xref: /third_party/libsnd/src/G72x/g723_16.c (revision b815c7f3)
1/*
2 * This source code is a product of Sun Microsystems, Inc. and is provided
3 * for unrestricted use.  Users may copy or modify this source code without
4 * charge.
5 *
6 * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
7 * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
8 * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
9 *
10 * Sun source code is provided with no support and without any obligation on
11 * the part of Sun Microsystems, Inc. to assist in its use, correction,
12 * modification or enhancement.
13 *
14 * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
15 * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
16 * OR ANY PART THEREOF.
17 *
18 * In no event will Sun Microsystems, Inc. be liable for any lost revenue
19 * or profits or other special, indirect and consequential damages, even if
20 * Sun has been advised of the possibility of such damages.
21 *
22 * Sun Microsystems, Inc.
23 * 2550 Garcia Avenue
24 * Mountain View, California  94043
25 */
26/* 16kbps version created, used 24kbps code and changing as little as possible.
27 * G.726 specs are available from ITU's gopher or WWW site (http://www.itu.ch)
28 * If any errors are found, please contact me at mrand@tamu.edu
29 *      -Marc Randolph
30 */
31
32/*
33 * g723_16.c
34 *
35 * Description:
36 *
37 * g723_16_encoder (), g723_16_decoder ()
38 *
39 * These routines comprise an implementation of the CCITT G.726 16 Kbps
40 * ADPCM coding algorithm.  Essentially, this implementation is identical to
41 * the bit level description except for a few deviations which take advantage
42 * of workstation attributes, such as hardware 2's complement arithmetic.
43 *
44 */
45
46#include "g72x.h"
47#include "g72x_priv.h"
48
49/*
50 * Maps G.723_16 code word to reconstructed scale factor normalized log
51 * magnitude values.  Comes from Table 11/G.726
52 */
53static short _dqlntab [4] = { 116, 365, 365, 116 } ;
54
55/* Maps G.723_16 code word to log of scale factor multiplier.
56 *
57 * _witab [4] is actually {-22 , 439, 439, -22}, but FILTD wants it
58 * as WI << 5  (multiplied by 32), so we'll do that here
59 */
60static short _witab [4] = { -704, 14048, 14048, -704 } ;
61
62/*
63 * Maps G.723_16 code words to a set of values whose long and short
64 * term averages are computed and then compared to give an indication
65 * how stationary (steady state) the signal is.
66 */
67
68/* Comes from FUNCTF */
69static short _fitab [4] = { 0, 0xE00, 0xE00, 0 } ;
70
71/* Comes from quantizer decision level tables (Table 7/G.726)
72 */
73static short qtab_723_16 [1] = { 261 } ;
74
75
76/*
77 * g723_16_encoder ()
78 *
79 * Encodes a linear PCM, A-law or u-law input sample and returns its 2-bit code.
80 * Returns -1 if invalid input coding value.
81 */
82int
83g723_16_encoder (
84	int			sl,
85	G72x_STATE *state_ptr)
86{
87	short sei, sezi, se, sez ;	/* ACCUM */
88	short d ;					/* SUBTA */
89	short y ;					/* MIX */
90	short sr ;					/* ADDB */
91	short dqsez ;				/* ADDC */
92	short dq, i ;
93
94	/* linearize input sample to 14-bit PCM */
95	sl >>= 2 ;	/* sl of 14-bit dynamic range */
96
97	sezi = predictor_zero (state_ptr) ;
98	sez = sezi >> 1 ;
99	sei = sezi + predictor_pole (state_ptr) ;
100	se = sei >> 1 ;	/* se = estimated signal */
101
102	d = sl - se ;	/* d = estimation diff. */
103
104	/* quantize prediction difference d */
105	y = step_size (state_ptr) ;				/* quantizer step size */
106	i = quantize (d, y, qtab_723_16, 1) ;	/* i = ADPCM code */
107
108	/* Since quantize () only produces a three level output
109	 * (1, 2, or 3), we must create the fourth one on our own
110	 */
111	if (i == 3)					/* i code for the zero region */
112		if ((d & 0x8000) == 0)	/* If d > 0, i=3 isn't right... */
113			i = 0 ;
114
115	dq = reconstruct (i & 2, _dqlntab [i], y) ; /* quantized diff. */
116
117	sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq ; /* reconstructed signal */
118
119	dqsez = sr + sez - se ;		/* pole prediction diff. */
120
121	update (2, y, _witab [i], _fitab [i], dq, sr, dqsez, state_ptr) ;
122
123	return i ;
124}
125
126/*
127 * g723_16_decoder ()
128 *
129 * Decodes a 2-bit CCITT G.723_16 ADPCM code and returns
130 * the resulting 16-bit linear PCM, A-law or u-law sample value.
131 * -1 is returned if the output coding is unknown.
132 */
133int
134g723_16_decoder (
135	int			i,
136	G72x_STATE *state_ptr)
137{
138	short sezi, sei, sez, se ;	/* ACCUM */
139	short y ;					/* MIX */
140	short sr ;					/* ADDB */
141	short dq ;
142	short dqsez ;
143
144	i &= 0x03 ;			/* mask to get proper bits */
145	sezi = predictor_zero (state_ptr) ;
146	sez = sezi >> 1 ;
147	sei = sezi + predictor_pole (state_ptr) ;
148	se = sei >> 1 ;		/* se = estimated signal */
149
150	y = step_size (state_ptr) ;	/* adaptive quantizer step size */
151	dq = reconstruct (i & 0x02, _dqlntab [i], y) ; /* unquantize pred diff */
152
153	sr = (dq < 0) ? (se - (dq & 0x3FFF)) : (se + dq) ; /* reconst. signal */
154
155	dqsez = sr - se + sez ;	/* pole prediction diff. */
156
157	update (2, y, _witab [i], _fitab [i], dq, sr, dqsez, state_ptr) ;
158
159	/* sr was of 14-bit dynamic range */
160	return (sr << 2) ;
161}
162
163