/* quantize prediction difference */
107	y = step_size (state_ptr) ;	/* adaptive quantizer step size */
108	i = quantize (d, y, qtab_723_40, 15) ;	/* i = ADPCM code */
109
110	dq = reconstruct (i & 0x10, _dqlntab [i], y) ;	/* quantized diff */
111
112	sr = (dq < 0) ? se - (dq & 0x7FFF) : se + dq ; /* reconstructed signal */
113
114	dqsez = sr + sez - se ;		/* dqsez = pole prediction diff. */
115
116	update (5, y, _witab [i], _fitab [i], dq, sr, dqsez, state_ptr) ;
117
118	return i ;
119}
120
121/*
122 * g723_40_decoder ()
123 *
124 * Decodes a 5-bit CCITT G.723 40Kbps code and returns
125 * the resulting 16-bit linear PCM, A-law or u-law sample value.
126 * -1 is returned if the output coding is unknown.
127 */
128int	g723_40_decoder	(int i, G72x_STATE *state_ptr)
129{
130	short		sezi, sei, sez, se ;	/* ACCUM */
131	short		y ;			/* MIX */
132	short		sr ;			/* ADDB */
133	short		dq ;
134	short		dqsez ;
135
136	i &= 0x1f ;			/* mask to get proper bits */
137	sezi = predictor_zero (state_ptr) ;
138	sez = sezi >> 1 ;
139	sei = sezi + predictor_pole (state_ptr) ;
140	se = sei >> 1 ;			/* se = estimated signal */
141
142	y = step_size (state_ptr) ;	/* adaptive quantizer step size */
143	dq = reconstruct (i & 0x10, _dqlntab [i], y) ;	/* estimation diff. */
144
145	sr = (dq < 0) ? (se - (dq & 0x7FFF)) : (se + dq) ; /* reconst. signal */
146
147	dqsez = sr - se + sez ;		/* pole prediction diff. */
148
149	update (5, y, _witab [i], _fitab [i], dq, sr, dqsez, state_ptr) ;
150
151	return arith_shift_left (sr, 2) ;	/* sr was of 14-bit dynamic range */
152}
153
154