1b815c7f3Sopenharmony_ci/* 2b815c7f3Sopenharmony_ci * This source code is a product of Sun Microsystems, Inc. and is provided 3b815c7f3Sopenharmony_ci * for unrestricted use. Users may copy or modify this source code without 4b815c7f3Sopenharmony_ci * charge. 5b815c7f3Sopenharmony_ci * 6b815c7f3Sopenharmony_ci * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING 7b815c7f3Sopenharmony_ci * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR 8b815c7f3Sopenharmony_ci * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. 9b815c7f3Sopenharmony_ci * 10b815c7f3Sopenharmony_ci * Sun source code is provided with no support and without any obligation on 11b815c7f3Sopenharmony_ci * the part of Sun Microsystems, Inc. to assist in its use, correction, 12b815c7f3Sopenharmony_ci * modification or enhancement. 13b815c7f3Sopenharmony_ci * 14b815c7f3Sopenharmony_ci * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE 15b815c7f3Sopenharmony_ci * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE 16b815c7f3Sopenharmony_ci * OR ANY PART THEREOF. 17b815c7f3Sopenharmony_ci * 18b815c7f3Sopenharmony_ci * In no event will Sun Microsystems, Inc. be liable for any lost revenue 19b815c7f3Sopenharmony_ci * or profits or other special, indirect and consequential damages, even if 20b815c7f3Sopenharmony_ci * Sun has been advised of the possibility of such damages. 21b815c7f3Sopenharmony_ci * 22b815c7f3Sopenharmony_ci * Sun Microsystems, Inc. 23b815c7f3Sopenharmony_ci * 2550 Garcia Avenue 24b815c7f3Sopenharmony_ci * Mountain View, California 94043 25b815c7f3Sopenharmony_ci */ 26b815c7f3Sopenharmony_ci/* 16kbps version created, used 24kbps code and changing as little as possible. 27b815c7f3Sopenharmony_ci * G.726 specs are available from ITU's gopher or WWW site (http://www.itu.ch) 28b815c7f3Sopenharmony_ci * If any errors are found, please contact me at mrand@tamu.edu 29b815c7f3Sopenharmony_ci * -Marc Randolph 30b815c7f3Sopenharmony_ci */ 31b815c7f3Sopenharmony_ci 32b815c7f3Sopenharmony_ci/* 33b815c7f3Sopenharmony_ci * g723_16.c 34b815c7f3Sopenharmony_ci * 35b815c7f3Sopenharmony_ci * Description: 36b815c7f3Sopenharmony_ci * 37b815c7f3Sopenharmony_ci * g723_16_encoder (), g723_16_decoder () 38b815c7f3Sopenharmony_ci * 39b815c7f3Sopenharmony_ci * These routines comprise an implementation of the CCITT G.726 16 Kbps 40b815c7f3Sopenharmony_ci * ADPCM coding algorithm. Essentially, this implementation is identical to 41b815c7f3Sopenharmony_ci * the bit level description except for a few deviations which take advantage 42b815c7f3Sopenharmony_ci * of workstation attributes, such as hardware 2's complement arithmetic. 43b815c7f3Sopenharmony_ci * 44b815c7f3Sopenharmony_ci */ 45b815c7f3Sopenharmony_ci 46b815c7f3Sopenharmony_ci#include "g72x.h" 47b815c7f3Sopenharmony_ci#include "g72x_priv.h" 48b815c7f3Sopenharmony_ci 49b815c7f3Sopenharmony_ci/* 50b815c7f3Sopenharmony_ci * Maps G.723_16 code word to reconstructed scale factor normalized log 51b815c7f3Sopenharmony_ci * magnitude values. Comes from Table 11/G.726 52b815c7f3Sopenharmony_ci */ 53b815c7f3Sopenharmony_cistatic short _dqlntab [4] = { 116, 365, 365, 116 } ; 54b815c7f3Sopenharmony_ci 55b815c7f3Sopenharmony_ci/* Maps G.723_16 code word to log of scale factor multiplier. 56b815c7f3Sopenharmony_ci * 57b815c7f3Sopenharmony_ci * _witab [4] is actually {-22 , 439, 439, -22}, but FILTD wants it 58b815c7f3Sopenharmony_ci * as WI << 5 (multiplied by 32), so we'll do that here 59b815c7f3Sopenharmony_ci */ 60b815c7f3Sopenharmony_cistatic short _witab [4] = { -704, 14048, 14048, -704 } ; 61b815c7f3Sopenharmony_ci 62b815c7f3Sopenharmony_ci/* 63b815c7f3Sopenharmony_ci * Maps G.723_16 code words to a set of values whose long and short 64b815c7f3Sopenharmony_ci * term averages are computed and then compared to give an indication 65b815c7f3Sopenharmony_ci * how stationary (steady state) the signal is. 66b815c7f3Sopenharmony_ci */ 67b815c7f3Sopenharmony_ci 68b815c7f3Sopenharmony_ci/* Comes from FUNCTF */ 69b815c7f3Sopenharmony_cistatic short _fitab [4] = { 0, 0xE00, 0xE00, 0 } ; 70b815c7f3Sopenharmony_ci 71b815c7f3Sopenharmony_ci/* Comes from quantizer decision level tables (Table 7/G.726) 72b815c7f3Sopenharmony_ci */ 73b815c7f3Sopenharmony_cistatic short qtab_723_16 [1] = { 261 } ; 74b815c7f3Sopenharmony_ci 75b815c7f3Sopenharmony_ci 76b815c7f3Sopenharmony_ci/* 77b815c7f3Sopenharmony_ci * g723_16_encoder () 78b815c7f3Sopenharmony_ci * 79b815c7f3Sopenharmony_ci * Encodes a linear PCM, A-law or u-law input sample and returns its 2-bit code. 80b815c7f3Sopenharmony_ci * Returns -1 if invalid input coding value. 81b815c7f3Sopenharmony_ci */ 82b815c7f3Sopenharmony_ciint 83b815c7f3Sopenharmony_cig723_16_encoder ( 84b815c7f3Sopenharmony_ci int sl, 85b815c7f3Sopenharmony_ci G72x_STATE *state_ptr) 86b815c7f3Sopenharmony_ci{ 87b815c7f3Sopenharmony_ci short sei, sezi, se, sez ; /* ACCUM */ 88b815c7f3Sopenharmony_ci short d ; /* SUBTA */ 89b815c7f3Sopenharmony_ci short y ; /* MIX */ 90b815c7f3Sopenharmony_ci short sr ; /* ADDB */ 91b815c7f3Sopenharmony_ci short dqsez ; /* ADDC */ 92b815c7f3Sopenharmony_ci short dq, i ; 93b815c7f3Sopenharmony_ci 94b815c7f3Sopenharmony_ci /* linearize input sample to 14-bit PCM */ 95b815c7f3Sopenharmony_ci sl >>= 2 ; /* sl of 14-bit dynamic range */ 96b815c7f3Sopenharmony_ci 97b815c7f3Sopenharmony_ci sezi = predictor_zero (state_ptr) ; 98b815c7f3Sopenharmony_ci sez = sezi >> 1 ; 99b815c7f3Sopenharmony_ci sei = sezi + predictor_pole (state_ptr) ; 100b815c7f3Sopenharmony_ci se = sei >> 1 ; /* se = estimated signal */ 101b815c7f3Sopenharmony_ci 102b815c7f3Sopenharmony_ci d = sl - se ; /* d = estimation diff. */ 103b815c7f3Sopenharmony_ci 104b815c7f3Sopenharmony_ci /* quantize prediction difference d */ 105b815c7f3Sopenharmony_ci y = step_size (state_ptr) ; /* quantizer step size */ 106b815c7f3Sopenharmony_ci i = quantize (d, y, qtab_723_16, 1) ; /* i = ADPCM code */ 107b815c7f3Sopenharmony_ci 108b815c7f3Sopenharmony_ci /* Since quantize () only produces a three level output 109b815c7f3Sopenharmony_ci * (1, 2, or 3), we must create the fourth one on our own 110b815c7f3Sopenharmony_ci */ 111b815c7f3Sopenharmony_ci if (i == 3) /* i code for the zero region */ 112b815c7f3Sopenharmony_ci if ((d & 0x8000) == 0) /* If d > 0, i=3 isn't right... */ 113b815c7f3Sopenharmony_ci i = 0 ; 114b815c7f3Sopenharmony_ci 115b815c7f3Sopenharmony_ci dq = reconstruct (i & 2, _dqlntab [i], y) ; /* quantized diff. */ 116b815c7f3Sopenharmony_ci 117b815c7f3Sopenharmony_ci sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq ; /* reconstructed signal */ 118b815c7f3Sopenharmony_ci 119b815c7f3Sopenharmony_ci dqsez = sr + sez - se ; /* pole prediction diff. */ 120b815c7f3Sopenharmony_ci 121b815c7f3Sopenharmony_ci update (2, y, _witab [i], _fitab [i], dq, sr, dqsez, state_ptr) ; 122b815c7f3Sopenharmony_ci 123b815c7f3Sopenharmony_ci return i ; 124b815c7f3Sopenharmony_ci} 125b815c7f3Sopenharmony_ci 126b815c7f3Sopenharmony_ci/* 127b815c7f3Sopenharmony_ci * g723_16_decoder () 128b815c7f3Sopenharmony_ci * 129b815c7f3Sopenharmony_ci * Decodes a 2-bit CCITT G.723_16 ADPCM code and returns 130b815c7f3Sopenharmony_ci * the resulting 16-bit linear PCM, A-law or u-law sample value. 131b815c7f3Sopenharmony_ci * -1 is returned if the output coding is unknown. 132b815c7f3Sopenharmony_ci */ 133b815c7f3Sopenharmony_ciint 134b815c7f3Sopenharmony_cig723_16_decoder ( 135b815c7f3Sopenharmony_ci int i, 136b815c7f3Sopenharmony_ci G72x_STATE *state_ptr) 137b815c7f3Sopenharmony_ci{ 138b815c7f3Sopenharmony_ci short sezi, sei, sez, se ; /* ACCUM */ 139b815c7f3Sopenharmony_ci short y ; /* MIX */ 140b815c7f3Sopenharmony_ci short sr ; /* ADDB */ 141b815c7f3Sopenharmony_ci short dq ; 142b815c7f3Sopenharmony_ci short dqsez ; 143b815c7f3Sopenharmony_ci 144b815c7f3Sopenharmony_ci i &= 0x03 ; /* mask to get proper bits */ 145b815c7f3Sopenharmony_ci sezi = predictor_zero (state_ptr) ; 146b815c7f3Sopenharmony_ci sez = sezi >> 1 ; 147b815c7f3Sopenharmony_ci sei = sezi + predictor_pole (state_ptr) ; 148b815c7f3Sopenharmony_ci se = sei >> 1 ; /* se = estimated signal */ 149b815c7f3Sopenharmony_ci 150b815c7f3Sopenharmony_ci y = step_size (state_ptr) ; /* adaptive quantizer step size */ 151b815c7f3Sopenharmony_ci dq = reconstruct (i & 0x02, _dqlntab [i], y) ; /* unquantize pred diff */ 152b815c7f3Sopenharmony_ci 153b815c7f3Sopenharmony_ci sr = (dq < 0) ? (se - (dq & 0x3FFF)) : (se + dq) ; /* reconst. signal */ 154b815c7f3Sopenharmony_ci 155b815c7f3Sopenharmony_ci dqsez = sr - se + sez ; /* pole prediction diff. */ 156b815c7f3Sopenharmony_ci 157b815c7f3Sopenharmony_ci update (2, y, _witab [i], _fitab [i], dq, sr, dqsez, state_ptr) ; 158b815c7f3Sopenharmony_ci 159b815c7f3Sopenharmony_ci /* sr was of 14-bit dynamic range */ 160b815c7f3Sopenharmony_ci return (sr << 2) ; 161b815c7f3Sopenharmony_ci} 162b815c7f3Sopenharmony_ci 163