1b815c7f3Sopenharmony_ci/* 2b815c7f3Sopenharmony_ci * This source code is a product of Sun Microsystems, Inc. and is provided 3b815c7f3Sopenharmony_ci * for unrestricted use. Users may copy or modify this source code without 4b815c7f3Sopenharmony_ci * charge. 5b815c7f3Sopenharmony_ci * 6b815c7f3Sopenharmony_ci * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING 7b815c7f3Sopenharmony_ci * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR 8b815c7f3Sopenharmony_ci * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. 9b815c7f3Sopenharmony_ci * 10b815c7f3Sopenharmony_ci * Sun source code is provided with no support and without any obligation on 11b815c7f3Sopenharmony_ci * the part of Sun Microsystems, Inc. to assist in its use, correction, 12b815c7f3Sopenharmony_ci * modification or enhancement. 13b815c7f3Sopenharmony_ci * 14b815c7f3Sopenharmony_ci * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE 15b815c7f3Sopenharmony_ci * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE 16b815c7f3Sopenharmony_ci * OR ANY PART THEREOF. 17b815c7f3Sopenharmony_ci * 18b815c7f3Sopenharmony_ci * In no event will Sun Microsystems, Inc. be liable for any lost revenue 19b815c7f3Sopenharmony_ci * or profits or other special, indirect and consequential damages, even if 20b815c7f3Sopenharmony_ci * Sun has been advised of the possibility of such damages. 21b815c7f3Sopenharmony_ci * 22b815c7f3Sopenharmony_ci * Sun Microsystems, Inc. 23b815c7f3Sopenharmony_ci * 2550 Garcia Avenue 24b815c7f3Sopenharmony_ci * Mountain View, California 94043 25b815c7f3Sopenharmony_ci */ 26b815c7f3Sopenharmony_ci 27b815c7f3Sopenharmony_ci/* 28b815c7f3Sopenharmony_ci * g723_40.c 29b815c7f3Sopenharmony_ci * 30b815c7f3Sopenharmony_ci * Description: 31b815c7f3Sopenharmony_ci * 32b815c7f3Sopenharmony_ci * g723_40_encoder (), g723_40_decoder () 33b815c7f3Sopenharmony_ci * 34b815c7f3Sopenharmony_ci * These routines comprise an implementation of the CCITT G.723 40Kbps 35b815c7f3Sopenharmony_ci * ADPCM coding algorithm. Essentially, this implementation is identical to 36b815c7f3Sopenharmony_ci * the bit level description except for a few deviations which 37b815c7f3Sopenharmony_ci * take advantage of workstation attributes, such as hardware 2's 38b815c7f3Sopenharmony_ci * complement arithmetic. 39b815c7f3Sopenharmony_ci * 40b815c7f3Sopenharmony_ci * The deviation from the bit level specification (lookup tables), 41b815c7f3Sopenharmony_ci * preserves the bit level performance specifications. 42b815c7f3Sopenharmony_ci * 43b815c7f3Sopenharmony_ci * As outlined in the G.723 Recommendation, the algorithm is broken 44b815c7f3Sopenharmony_ci * down into modules. Each section of code below is preceded by 45b815c7f3Sopenharmony_ci * the name of the module which it is implementing. 46b815c7f3Sopenharmony_ci * 47b815c7f3Sopenharmony_ci */ 48b815c7f3Sopenharmony_ci 49b815c7f3Sopenharmony_ci#include "g72x.h" 50b815c7f3Sopenharmony_ci#include "g72x_priv.h" 51b815c7f3Sopenharmony_ci 52b815c7f3Sopenharmony_ci/* 53b815c7f3Sopenharmony_ci * Maps G.723_40 code word to ructeconstructed scale factor normalized log 54b815c7f3Sopenharmony_ci * magnitude values. 55b815c7f3Sopenharmony_ci */ 56b815c7f3Sopenharmony_cistatic short _dqlntab [32] = { -2048, -66, 28, 104, 169, 224, 274, 318, 57b815c7f3Sopenharmony_ci 358, 395, 429, 459, 488, 514, 539, 566, 58b815c7f3Sopenharmony_ci 566, 539, 514, 488, 459, 429, 395, 358, 59b815c7f3Sopenharmony_ci 318, 274, 224, 169, 104, 28, -66, -2048 } ; 60b815c7f3Sopenharmony_ci 61b815c7f3Sopenharmony_ci/* Maps G.723_40 code word to log of scale factor multiplier. */ 62b815c7f3Sopenharmony_cistatic short _witab [32] = { 448, 448, 768, 1248, 1280, 1312, 1856, 3200, 63b815c7f3Sopenharmony_ci 4512, 5728, 7008, 8960, 11456, 14080, 16928, 22272, 64b815c7f3Sopenharmony_ci 22272, 16928, 14080, 11456, 8960, 7008, 5728, 4512, 65b815c7f3Sopenharmony_ci 3200, 1856, 1312, 1280, 1248, 768, 448, 448 } ; 66b815c7f3Sopenharmony_ci 67b815c7f3Sopenharmony_ci/* 68b815c7f3Sopenharmony_ci * Maps G.723_40 code words to a set of values whose long and short 69b815c7f3Sopenharmony_ci * term averages are computed and then compared to give an indication 70b815c7f3Sopenharmony_ci * how stationary (steady state) the signal is. 71b815c7f3Sopenharmony_ci */ 72b815c7f3Sopenharmony_cistatic short _fitab [32] = { 0, 0, 0, 0, 0, 0x200, 0x200, 0x200, 73b815c7f3Sopenharmony_ci 0x200, 0x200, 0x400, 0x600, 0x800, 0xA00, 0xC00, 0xC00, 74b815c7f3Sopenharmony_ci 0xC00, 0xC00, 0xA00, 0x800, 0x600, 0x400, 0x200, 0x200, 75b815c7f3Sopenharmony_ci 0x200, 0x200, 0x200, 0, 0, 0, 0, 0 } ; 76b815c7f3Sopenharmony_ci 77b815c7f3Sopenharmony_cistatic short qtab_723_40 [15] = { -122, -16, 68, 139, 198, 250, 298, 339, 78b815c7f3Sopenharmony_ci 378, 413, 445, 475, 502, 528, 553 } ; 79b815c7f3Sopenharmony_ci 80b815c7f3Sopenharmony_ci/* 81b815c7f3Sopenharmony_ci * g723_40_encoder () 82b815c7f3Sopenharmony_ci * 83b815c7f3Sopenharmony_ci * Encodes a 16-bit linear PCM, A-law or u-law input sample and retuens 84b815c7f3Sopenharmony_ci * the resulting 5-bit CCITT G.723 40Kbps code. 85b815c7f3Sopenharmony_ci * Returns -1 if the input coding value is invalid. 86b815c7f3Sopenharmony_ci */ 87b815c7f3Sopenharmony_ciint g723_40_encoder (int sl, G72x_STATE *state_ptr) 88b815c7f3Sopenharmony_ci{ 89b815c7f3Sopenharmony_ci short sei, sezi, se, sez ; /* ACCUM */ 90b815c7f3Sopenharmony_ci short d ; /* SUBTA */ 91b815c7f3Sopenharmony_ci short y ; /* MIX */ 92b815c7f3Sopenharmony_ci short sr ; /* ADDB */ 93b815c7f3Sopenharmony_ci short dqsez ; /* ADDC */ 94b815c7f3Sopenharmony_ci short dq, i ; 95b815c7f3Sopenharmony_ci 96b815c7f3Sopenharmony_ci /* linearize input sample to 14-bit PCM */ 97b815c7f3Sopenharmony_ci sl >>= 2 ; /* sl of 14-bit dynamic range */ 98b815c7f3Sopenharmony_ci 99b815c7f3Sopenharmony_ci sezi = predictor_zero (state_ptr) ; 100b815c7f3Sopenharmony_ci sez = sezi >> 1 ; 101b815c7f3Sopenharmony_ci sei = sezi + predictor_pole (state_ptr) ; 102b815c7f3Sopenharmony_ci se = sei >> 1 ; /* se = estimated signal */ 103b815c7f3Sopenharmony_ci 104b815c7f3Sopenharmony_ci d = sl - se ; /* d = estimation difference */ 105b815c7f3Sopenharmony_ci 106b815c7f3Sopenharmony_ci /* quantize prediction difference */ 107b815c7f3Sopenharmony_ci y = step_size (state_ptr) ; /* adaptive quantizer step size */ 108b815c7f3Sopenharmony_ci i = quantize (d, y, qtab_723_40, 15) ; /* i = ADPCM code */ 109b815c7f3Sopenharmony_ci 110b815c7f3Sopenharmony_ci dq = reconstruct (i & 0x10, _dqlntab [i], y) ; /* quantized diff */ 111b815c7f3Sopenharmony_ci 112b815c7f3Sopenharmony_ci sr = (dq < 0) ? se - (dq & 0x7FFF) : se + dq ; /* reconstructed signal */ 113b815c7f3Sopenharmony_ci 114b815c7f3Sopenharmony_ci dqsez = sr + sez - se ; /* dqsez = pole prediction diff. */ 115b815c7f3Sopenharmony_ci 116b815c7f3Sopenharmony_ci update (5, y, _witab [i], _fitab [i], dq, sr, dqsez, state_ptr) ; 117b815c7f3Sopenharmony_ci 118b815c7f3Sopenharmony_ci return i ; 119b815c7f3Sopenharmony_ci} 120b815c7f3Sopenharmony_ci 121b815c7f3Sopenharmony_ci/* 122b815c7f3Sopenharmony_ci * g723_40_decoder () 123b815c7f3Sopenharmony_ci * 124b815c7f3Sopenharmony_ci * Decodes a 5-bit CCITT G.723 40Kbps code and returns 125b815c7f3Sopenharmony_ci * the resulting 16-bit linear PCM, A-law or u-law sample value. 126b815c7f3Sopenharmony_ci * -1 is returned if the output coding is unknown. 127b815c7f3Sopenharmony_ci */ 128b815c7f3Sopenharmony_ciint g723_40_decoder (int i, G72x_STATE *state_ptr) 129b815c7f3Sopenharmony_ci{ 130b815c7f3Sopenharmony_ci short sezi, sei, sez, se ; /* ACCUM */ 131b815c7f3Sopenharmony_ci short y ; /* MIX */ 132b815c7f3Sopenharmony_ci short sr ; /* ADDB */ 133b815c7f3Sopenharmony_ci short dq ; 134b815c7f3Sopenharmony_ci short dqsez ; 135b815c7f3Sopenharmony_ci 136b815c7f3Sopenharmony_ci i &= 0x1f ; /* mask to get proper bits */ 137b815c7f3Sopenharmony_ci sezi = predictor_zero (state_ptr) ; 138b815c7f3Sopenharmony_ci sez = sezi >> 1 ; 139b815c7f3Sopenharmony_ci sei = sezi + predictor_pole (state_ptr) ; 140b815c7f3Sopenharmony_ci se = sei >> 1 ; /* se = estimated signal */ 141b815c7f3Sopenharmony_ci 142b815c7f3Sopenharmony_ci y = step_size (state_ptr) ; /* adaptive quantizer step size */ 143b815c7f3Sopenharmony_ci dq = reconstruct (i & 0x10, _dqlntab [i], y) ; /* estimation diff. */ 144b815c7f3Sopenharmony_ci 145b815c7f3Sopenharmony_ci sr = (dq < 0) ? (se - (dq & 0x7FFF)) : (se + dq) ; /* reconst. signal */ 146b815c7f3Sopenharmony_ci 147b815c7f3Sopenharmony_ci dqsez = sr - se + sez ; /* pole prediction diff. */ 148b815c7f3Sopenharmony_ci 149b815c7f3Sopenharmony_ci update (5, y, _witab [i], _fitab [i], dq, sr, dqsez, state_ptr) ; 150b815c7f3Sopenharmony_ci 151b815c7f3Sopenharmony_ci return arith_shift_left (sr, 2) ; /* sr was of 14-bit dynamic range */ 152b815c7f3Sopenharmony_ci} 153b815c7f3Sopenharmony_ci 154