1/************************************************************************** 2 * 3 * Copyright � 2007 Red Hat Inc. 4 * Copyright � 2007-2012 Intel Corporation 5 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA 6 * All Rights Reserved. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a 9 * copy of this software and associated documentation files (the 10 * "Software"), to deal in the Software without restriction, including 11 * without limitation the rights to use, copy, modify, merge, publish, 12 * distribute, sub license, and/or sell copies of the Software, and to 13 * permit persons to whom the Software is furnished to do so, subject to 14 * the following conditions: 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL 19 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, 20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR 21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE 22 * USE OR OTHER DEALINGS IN THE SOFTWARE. 23 * 24 * The above copyright notice and this permission notice (including the 25 * next paragraph) shall be included in all copies or substantial portions 26 * of the Software. 27 * 28 * 29 **************************************************************************/ 30/* 31 * Authors: Thomas Hellstr�m <thomas-at-tungstengraphics-dot-com> 32 * Keith Whitwell <keithw-at-tungstengraphics-dot-com> 33 * Eric Anholt <eric@anholt.net> 34 * Dave Airlie <airlied@linux.ie> 35 */ 36 37#include <xf86drm.h> 38#include <xf86atomic.h> 39#include <fcntl.h> 40#include <stdio.h> 41#include <stdlib.h> 42#include <string.h> 43#include <unistd.h> 44#include <assert.h> 45#include <pthread.h> 46#include <sys/ioctl.h> 47#include <sys/stat.h> 48#include <sys/types.h> 49#include <stdbool.h> 50 51#include "errno.h" 52#ifndef ETIME 53#define ETIME ETIMEDOUT 54#endif 55#include "libdrm_macros.h" 56#include "libdrm_lists.h" 57#include "intel_bufmgr.h" 58#include "intel_bufmgr_priv.h" 59#include "intel_chipset.h" 60#include "string.h" 61 62#include "i915_drm.h" 63#include "uthash.h" 64 65#if HAVE_VALGRIND 66#include <valgrind.h> 67#include <memcheck.h> 68#define VG(x) x 69#else 70#define VG(x) 71#endif 72 73#define memclear(s) memset(&s, 0, sizeof(s)) 74 75#define DBG(...) do { \ 76 if (bufmgr_gem->bufmgr.debug) \ 77 fprintf(stderr, __VA_ARGS__); \ 78} while (0) 79 80#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) 81#define MAX2(A, B) ((A) > (B) ? (A) : (B)) 82 83/** 84 * upper_32_bits - return bits 32-63 of a number 85 * @n: the number we're accessing 86 * 87 * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress 88 * the "right shift count >= width of type" warning when that quantity is 89 * 32-bits. 90 */ 91#define upper_32_bits(n) ((__u32)(((n) >> 16) >> 16)) 92 93/** 94 * lower_32_bits - return bits 0-31 of a number 95 * @n: the number we're accessing 96 */ 97#define lower_32_bits(n) ((__u32)(n)) 98 99typedef struct _drm_intel_bo_gem drm_intel_bo_gem; 100 101struct drm_intel_gem_bo_bucket { 102 drmMMListHead head; 103 unsigned long size; 104}; 105 106typedef struct _drm_intel_bufmgr_gem { 107 drm_intel_bufmgr bufmgr; 108 109 atomic_t refcount; 110 111 int fd; 112 113 int max_relocs; 114 115 pthread_mutex_t lock; 116 117 struct drm_i915_gem_exec_object2 *exec2_objects; 118 drm_intel_bo **exec_bos; 119 int exec_size; 120 int exec_count; 121 122 /** Array of lists of cached gem objects of power-of-two sizes */ 123 struct drm_intel_gem_bo_bucket cache_bucket[14 * 4]; 124 int num_buckets; 125 time_t time; 126 127 drmMMListHead managers; 128 129 drm_intel_bo_gem *name_table; 130 drm_intel_bo_gem *handle_table; 131 132 drmMMListHead vma_cache; 133 int vma_count, vma_open, vma_max; 134 135 uint64_t gtt_size; 136 int available_fences; 137 int pci_device; 138 int gen; 139 unsigned int has_bsd : 1; 140 unsigned int has_blt : 1; 141 unsigned int has_relaxed_fencing : 1; 142 unsigned int has_llc : 1; 143 unsigned int has_wait_timeout : 1; 144 unsigned int bo_reuse : 1; 145 unsigned int no_exec : 1; 146 unsigned int has_vebox : 1; 147 unsigned int has_exec_async : 1; 148 bool fenced_relocs; 149 150 struct { 151 void *ptr; 152 uint32_t handle; 153 } userptr_active; 154 155} drm_intel_bufmgr_gem; 156 157#define DRM_INTEL_RELOC_FENCE (1<<0) 158 159typedef struct _drm_intel_reloc_target_info { 160 drm_intel_bo *bo; 161 int flags; 162} drm_intel_reloc_target; 163 164struct _drm_intel_bo_gem { 165 drm_intel_bo bo; 166 167 atomic_t refcount; 168 uint32_t gem_handle; 169 const char *name; 170 171 /** 172 * Kenel-assigned global name for this object 173 * 174 * List contains both flink named and prime fd'd objects 175 */ 176 unsigned int global_name; 177 178 UT_hash_handle handle_hh; 179 UT_hash_handle name_hh; 180 181 /** 182 * Index of the buffer within the validation list while preparing a 183 * batchbuffer execution. 184 */ 185 int validate_index; 186 187 /** 188 * Current tiling mode 189 */ 190 uint32_t tiling_mode; 191 uint32_t swizzle_mode; 192 unsigned long stride; 193 194 unsigned long kflags; 195 196 time_t free_time; 197 198 /** Array passed to the DRM containing relocation information. */ 199 struct drm_i915_gem_relocation_entry *relocs; 200 /** 201 * Array of info structs corresponding to relocs[i].target_handle etc 202 */ 203 drm_intel_reloc_target *reloc_target_info; 204 /** Number of entries in relocs */ 205 int reloc_count; 206 /** Array of BOs that are referenced by this buffer and will be softpinned */ 207 drm_intel_bo **softpin_target; 208 /** Number softpinned BOs that are referenced by this buffer */ 209 int softpin_target_count; 210 /** Maximum amount of softpinned BOs that are referenced by this buffer */ 211 int softpin_target_size; 212 213 /** Mapped address for the buffer, saved across map/unmap cycles */ 214 void *mem_virtual; 215 /** GTT virtual address for the buffer, saved across map/unmap cycles */ 216 void *gtt_virtual; 217 /** WC CPU address for the buffer, saved across map/unmap cycles */ 218 void *wc_virtual; 219 /** 220 * Virtual address of the buffer allocated by user, used for userptr 221 * objects only. 222 */ 223 void *user_virtual; 224 int map_count; 225 drmMMListHead vma_list; 226 227 /** BO cache list */ 228 drmMMListHead head; 229 230 /** 231 * Boolean of whether this BO and its children have been included in 232 * the current drm_intel_bufmgr_check_aperture_space() total. 233 */ 234 bool included_in_check_aperture; 235 236 /** 237 * Boolean of whether this buffer has been used as a relocation 238 * target and had its size accounted for, and thus can't have any 239 * further relocations added to it. 240 */ 241 bool used_as_reloc_target; 242 243 /** 244 * Boolean of whether we have encountered an error whilst building the relocation tree. 245 */ 246 bool has_error; 247 248 /** 249 * Boolean of whether this buffer can be re-used 250 */ 251 bool reusable; 252 253 /** 254 * Boolean of whether the GPU is definitely not accessing the buffer. 255 * 256 * This is only valid when reusable, since non-reusable 257 * buffers are those that have been shared with other 258 * processes, so we don't know their state. 259 */ 260 bool idle; 261 262 /** 263 * Boolean of whether this buffer was allocated with userptr 264 */ 265 bool is_userptr; 266 267 /** 268 * Size in bytes of this buffer and its relocation descendents. 269 * 270 * Used to avoid costly tree walking in 271 * drm_intel_bufmgr_check_aperture in the common case. 272 */ 273 int reloc_tree_size; 274 275 /** 276 * Number of potential fence registers required by this buffer and its 277 * relocations. 278 */ 279 int reloc_tree_fences; 280 281 /** Flags that we may need to do the SW_FINISH ioctl on unmap. */ 282 bool mapped_cpu_write; 283}; 284 285static unsigned int 286drm_intel_gem_estimate_batch_space(drm_intel_bo ** bo_array, int count); 287 288static unsigned int 289drm_intel_gem_compute_batch_space(drm_intel_bo ** bo_array, int count); 290 291static int 292drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode, 293 uint32_t * swizzle_mode); 294 295static int 296drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo, 297 uint32_t tiling_mode, 298 uint32_t stride); 299 300static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo, 301 time_t time); 302 303static void drm_intel_gem_bo_unreference(drm_intel_bo *bo); 304 305static void drm_intel_gem_bo_free(drm_intel_bo *bo); 306 307static inline drm_intel_bo_gem *to_bo_gem(drm_intel_bo *bo) 308{ 309 return (drm_intel_bo_gem *)bo; 310} 311 312static unsigned long 313drm_intel_gem_bo_tile_size(drm_intel_bufmgr_gem *bufmgr_gem, unsigned long size, 314 uint32_t *tiling_mode) 315{ 316 unsigned long min_size, max_size; 317 unsigned long i; 318 319 if (*tiling_mode == I915_TILING_NONE) 320 return size; 321 322 /* 965+ just need multiples of page size for tiling */ 323 if (bufmgr_gem->gen >= 4) 324 return ROUND_UP_TO(size, 4096); 325 326 /* Older chips need powers of two, of at least 512k or 1M */ 327 if (bufmgr_gem->gen == 3) { 328 min_size = 1024*1024; 329 max_size = 128*1024*1024; 330 } else { 331 min_size = 512*1024; 332 max_size = 64*1024*1024; 333 } 334 335 if (size > max_size) { 336 *tiling_mode = I915_TILING_NONE; 337 return size; 338 } 339 340 /* Do we need to allocate every page for the fence? */ 341 if (bufmgr_gem->has_relaxed_fencing) 342 return ROUND_UP_TO(size, 4096); 343 344 for (i = min_size; i < size; i <<= 1) 345 ; 346 347 return i; 348} 349 350/* 351 * Round a given pitch up to the minimum required for X tiling on a 352 * given chip. We use 512 as the minimum to allow for a later tiling 353 * change. 354 */ 355static unsigned long 356drm_intel_gem_bo_tile_pitch(drm_intel_bufmgr_gem *bufmgr_gem, 357 unsigned long pitch, uint32_t *tiling_mode) 358{ 359 unsigned long tile_width; 360 unsigned long i; 361 362 /* If untiled, then just align it so that we can do rendering 363 * to it with the 3D engine. 364 */ 365 if (*tiling_mode == I915_TILING_NONE) 366 return ALIGN(pitch, 64); 367 368 if (*tiling_mode == I915_TILING_X 369 || (IS_915(bufmgr_gem->pci_device) 370 && *tiling_mode == I915_TILING_Y)) 371 tile_width = 512; 372 else 373 tile_width = 128; 374 375 /* 965 is flexible */ 376 if (bufmgr_gem->gen >= 4) 377 return ROUND_UP_TO(pitch, tile_width); 378 379 /* The older hardware has a maximum pitch of 8192 with tiled 380 * surfaces, so fallback to untiled if it's too large. 381 */ 382 if (pitch > 8192) { 383 *tiling_mode = I915_TILING_NONE; 384 return ALIGN(pitch, 64); 385 } 386 387 /* Pre-965 needs power of two tile width */ 388 for (i = tile_width; i < pitch; i <<= 1) 389 ; 390 391 return i; 392} 393 394static struct drm_intel_gem_bo_bucket * 395drm_intel_gem_bo_bucket_for_size(drm_intel_bufmgr_gem *bufmgr_gem, 396 unsigned long size) 397{ 398 int i; 399 400 for (i = 0; i < bufmgr_gem->num_buckets; i++) { 401 struct drm_intel_gem_bo_bucket *bucket = 402 &bufmgr_gem->cache_bucket[i]; 403 if (bucket->size >= size) { 404 return bucket; 405 } 406 } 407 408 return NULL; 409} 410 411static void 412drm_intel_gem_dump_validation_list(drm_intel_bufmgr_gem *bufmgr_gem) 413{ 414 int i, j; 415 416 for (i = 0; i < bufmgr_gem->exec_count; i++) { 417 drm_intel_bo *bo = bufmgr_gem->exec_bos[i]; 418 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 419 420 if (bo_gem->relocs == NULL && bo_gem->softpin_target == NULL) { 421 DBG("%2d: %d %s(%s)\n", i, bo_gem->gem_handle, 422 bo_gem->kflags & EXEC_OBJECT_PINNED ? "*" : "", 423 bo_gem->name); 424 continue; 425 } 426 427 for (j = 0; j < bo_gem->reloc_count; j++) { 428 drm_intel_bo *target_bo = bo_gem->reloc_target_info[j].bo; 429 drm_intel_bo_gem *target_gem = 430 (drm_intel_bo_gem *) target_bo; 431 432 DBG("%2d: %d %s(%s)@0x%08x %08x -> " 433 "%d (%s)@0x%08x %08x + 0x%08x\n", 434 i, 435 bo_gem->gem_handle, 436 bo_gem->kflags & EXEC_OBJECT_PINNED ? "*" : "", 437 bo_gem->name, 438 upper_32_bits(bo_gem->relocs[j].offset), 439 lower_32_bits(bo_gem->relocs[j].offset), 440 target_gem->gem_handle, 441 target_gem->name, 442 upper_32_bits(target_bo->offset64), 443 lower_32_bits(target_bo->offset64), 444 bo_gem->relocs[j].delta); 445 } 446 447 for (j = 0; j < bo_gem->softpin_target_count; j++) { 448 drm_intel_bo *target_bo = bo_gem->softpin_target[j]; 449 drm_intel_bo_gem *target_gem = 450 (drm_intel_bo_gem *) target_bo; 451 DBG("%2d: %d %s(%s) -> " 452 "%d *(%s)@0x%08x %08x\n", 453 i, 454 bo_gem->gem_handle, 455 bo_gem->kflags & EXEC_OBJECT_PINNED ? "*" : "", 456 bo_gem->name, 457 target_gem->gem_handle, 458 target_gem->name, 459 upper_32_bits(target_bo->offset64), 460 lower_32_bits(target_bo->offset64)); 461 } 462 } 463} 464 465static inline void 466drm_intel_gem_bo_reference(drm_intel_bo *bo) 467{ 468 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 469 470 atomic_inc(&bo_gem->refcount); 471} 472 473/** 474 * Adds the given buffer to the list of buffers to be validated (moved into the 475 * appropriate memory type) with the next batch submission. 476 * 477 * If a buffer is validated multiple times in a batch submission, it ends up 478 * with the intersection of the memory type flags and the union of the 479 * access flags. 480 */ 481static void 482drm_intel_add_validate_buffer2(drm_intel_bo *bo, int need_fence) 483{ 484 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr; 485 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo; 486 int index; 487 unsigned long flags; 488 489 flags = 0; 490 if (need_fence) 491 flags |= EXEC_OBJECT_NEEDS_FENCE; 492 493 if (bo_gem->validate_index != -1) { 494 bufmgr_gem->exec2_objects[bo_gem->validate_index].flags |= flags; 495 return; 496 } 497 498 /* Extend the array of validation entries as necessary. */ 499 if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) { 500 int new_size = bufmgr_gem->exec_size * 2; 501 502 if (new_size == 0) 503 new_size = 5; 504 505 bufmgr_gem->exec2_objects = 506 realloc(bufmgr_gem->exec2_objects, 507 sizeof(*bufmgr_gem->exec2_objects) * new_size); 508 bufmgr_gem->exec_bos = 509 realloc(bufmgr_gem->exec_bos, 510 sizeof(*bufmgr_gem->exec_bos) * new_size); 511 bufmgr_gem->exec_size = new_size; 512 } 513 514 index = bufmgr_gem->exec_count; 515 bo_gem->validate_index = index; 516 /* Fill in array entry */ 517 bufmgr_gem->exec2_objects[index].handle = bo_gem->gem_handle; 518 bufmgr_gem->exec2_objects[index].relocation_count = bo_gem->reloc_count; 519 bufmgr_gem->exec2_objects[index].relocs_ptr = (uintptr_t)bo_gem->relocs; 520 bufmgr_gem->exec2_objects[index].alignment = bo->align; 521 bufmgr_gem->exec2_objects[index].offset = bo->offset64; 522 bufmgr_gem->exec2_objects[index].flags = bo_gem->kflags | flags; 523 bufmgr_gem->exec2_objects[index].rsvd1 = 0; 524 bufmgr_gem->exec2_objects[index].rsvd2 = 0; 525 bufmgr_gem->exec_bos[index] = bo; 526 bufmgr_gem->exec_count++; 527} 528 529#define RELOC_BUF_SIZE(x) ((I915_RELOC_HEADER + x * I915_RELOC0_STRIDE) * \ 530 sizeof(uint32_t)) 531 532static void 533drm_intel_bo_gem_set_in_aperture_size(drm_intel_bufmgr_gem *bufmgr_gem, 534 drm_intel_bo_gem *bo_gem, 535 unsigned int alignment) 536{ 537 unsigned int size; 538 539 assert(!bo_gem->used_as_reloc_target); 540 541 /* The older chipsets are far-less flexible in terms of tiling, 542 * and require tiled buffer to be size aligned in the aperture. 543 * This means that in the worst possible case we will need a hole 544 * twice as large as the object in order for it to fit into the 545 * aperture. Optimal packing is for wimps. 546 */ 547 size = bo_gem->bo.size; 548 if (bufmgr_gem->gen < 4 && bo_gem->tiling_mode != I915_TILING_NONE) { 549 unsigned int min_size; 550 551 if (bufmgr_gem->has_relaxed_fencing) { 552 if (bufmgr_gem->gen == 3) 553 min_size = 1024*1024; 554 else 555 min_size = 512*1024; 556 557 while (min_size < size) 558 min_size *= 2; 559 } else 560 min_size = size; 561 562 /* Account for worst-case alignment. */ 563 alignment = MAX2(alignment, min_size); 564 } 565 566 bo_gem->reloc_tree_size = size + alignment; 567} 568 569static int 570drm_intel_setup_reloc_list(drm_intel_bo *bo) 571{ 572 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 573 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 574 unsigned int max_relocs = bufmgr_gem->max_relocs; 575 576 if (bo->size / 4 < max_relocs) 577 max_relocs = bo->size / 4; 578 579 bo_gem->relocs = malloc(max_relocs * 580 sizeof(struct drm_i915_gem_relocation_entry)); 581 bo_gem->reloc_target_info = malloc(max_relocs * 582 sizeof(drm_intel_reloc_target)); 583 if (bo_gem->relocs == NULL || bo_gem->reloc_target_info == NULL) { 584 bo_gem->has_error = true; 585 586 free (bo_gem->relocs); 587 bo_gem->relocs = NULL; 588 589 free (bo_gem->reloc_target_info); 590 bo_gem->reloc_target_info = NULL; 591 592 return 1; 593 } 594 595 return 0; 596} 597 598static int 599drm_intel_gem_bo_busy(drm_intel_bo *bo) 600{ 601 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 602 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 603 struct drm_i915_gem_busy busy; 604 int ret; 605 606 if (bo_gem->reusable && bo_gem->idle) 607 return false; 608 609 memclear(busy); 610 busy.handle = bo_gem->gem_handle; 611 612 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_BUSY, &busy); 613 if (ret == 0) { 614 bo_gem->idle = !busy.busy; 615 return busy.busy; 616 } else { 617 return false; 618 } 619} 620 621static int 622drm_intel_gem_bo_madvise_internal(drm_intel_bufmgr_gem *bufmgr_gem, 623 drm_intel_bo_gem *bo_gem, int state) 624{ 625 struct drm_i915_gem_madvise madv; 626 627 memclear(madv); 628 madv.handle = bo_gem->gem_handle; 629 madv.madv = state; 630 madv.retained = 1; 631 drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv); 632 633 return madv.retained; 634} 635 636static int 637drm_intel_gem_bo_madvise(drm_intel_bo *bo, int madv) 638{ 639 return drm_intel_gem_bo_madvise_internal 640 ((drm_intel_bufmgr_gem *) bo->bufmgr, 641 (drm_intel_bo_gem *) bo, 642 madv); 643} 644 645/* drop the oldest entries that have been purged by the kernel */ 646static void 647drm_intel_gem_bo_cache_purge_bucket(drm_intel_bufmgr_gem *bufmgr_gem, 648 struct drm_intel_gem_bo_bucket *bucket) 649{ 650 while (!DRMLISTEMPTY(&bucket->head)) { 651 drm_intel_bo_gem *bo_gem; 652 653 bo_gem = DRMLISTENTRY(drm_intel_bo_gem, 654 bucket->head.next, head); 655 if (drm_intel_gem_bo_madvise_internal 656 (bufmgr_gem, bo_gem, I915_MADV_DONTNEED)) 657 break; 658 659 DRMLISTDEL(&bo_gem->head); 660 drm_intel_gem_bo_free(&bo_gem->bo); 661 } 662} 663 664static drm_intel_bo * 665drm_intel_gem_bo_alloc_internal(drm_intel_bufmgr *bufmgr, 666 const char *name, 667 unsigned long size, 668 unsigned long flags, 669 uint32_t tiling_mode, 670 unsigned long stride, 671 unsigned int alignment) 672{ 673 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; 674 drm_intel_bo_gem *bo_gem; 675 unsigned int page_size = getpagesize(); 676 int ret; 677 struct drm_intel_gem_bo_bucket *bucket; 678 bool alloc_from_cache; 679 unsigned long bo_size; 680 bool for_render = false; 681 682 if (flags & BO_ALLOC_FOR_RENDER) 683 for_render = true; 684 685 /* Round the allocated size up to a power of two number of pages. */ 686 bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, size); 687 688 /* If we don't have caching at this size, don't actually round the 689 * allocation up. 690 */ 691 if (bucket == NULL) { 692 bo_size = size; 693 if (bo_size < page_size) 694 bo_size = page_size; 695 } else { 696 bo_size = bucket->size; 697 } 698 699 pthread_mutex_lock(&bufmgr_gem->lock); 700 /* Get a buffer out of the cache if available */ 701retry: 702 alloc_from_cache = false; 703 if (bucket != NULL && !DRMLISTEMPTY(&bucket->head)) { 704 if (for_render) { 705 /* Allocate new render-target BOs from the tail (MRU) 706 * of the list, as it will likely be hot in the GPU 707 * cache and in the aperture for us. 708 */ 709 bo_gem = DRMLISTENTRY(drm_intel_bo_gem, 710 bucket->head.prev, head); 711 DRMLISTDEL(&bo_gem->head); 712 alloc_from_cache = true; 713 bo_gem->bo.align = alignment; 714 } else { 715 assert(alignment == 0); 716 /* For non-render-target BOs (where we're probably 717 * going to map it first thing in order to fill it 718 * with data), check if the last BO in the cache is 719 * unbusy, and only reuse in that case. Otherwise, 720 * allocating a new buffer is probably faster than 721 * waiting for the GPU to finish. 722 */ 723 bo_gem = DRMLISTENTRY(drm_intel_bo_gem, 724 bucket->head.next, head); 725 if (!drm_intel_gem_bo_busy(&bo_gem->bo)) { 726 alloc_from_cache = true; 727 DRMLISTDEL(&bo_gem->head); 728 } 729 } 730 731 if (alloc_from_cache) { 732 if (!drm_intel_gem_bo_madvise_internal 733 (bufmgr_gem, bo_gem, I915_MADV_WILLNEED)) { 734 drm_intel_gem_bo_free(&bo_gem->bo); 735 drm_intel_gem_bo_cache_purge_bucket(bufmgr_gem, 736 bucket); 737 goto retry; 738 } 739 740 if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo, 741 tiling_mode, 742 stride)) { 743 drm_intel_gem_bo_free(&bo_gem->bo); 744 goto retry; 745 } 746 } 747 } 748 749 if (!alloc_from_cache) { 750 struct drm_i915_gem_create create; 751 752 bo_gem = calloc(1, sizeof(*bo_gem)); 753 if (!bo_gem) 754 goto err; 755 756 /* drm_intel_gem_bo_free calls DRMLISTDEL() for an uninitialized 757 list (vma_list), so better set the list head here */ 758 DRMINITLISTHEAD(&bo_gem->vma_list); 759 760 bo_gem->bo.size = bo_size; 761 762 memclear(create); 763 create.size = bo_size; 764 765 ret = drmIoctl(bufmgr_gem->fd, 766 DRM_IOCTL_I915_GEM_CREATE, 767 &create); 768 if (ret != 0) { 769 free(bo_gem); 770 goto err; 771 } 772 773 bo_gem->gem_handle = create.handle; 774 HASH_ADD(handle_hh, bufmgr_gem->handle_table, 775 gem_handle, sizeof(bo_gem->gem_handle), 776 bo_gem); 777 778 bo_gem->bo.handle = bo_gem->gem_handle; 779 bo_gem->bo.bufmgr = bufmgr; 780 bo_gem->bo.align = alignment; 781 782 bo_gem->tiling_mode = I915_TILING_NONE; 783 bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE; 784 bo_gem->stride = 0; 785 786 if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo, 787 tiling_mode, 788 stride)) 789 goto err_free; 790 } 791 792 bo_gem->name = name; 793 atomic_set(&bo_gem->refcount, 1); 794 bo_gem->validate_index = -1; 795 bo_gem->reloc_tree_fences = 0; 796 bo_gem->used_as_reloc_target = false; 797 bo_gem->has_error = false; 798 bo_gem->reusable = true; 799 800 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, alignment); 801 pthread_mutex_unlock(&bufmgr_gem->lock); 802 803 DBG("bo_create: buf %d (%s) %ldb\n", 804 bo_gem->gem_handle, bo_gem->name, size); 805 806 return &bo_gem->bo; 807 808err_free: 809 drm_intel_gem_bo_free(&bo_gem->bo); 810err: 811 pthread_mutex_unlock(&bufmgr_gem->lock); 812 return NULL; 813} 814 815static drm_intel_bo * 816drm_intel_gem_bo_alloc_for_render(drm_intel_bufmgr *bufmgr, 817 const char *name, 818 unsigned long size, 819 unsigned int alignment) 820{ 821 return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, 822 BO_ALLOC_FOR_RENDER, 823 I915_TILING_NONE, 0, 824 alignment); 825} 826 827static drm_intel_bo * 828drm_intel_gem_bo_alloc(drm_intel_bufmgr *bufmgr, 829 const char *name, 830 unsigned long size, 831 unsigned int alignment) 832{ 833 return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, 0, 834 I915_TILING_NONE, 0, 0); 835} 836 837static drm_intel_bo * 838drm_intel_gem_bo_alloc_tiled(drm_intel_bufmgr *bufmgr, const char *name, 839 int x, int y, int cpp, uint32_t *tiling_mode, 840 unsigned long *pitch, unsigned long flags) 841{ 842 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; 843 unsigned long size, stride; 844 uint32_t tiling; 845 846 do { 847 unsigned long aligned_y, height_alignment; 848 849 tiling = *tiling_mode; 850 851 /* If we're tiled, our allocations are in 8 or 32-row blocks, 852 * so failure to align our height means that we won't allocate 853 * enough pages. 854 * 855 * If we're untiled, we still have to align to 2 rows high 856 * because the data port accesses 2x2 blocks even if the 857 * bottom row isn't to be rendered, so failure to align means 858 * we could walk off the end of the GTT and fault. This is 859 * documented on 965, and may be the case on older chipsets 860 * too so we try to be careful. 861 */ 862 aligned_y = y; 863 height_alignment = 2; 864 865 if ((bufmgr_gem->gen == 2) && tiling != I915_TILING_NONE) 866 height_alignment = 16; 867 else if (tiling == I915_TILING_X 868 || (IS_915(bufmgr_gem->pci_device) 869 && tiling == I915_TILING_Y)) 870 height_alignment = 8; 871 else if (tiling == I915_TILING_Y) 872 height_alignment = 32; 873 aligned_y = ALIGN(y, height_alignment); 874 875 stride = x * cpp; 876 stride = drm_intel_gem_bo_tile_pitch(bufmgr_gem, stride, tiling_mode); 877 size = stride * aligned_y; 878 size = drm_intel_gem_bo_tile_size(bufmgr_gem, size, tiling_mode); 879 } while (*tiling_mode != tiling); 880 *pitch = stride; 881 882 if (tiling == I915_TILING_NONE) 883 stride = 0; 884 885 return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, flags, 886 tiling, stride, 0); 887} 888 889static drm_intel_bo * 890drm_intel_gem_bo_alloc_userptr(drm_intel_bufmgr *bufmgr, 891 const char *name, 892 void *addr, 893 uint32_t tiling_mode, 894 uint32_t stride, 895 unsigned long size, 896 unsigned long flags) 897{ 898 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; 899 drm_intel_bo_gem *bo_gem; 900 int ret; 901 struct drm_i915_gem_userptr userptr; 902 903 /* Tiling with userptr surfaces is not supported 904 * on all hardware so refuse it for time being. 905 */ 906 if (tiling_mode != I915_TILING_NONE) 907 return NULL; 908 909 bo_gem = calloc(1, sizeof(*bo_gem)); 910 if (!bo_gem) 911 return NULL; 912 913 atomic_set(&bo_gem->refcount, 1); 914 DRMINITLISTHEAD(&bo_gem->vma_list); 915 916 bo_gem->bo.size = size; 917 918 memclear(userptr); 919 userptr.user_ptr = (__u64)((unsigned long)addr); 920 userptr.user_size = size; 921 userptr.flags = flags; 922 923 ret = drmIoctl(bufmgr_gem->fd, 924 DRM_IOCTL_I915_GEM_USERPTR, 925 &userptr); 926 if (ret != 0) { 927 DBG("bo_create_userptr: " 928 "ioctl failed with user ptr %p size 0x%lx, " 929 "user flags 0x%lx\n", addr, size, flags); 930 free(bo_gem); 931 return NULL; 932 } 933 934 pthread_mutex_lock(&bufmgr_gem->lock); 935 936 bo_gem->gem_handle = userptr.handle; 937 bo_gem->bo.handle = bo_gem->gem_handle; 938 bo_gem->bo.bufmgr = bufmgr; 939 bo_gem->is_userptr = true; 940 bo_gem->bo.virtual = addr; 941 /* Save the address provided by user */ 942 bo_gem->user_virtual = addr; 943 bo_gem->tiling_mode = I915_TILING_NONE; 944 bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE; 945 bo_gem->stride = 0; 946 947 HASH_ADD(handle_hh, bufmgr_gem->handle_table, 948 gem_handle, sizeof(bo_gem->gem_handle), 949 bo_gem); 950 951 bo_gem->name = name; 952 bo_gem->validate_index = -1; 953 bo_gem->reloc_tree_fences = 0; 954 bo_gem->used_as_reloc_target = false; 955 bo_gem->has_error = false; 956 bo_gem->reusable = false; 957 958 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0); 959 pthread_mutex_unlock(&bufmgr_gem->lock); 960 961 DBG("bo_create_userptr: " 962 "ptr %p buf %d (%s) size %ldb, stride 0x%x, tile mode %d\n", 963 addr, bo_gem->gem_handle, bo_gem->name, 964 size, stride, tiling_mode); 965 966 return &bo_gem->bo; 967} 968 969static bool 970has_userptr(drm_intel_bufmgr_gem *bufmgr_gem) 971{ 972 int ret; 973 void *ptr; 974 long pgsz; 975 struct drm_i915_gem_userptr userptr; 976 977 pgsz = sysconf(_SC_PAGESIZE); 978 assert(pgsz > 0); 979 980 ret = posix_memalign(&ptr, pgsz, pgsz); 981 if (ret) { 982 DBG("Failed to get a page (%ld) for userptr detection!\n", 983 pgsz); 984 return false; 985 } 986 987 memclear(userptr); 988 userptr.user_ptr = (__u64)(unsigned long)ptr; 989 userptr.user_size = pgsz; 990 991retry: 992 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_USERPTR, &userptr); 993 if (ret) { 994 if (errno == ENODEV && userptr.flags == 0) { 995 userptr.flags = I915_USERPTR_UNSYNCHRONIZED; 996 goto retry; 997 } 998 free(ptr); 999 return false; 1000 } 1001 1002 /* We don't release the userptr bo here as we want to keep the 1003 * kernel mm tracking alive for our lifetime. The first time we 1004 * create a userptr object the kernel has to install a mmu_notifer 1005 * which is a heavyweight operation (e.g. it requires taking all 1006 * mm_locks and stop_machine()). 1007 */ 1008 1009 bufmgr_gem->userptr_active.ptr = ptr; 1010 bufmgr_gem->userptr_active.handle = userptr.handle; 1011 1012 return true; 1013} 1014 1015static drm_intel_bo * 1016check_bo_alloc_userptr(drm_intel_bufmgr *bufmgr, 1017 const char *name, 1018 void *addr, 1019 uint32_t tiling_mode, 1020 uint32_t stride, 1021 unsigned long size, 1022 unsigned long flags) 1023{ 1024 if (has_userptr((drm_intel_bufmgr_gem *)bufmgr)) 1025 bufmgr->bo_alloc_userptr = drm_intel_gem_bo_alloc_userptr; 1026 else 1027 bufmgr->bo_alloc_userptr = NULL; 1028 1029 return drm_intel_bo_alloc_userptr(bufmgr, name, addr, 1030 tiling_mode, stride, size, flags); 1031} 1032 1033static int get_tiling_mode(drm_intel_bufmgr_gem *bufmgr_gem, 1034 uint32_t gem_handle, 1035 uint32_t *tiling_mode, 1036 uint32_t *swizzle_mode) 1037{ 1038 struct drm_i915_gem_get_tiling get_tiling = { 1039 .handle = gem_handle, 1040 }; 1041 int ret; 1042 1043 ret = drmIoctl(bufmgr_gem->fd, 1044 DRM_IOCTL_I915_GEM_GET_TILING, 1045 &get_tiling); 1046 if (ret != 0 && errno != EOPNOTSUPP) 1047 return ret; 1048 1049 *tiling_mode = get_tiling.tiling_mode; 1050 *swizzle_mode = get_tiling.swizzle_mode; 1051 1052 return 0; 1053} 1054 1055/** 1056 * Returns a drm_intel_bo wrapping the given buffer object handle. 1057 * 1058 * This can be used when one application needs to pass a buffer object 1059 * to another. 1060 */ 1061drm_public drm_intel_bo * 1062drm_intel_bo_gem_create_from_name(drm_intel_bufmgr *bufmgr, 1063 const char *name, 1064 unsigned int handle) 1065{ 1066 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; 1067 drm_intel_bo_gem *bo_gem; 1068 int ret; 1069 struct drm_gem_open open_arg; 1070 1071 /* At the moment most applications only have a few named bo. 1072 * For instance, in a DRI client only the render buffers passed 1073 * between X and the client are named. And since X returns the 1074 * alternating names for the front/back buffer a linear search 1075 * provides a sufficiently fast match. 1076 */ 1077 pthread_mutex_lock(&bufmgr_gem->lock); 1078 HASH_FIND(name_hh, bufmgr_gem->name_table, 1079 &handle, sizeof(handle), bo_gem); 1080 if (bo_gem) { 1081 drm_intel_gem_bo_reference(&bo_gem->bo); 1082 goto out; 1083 } 1084 1085 memclear(open_arg); 1086 open_arg.name = handle; 1087 ret = drmIoctl(bufmgr_gem->fd, 1088 DRM_IOCTL_GEM_OPEN, 1089 &open_arg); 1090 if (ret != 0) { 1091 DBG("Couldn't reference %s handle 0x%08x: %s\n", 1092 name, handle, strerror(errno)); 1093 bo_gem = NULL; 1094 goto out; 1095 } 1096 /* Now see if someone has used a prime handle to get this 1097 * object from the kernel before by looking through the list 1098 * again for a matching gem_handle 1099 */ 1100 HASH_FIND(handle_hh, bufmgr_gem->handle_table, 1101 &open_arg.handle, sizeof(open_arg.handle), bo_gem); 1102 if (bo_gem) { 1103 drm_intel_gem_bo_reference(&bo_gem->bo); 1104 goto out; 1105 } 1106 1107 bo_gem = calloc(1, sizeof(*bo_gem)); 1108 if (!bo_gem) 1109 goto out; 1110 1111 atomic_set(&bo_gem->refcount, 1); 1112 DRMINITLISTHEAD(&bo_gem->vma_list); 1113 1114 bo_gem->bo.size = open_arg.size; 1115 bo_gem->bo.offset = 0; 1116 bo_gem->bo.offset64 = 0; 1117 bo_gem->bo.virtual = NULL; 1118 bo_gem->bo.bufmgr = bufmgr; 1119 bo_gem->name = name; 1120 bo_gem->validate_index = -1; 1121 bo_gem->gem_handle = open_arg.handle; 1122 bo_gem->bo.handle = open_arg.handle; 1123 bo_gem->global_name = handle; 1124 bo_gem->reusable = false; 1125 1126 HASH_ADD(handle_hh, bufmgr_gem->handle_table, 1127 gem_handle, sizeof(bo_gem->gem_handle), bo_gem); 1128 HASH_ADD(name_hh, bufmgr_gem->name_table, 1129 global_name, sizeof(bo_gem->global_name), bo_gem); 1130 1131 ret = get_tiling_mode(bufmgr_gem, bo_gem->gem_handle, 1132 &bo_gem->tiling_mode, &bo_gem->swizzle_mode); 1133 if (ret != 0) 1134 goto err_unref; 1135 1136 /* XXX stride is unknown */ 1137 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0); 1138 DBG("bo_create_from_handle: %d (%s)\n", handle, bo_gem->name); 1139 1140out: 1141 pthread_mutex_unlock(&bufmgr_gem->lock); 1142 return &bo_gem->bo; 1143 1144err_unref: 1145 drm_intel_gem_bo_free(&bo_gem->bo); 1146 pthread_mutex_unlock(&bufmgr_gem->lock); 1147 return NULL; 1148} 1149 1150static void 1151drm_intel_gem_bo_free(drm_intel_bo *bo) 1152{ 1153 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1154 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1155 int ret; 1156 1157 DRMLISTDEL(&bo_gem->vma_list); 1158 if (bo_gem->mem_virtual) { 1159 VG(VALGRIND_FREELIKE_BLOCK(bo_gem->mem_virtual, 0)); 1160 drm_munmap(bo_gem->mem_virtual, bo_gem->bo.size); 1161 bufmgr_gem->vma_count--; 1162 } 1163 if (bo_gem->wc_virtual) { 1164 VG(VALGRIND_FREELIKE_BLOCK(bo_gem->wc_virtual, 0)); 1165 drm_munmap(bo_gem->wc_virtual, bo_gem->bo.size); 1166 bufmgr_gem->vma_count--; 1167 } 1168 if (bo_gem->gtt_virtual) { 1169 drm_munmap(bo_gem->gtt_virtual, bo_gem->bo.size); 1170 bufmgr_gem->vma_count--; 1171 } 1172 1173 if (bo_gem->global_name) 1174 HASH_DELETE(name_hh, bufmgr_gem->name_table, bo_gem); 1175 HASH_DELETE(handle_hh, bufmgr_gem->handle_table, bo_gem); 1176 1177 /* Close this object */ 1178 ret = drmCloseBufferHandle(bufmgr_gem->fd, bo_gem->gem_handle); 1179 if (ret != 0) { 1180 DBG("drmCloseBufferHandle %d failed (%s): %s\n", 1181 bo_gem->gem_handle, bo_gem->name, strerror(errno)); 1182 } 1183 free(bo); 1184} 1185 1186static void 1187drm_intel_gem_bo_mark_mmaps_incoherent(drm_intel_bo *bo) 1188{ 1189#if HAVE_VALGRIND 1190 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1191 1192 if (bo_gem->mem_virtual) 1193 VALGRIND_MAKE_MEM_NOACCESS(bo_gem->mem_virtual, bo->size); 1194 1195 if (bo_gem->wc_virtual) 1196 VALGRIND_MAKE_MEM_NOACCESS(bo_gem->wc_virtual, bo->size); 1197 1198 if (bo_gem->gtt_virtual) 1199 VALGRIND_MAKE_MEM_NOACCESS(bo_gem->gtt_virtual, bo->size); 1200#endif 1201} 1202 1203/** Frees all cached buffers significantly older than @time. */ 1204static void 1205drm_intel_gem_cleanup_bo_cache(drm_intel_bufmgr_gem *bufmgr_gem, time_t time) 1206{ 1207 int i; 1208 1209 if (bufmgr_gem->time == time) 1210 return; 1211 1212 for (i = 0; i < bufmgr_gem->num_buckets; i++) { 1213 struct drm_intel_gem_bo_bucket *bucket = 1214 &bufmgr_gem->cache_bucket[i]; 1215 1216 while (!DRMLISTEMPTY(&bucket->head)) { 1217 drm_intel_bo_gem *bo_gem; 1218 1219 bo_gem = DRMLISTENTRY(drm_intel_bo_gem, 1220 bucket->head.next, head); 1221 if (time - bo_gem->free_time <= 1) 1222 break; 1223 1224 DRMLISTDEL(&bo_gem->head); 1225 1226 drm_intel_gem_bo_free(&bo_gem->bo); 1227 } 1228 } 1229 1230 bufmgr_gem->time = time; 1231} 1232 1233static void drm_intel_gem_bo_purge_vma_cache(drm_intel_bufmgr_gem *bufmgr_gem) 1234{ 1235 int limit; 1236 1237 DBG("%s: cached=%d, open=%d, limit=%d\n", __FUNCTION__, 1238 bufmgr_gem->vma_count, bufmgr_gem->vma_open, bufmgr_gem->vma_max); 1239 1240 if (bufmgr_gem->vma_max < 0) 1241 return; 1242 1243 /* We may need to evict a few entries in order to create new mmaps */ 1244 limit = bufmgr_gem->vma_max - 2*bufmgr_gem->vma_open; 1245 if (limit < 0) 1246 limit = 0; 1247 1248 while (bufmgr_gem->vma_count > limit) { 1249 drm_intel_bo_gem *bo_gem; 1250 1251 bo_gem = DRMLISTENTRY(drm_intel_bo_gem, 1252 bufmgr_gem->vma_cache.next, 1253 vma_list); 1254 assert(bo_gem->map_count == 0); 1255 DRMLISTDELINIT(&bo_gem->vma_list); 1256 1257 if (bo_gem->mem_virtual) { 1258 drm_munmap(bo_gem->mem_virtual, bo_gem->bo.size); 1259 bo_gem->mem_virtual = NULL; 1260 bufmgr_gem->vma_count--; 1261 } 1262 if (bo_gem->wc_virtual) { 1263 drm_munmap(bo_gem->wc_virtual, bo_gem->bo.size); 1264 bo_gem->wc_virtual = NULL; 1265 bufmgr_gem->vma_count--; 1266 } 1267 if (bo_gem->gtt_virtual) { 1268 drm_munmap(bo_gem->gtt_virtual, bo_gem->bo.size); 1269 bo_gem->gtt_virtual = NULL; 1270 bufmgr_gem->vma_count--; 1271 } 1272 } 1273} 1274 1275static void drm_intel_gem_bo_close_vma(drm_intel_bufmgr_gem *bufmgr_gem, 1276 drm_intel_bo_gem *bo_gem) 1277{ 1278 bufmgr_gem->vma_open--; 1279 DRMLISTADDTAIL(&bo_gem->vma_list, &bufmgr_gem->vma_cache); 1280 if (bo_gem->mem_virtual) 1281 bufmgr_gem->vma_count++; 1282 if (bo_gem->wc_virtual) 1283 bufmgr_gem->vma_count++; 1284 if (bo_gem->gtt_virtual) 1285 bufmgr_gem->vma_count++; 1286 drm_intel_gem_bo_purge_vma_cache(bufmgr_gem); 1287} 1288 1289static void drm_intel_gem_bo_open_vma(drm_intel_bufmgr_gem *bufmgr_gem, 1290 drm_intel_bo_gem *bo_gem) 1291{ 1292 bufmgr_gem->vma_open++; 1293 DRMLISTDEL(&bo_gem->vma_list); 1294 if (bo_gem->mem_virtual) 1295 bufmgr_gem->vma_count--; 1296 if (bo_gem->wc_virtual) 1297 bufmgr_gem->vma_count--; 1298 if (bo_gem->gtt_virtual) 1299 bufmgr_gem->vma_count--; 1300 drm_intel_gem_bo_purge_vma_cache(bufmgr_gem); 1301} 1302 1303static void 1304drm_intel_gem_bo_unreference_final(drm_intel_bo *bo, time_t time) 1305{ 1306 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1307 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1308 struct drm_intel_gem_bo_bucket *bucket; 1309 int i; 1310 1311 /* Unreference all the target buffers */ 1312 for (i = 0; i < bo_gem->reloc_count; i++) { 1313 if (bo_gem->reloc_target_info[i].bo != bo) { 1314 drm_intel_gem_bo_unreference_locked_timed(bo_gem-> 1315 reloc_target_info[i].bo, 1316 time); 1317 } 1318 } 1319 for (i = 0; i < bo_gem->softpin_target_count; i++) 1320 drm_intel_gem_bo_unreference_locked_timed(bo_gem->softpin_target[i], 1321 time); 1322 bo_gem->kflags = 0; 1323 bo_gem->reloc_count = 0; 1324 bo_gem->used_as_reloc_target = false; 1325 bo_gem->softpin_target_count = 0; 1326 1327 DBG("bo_unreference final: %d (%s)\n", 1328 bo_gem->gem_handle, bo_gem->name); 1329 1330 /* release memory associated with this object */ 1331 if (bo_gem->reloc_target_info) { 1332 free(bo_gem->reloc_target_info); 1333 bo_gem->reloc_target_info = NULL; 1334 } 1335 if (bo_gem->relocs) { 1336 free(bo_gem->relocs); 1337 bo_gem->relocs = NULL; 1338 } 1339 if (bo_gem->softpin_target) { 1340 free(bo_gem->softpin_target); 1341 bo_gem->softpin_target = NULL; 1342 bo_gem->softpin_target_size = 0; 1343 } 1344 1345 /* Clear any left-over mappings */ 1346 if (bo_gem->map_count) { 1347 DBG("bo freed with non-zero map-count %d\n", bo_gem->map_count); 1348 bo_gem->map_count = 0; 1349 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem); 1350 drm_intel_gem_bo_mark_mmaps_incoherent(bo); 1351 } 1352 1353 bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, bo->size); 1354 /* Put the buffer into our internal cache for reuse if we can. */ 1355 if (bufmgr_gem->bo_reuse && bo_gem->reusable && bucket != NULL && 1356 drm_intel_gem_bo_madvise_internal(bufmgr_gem, bo_gem, 1357 I915_MADV_DONTNEED)) { 1358 bo_gem->free_time = time; 1359 1360 bo_gem->name = NULL; 1361 bo_gem->validate_index = -1; 1362 1363 DRMLISTADDTAIL(&bo_gem->head, &bucket->head); 1364 } else { 1365 drm_intel_gem_bo_free(bo); 1366 } 1367} 1368 1369static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo, 1370 time_t time) 1371{ 1372 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1373 1374 assert(atomic_read(&bo_gem->refcount) > 0); 1375 if (atomic_dec_and_test(&bo_gem->refcount)) 1376 drm_intel_gem_bo_unreference_final(bo, time); 1377} 1378 1379static void drm_intel_gem_bo_unreference(drm_intel_bo *bo) 1380{ 1381 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1382 1383 assert(atomic_read(&bo_gem->refcount) > 0); 1384 1385 if (atomic_add_unless(&bo_gem->refcount, -1, 1)) { 1386 drm_intel_bufmgr_gem *bufmgr_gem = 1387 (drm_intel_bufmgr_gem *) bo->bufmgr; 1388 struct timespec time; 1389 1390 clock_gettime(CLOCK_MONOTONIC, &time); 1391 1392 pthread_mutex_lock(&bufmgr_gem->lock); 1393 1394 if (atomic_dec_and_test(&bo_gem->refcount)) { 1395 drm_intel_gem_bo_unreference_final(bo, time.tv_sec); 1396 drm_intel_gem_cleanup_bo_cache(bufmgr_gem, time.tv_sec); 1397 } 1398 1399 pthread_mutex_unlock(&bufmgr_gem->lock); 1400 } 1401} 1402 1403static int drm_intel_gem_bo_map(drm_intel_bo *bo, int write_enable) 1404{ 1405 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1406 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1407 struct drm_i915_gem_set_domain set_domain; 1408 int ret; 1409 1410 if (bo_gem->is_userptr) { 1411 /* Return the same user ptr */ 1412 bo->virtual = bo_gem->user_virtual; 1413 return 0; 1414 } 1415 1416 pthread_mutex_lock(&bufmgr_gem->lock); 1417 1418 if (bo_gem->map_count++ == 0) 1419 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem); 1420 1421 if (!bo_gem->mem_virtual) { 1422 struct drm_i915_gem_mmap mmap_arg; 1423 1424 DBG("bo_map: %d (%s), map_count=%d\n", 1425 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count); 1426 1427 memclear(mmap_arg); 1428 mmap_arg.handle = bo_gem->gem_handle; 1429 mmap_arg.size = bo->size; 1430 ret = drmIoctl(bufmgr_gem->fd, 1431 DRM_IOCTL_I915_GEM_MMAP, 1432 &mmap_arg); 1433 if (ret != 0) { 1434 ret = -errno; 1435 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n", 1436 __FILE__, __LINE__, bo_gem->gem_handle, 1437 bo_gem->name, strerror(errno)); 1438 if (--bo_gem->map_count == 0) 1439 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem); 1440 pthread_mutex_unlock(&bufmgr_gem->lock); 1441 return ret; 1442 } 1443 VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1)); 1444 bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr; 1445 } 1446 DBG("bo_map: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name, 1447 bo_gem->mem_virtual); 1448 bo->virtual = bo_gem->mem_virtual; 1449 1450 memclear(set_domain); 1451 set_domain.handle = bo_gem->gem_handle; 1452 set_domain.read_domains = I915_GEM_DOMAIN_CPU; 1453 if (write_enable) 1454 set_domain.write_domain = I915_GEM_DOMAIN_CPU; 1455 else 1456 set_domain.write_domain = 0; 1457 ret = drmIoctl(bufmgr_gem->fd, 1458 DRM_IOCTL_I915_GEM_SET_DOMAIN, 1459 &set_domain); 1460 if (ret != 0) { 1461 DBG("%s:%d: Error setting to CPU domain %d: %s\n", 1462 __FILE__, __LINE__, bo_gem->gem_handle, 1463 strerror(errno)); 1464 } 1465 1466 if (write_enable) 1467 bo_gem->mapped_cpu_write = true; 1468 1469 drm_intel_gem_bo_mark_mmaps_incoherent(bo); 1470 VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->mem_virtual, bo->size)); 1471 pthread_mutex_unlock(&bufmgr_gem->lock); 1472 1473 return 0; 1474} 1475 1476static int 1477map_gtt(drm_intel_bo *bo) 1478{ 1479 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1480 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1481 int ret; 1482 1483 if (bo_gem->is_userptr) 1484 return -EINVAL; 1485 1486 if (bo_gem->map_count++ == 0) 1487 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem); 1488 1489 /* Get a mapping of the buffer if we haven't before. */ 1490 if (bo_gem->gtt_virtual == NULL) { 1491 struct drm_i915_gem_mmap_gtt mmap_arg; 1492 1493 DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n", 1494 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count); 1495 1496 memclear(mmap_arg); 1497 mmap_arg.handle = bo_gem->gem_handle; 1498 1499 /* Get the fake offset back... */ 1500 ret = drmIoctl(bufmgr_gem->fd, 1501 DRM_IOCTL_I915_GEM_MMAP_GTT, 1502 &mmap_arg); 1503 if (ret != 0) { 1504 ret = -errno; 1505 DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n", 1506 __FILE__, __LINE__, 1507 bo_gem->gem_handle, bo_gem->name, 1508 strerror(errno)); 1509 if (--bo_gem->map_count == 0) 1510 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem); 1511 return ret; 1512 } 1513 1514 /* and mmap it */ 1515 bo_gem->gtt_virtual = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE, 1516 MAP_SHARED, bufmgr_gem->fd, 1517 mmap_arg.offset); 1518 if (bo_gem->gtt_virtual == MAP_FAILED) { 1519 bo_gem->gtt_virtual = NULL; 1520 ret = -errno; 1521 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n", 1522 __FILE__, __LINE__, 1523 bo_gem->gem_handle, bo_gem->name, 1524 strerror(errno)); 1525 if (--bo_gem->map_count == 0) 1526 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem); 1527 return ret; 1528 } 1529 } 1530 1531 bo->virtual = bo_gem->gtt_virtual; 1532 1533 DBG("bo_map_gtt: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name, 1534 bo_gem->gtt_virtual); 1535 1536 return 0; 1537} 1538 1539drm_public int 1540drm_intel_gem_bo_map_gtt(drm_intel_bo *bo) 1541{ 1542 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1543 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1544 struct drm_i915_gem_set_domain set_domain; 1545 int ret; 1546 1547 pthread_mutex_lock(&bufmgr_gem->lock); 1548 1549 ret = map_gtt(bo); 1550 if (ret) { 1551 pthread_mutex_unlock(&bufmgr_gem->lock); 1552 return ret; 1553 } 1554 1555 /* Now move it to the GTT domain so that the GPU and CPU 1556 * caches are flushed and the GPU isn't actively using the 1557 * buffer. 1558 * 1559 * The pagefault handler does this domain change for us when 1560 * it has unbound the BO from the GTT, but it's up to us to 1561 * tell it when we're about to use things if we had done 1562 * rendering and it still happens to be bound to the GTT. 1563 */ 1564 memclear(set_domain); 1565 set_domain.handle = bo_gem->gem_handle; 1566 set_domain.read_domains = I915_GEM_DOMAIN_GTT; 1567 set_domain.write_domain = I915_GEM_DOMAIN_GTT; 1568 ret = drmIoctl(bufmgr_gem->fd, 1569 DRM_IOCTL_I915_GEM_SET_DOMAIN, 1570 &set_domain); 1571 if (ret != 0) { 1572 DBG("%s:%d: Error setting domain %d: %s\n", 1573 __FILE__, __LINE__, bo_gem->gem_handle, 1574 strerror(errno)); 1575 } 1576 1577 drm_intel_gem_bo_mark_mmaps_incoherent(bo); 1578 VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size)); 1579 pthread_mutex_unlock(&bufmgr_gem->lock); 1580 1581 return 0; 1582} 1583 1584/** 1585 * Performs a mapping of the buffer object like the normal GTT 1586 * mapping, but avoids waiting for the GPU to be done reading from or 1587 * rendering to the buffer. 1588 * 1589 * This is used in the implementation of GL_ARB_map_buffer_range: The 1590 * user asks to create a buffer, then does a mapping, fills some 1591 * space, runs a drawing command, then asks to map it again without 1592 * synchronizing because it guarantees that it won't write over the 1593 * data that the GPU is busy using (or, more specifically, that if it 1594 * does write over the data, it acknowledges that rendering is 1595 * undefined). 1596 */ 1597 1598drm_public int 1599drm_intel_gem_bo_map_unsynchronized(drm_intel_bo *bo) 1600{ 1601 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1602#if HAVE_VALGRIND 1603 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1604#endif 1605 int ret; 1606 1607 /* If the CPU cache isn't coherent with the GTT, then use a 1608 * regular synchronized mapping. The problem is that we don't 1609 * track where the buffer was last used on the CPU side in 1610 * terms of drm_intel_bo_map vs drm_intel_gem_bo_map_gtt, so 1611 * we would potentially corrupt the buffer even when the user 1612 * does reasonable things. 1613 */ 1614 if (!bufmgr_gem->has_llc) 1615 return drm_intel_gem_bo_map_gtt(bo); 1616 1617 pthread_mutex_lock(&bufmgr_gem->lock); 1618 1619 ret = map_gtt(bo); 1620 if (ret == 0) { 1621 drm_intel_gem_bo_mark_mmaps_incoherent(bo); 1622 VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size)); 1623 } 1624 1625 pthread_mutex_unlock(&bufmgr_gem->lock); 1626 1627 return ret; 1628} 1629 1630static int drm_intel_gem_bo_unmap(drm_intel_bo *bo) 1631{ 1632 drm_intel_bufmgr_gem *bufmgr_gem; 1633 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1634 int ret = 0; 1635 1636 if (bo == NULL) 1637 return 0; 1638 1639 if (bo_gem->is_userptr) 1640 return 0; 1641 1642 bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1643 1644 pthread_mutex_lock(&bufmgr_gem->lock); 1645 1646 if (bo_gem->map_count <= 0) { 1647 DBG("attempted to unmap an unmapped bo\n"); 1648 pthread_mutex_unlock(&bufmgr_gem->lock); 1649 /* Preserve the old behaviour of just treating this as a 1650 * no-op rather than reporting the error. 1651 */ 1652 return 0; 1653 } 1654 1655 if (bo_gem->mapped_cpu_write) { 1656 struct drm_i915_gem_sw_finish sw_finish; 1657 1658 /* Cause a flush to happen if the buffer's pinned for 1659 * scanout, so the results show up in a timely manner. 1660 * Unlike GTT set domains, this only does work if the 1661 * buffer should be scanout-related. 1662 */ 1663 memclear(sw_finish); 1664 sw_finish.handle = bo_gem->gem_handle; 1665 ret = drmIoctl(bufmgr_gem->fd, 1666 DRM_IOCTL_I915_GEM_SW_FINISH, 1667 &sw_finish); 1668 ret = ret == -1 ? -errno : 0; 1669 1670 bo_gem->mapped_cpu_write = false; 1671 } 1672 1673 /* We need to unmap after every innovation as we cannot track 1674 * an open vma for every bo as that will exhaust the system 1675 * limits and cause later failures. 1676 */ 1677 if (--bo_gem->map_count == 0) { 1678 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem); 1679 drm_intel_gem_bo_mark_mmaps_incoherent(bo); 1680 bo->virtual = NULL; 1681 } 1682 pthread_mutex_unlock(&bufmgr_gem->lock); 1683 1684 return ret; 1685} 1686 1687drm_public int 1688drm_intel_gem_bo_unmap_gtt(drm_intel_bo *bo) 1689{ 1690 return drm_intel_gem_bo_unmap(bo); 1691} 1692 1693static bool is_cache_coherent(drm_intel_bo *bo) 1694{ 1695 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1696 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1697 struct drm_i915_gem_caching arg = {}; 1698 1699 arg.handle = bo_gem->gem_handle; 1700 if (drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_GET_CACHING, &arg)) 1701 assert(false); 1702 return arg.caching != I915_CACHING_NONE; 1703} 1704 1705static void set_domain(drm_intel_bo *bo, uint32_t read, uint32_t write) 1706{ 1707 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1708 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1709 struct drm_i915_gem_set_domain arg = {}; 1710 1711 arg.handle = bo_gem->gem_handle; 1712 arg.read_domains = read; 1713 arg.write_domain = write; 1714 if (drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &arg)) 1715 assert(false); 1716} 1717 1718static int mmap_write(drm_intel_bo *bo, unsigned long offset, 1719 unsigned long length, const void *buf) 1720{ 1721 void *map = NULL; 1722 1723 if (!length) 1724 return 0; 1725 1726 if (is_cache_coherent(bo)) { 1727 map = drm_intel_gem_bo_map__cpu(bo); 1728 if (map) 1729 set_domain(bo, I915_GEM_DOMAIN_CPU, I915_GEM_DOMAIN_CPU); 1730 } 1731 if (!map) { 1732 map = drm_intel_gem_bo_map__wc(bo); 1733 if (map) 1734 set_domain(bo, I915_GEM_DOMAIN_WC, I915_GEM_DOMAIN_WC); 1735 } 1736 1737 assert(map); 1738 memcpy((char *)map + offset, buf, length); 1739 drm_intel_gem_bo_unmap(bo); 1740 return 0; 1741} 1742 1743static int mmap_read(drm_intel_bo *bo, unsigned long offset, 1744 unsigned long length, void *buf) 1745{ 1746 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1747 void *map = NULL; 1748 1749 if (!length) 1750 return 0; 1751 1752 if (bufmgr_gem->has_llc || is_cache_coherent(bo)) { 1753 map = drm_intel_gem_bo_map__cpu(bo); 1754 if (map) 1755 set_domain(bo, I915_GEM_DOMAIN_CPU, 0); 1756 } 1757 if (!map) { 1758 map = drm_intel_gem_bo_map__wc(bo); 1759 if (map) 1760 set_domain(bo, I915_GEM_DOMAIN_WC, 0); 1761 } 1762 1763 assert(map); 1764 memcpy(buf, (char *)map + offset, length); 1765 drm_intel_gem_bo_unmap(bo); 1766 return 0; 1767} 1768 1769static int 1770drm_intel_gem_bo_subdata(drm_intel_bo *bo, unsigned long offset, 1771 unsigned long size, const void *data) 1772{ 1773 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1774 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1775 struct drm_i915_gem_pwrite pwrite; 1776 int ret; 1777 1778 if (bo_gem->is_userptr) 1779 return -EINVAL; 1780 1781 memclear(pwrite); 1782 pwrite.handle = bo_gem->gem_handle; 1783 pwrite.offset = offset; 1784 pwrite.size = size; 1785 pwrite.data_ptr = (uint64_t) (uintptr_t) data; 1786 ret = drmIoctl(bufmgr_gem->fd, 1787 DRM_IOCTL_I915_GEM_PWRITE, 1788 &pwrite); 1789 if (ret) 1790 ret = -errno; 1791 1792 if (ret != 0 && ret != -EOPNOTSUPP) { 1793 DBG("%s:%d: Error writing data to buffer %d: (%d %d) %s .\n", 1794 __FILE__, __LINE__, bo_gem->gem_handle, (int)offset, 1795 (int)size, strerror(errno)); 1796 return ret; 1797 } 1798 1799 if (ret == -EOPNOTSUPP) 1800 mmap_write(bo, offset, size, data); 1801 1802 return 0; 1803} 1804 1805static int 1806drm_intel_gem_get_pipe_from_crtc_id(drm_intel_bufmgr *bufmgr, int crtc_id) 1807{ 1808 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; 1809 struct drm_i915_get_pipe_from_crtc_id get_pipe_from_crtc_id; 1810 int ret; 1811 1812 memclear(get_pipe_from_crtc_id); 1813 get_pipe_from_crtc_id.crtc_id = crtc_id; 1814 ret = drmIoctl(bufmgr_gem->fd, 1815 DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID, 1816 &get_pipe_from_crtc_id); 1817 if (ret != 0) { 1818 /* We return -1 here to signal that we don't 1819 * know which pipe is associated with this crtc. 1820 * This lets the caller know that this information 1821 * isn't available; using the wrong pipe for 1822 * vblank waiting can cause the chipset to lock up 1823 */ 1824 return -1; 1825 } 1826 1827 return get_pipe_from_crtc_id.pipe; 1828} 1829 1830static int 1831drm_intel_gem_bo_get_subdata(drm_intel_bo *bo, unsigned long offset, 1832 unsigned long size, void *data) 1833{ 1834 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1835 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1836 struct drm_i915_gem_pread pread; 1837 int ret; 1838 1839 if (bo_gem->is_userptr) 1840 return -EINVAL; 1841 1842 memclear(pread); 1843 pread.handle = bo_gem->gem_handle; 1844 pread.offset = offset; 1845 pread.size = size; 1846 pread.data_ptr = (uint64_t) (uintptr_t) data; 1847 ret = drmIoctl(bufmgr_gem->fd, 1848 DRM_IOCTL_I915_GEM_PREAD, 1849 &pread); 1850 if (ret) 1851 ret = -errno; 1852 1853 if (ret != 0 && ret != -EOPNOTSUPP) { 1854 DBG("%s:%d: Error reading data from buffer %d: (%d %d) %s .\n", 1855 __FILE__, __LINE__, bo_gem->gem_handle, (int)offset, 1856 (int)size, strerror(errno)); 1857 return ret; 1858 } 1859 1860 if (ret == -EOPNOTSUPP) 1861 mmap_read(bo, offset, size, data); 1862 1863 return 0; 1864} 1865 1866/** Waits for all GPU rendering with the object to have completed. */ 1867static void 1868drm_intel_gem_bo_wait_rendering(drm_intel_bo *bo) 1869{ 1870 drm_intel_gem_bo_start_gtt_access(bo, 1); 1871} 1872 1873/** 1874 * Waits on a BO for the given amount of time. 1875 * 1876 * @bo: buffer object to wait for 1877 * @timeout_ns: amount of time to wait in nanoseconds. 1878 * If value is less than 0, an infinite wait will occur. 1879 * 1880 * Returns 0 if the wait was successful ie. the last batch referencing the 1881 * object has completed within the allotted time. Otherwise some negative return 1882 * value describes the error. Of particular interest is -ETIME when the wait has 1883 * failed to yield the desired result. 1884 * 1885 * Similar to drm_intel_gem_bo_wait_rendering except a timeout parameter allows 1886 * the operation to give up after a certain amount of time. Another subtle 1887 * difference is the internal locking semantics are different (this variant does 1888 * not hold the lock for the duration of the wait). This makes the wait subject 1889 * to a larger userspace race window. 1890 * 1891 * The implementation shall wait until the object is no longer actively 1892 * referenced within a batch buffer at the time of the call. The wait will 1893 * not guarantee that the buffer is re-issued via another thread, or an flinked 1894 * handle. Userspace must make sure this race does not occur if such precision 1895 * is important. 1896 * 1897 * Note that some kernels have broken the inifite wait for negative values 1898 * promise, upgrade to latest stable kernels if this is the case. 1899 */ 1900drm_public int 1901drm_intel_gem_bo_wait(drm_intel_bo *bo, int64_t timeout_ns) 1902{ 1903 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1904 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1905 struct drm_i915_gem_wait wait; 1906 int ret; 1907 1908 if (!bufmgr_gem->has_wait_timeout) { 1909 DBG("%s:%d: Timed wait is not supported. Falling back to " 1910 "infinite wait\n", __FILE__, __LINE__); 1911 if (timeout_ns) { 1912 drm_intel_gem_bo_wait_rendering(bo); 1913 return 0; 1914 } else { 1915 return drm_intel_gem_bo_busy(bo) ? -ETIME : 0; 1916 } 1917 } 1918 1919 memclear(wait); 1920 wait.bo_handle = bo_gem->gem_handle; 1921 wait.timeout_ns = timeout_ns; 1922 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_WAIT, &wait); 1923 if (ret == -1) 1924 return -errno; 1925 1926 return ret; 1927} 1928 1929/** 1930 * Sets the object to the GTT read and possibly write domain, used by the X 1931 * 2D driver in the absence of kernel support to do drm_intel_gem_bo_map_gtt(). 1932 * 1933 * In combination with drm_intel_gem_bo_pin() and manual fence management, we 1934 * can do tiled pixmaps this way. 1935 */ 1936drm_public void 1937drm_intel_gem_bo_start_gtt_access(drm_intel_bo *bo, int write_enable) 1938{ 1939 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 1940 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 1941 struct drm_i915_gem_set_domain set_domain; 1942 int ret; 1943 1944 memclear(set_domain); 1945 set_domain.handle = bo_gem->gem_handle; 1946 set_domain.read_domains = I915_GEM_DOMAIN_GTT; 1947 set_domain.write_domain = write_enable ? I915_GEM_DOMAIN_GTT : 0; 1948 ret = drmIoctl(bufmgr_gem->fd, 1949 DRM_IOCTL_I915_GEM_SET_DOMAIN, 1950 &set_domain); 1951 if (ret != 0) { 1952 DBG("%s:%d: Error setting memory domains %d (%08x %08x): %s .\n", 1953 __FILE__, __LINE__, bo_gem->gem_handle, 1954 set_domain.read_domains, set_domain.write_domain, 1955 strerror(errno)); 1956 } 1957} 1958 1959static void 1960drm_intel_bufmgr_gem_destroy(drm_intel_bufmgr *bufmgr) 1961{ 1962 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; 1963 int i, ret; 1964 1965 free(bufmgr_gem->exec2_objects); 1966 free(bufmgr_gem->exec_bos); 1967 1968 pthread_mutex_destroy(&bufmgr_gem->lock); 1969 1970 /* Free any cached buffer objects we were going to reuse */ 1971 for (i = 0; i < bufmgr_gem->num_buckets; i++) { 1972 struct drm_intel_gem_bo_bucket *bucket = 1973 &bufmgr_gem->cache_bucket[i]; 1974 drm_intel_bo_gem *bo_gem; 1975 1976 while (!DRMLISTEMPTY(&bucket->head)) { 1977 bo_gem = DRMLISTENTRY(drm_intel_bo_gem, 1978 bucket->head.next, head); 1979 DRMLISTDEL(&bo_gem->head); 1980 1981 drm_intel_gem_bo_free(&bo_gem->bo); 1982 } 1983 } 1984 1985 /* Release userptr bo kept hanging around for optimisation. */ 1986 if (bufmgr_gem->userptr_active.ptr) { 1987 ret = drmCloseBufferHandle(bufmgr_gem->fd, 1988 bufmgr_gem->userptr_active.handle); 1989 free(bufmgr_gem->userptr_active.ptr); 1990 if (ret) 1991 fprintf(stderr, 1992 "Failed to release test userptr object! (%d) " 1993 "i915 kernel driver may not be sane!\n", errno); 1994 } 1995 1996 free(bufmgr); 1997} 1998 1999/** 2000 * Adds the target buffer to the validation list and adds the relocation 2001 * to the reloc_buffer's relocation list. 2002 * 2003 * The relocation entry at the given offset must already contain the 2004 * precomputed relocation value, because the kernel will optimize out 2005 * the relocation entry write when the buffer hasn't moved from the 2006 * last known offset in target_bo. 2007 */ 2008static int 2009do_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset, 2010 drm_intel_bo *target_bo, uint32_t target_offset, 2011 uint32_t read_domains, uint32_t write_domain, 2012 bool need_fence) 2013{ 2014 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 2015 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2016 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo; 2017 bool fenced_command; 2018 2019 if (bo_gem->has_error) 2020 return -ENOMEM; 2021 2022 if (target_bo_gem->has_error) { 2023 bo_gem->has_error = true; 2024 return -ENOMEM; 2025 } 2026 2027 /* We never use HW fences for rendering on 965+ */ 2028 if (bufmgr_gem->gen >= 4) 2029 need_fence = false; 2030 2031 fenced_command = need_fence; 2032 if (target_bo_gem->tiling_mode == I915_TILING_NONE) 2033 need_fence = false; 2034 2035 /* Create a new relocation list if needed */ 2036 if (bo_gem->relocs == NULL && drm_intel_setup_reloc_list(bo)) 2037 return -ENOMEM; 2038 2039 /* Check overflow */ 2040 assert(bo_gem->reloc_count < bufmgr_gem->max_relocs); 2041 2042 /* Check args */ 2043 assert(offset <= bo->size - 4); 2044 assert((write_domain & (write_domain - 1)) == 0); 2045 2046 /* An object needing a fence is a tiled buffer, so it won't have 2047 * relocs to other buffers. 2048 */ 2049 if (need_fence) { 2050 assert(target_bo_gem->reloc_count == 0); 2051 target_bo_gem->reloc_tree_fences = 1; 2052 } 2053 2054 /* Make sure that we're not adding a reloc to something whose size has 2055 * already been accounted for. 2056 */ 2057 assert(!bo_gem->used_as_reloc_target); 2058 if (target_bo_gem != bo_gem) { 2059 target_bo_gem->used_as_reloc_target = true; 2060 bo_gem->reloc_tree_size += target_bo_gem->reloc_tree_size; 2061 bo_gem->reloc_tree_fences += target_bo_gem->reloc_tree_fences; 2062 } 2063 2064 bo_gem->reloc_target_info[bo_gem->reloc_count].bo = target_bo; 2065 if (target_bo != bo) 2066 drm_intel_gem_bo_reference(target_bo); 2067 if (fenced_command) 2068 bo_gem->reloc_target_info[bo_gem->reloc_count].flags = 2069 DRM_INTEL_RELOC_FENCE; 2070 else 2071 bo_gem->reloc_target_info[bo_gem->reloc_count].flags = 0; 2072 2073 bo_gem->relocs[bo_gem->reloc_count].offset = offset; 2074 bo_gem->relocs[bo_gem->reloc_count].delta = target_offset; 2075 bo_gem->relocs[bo_gem->reloc_count].target_handle = 2076 target_bo_gem->gem_handle; 2077 bo_gem->relocs[bo_gem->reloc_count].read_domains = read_domains; 2078 bo_gem->relocs[bo_gem->reloc_count].write_domain = write_domain; 2079 bo_gem->relocs[bo_gem->reloc_count].presumed_offset = target_bo->offset64; 2080 bo_gem->reloc_count++; 2081 2082 return 0; 2083} 2084 2085static void 2086drm_intel_gem_bo_use_48b_address_range(drm_intel_bo *bo, uint32_t enable) 2087{ 2088 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2089 2090 if (enable) 2091 bo_gem->kflags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS; 2092 else 2093 bo_gem->kflags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS; 2094} 2095 2096static int 2097drm_intel_gem_bo_add_softpin_target(drm_intel_bo *bo, drm_intel_bo *target_bo) 2098{ 2099 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 2100 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2101 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo; 2102 if (bo_gem->has_error) 2103 return -ENOMEM; 2104 2105 if (target_bo_gem->has_error) { 2106 bo_gem->has_error = true; 2107 return -ENOMEM; 2108 } 2109 2110 if (!(target_bo_gem->kflags & EXEC_OBJECT_PINNED)) 2111 return -EINVAL; 2112 if (target_bo_gem == bo_gem) 2113 return -EINVAL; 2114 2115 if (bo_gem->softpin_target_count == bo_gem->softpin_target_size) { 2116 int new_size = bo_gem->softpin_target_size * 2; 2117 if (new_size == 0) 2118 new_size = bufmgr_gem->max_relocs; 2119 2120 bo_gem->softpin_target = realloc(bo_gem->softpin_target, new_size * 2121 sizeof(drm_intel_bo *)); 2122 if (!bo_gem->softpin_target) 2123 return -ENOMEM; 2124 2125 bo_gem->softpin_target_size = new_size; 2126 } 2127 bo_gem->softpin_target[bo_gem->softpin_target_count] = target_bo; 2128 drm_intel_gem_bo_reference(target_bo); 2129 bo_gem->softpin_target_count++; 2130 2131 return 0; 2132} 2133 2134static int 2135drm_intel_gem_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset, 2136 drm_intel_bo *target_bo, uint32_t target_offset, 2137 uint32_t read_domains, uint32_t write_domain) 2138{ 2139 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr; 2140 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *)target_bo; 2141 2142 if (target_bo_gem->kflags & EXEC_OBJECT_PINNED) 2143 return drm_intel_gem_bo_add_softpin_target(bo, target_bo); 2144 else 2145 return do_bo_emit_reloc(bo, offset, target_bo, target_offset, 2146 read_domains, write_domain, 2147 !bufmgr_gem->fenced_relocs); 2148} 2149 2150static int 2151drm_intel_gem_bo_emit_reloc_fence(drm_intel_bo *bo, uint32_t offset, 2152 drm_intel_bo *target_bo, 2153 uint32_t target_offset, 2154 uint32_t read_domains, uint32_t write_domain) 2155{ 2156 return do_bo_emit_reloc(bo, offset, target_bo, target_offset, 2157 read_domains, write_domain, true); 2158} 2159 2160drm_public int 2161drm_intel_gem_bo_get_reloc_count(drm_intel_bo *bo) 2162{ 2163 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2164 2165 return bo_gem->reloc_count; 2166} 2167 2168/** 2169 * Removes existing relocation entries in the BO after "start". 2170 * 2171 * This allows a user to avoid a two-step process for state setup with 2172 * counting up all the buffer objects and doing a 2173 * drm_intel_bufmgr_check_aperture_space() before emitting any of the 2174 * relocations for the state setup. Instead, save the state of the 2175 * batchbuffer including drm_intel_gem_get_reloc_count(), emit all the 2176 * state, and then check if it still fits in the aperture. 2177 * 2178 * Any further drm_intel_bufmgr_check_aperture_space() queries 2179 * involving this buffer in the tree are undefined after this call. 2180 * 2181 * This also removes all softpinned targets being referenced by the BO. 2182 */ 2183drm_public void 2184drm_intel_gem_bo_clear_relocs(drm_intel_bo *bo, int start) 2185{ 2186 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 2187 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2188 int i; 2189 struct timespec time; 2190 2191 clock_gettime(CLOCK_MONOTONIC, &time); 2192 2193 assert(bo_gem->reloc_count >= start); 2194 2195 /* Unreference the cleared target buffers */ 2196 pthread_mutex_lock(&bufmgr_gem->lock); 2197 2198 for (i = start; i < bo_gem->reloc_count; i++) { 2199 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) bo_gem->reloc_target_info[i].bo; 2200 if (&target_bo_gem->bo != bo) { 2201 bo_gem->reloc_tree_fences -= target_bo_gem->reloc_tree_fences; 2202 drm_intel_gem_bo_unreference_locked_timed(&target_bo_gem->bo, 2203 time.tv_sec); 2204 } 2205 } 2206 bo_gem->reloc_count = start; 2207 2208 for (i = 0; i < bo_gem->softpin_target_count; i++) { 2209 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) bo_gem->softpin_target[i]; 2210 drm_intel_gem_bo_unreference_locked_timed(&target_bo_gem->bo, time.tv_sec); 2211 } 2212 bo_gem->softpin_target_count = 0; 2213 2214 pthread_mutex_unlock(&bufmgr_gem->lock); 2215 2216} 2217 2218/** 2219 * Walk the tree of relocations rooted at BO and accumulate the list of 2220 * validations to be performed and update the relocation buffers with 2221 * index values into the validation list. 2222 */ 2223static void 2224drm_intel_gem_bo_process_reloc2(drm_intel_bo *bo) 2225{ 2226 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo; 2227 int i; 2228 2229 if (bo_gem->relocs == NULL && bo_gem->softpin_target == NULL) 2230 return; 2231 2232 for (i = 0; i < bo_gem->reloc_count; i++) { 2233 drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo; 2234 int need_fence; 2235 2236 if (target_bo == bo) 2237 continue; 2238 2239 drm_intel_gem_bo_mark_mmaps_incoherent(bo); 2240 2241 /* Continue walking the tree depth-first. */ 2242 drm_intel_gem_bo_process_reloc2(target_bo); 2243 2244 need_fence = (bo_gem->reloc_target_info[i].flags & 2245 DRM_INTEL_RELOC_FENCE); 2246 2247 /* Add the target to the validate list */ 2248 drm_intel_add_validate_buffer2(target_bo, need_fence); 2249 } 2250 2251 for (i = 0; i < bo_gem->softpin_target_count; i++) { 2252 drm_intel_bo *target_bo = bo_gem->softpin_target[i]; 2253 2254 if (target_bo == bo) 2255 continue; 2256 2257 drm_intel_gem_bo_mark_mmaps_incoherent(bo); 2258 drm_intel_gem_bo_process_reloc2(target_bo); 2259 drm_intel_add_validate_buffer2(target_bo, false); 2260 } 2261} 2262 2263static void 2264drm_intel_update_buffer_offsets2 (drm_intel_bufmgr_gem *bufmgr_gem) 2265{ 2266 int i; 2267 2268 for (i = 0; i < bufmgr_gem->exec_count; i++) { 2269 drm_intel_bo *bo = bufmgr_gem->exec_bos[i]; 2270 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo; 2271 2272 /* Update the buffer offset */ 2273 if (bufmgr_gem->exec2_objects[i].offset != bo->offset64) { 2274 /* If we're seeing softpinned object here it means that the kernel 2275 * has relocated our object... Indicating a programming error 2276 */ 2277 assert(!(bo_gem->kflags & EXEC_OBJECT_PINNED)); 2278 DBG("BO %d (%s) migrated: 0x%08x %08x -> 0x%08x %08x\n", 2279 bo_gem->gem_handle, bo_gem->name, 2280 upper_32_bits(bo->offset64), 2281 lower_32_bits(bo->offset64), 2282 upper_32_bits(bufmgr_gem->exec2_objects[i].offset), 2283 lower_32_bits(bufmgr_gem->exec2_objects[i].offset)); 2284 bo->offset64 = bufmgr_gem->exec2_objects[i].offset; 2285 bo->offset = bufmgr_gem->exec2_objects[i].offset; 2286 } 2287 } 2288} 2289 2290drm_public void 2291drm_intel_gem_bo_aub_dump_bmp(drm_intel_bo *bo, 2292 int x1, int y1, int width, int height, 2293 enum aub_dump_bmp_format format, 2294 int pitch, int offset) 2295{ 2296} 2297 2298static int 2299do_exec2(drm_intel_bo *bo, int used, drm_intel_context *ctx, 2300 drm_clip_rect_t *cliprects, int num_cliprects, int DR4, 2301 int in_fence, int *out_fence, 2302 unsigned int flags) 2303{ 2304 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr; 2305 struct drm_i915_gem_execbuffer2 execbuf; 2306 int ret = 0; 2307 int i; 2308 2309 if (to_bo_gem(bo)->has_error) 2310 return -ENOMEM; 2311 2312 switch (flags & 0x7) { 2313 default: 2314 return -EINVAL; 2315 case I915_EXEC_BLT: 2316 if (!bufmgr_gem->has_blt) 2317 return -EINVAL; 2318 break; 2319 case I915_EXEC_BSD: 2320 if (!bufmgr_gem->has_bsd) 2321 return -EINVAL; 2322 break; 2323 case I915_EXEC_VEBOX: 2324 if (!bufmgr_gem->has_vebox) 2325 return -EINVAL; 2326 break; 2327 case I915_EXEC_RENDER: 2328 case I915_EXEC_DEFAULT: 2329 break; 2330 } 2331 2332 pthread_mutex_lock(&bufmgr_gem->lock); 2333 /* Update indices and set up the validate list. */ 2334 drm_intel_gem_bo_process_reloc2(bo); 2335 2336 /* Add the batch buffer to the validation list. There are no relocations 2337 * pointing to it. 2338 */ 2339 drm_intel_add_validate_buffer2(bo, 0); 2340 2341 memclear(execbuf); 2342 execbuf.buffers_ptr = (uintptr_t)bufmgr_gem->exec2_objects; 2343 execbuf.buffer_count = bufmgr_gem->exec_count; 2344 execbuf.batch_start_offset = 0; 2345 execbuf.batch_len = used; 2346 execbuf.cliprects_ptr = (uintptr_t)cliprects; 2347 execbuf.num_cliprects = num_cliprects; 2348 execbuf.DR1 = 0; 2349 execbuf.DR4 = DR4; 2350 execbuf.flags = flags; 2351 if (ctx == NULL) 2352 i915_execbuffer2_set_context_id(execbuf, 0); 2353 else 2354 i915_execbuffer2_set_context_id(execbuf, ctx->ctx_id); 2355 execbuf.rsvd2 = 0; 2356 if (in_fence != -1) { 2357 execbuf.rsvd2 = in_fence; 2358 execbuf.flags |= I915_EXEC_FENCE_IN; 2359 } 2360 if (out_fence != NULL) { 2361 *out_fence = -1; 2362 execbuf.flags |= I915_EXEC_FENCE_OUT; 2363 } 2364 2365 if (bufmgr_gem->no_exec) 2366 goto skip_execution; 2367 2368 ret = drmIoctl(bufmgr_gem->fd, 2369 DRM_IOCTL_I915_GEM_EXECBUFFER2_WR, 2370 &execbuf); 2371 if (ret != 0) { 2372 ret = -errno; 2373 if (ret == -ENOSPC) { 2374 DBG("Execbuffer fails to pin. " 2375 "Estimate: %u. Actual: %u. Available: %u\n", 2376 drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos, 2377 bufmgr_gem->exec_count), 2378 drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos, 2379 bufmgr_gem->exec_count), 2380 (unsigned int) bufmgr_gem->gtt_size); 2381 } 2382 } 2383 drm_intel_update_buffer_offsets2(bufmgr_gem); 2384 2385 if (ret == 0 && out_fence != NULL) 2386 *out_fence = execbuf.rsvd2 >> 32; 2387 2388skip_execution: 2389 if (bufmgr_gem->bufmgr.debug) 2390 drm_intel_gem_dump_validation_list(bufmgr_gem); 2391 2392 for (i = 0; i < bufmgr_gem->exec_count; i++) { 2393 drm_intel_bo_gem *bo_gem = to_bo_gem(bufmgr_gem->exec_bos[i]); 2394 2395 bo_gem->idle = false; 2396 2397 /* Disconnect the buffer from the validate list */ 2398 bo_gem->validate_index = -1; 2399 bufmgr_gem->exec_bos[i] = NULL; 2400 } 2401 bufmgr_gem->exec_count = 0; 2402 pthread_mutex_unlock(&bufmgr_gem->lock); 2403 2404 return ret; 2405} 2406 2407static int 2408drm_intel_gem_bo_exec2(drm_intel_bo *bo, int used, 2409 drm_clip_rect_t *cliprects, int num_cliprects, 2410 int DR4) 2411{ 2412 return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4, 2413 -1, NULL, I915_EXEC_RENDER); 2414} 2415 2416static int 2417drm_intel_gem_bo_mrb_exec2(drm_intel_bo *bo, int used, 2418 drm_clip_rect_t *cliprects, int num_cliprects, int DR4, 2419 unsigned int flags) 2420{ 2421 return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4, 2422 -1, NULL, flags); 2423} 2424 2425drm_public int 2426drm_intel_gem_bo_context_exec(drm_intel_bo *bo, drm_intel_context *ctx, 2427 int used, unsigned int flags) 2428{ 2429 return do_exec2(bo, used, ctx, NULL, 0, 0, -1, NULL, flags); 2430} 2431 2432drm_public int 2433drm_intel_gem_bo_fence_exec(drm_intel_bo *bo, 2434 drm_intel_context *ctx, 2435 int used, 2436 int in_fence, 2437 int *out_fence, 2438 unsigned int flags) 2439{ 2440 return do_exec2(bo, used, ctx, NULL, 0, 0, in_fence, out_fence, flags); 2441} 2442 2443static int 2444drm_intel_gem_bo_pin(drm_intel_bo *bo, uint32_t alignment) 2445{ 2446 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 2447 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2448 struct drm_i915_gem_pin pin; 2449 int ret; 2450 2451 memclear(pin); 2452 pin.handle = bo_gem->gem_handle; 2453 pin.alignment = alignment; 2454 2455 ret = drmIoctl(bufmgr_gem->fd, 2456 DRM_IOCTL_I915_GEM_PIN, 2457 &pin); 2458 if (ret != 0) 2459 return -errno; 2460 2461 bo->offset64 = pin.offset; 2462 bo->offset = pin.offset; 2463 return 0; 2464} 2465 2466static int 2467drm_intel_gem_bo_unpin(drm_intel_bo *bo) 2468{ 2469 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 2470 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2471 struct drm_i915_gem_unpin unpin; 2472 int ret; 2473 2474 memclear(unpin); 2475 unpin.handle = bo_gem->gem_handle; 2476 2477 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_UNPIN, &unpin); 2478 if (ret != 0) 2479 return -errno; 2480 2481 return 0; 2482} 2483 2484static int 2485drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo, 2486 uint32_t tiling_mode, 2487 uint32_t stride) 2488{ 2489 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 2490 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2491 struct drm_i915_gem_set_tiling set_tiling; 2492 int ret; 2493 2494 if (bo_gem->global_name == 0 && 2495 tiling_mode == bo_gem->tiling_mode && 2496 stride == bo_gem->stride) 2497 return 0; 2498 2499 memset(&set_tiling, 0, sizeof(set_tiling)); 2500 do { 2501 /* set_tiling is slightly broken and overwrites the 2502 * input on the error path, so we have to open code 2503 * rmIoctl. 2504 */ 2505 set_tiling.handle = bo_gem->gem_handle; 2506 set_tiling.tiling_mode = tiling_mode; 2507 set_tiling.stride = stride; 2508 2509 ret = ioctl(bufmgr_gem->fd, 2510 DRM_IOCTL_I915_GEM_SET_TILING, 2511 &set_tiling); 2512 } while (ret == -1 && (errno == EINTR || errno == EAGAIN)); 2513 if (ret == -1) 2514 return -errno; 2515 2516 bo_gem->tiling_mode = set_tiling.tiling_mode; 2517 bo_gem->swizzle_mode = set_tiling.swizzle_mode; 2518 bo_gem->stride = set_tiling.stride; 2519 return 0; 2520} 2521 2522static int 2523drm_intel_gem_bo_set_tiling(drm_intel_bo *bo, uint32_t * tiling_mode, 2524 uint32_t stride) 2525{ 2526 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 2527 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2528 int ret; 2529 2530 /* Tiling with userptr surfaces is not supported 2531 * on all hardware so refuse it for time being. 2532 */ 2533 if (bo_gem->is_userptr) 2534 return -EINVAL; 2535 2536 /* Linear buffers have no stride. By ensuring that we only ever use 2537 * stride 0 with linear buffers, we simplify our code. 2538 */ 2539 if (*tiling_mode == I915_TILING_NONE) 2540 stride = 0; 2541 2542 ret = drm_intel_gem_bo_set_tiling_internal(bo, *tiling_mode, stride); 2543 if (ret == 0) 2544 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0); 2545 2546 *tiling_mode = bo_gem->tiling_mode; 2547 return ret; 2548} 2549 2550static int 2551drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode, 2552 uint32_t * swizzle_mode) 2553{ 2554 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2555 2556 *tiling_mode = bo_gem->tiling_mode; 2557 *swizzle_mode = bo_gem->swizzle_mode; 2558 return 0; 2559} 2560 2561static int 2562drm_intel_gem_bo_set_softpin_offset(drm_intel_bo *bo, uint64_t offset) 2563{ 2564 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2565 2566 bo->offset64 = offset; 2567 bo->offset = offset; 2568 bo_gem->kflags |= EXEC_OBJECT_PINNED; 2569 2570 return 0; 2571} 2572 2573drm_public drm_intel_bo * 2574drm_intel_bo_gem_create_from_prime(drm_intel_bufmgr *bufmgr, int prime_fd, int size) 2575{ 2576 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; 2577 int ret; 2578 uint32_t handle; 2579 drm_intel_bo_gem *bo_gem; 2580 2581 pthread_mutex_lock(&bufmgr_gem->lock); 2582 ret = drmPrimeFDToHandle(bufmgr_gem->fd, prime_fd, &handle); 2583 if (ret) { 2584 DBG("create_from_prime: failed to obtain handle from fd: %s\n", strerror(errno)); 2585 pthread_mutex_unlock(&bufmgr_gem->lock); 2586 return NULL; 2587 } 2588 2589 /* 2590 * See if the kernel has already returned this buffer to us. Just as 2591 * for named buffers, we must not create two bo's pointing at the same 2592 * kernel object 2593 */ 2594 HASH_FIND(handle_hh, bufmgr_gem->handle_table, 2595 &handle, sizeof(handle), bo_gem); 2596 if (bo_gem) { 2597 drm_intel_gem_bo_reference(&bo_gem->bo); 2598 goto out; 2599 } 2600 2601 bo_gem = calloc(1, sizeof(*bo_gem)); 2602 if (!bo_gem) 2603 goto out; 2604 2605 atomic_set(&bo_gem->refcount, 1); 2606 DRMINITLISTHEAD(&bo_gem->vma_list); 2607 2608 /* Determine size of bo. The fd-to-handle ioctl really should 2609 * return the size, but it doesn't. If we have kernel 3.12 or 2610 * later, we can lseek on the prime fd to get the size. Older 2611 * kernels will just fail, in which case we fall back to the 2612 * provided (estimated or guess size). */ 2613 ret = lseek(prime_fd, 0, SEEK_END); 2614 if (ret != -1) 2615 bo_gem->bo.size = ret; 2616 else 2617 bo_gem->bo.size = size; 2618 2619 bo_gem->bo.handle = handle; 2620 bo_gem->bo.bufmgr = bufmgr; 2621 2622 bo_gem->gem_handle = handle; 2623 HASH_ADD(handle_hh, bufmgr_gem->handle_table, 2624 gem_handle, sizeof(bo_gem->gem_handle), bo_gem); 2625 2626 bo_gem->name = "prime"; 2627 bo_gem->validate_index = -1; 2628 bo_gem->reloc_tree_fences = 0; 2629 bo_gem->used_as_reloc_target = false; 2630 bo_gem->has_error = false; 2631 bo_gem->reusable = false; 2632 2633 ret = get_tiling_mode(bufmgr_gem, handle, 2634 &bo_gem->tiling_mode, &bo_gem->swizzle_mode); 2635 if (ret) 2636 goto err; 2637 2638 /* XXX stride is unknown */ 2639 drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0); 2640 2641out: 2642 pthread_mutex_unlock(&bufmgr_gem->lock); 2643 return &bo_gem->bo; 2644 2645err: 2646 drm_intel_gem_bo_free(&bo_gem->bo); 2647 pthread_mutex_unlock(&bufmgr_gem->lock); 2648 return NULL; 2649} 2650 2651drm_public int 2652drm_intel_bo_gem_export_to_prime(drm_intel_bo *bo, int *prime_fd) 2653{ 2654 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 2655 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2656 2657 if (drmPrimeHandleToFD(bufmgr_gem->fd, bo_gem->gem_handle, 2658 DRM_CLOEXEC | DRM_RDWR, prime_fd) != 0) 2659 return -errno; 2660 2661 bo_gem->reusable = false; 2662 2663 return 0; 2664} 2665 2666static int 2667drm_intel_gem_bo_flink(drm_intel_bo *bo, uint32_t * name) 2668{ 2669 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 2670 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2671 2672 if (!bo_gem->global_name) { 2673 struct drm_gem_flink flink; 2674 2675 memclear(flink); 2676 flink.handle = bo_gem->gem_handle; 2677 if (drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_FLINK, &flink)) 2678 return -errno; 2679 2680 pthread_mutex_lock(&bufmgr_gem->lock); 2681 if (!bo_gem->global_name) { 2682 bo_gem->global_name = flink.name; 2683 bo_gem->reusable = false; 2684 2685 HASH_ADD(name_hh, bufmgr_gem->name_table, 2686 global_name, sizeof(bo_gem->global_name), 2687 bo_gem); 2688 } 2689 pthread_mutex_unlock(&bufmgr_gem->lock); 2690 } 2691 2692 *name = bo_gem->global_name; 2693 return 0; 2694} 2695 2696/** 2697 * Enables unlimited caching of buffer objects for reuse. 2698 * 2699 * This is potentially very memory expensive, as the cache at each bucket 2700 * size is only bounded by how many buffers of that size we've managed to have 2701 * in flight at once. 2702 */ 2703drm_public void 2704drm_intel_bufmgr_gem_enable_reuse(drm_intel_bufmgr *bufmgr) 2705{ 2706 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; 2707 2708 bufmgr_gem->bo_reuse = true; 2709} 2710 2711/** 2712 * Disables implicit synchronisation before executing the bo 2713 * 2714 * This will cause rendering corruption unless you correctly manage explicit 2715 * fences for all rendering involving this buffer - including use by others. 2716 * Disabling the implicit serialisation is only required if that serialisation 2717 * is too coarse (for example, you have split the buffer into many 2718 * non-overlapping regions and are sharing the whole buffer between concurrent 2719 * independent command streams). 2720 * 2721 * Note the kernel must advertise support via I915_PARAM_HAS_EXEC_ASYNC, 2722 * which can be checked using drm_intel_bufmgr_can_disable_implicit_sync, 2723 * or subsequent execbufs involving the bo will generate EINVAL. 2724 */ 2725drm_public void 2726drm_intel_gem_bo_disable_implicit_sync(drm_intel_bo *bo) 2727{ 2728 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2729 2730 bo_gem->kflags |= EXEC_OBJECT_ASYNC; 2731} 2732 2733/** 2734 * Enables implicit synchronisation before executing the bo 2735 * 2736 * This is the default behaviour of the kernel, to wait upon prior writes 2737 * completing on the object before rendering with it, or to wait for prior 2738 * reads to complete before writing into the object. 2739 * drm_intel_gem_bo_disable_implicit_sync() can stop this behaviour, telling 2740 * the kernel never to insert a stall before using the object. Then this 2741 * function can be used to restore the implicit sync before subsequent 2742 * rendering. 2743 */ 2744drm_public void 2745drm_intel_gem_bo_enable_implicit_sync(drm_intel_bo *bo) 2746{ 2747 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2748 2749 bo_gem->kflags &= ~EXEC_OBJECT_ASYNC; 2750} 2751 2752/** 2753 * Query whether the kernel supports disabling of its implicit synchronisation 2754 * before execbuf. See drm_intel_gem_bo_disable_implicit_sync() 2755 */ 2756drm_public int 2757drm_intel_bufmgr_gem_can_disable_implicit_sync(drm_intel_bufmgr *bufmgr) 2758{ 2759 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr; 2760 2761 return bufmgr_gem->has_exec_async; 2762} 2763 2764/** 2765 * Enable use of fenced reloc type. 2766 * 2767 * New code should enable this to avoid unnecessary fence register 2768 * allocation. If this option is not enabled, all relocs will have fence 2769 * register allocated. 2770 */ 2771drm_public void 2772drm_intel_bufmgr_gem_enable_fenced_relocs(drm_intel_bufmgr *bufmgr) 2773{ 2774 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; 2775 bufmgr_gem->fenced_relocs = true; 2776} 2777 2778/** 2779 * Return the additional aperture space required by the tree of buffer objects 2780 * rooted at bo. 2781 */ 2782static int 2783drm_intel_gem_bo_get_aperture_space(drm_intel_bo *bo) 2784{ 2785 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2786 int i; 2787 int total = 0; 2788 2789 if (bo == NULL || bo_gem->included_in_check_aperture) 2790 return 0; 2791 2792 total += bo->size; 2793 bo_gem->included_in_check_aperture = true; 2794 2795 for (i = 0; i < bo_gem->reloc_count; i++) 2796 total += 2797 drm_intel_gem_bo_get_aperture_space(bo_gem-> 2798 reloc_target_info[i].bo); 2799 2800 return total; 2801} 2802 2803/** 2804 * Count the number of buffers in this list that need a fence reg 2805 * 2806 * If the count is greater than the number of available regs, we'll have 2807 * to ask the caller to resubmit a batch with fewer tiled buffers. 2808 * 2809 * This function over-counts if the same buffer is used multiple times. 2810 */ 2811static unsigned int 2812drm_intel_gem_total_fences(drm_intel_bo ** bo_array, int count) 2813{ 2814 int i; 2815 unsigned int total = 0; 2816 2817 for (i = 0; i < count; i++) { 2818 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i]; 2819 2820 if (bo_gem == NULL) 2821 continue; 2822 2823 total += bo_gem->reloc_tree_fences; 2824 } 2825 return total; 2826} 2827 2828/** 2829 * Clear the flag set by drm_intel_gem_bo_get_aperture_space() so we're ready 2830 * for the next drm_intel_bufmgr_check_aperture_space() call. 2831 */ 2832static void 2833drm_intel_gem_bo_clear_aperture_space_flag(drm_intel_bo *bo) 2834{ 2835 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2836 int i; 2837 2838 if (bo == NULL || !bo_gem->included_in_check_aperture) 2839 return; 2840 2841 bo_gem->included_in_check_aperture = false; 2842 2843 for (i = 0; i < bo_gem->reloc_count; i++) 2844 drm_intel_gem_bo_clear_aperture_space_flag(bo_gem-> 2845 reloc_target_info[i].bo); 2846} 2847 2848/** 2849 * Return a conservative estimate for the amount of aperture required 2850 * for a collection of buffers. This may double-count some buffers. 2851 */ 2852static unsigned int 2853drm_intel_gem_estimate_batch_space(drm_intel_bo **bo_array, int count) 2854{ 2855 int i; 2856 unsigned int total = 0; 2857 2858 for (i = 0; i < count; i++) { 2859 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i]; 2860 if (bo_gem != NULL) 2861 total += bo_gem->reloc_tree_size; 2862 } 2863 return total; 2864} 2865 2866/** 2867 * Return the amount of aperture needed for a collection of buffers. 2868 * This avoids double counting any buffers, at the cost of looking 2869 * at every buffer in the set. 2870 */ 2871static unsigned int 2872drm_intel_gem_compute_batch_space(drm_intel_bo **bo_array, int count) 2873{ 2874 int i; 2875 unsigned int total = 0; 2876 2877 for (i = 0; i < count; i++) { 2878 total += drm_intel_gem_bo_get_aperture_space(bo_array[i]); 2879 /* For the first buffer object in the array, we get an 2880 * accurate count back for its reloc_tree size (since nothing 2881 * had been flagged as being counted yet). We can save that 2882 * value out as a more conservative reloc_tree_size that 2883 * avoids double-counting target buffers. Since the first 2884 * buffer happens to usually be the batch buffer in our 2885 * callers, this can pull us back from doing the tree 2886 * walk on every new batch emit. 2887 */ 2888 if (i == 0) { 2889 drm_intel_bo_gem *bo_gem = 2890 (drm_intel_bo_gem *) bo_array[i]; 2891 bo_gem->reloc_tree_size = total; 2892 } 2893 } 2894 2895 for (i = 0; i < count; i++) 2896 drm_intel_gem_bo_clear_aperture_space_flag(bo_array[i]); 2897 return total; 2898} 2899 2900/** 2901 * Return -1 if the batchbuffer should be flushed before attempting to 2902 * emit rendering referencing the buffers pointed to by bo_array. 2903 * 2904 * This is required because if we try to emit a batchbuffer with relocations 2905 * to a tree of buffers that won't simultaneously fit in the aperture, 2906 * the rendering will return an error at a point where the software is not 2907 * prepared to recover from it. 2908 * 2909 * However, we also want to emit the batchbuffer significantly before we reach 2910 * the limit, as a series of batchbuffers each of which references buffers 2911 * covering almost all of the aperture means that at each emit we end up 2912 * waiting to evict a buffer from the last rendering, and we get synchronous 2913 * performance. By emitting smaller batchbuffers, we eat some CPU overhead to 2914 * get better parallelism. 2915 */ 2916static int 2917drm_intel_gem_check_aperture_space(drm_intel_bo **bo_array, int count) 2918{ 2919 drm_intel_bufmgr_gem *bufmgr_gem = 2920 (drm_intel_bufmgr_gem *) bo_array[0]->bufmgr; 2921 unsigned int total = 0; 2922 unsigned int threshold = bufmgr_gem->gtt_size * 3 / 4; 2923 int total_fences; 2924 2925 /* Check for fence reg constraints if necessary */ 2926 if (bufmgr_gem->available_fences) { 2927 total_fences = drm_intel_gem_total_fences(bo_array, count); 2928 if (total_fences > bufmgr_gem->available_fences) 2929 return -ENOSPC; 2930 } 2931 2932 total = drm_intel_gem_estimate_batch_space(bo_array, count); 2933 2934 if (total > threshold) 2935 total = drm_intel_gem_compute_batch_space(bo_array, count); 2936 2937 if (total > threshold) { 2938 DBG("check_space: overflowed available aperture, " 2939 "%dkb vs %dkb\n", 2940 total / 1024, (int)bufmgr_gem->gtt_size / 1024); 2941 return -ENOSPC; 2942 } else { 2943 DBG("drm_check_space: total %dkb vs bufgr %dkb\n", total / 1024, 2944 (int)bufmgr_gem->gtt_size / 1024); 2945 return 0; 2946 } 2947} 2948 2949/* 2950 * Disable buffer reuse for objects which are shared with the kernel 2951 * as scanout buffers 2952 */ 2953static int 2954drm_intel_gem_bo_disable_reuse(drm_intel_bo *bo) 2955{ 2956 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2957 2958 bo_gem->reusable = false; 2959 return 0; 2960} 2961 2962static int 2963drm_intel_gem_bo_is_reusable(drm_intel_bo *bo) 2964{ 2965 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2966 2967 return bo_gem->reusable; 2968} 2969 2970static int 2971_drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo) 2972{ 2973 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 2974 int i; 2975 2976 for (i = 0; i < bo_gem->reloc_count; i++) { 2977 if (bo_gem->reloc_target_info[i].bo == target_bo) 2978 return 1; 2979 if (bo == bo_gem->reloc_target_info[i].bo) 2980 continue; 2981 if (_drm_intel_gem_bo_references(bo_gem->reloc_target_info[i].bo, 2982 target_bo)) 2983 return 1; 2984 } 2985 2986 for (i = 0; i< bo_gem->softpin_target_count; i++) { 2987 if (bo_gem->softpin_target[i] == target_bo) 2988 return 1; 2989 if (_drm_intel_gem_bo_references(bo_gem->softpin_target[i], target_bo)) 2990 return 1; 2991 } 2992 2993 return 0; 2994} 2995 2996/** Return true if target_bo is referenced by bo's relocation tree. */ 2997static int 2998drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo) 2999{ 3000 drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo; 3001 3002 if (bo == NULL || target_bo == NULL) 3003 return 0; 3004 if (target_bo_gem->used_as_reloc_target) 3005 return _drm_intel_gem_bo_references(bo, target_bo); 3006 return 0; 3007} 3008 3009static void 3010add_bucket(drm_intel_bufmgr_gem *bufmgr_gem, int size) 3011{ 3012 unsigned int i = bufmgr_gem->num_buckets; 3013 3014 assert(i < ARRAY_SIZE(bufmgr_gem->cache_bucket)); 3015 3016 DRMINITLISTHEAD(&bufmgr_gem->cache_bucket[i].head); 3017 bufmgr_gem->cache_bucket[i].size = size; 3018 bufmgr_gem->num_buckets++; 3019} 3020 3021static void 3022init_cache_buckets(drm_intel_bufmgr_gem *bufmgr_gem) 3023{ 3024 unsigned long size, cache_max_size = 64 * 1024 * 1024; 3025 3026 /* OK, so power of two buckets was too wasteful of memory. 3027 * Give 3 other sizes between each power of two, to hopefully 3028 * cover things accurately enough. (The alternative is 3029 * probably to just go for exact matching of sizes, and assume 3030 * that for things like composited window resize the tiled 3031 * width/height alignment and rounding of sizes to pages will 3032 * get us useful cache hit rates anyway) 3033 */ 3034 add_bucket(bufmgr_gem, 4096); 3035 add_bucket(bufmgr_gem, 4096 * 2); 3036 add_bucket(bufmgr_gem, 4096 * 3); 3037 3038 /* Initialize the linked lists for BO reuse cache. */ 3039 for (size = 4 * 4096; size <= cache_max_size; size *= 2) { 3040 add_bucket(bufmgr_gem, size); 3041 3042 add_bucket(bufmgr_gem, size + size * 1 / 4); 3043 add_bucket(bufmgr_gem, size + size * 2 / 4); 3044 add_bucket(bufmgr_gem, size + size * 3 / 4); 3045 } 3046} 3047 3048drm_public void 3049drm_intel_bufmgr_gem_set_vma_cache_size(drm_intel_bufmgr *bufmgr, int limit) 3050{ 3051 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; 3052 3053 bufmgr_gem->vma_max = limit; 3054 3055 drm_intel_gem_bo_purge_vma_cache(bufmgr_gem); 3056} 3057 3058static int 3059parse_devid_override(const char *devid_override) 3060{ 3061 static const struct { 3062 const char *name; 3063 int pci_id; 3064 } name_map[] = { 3065 { "brw", PCI_CHIP_I965_GM }, 3066 { "g4x", PCI_CHIP_GM45_GM }, 3067 { "ilk", PCI_CHIP_ILD_G }, 3068 { "snb", PCI_CHIP_SANDYBRIDGE_M_GT2_PLUS }, 3069 { "ivb", PCI_CHIP_IVYBRIDGE_S_GT2 }, 3070 { "hsw", PCI_CHIP_HASWELL_CRW_E_GT3 }, 3071 { "byt", PCI_CHIP_VALLEYVIEW_3 }, 3072 { "bdw", 0x1620 | BDW_ULX }, 3073 { "skl", PCI_CHIP_SKYLAKE_DT_GT2 }, 3074 { "kbl", PCI_CHIP_KABYLAKE_DT_GT2 }, 3075 }; 3076 unsigned int i; 3077 3078 for (i = 0; i < ARRAY_SIZE(name_map); i++) { 3079 if (!strcmp(name_map[i].name, devid_override)) 3080 return name_map[i].pci_id; 3081 } 3082 3083 return strtod(devid_override, NULL); 3084} 3085 3086/** 3087 * Get the PCI ID for the device. This can be overridden by setting the 3088 * INTEL_DEVID_OVERRIDE environment variable to the desired ID. 3089 */ 3090static int 3091get_pci_device_id(drm_intel_bufmgr_gem *bufmgr_gem) 3092{ 3093 char *devid_override; 3094 int devid = 0; 3095 int ret; 3096 drm_i915_getparam_t gp; 3097 3098 if (geteuid() == getuid()) { 3099 devid_override = getenv("INTEL_DEVID_OVERRIDE"); 3100 if (devid_override) { 3101 bufmgr_gem->no_exec = true; 3102 return parse_devid_override(devid_override); 3103 } 3104 } 3105 3106 memclear(gp); 3107 gp.param = I915_PARAM_CHIPSET_ID; 3108 gp.value = &devid; 3109 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3110 if (ret) { 3111 fprintf(stderr, "get chip id failed: %d [%d]\n", ret, errno); 3112 fprintf(stderr, "param: %d, val: %d\n", gp.param, *gp.value); 3113 } 3114 return devid; 3115} 3116 3117drm_public int 3118drm_intel_bufmgr_gem_get_devid(drm_intel_bufmgr *bufmgr) 3119{ 3120 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; 3121 3122 return bufmgr_gem->pci_device; 3123} 3124 3125/** 3126 * Sets the AUB filename. 3127 * 3128 * This function has to be called before drm_intel_bufmgr_gem_set_aub_dump() 3129 * for it to have any effect. 3130 */ 3131drm_public void 3132drm_intel_bufmgr_gem_set_aub_filename(drm_intel_bufmgr *bufmgr, 3133 const char *filename) 3134{ 3135} 3136 3137/** 3138 * Sets up AUB dumping. 3139 * 3140 * This is a trace file format that can be used with the simulator. 3141 * Packets are emitted in a format somewhat like GPU command packets. 3142 * You can set up a GTT and upload your objects into the referenced 3143 * space, then send off batchbuffers and get BMPs out the other end. 3144 */ 3145drm_public void 3146drm_intel_bufmgr_gem_set_aub_dump(drm_intel_bufmgr *bufmgr, int enable) 3147{ 3148 fprintf(stderr, "libdrm aub dumping is deprecated.\n\n" 3149 "Use intel_aubdump from intel-gpu-tools instead. Install intel-gpu-tools,\n" 3150 "then run (for example)\n\n" 3151 "\t$ intel_aubdump --output=trace.aub glxgears -geometry 500x500\n\n" 3152 "See the intel_aubdump man page for more details.\n"); 3153} 3154 3155drm_public drm_intel_context * 3156drm_intel_gem_context_create(drm_intel_bufmgr *bufmgr) 3157{ 3158 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; 3159 struct drm_i915_gem_context_create create; 3160 drm_intel_context *context = NULL; 3161 int ret; 3162 3163 context = calloc(1, sizeof(*context)); 3164 if (!context) 3165 return NULL; 3166 3167 memclear(create); 3168 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create); 3169 if (ret != 0) { 3170 DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n", 3171 strerror(errno)); 3172 free(context); 3173 return NULL; 3174 } 3175 3176 context->ctx_id = create.ctx_id; 3177 context->bufmgr = bufmgr; 3178 3179 return context; 3180} 3181 3182drm_public int 3183drm_intel_gem_context_get_id(drm_intel_context *ctx, uint32_t *ctx_id) 3184{ 3185 if (ctx == NULL) 3186 return -EINVAL; 3187 3188 *ctx_id = ctx->ctx_id; 3189 3190 return 0; 3191} 3192 3193drm_public void 3194drm_intel_gem_context_destroy(drm_intel_context *ctx) 3195{ 3196 drm_intel_bufmgr_gem *bufmgr_gem; 3197 struct drm_i915_gem_context_destroy destroy; 3198 int ret; 3199 3200 if (ctx == NULL) 3201 return; 3202 3203 memclear(destroy); 3204 3205 bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr; 3206 destroy.ctx_id = ctx->ctx_id; 3207 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, 3208 &destroy); 3209 if (ret != 0) 3210 fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n", 3211 strerror(errno)); 3212 3213 free(ctx); 3214} 3215 3216drm_public int 3217drm_intel_get_reset_stats(drm_intel_context *ctx, 3218 uint32_t *reset_count, 3219 uint32_t *active, 3220 uint32_t *pending) 3221{ 3222 drm_intel_bufmgr_gem *bufmgr_gem; 3223 struct drm_i915_reset_stats stats; 3224 int ret; 3225 3226 if (ctx == NULL) 3227 return -EINVAL; 3228 3229 memclear(stats); 3230 3231 bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr; 3232 stats.ctx_id = ctx->ctx_id; 3233 ret = drmIoctl(bufmgr_gem->fd, 3234 DRM_IOCTL_I915_GET_RESET_STATS, 3235 &stats); 3236 if (ret == 0) { 3237 if (reset_count != NULL) 3238 *reset_count = stats.reset_count; 3239 3240 if (active != NULL) 3241 *active = stats.batch_active; 3242 3243 if (pending != NULL) 3244 *pending = stats.batch_pending; 3245 } 3246 3247 return ret; 3248} 3249 3250drm_public int 3251drm_intel_reg_read(drm_intel_bufmgr *bufmgr, 3252 uint32_t offset, 3253 uint64_t *result) 3254{ 3255 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; 3256 struct drm_i915_reg_read reg_read; 3257 int ret; 3258 3259 memclear(reg_read); 3260 reg_read.offset = offset; 3261 3262 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_REG_READ, ®_read); 3263 3264 *result = reg_read.val; 3265 return ret; 3266} 3267 3268drm_public int 3269drm_intel_get_subslice_total(int fd, unsigned int *subslice_total) 3270{ 3271 drm_i915_getparam_t gp; 3272 int ret; 3273 3274 memclear(gp); 3275 gp.value = (int*)subslice_total; 3276 gp.param = I915_PARAM_SUBSLICE_TOTAL; 3277 ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp); 3278 if (ret) 3279 return -errno; 3280 3281 return 0; 3282} 3283 3284drm_public int 3285drm_intel_get_eu_total(int fd, unsigned int *eu_total) 3286{ 3287 drm_i915_getparam_t gp; 3288 int ret; 3289 3290 memclear(gp); 3291 gp.value = (int*)eu_total; 3292 gp.param = I915_PARAM_EU_TOTAL; 3293 ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp); 3294 if (ret) 3295 return -errno; 3296 3297 return 0; 3298} 3299 3300drm_public int 3301drm_intel_get_pooled_eu(int fd) 3302{ 3303 drm_i915_getparam_t gp; 3304 int ret = -1; 3305 3306 memclear(gp); 3307 gp.param = I915_PARAM_HAS_POOLED_EU; 3308 gp.value = &ret; 3309 if (drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp)) 3310 return -errno; 3311 3312 return ret; 3313} 3314 3315drm_public int 3316drm_intel_get_min_eu_in_pool(int fd) 3317{ 3318 drm_i915_getparam_t gp; 3319 int ret = -1; 3320 3321 memclear(gp); 3322 gp.param = I915_PARAM_MIN_EU_IN_POOL; 3323 gp.value = &ret; 3324 if (drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp)) 3325 return -errno; 3326 3327 return ret; 3328} 3329 3330/** 3331 * Annotate the given bo for use in aub dumping. 3332 * 3333 * \param annotations is an array of drm_intel_aub_annotation objects 3334 * describing the type of data in various sections of the bo. Each 3335 * element of the array specifies the type and subtype of a section of 3336 * the bo, and the past-the-end offset of that section. The elements 3337 * of \c annotations must be sorted so that ending_offset is 3338 * increasing. 3339 * 3340 * \param count is the number of elements in the \c annotations array. 3341 * If \c count is zero, then \c annotations will not be dereferenced. 3342 * 3343 * Annotations are copied into a private data structure, so caller may 3344 * re-use the memory pointed to by \c annotations after the call 3345 * returns. 3346 * 3347 * Annotations are stored for the lifetime of the bo; to reset to the 3348 * default state (no annotations), call this function with a \c count 3349 * of zero. 3350 */ 3351drm_public void drm_intel_bufmgr_gem_set_aub_annotations(drm_intel_bo *bo, 3352 drm_intel_aub_annotation *annotations, 3353 unsigned count) 3354{ 3355} 3356 3357static pthread_mutex_t bufmgr_list_mutex = PTHREAD_MUTEX_INITIALIZER; 3358static drmMMListHead bufmgr_list = { &bufmgr_list, &bufmgr_list }; 3359 3360static drm_intel_bufmgr_gem * 3361drm_intel_bufmgr_gem_find(int fd) 3362{ 3363 drm_intel_bufmgr_gem *bufmgr_gem; 3364 3365 DRMLISTFOREACHENTRY(bufmgr_gem, &bufmgr_list, managers) { 3366 if (bufmgr_gem->fd == fd) { 3367 atomic_inc(&bufmgr_gem->refcount); 3368 return bufmgr_gem; 3369 } 3370 } 3371 3372 return NULL; 3373} 3374 3375static void 3376drm_intel_bufmgr_gem_unref(drm_intel_bufmgr *bufmgr) 3377{ 3378 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr; 3379 3380 if (atomic_add_unless(&bufmgr_gem->refcount, -1, 1)) { 3381 pthread_mutex_lock(&bufmgr_list_mutex); 3382 3383 if (atomic_dec_and_test(&bufmgr_gem->refcount)) { 3384 DRMLISTDEL(&bufmgr_gem->managers); 3385 drm_intel_bufmgr_gem_destroy(bufmgr); 3386 } 3387 3388 pthread_mutex_unlock(&bufmgr_list_mutex); 3389 } 3390} 3391 3392drm_public void *drm_intel_gem_bo_map__gtt(drm_intel_bo *bo) 3393{ 3394 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 3395 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 3396 3397 if (bo_gem->gtt_virtual) 3398 return bo_gem->gtt_virtual; 3399 3400 if (bo_gem->is_userptr) 3401 return NULL; 3402 3403 pthread_mutex_lock(&bufmgr_gem->lock); 3404 if (bo_gem->gtt_virtual == NULL) { 3405 struct drm_i915_gem_mmap_gtt mmap_arg; 3406 void *ptr; 3407 3408 DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n", 3409 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count); 3410 3411 if (bo_gem->map_count++ == 0) 3412 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem); 3413 3414 memclear(mmap_arg); 3415 mmap_arg.handle = bo_gem->gem_handle; 3416 3417 /* Get the fake offset back... */ 3418 ptr = MAP_FAILED; 3419 if (drmIoctl(bufmgr_gem->fd, 3420 DRM_IOCTL_I915_GEM_MMAP_GTT, 3421 &mmap_arg) == 0) { 3422 /* and mmap it */ 3423 ptr = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE, 3424 MAP_SHARED, bufmgr_gem->fd, 3425 mmap_arg.offset); 3426 } 3427 if (ptr == MAP_FAILED) { 3428 if (--bo_gem->map_count == 0) 3429 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem); 3430 ptr = NULL; 3431 } 3432 3433 bo_gem->gtt_virtual = ptr; 3434 } 3435 pthread_mutex_unlock(&bufmgr_gem->lock); 3436 3437 return bo_gem->gtt_virtual; 3438} 3439 3440drm_public void *drm_intel_gem_bo_map__cpu(drm_intel_bo *bo) 3441{ 3442 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 3443 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 3444 3445 if (bo_gem->mem_virtual) 3446 return bo_gem->mem_virtual; 3447 3448 if (bo_gem->is_userptr) { 3449 /* Return the same user ptr */ 3450 return bo_gem->user_virtual; 3451 } 3452 3453 pthread_mutex_lock(&bufmgr_gem->lock); 3454 if (!bo_gem->mem_virtual) { 3455 struct drm_i915_gem_mmap mmap_arg; 3456 3457 if (bo_gem->map_count++ == 0) 3458 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem); 3459 3460 DBG("bo_map: %d (%s), map_count=%d\n", 3461 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count); 3462 3463 memclear(mmap_arg); 3464 mmap_arg.handle = bo_gem->gem_handle; 3465 mmap_arg.size = bo->size; 3466 if (drmIoctl(bufmgr_gem->fd, 3467 DRM_IOCTL_I915_GEM_MMAP, 3468 &mmap_arg)) { 3469 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n", 3470 __FILE__, __LINE__, bo_gem->gem_handle, 3471 bo_gem->name, strerror(errno)); 3472 if (--bo_gem->map_count == 0) 3473 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem); 3474 } else { 3475 VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1)); 3476 bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr; 3477 } 3478 } 3479 pthread_mutex_unlock(&bufmgr_gem->lock); 3480 3481 return bo_gem->mem_virtual; 3482} 3483 3484drm_public void *drm_intel_gem_bo_map__wc(drm_intel_bo *bo) 3485{ 3486 drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr; 3487 drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo; 3488 3489 if (bo_gem->wc_virtual) 3490 return bo_gem->wc_virtual; 3491 3492 if (bo_gem->is_userptr) 3493 return NULL; 3494 3495 pthread_mutex_lock(&bufmgr_gem->lock); 3496 if (!bo_gem->wc_virtual) { 3497 struct drm_i915_gem_mmap mmap_arg; 3498 3499 if (bo_gem->map_count++ == 0) 3500 drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem); 3501 3502 DBG("bo_map: %d (%s), map_count=%d\n", 3503 bo_gem->gem_handle, bo_gem->name, bo_gem->map_count); 3504 3505 memclear(mmap_arg); 3506 mmap_arg.handle = bo_gem->gem_handle; 3507 mmap_arg.size = bo->size; 3508 mmap_arg.flags = I915_MMAP_WC; 3509 if (drmIoctl(bufmgr_gem->fd, 3510 DRM_IOCTL_I915_GEM_MMAP, 3511 &mmap_arg)) { 3512 DBG("%s:%d: Error mapping buffer %d (%s): %s .\n", 3513 __FILE__, __LINE__, bo_gem->gem_handle, 3514 bo_gem->name, strerror(errno)); 3515 if (--bo_gem->map_count == 0) 3516 drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem); 3517 } else { 3518 VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1)); 3519 bo_gem->wc_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr; 3520 } 3521 } 3522 pthread_mutex_unlock(&bufmgr_gem->lock); 3523 3524 return bo_gem->wc_virtual; 3525} 3526 3527/** 3528 * Initializes the GEM buffer manager, which uses the kernel to allocate, map, 3529 * and manage map buffer objections. 3530 * 3531 * \param fd File descriptor of the opened DRM device. 3532 */ 3533drm_public drm_intel_bufmgr * 3534drm_intel_bufmgr_gem_init(int fd, int batch_size) 3535{ 3536 drm_intel_bufmgr_gem *bufmgr_gem; 3537 struct drm_i915_gem_get_aperture aperture; 3538 drm_i915_getparam_t gp; 3539 int ret, tmp; 3540 3541 pthread_mutex_lock(&bufmgr_list_mutex); 3542 3543 bufmgr_gem = drm_intel_bufmgr_gem_find(fd); 3544 if (bufmgr_gem) 3545 goto exit; 3546 3547 bufmgr_gem = calloc(1, sizeof(*bufmgr_gem)); 3548 if (bufmgr_gem == NULL) 3549 goto exit; 3550 3551 bufmgr_gem->fd = fd; 3552 atomic_set(&bufmgr_gem->refcount, 1); 3553 3554 if (pthread_mutex_init(&bufmgr_gem->lock, NULL) != 0) { 3555 free(bufmgr_gem); 3556 bufmgr_gem = NULL; 3557 goto exit; 3558 } 3559 3560 memclear(aperture); 3561 ret = drmIoctl(bufmgr_gem->fd, 3562 DRM_IOCTL_I915_GEM_GET_APERTURE, 3563 &aperture); 3564 3565 if (ret == 0) 3566 bufmgr_gem->gtt_size = aperture.aper_available_size; 3567 else { 3568 fprintf(stderr, "DRM_IOCTL_I915_GEM_APERTURE failed: %s\n", 3569 strerror(errno)); 3570 bufmgr_gem->gtt_size = 128 * 1024 * 1024; 3571 fprintf(stderr, "Assuming %dkB available aperture size.\n" 3572 "May lead to reduced performance or incorrect " 3573 "rendering.\n", 3574 (int)bufmgr_gem->gtt_size / 1024); 3575 } 3576 3577 bufmgr_gem->pci_device = get_pci_device_id(bufmgr_gem); 3578 3579 if (IS_GEN2(bufmgr_gem->pci_device)) 3580 bufmgr_gem->gen = 2; 3581 else if (IS_GEN3(bufmgr_gem->pci_device)) 3582 bufmgr_gem->gen = 3; 3583 else if (IS_GEN4(bufmgr_gem->pci_device)) 3584 bufmgr_gem->gen = 4; 3585 else if (IS_GEN5(bufmgr_gem->pci_device)) 3586 bufmgr_gem->gen = 5; 3587 else if (IS_GEN6(bufmgr_gem->pci_device)) 3588 bufmgr_gem->gen = 6; 3589 else if (IS_GEN7(bufmgr_gem->pci_device)) 3590 bufmgr_gem->gen = 7; 3591 else if (IS_GEN8(bufmgr_gem->pci_device)) 3592 bufmgr_gem->gen = 8; 3593 else if (!intel_get_genx(bufmgr_gem->pci_device, &bufmgr_gem->gen)) { 3594 free(bufmgr_gem); 3595 bufmgr_gem = NULL; 3596 goto exit; 3597 } 3598 3599 if (IS_GEN3(bufmgr_gem->pci_device) && 3600 bufmgr_gem->gtt_size > 256*1024*1024) { 3601 /* The unmappable part of gtt on gen 3 (i.e. above 256MB) can't 3602 * be used for tiled blits. To simplify the accounting, just 3603 * subtract the unmappable part (fixed to 256MB on all known 3604 * gen3 devices) if the kernel advertises it. */ 3605 bufmgr_gem->gtt_size -= 256*1024*1024; 3606 } 3607 3608 memclear(gp); 3609 gp.value = &tmp; 3610 3611 gp.param = I915_PARAM_HAS_EXECBUF2; 3612 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3613 if (ret) { 3614 fprintf(stderr, "i915 does not support EXECBUFER2\n"); 3615 free(bufmgr_gem); 3616 bufmgr_gem = NULL; 3617 goto exit; 3618 } 3619 3620 gp.param = I915_PARAM_HAS_BSD; 3621 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3622 bufmgr_gem->has_bsd = ret == 0; 3623 3624 gp.param = I915_PARAM_HAS_BLT; 3625 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3626 bufmgr_gem->has_blt = ret == 0; 3627 3628 gp.param = I915_PARAM_HAS_RELAXED_FENCING; 3629 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3630 bufmgr_gem->has_relaxed_fencing = ret == 0; 3631 3632 gp.param = I915_PARAM_HAS_EXEC_ASYNC; 3633 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3634 bufmgr_gem->has_exec_async = ret == 0; 3635 3636 bufmgr_gem->bufmgr.bo_alloc_userptr = check_bo_alloc_userptr; 3637 3638 gp.param = I915_PARAM_HAS_WAIT_TIMEOUT; 3639 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3640 bufmgr_gem->has_wait_timeout = ret == 0; 3641 3642 gp.param = I915_PARAM_HAS_LLC; 3643 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3644 if (ret != 0) { 3645 /* Kernel does not supports HAS_LLC query, fallback to GPU 3646 * generation detection and assume that we have LLC on GEN6/7 3647 */ 3648 bufmgr_gem->has_llc = (IS_GEN6(bufmgr_gem->pci_device) | 3649 IS_GEN7(bufmgr_gem->pci_device)); 3650 } else 3651 bufmgr_gem->has_llc = *gp.value; 3652 3653 gp.param = I915_PARAM_HAS_VEBOX; 3654 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3655 bufmgr_gem->has_vebox = (ret == 0) & (*gp.value > 0); 3656 3657 gp.param = I915_PARAM_HAS_EXEC_SOFTPIN; 3658 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3659 if (ret == 0 && *gp.value > 0) 3660 bufmgr_gem->bufmgr.bo_set_softpin_offset = drm_intel_gem_bo_set_softpin_offset; 3661 3662 if (bufmgr_gem->gen < 4) { 3663 gp.param = I915_PARAM_NUM_FENCES_AVAIL; 3664 gp.value = &bufmgr_gem->available_fences; 3665 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3666 if (ret) { 3667 fprintf(stderr, "get fences failed: %d [%d]\n", ret, 3668 errno); 3669 fprintf(stderr, "param: %d, val: %d\n", gp.param, 3670 *gp.value); 3671 bufmgr_gem->available_fences = 0; 3672 } else { 3673 /* XXX The kernel reports the total number of fences, 3674 * including any that may be pinned. 3675 * 3676 * We presume that there will be at least one pinned 3677 * fence for the scanout buffer, but there may be more 3678 * than one scanout and the user may be manually 3679 * pinning buffers. Let's move to execbuffer2 and 3680 * thereby forget the insanity of using fences... 3681 */ 3682 bufmgr_gem->available_fences -= 2; 3683 if (bufmgr_gem->available_fences < 0) 3684 bufmgr_gem->available_fences = 0; 3685 } 3686 } 3687 3688 if (bufmgr_gem->gen >= 8) { 3689 gp.param = I915_PARAM_HAS_ALIASING_PPGTT; 3690 ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp); 3691 if (ret == 0 && *gp.value == 3) 3692 bufmgr_gem->bufmgr.bo_use_48b_address_range = drm_intel_gem_bo_use_48b_address_range; 3693 } 3694 3695 /* Let's go with one relocation per every 2 dwords (but round down a bit 3696 * since a power of two will mean an extra page allocation for the reloc 3697 * buffer). 3698 * 3699 * Every 4 was too few for the blender benchmark. 3700 */ 3701 bufmgr_gem->max_relocs = batch_size / sizeof(uint32_t) / 2 - 2; 3702 3703 bufmgr_gem->bufmgr.bo_alloc = drm_intel_gem_bo_alloc; 3704 bufmgr_gem->bufmgr.bo_alloc_for_render = 3705 drm_intel_gem_bo_alloc_for_render; 3706 bufmgr_gem->bufmgr.bo_alloc_tiled = drm_intel_gem_bo_alloc_tiled; 3707 bufmgr_gem->bufmgr.bo_reference = drm_intel_gem_bo_reference; 3708 bufmgr_gem->bufmgr.bo_unreference = drm_intel_gem_bo_unreference; 3709 bufmgr_gem->bufmgr.bo_map = drm_intel_gem_bo_map; 3710 bufmgr_gem->bufmgr.bo_unmap = drm_intel_gem_bo_unmap; 3711 bufmgr_gem->bufmgr.bo_subdata = drm_intel_gem_bo_subdata; 3712 bufmgr_gem->bufmgr.bo_get_subdata = drm_intel_gem_bo_get_subdata; 3713 bufmgr_gem->bufmgr.bo_wait_rendering = drm_intel_gem_bo_wait_rendering; 3714 bufmgr_gem->bufmgr.bo_emit_reloc = drm_intel_gem_bo_emit_reloc; 3715 bufmgr_gem->bufmgr.bo_emit_reloc_fence = drm_intel_gem_bo_emit_reloc_fence; 3716 bufmgr_gem->bufmgr.bo_pin = drm_intel_gem_bo_pin; 3717 bufmgr_gem->bufmgr.bo_unpin = drm_intel_gem_bo_unpin; 3718 bufmgr_gem->bufmgr.bo_get_tiling = drm_intel_gem_bo_get_tiling; 3719 bufmgr_gem->bufmgr.bo_set_tiling = drm_intel_gem_bo_set_tiling; 3720 bufmgr_gem->bufmgr.bo_flink = drm_intel_gem_bo_flink; 3721 bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec2; 3722 bufmgr_gem->bufmgr.bo_mrb_exec = drm_intel_gem_bo_mrb_exec2; 3723 bufmgr_gem->bufmgr.bo_busy = drm_intel_gem_bo_busy; 3724 bufmgr_gem->bufmgr.bo_madvise = drm_intel_gem_bo_madvise; 3725 bufmgr_gem->bufmgr.destroy = drm_intel_bufmgr_gem_unref; 3726 bufmgr_gem->bufmgr.debug = 0; 3727 bufmgr_gem->bufmgr.check_aperture_space = 3728 drm_intel_gem_check_aperture_space; 3729 bufmgr_gem->bufmgr.bo_disable_reuse = drm_intel_gem_bo_disable_reuse; 3730 bufmgr_gem->bufmgr.bo_is_reusable = drm_intel_gem_bo_is_reusable; 3731 bufmgr_gem->bufmgr.get_pipe_from_crtc_id = 3732 drm_intel_gem_get_pipe_from_crtc_id; 3733 bufmgr_gem->bufmgr.bo_references = drm_intel_gem_bo_references; 3734 3735 init_cache_buckets(bufmgr_gem); 3736 3737 DRMINITLISTHEAD(&bufmgr_gem->vma_cache); 3738 bufmgr_gem->vma_max = -1; /* unlimited by default */ 3739 3740 DRMLISTADD(&bufmgr_gem->managers, &bufmgr_list); 3741 3742exit: 3743 pthread_mutex_unlock(&bufmgr_list_mutex); 3744 3745 return bufmgr_gem != NULL ? &bufmgr_gem->bufmgr : NULL; 3746} 3747