xref: /third_party/libbpf/src/bpf_helpers.h (revision 7c2aad20)
1/* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */
2#ifndef __BPF_HELPERS__
3#define __BPF_HELPERS__
4
5/*
6 * Note that bpf programs need to include either
7 * vmlinux.h (auto-generated from BTF) or linux/types.h
8 * in advance since bpf_helper_defs.h uses such types
9 * as __u64.
10 */
11#include "bpf_helper_defs.h"
12
13#define __uint(name, val) int (*name)[val]
14#define __type(name, val) typeof(val) *name
15#define __array(name, val) typeof(val) *name[]
16
17/*
18 * Helper macro to place programs, maps, license in
19 * different sections in elf_bpf file. Section names
20 * are interpreted by libbpf depending on the context (BPF programs, BPF maps,
21 * extern variables, etc).
22 * To allow use of SEC() with externs (e.g., for extern .maps declarations),
23 * make sure __attribute__((unused)) doesn't trigger compilation warning.
24 */
25#if __GNUC__ && !__clang__
26
27/*
28 * Pragma macros are broken on GCC
29 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=55578
30 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90400
31 */
32#define SEC(name) __attribute__((section(name), used))
33
34#else
35
36#define SEC(name) \
37	_Pragma("GCC diagnostic push")					    \
38	_Pragma("GCC diagnostic ignored \"-Wignored-attributes\"")	    \
39	__attribute__((section(name), used))				    \
40	_Pragma("GCC diagnostic pop")					    \
41
42#endif
43
44/* Avoid 'linux/stddef.h' definition of '__always_inline'. */
45#undef __always_inline
46#define __always_inline inline __attribute__((always_inline))
47
48#ifndef __noinline
49#define __noinline __attribute__((noinline))
50#endif
51#ifndef __weak
52#define __weak __attribute__((weak))
53#endif
54
55/*
56 * Use __hidden attribute to mark a non-static BPF subprogram effectively
57 * static for BPF verifier's verification algorithm purposes, allowing more
58 * extensive and permissive BPF verification process, taking into account
59 * subprogram's caller context.
60 */
61#define __hidden __attribute__((visibility("hidden")))
62
63/* When utilizing vmlinux.h with BPF CO-RE, user BPF programs can't include
64 * any system-level headers (such as stddef.h, linux/version.h, etc), and
65 * commonly-used macros like NULL and KERNEL_VERSION aren't available through
66 * vmlinux.h. This just adds unnecessary hurdles and forces users to re-define
67 * them on their own. So as a convenience, provide such definitions here.
68 */
69#ifndef NULL
70#define NULL ((void *)0)
71#endif
72
73#ifndef KERNEL_VERSION
74#define KERNEL_VERSION(a, b, c) (((a) << 16) + ((b) << 8) + ((c) > 255 ? 255 : (c)))
75#endif
76
77/*
78 * Helper macros to manipulate data structures
79 */
80
81/* offsetof() definition that uses __builtin_offset() might not preserve field
82 * offset CO-RE relocation properly, so force-redefine offsetof() using
83 * old-school approach which works with CO-RE correctly
84 */
85#undef offsetof
86#define offsetof(type, member)	((unsigned long)&((type *)0)->member)
87
88/* redefined container_of() to ensure we use the above offsetof() macro */
89#undef container_of
90#define container_of(ptr, type, member)				\
91	({							\
92		void *__mptr = (void *)(ptr);			\
93		((type *)(__mptr - offsetof(type, member)));	\
94	})
95
96/*
97 * Compiler (optimization) barrier.
98 */
99#ifndef barrier
100#define barrier() asm volatile("" ::: "memory")
101#endif
102
103/* Variable-specific compiler (optimization) barrier. It's a no-op which makes
104 * compiler believe that there is some black box modification of a given
105 * variable and thus prevents compiler from making extra assumption about its
106 * value and potential simplifications and optimizations on this variable.
107 *
108 * E.g., compiler might often delay or even omit 32-bit to 64-bit casting of
109 * a variable, making some code patterns unverifiable. Putting barrier_var()
110 * in place will ensure that cast is performed before the barrier_var()
111 * invocation, because compiler has to pessimistically assume that embedded
112 * asm section might perform some extra operations on that variable.
113 *
114 * This is a variable-specific variant of more global barrier().
115 */
116#ifndef barrier_var
117#define barrier_var(var) asm volatile("" : "+r"(var))
118#endif
119
120/*
121 * Helper macro to throw a compilation error if __bpf_unreachable() gets
122 * built into the resulting code. This works given BPF back end does not
123 * implement __builtin_trap(). This is useful to assert that certain paths
124 * of the program code are never used and hence eliminated by the compiler.
125 *
126 * For example, consider a switch statement that covers known cases used by
127 * the program. __bpf_unreachable() can then reside in the default case. If
128 * the program gets extended such that a case is not covered in the switch
129 * statement, then it will throw a build error due to the default case not
130 * being compiled out.
131 */
132#ifndef __bpf_unreachable
133# define __bpf_unreachable()	__builtin_trap()
134#endif
135
136/*
137 * Helper function to perform a tail call with a constant/immediate map slot.
138 */
139#if __clang_major__ >= 8 && defined(__bpf__)
140static __always_inline void
141bpf_tail_call_static(void *ctx, const void *map, const __u32 slot)
142{
143	if (!__builtin_constant_p(slot))
144		__bpf_unreachable();
145
146	/*
147	 * Provide a hard guarantee that LLVM won't optimize setting r2 (map
148	 * pointer) and r3 (constant map index) from _different paths_ ending
149	 * up at the _same_ call insn as otherwise we won't be able to use the
150	 * jmpq/nopl retpoline-free patching by the x86-64 JIT in the kernel
151	 * given they mismatch. See also d2e4c1e6c294 ("bpf: Constant map key
152	 * tracking for prog array pokes") for details on verifier tracking.
153	 *
154	 * Note on clobber list: we need to stay in-line with BPF calling
155	 * convention, so even if we don't end up using r0, r4, r5, we need
156	 * to mark them as clobber so that LLVM doesn't end up using them
157	 * before / after the call.
158	 */
159	asm volatile("r1 = %[ctx]\n\t"
160		     "r2 = %[map]\n\t"
161		     "r3 = %[slot]\n\t"
162		     "call 12"
163		     :: [ctx]"r"(ctx), [map]"r"(map), [slot]"i"(slot)
164		     : "r0", "r1", "r2", "r3", "r4", "r5");
165}
166#endif
167
168enum libbpf_pin_type {
169	LIBBPF_PIN_NONE,
170	/* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
171	LIBBPF_PIN_BY_NAME,
172};
173
174enum libbpf_tristate {
175	TRI_NO = 0,
176	TRI_YES = 1,
177	TRI_MODULE = 2,
178};
179
180#define __kconfig __attribute__((section(".kconfig")))
181#define __ksym __attribute__((section(".ksyms")))
182#define __kptr_untrusted __attribute__((btf_type_tag("kptr_untrusted")))
183#define __kptr __attribute__((btf_type_tag("kptr")))
184#define __percpu_kptr __attribute__((btf_type_tag("percpu_kptr")))
185
186#define bpf_ksym_exists(sym) ({									\
187	_Static_assert(!__builtin_constant_p(!!sym), #sym " should be marked as __weak");	\
188	!!sym;											\
189})
190
191#ifndef ___bpf_concat
192#define ___bpf_concat(a, b) a ## b
193#endif
194#ifndef ___bpf_apply
195#define ___bpf_apply(fn, n) ___bpf_concat(fn, n)
196#endif
197#ifndef ___bpf_nth
198#define ___bpf_nth(_, _1, _2, _3, _4, _5, _6, _7, _8, _9, _a, _b, _c, N, ...) N
199#endif
200#ifndef ___bpf_narg
201#define ___bpf_narg(...) \
202	___bpf_nth(_, ##__VA_ARGS__, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
203#endif
204
205#define ___bpf_fill0(arr, p, x) do {} while (0)
206#define ___bpf_fill1(arr, p, x) arr[p] = x
207#define ___bpf_fill2(arr, p, x, args...) arr[p] = x; ___bpf_fill1(arr, p + 1, args)
208#define ___bpf_fill3(arr, p, x, args...) arr[p] = x; ___bpf_fill2(arr, p + 1, args)
209#define ___bpf_fill4(arr, p, x, args...) arr[p] = x; ___bpf_fill3(arr, p + 1, args)
210#define ___bpf_fill5(arr, p, x, args...) arr[p] = x; ___bpf_fill4(arr, p + 1, args)
211#define ___bpf_fill6(arr, p, x, args...) arr[p] = x; ___bpf_fill5(arr, p + 1, args)
212#define ___bpf_fill7(arr, p, x, args...) arr[p] = x; ___bpf_fill6(arr, p + 1, args)
213#define ___bpf_fill8(arr, p, x, args...) arr[p] = x; ___bpf_fill7(arr, p + 1, args)
214#define ___bpf_fill9(arr, p, x, args...) arr[p] = x; ___bpf_fill8(arr, p + 1, args)
215#define ___bpf_fill10(arr, p, x, args...) arr[p] = x; ___bpf_fill9(arr, p + 1, args)
216#define ___bpf_fill11(arr, p, x, args...) arr[p] = x; ___bpf_fill10(arr, p + 1, args)
217#define ___bpf_fill12(arr, p, x, args...) arr[p] = x; ___bpf_fill11(arr, p + 1, args)
218#define ___bpf_fill(arr, args...) \
219	___bpf_apply(___bpf_fill, ___bpf_narg(args))(arr, 0, args)
220
221/*
222 * BPF_SEQ_PRINTF to wrap bpf_seq_printf to-be-printed values
223 * in a structure.
224 */
225#define BPF_SEQ_PRINTF(seq, fmt, args...)			\
226({								\
227	static const char ___fmt[] = fmt;			\
228	unsigned long long ___param[___bpf_narg(args)];		\
229								\
230	_Pragma("GCC diagnostic push")				\
231	_Pragma("GCC diagnostic ignored \"-Wint-conversion\"")	\
232	___bpf_fill(___param, args);				\
233	_Pragma("GCC diagnostic pop")				\
234								\
235	bpf_seq_printf(seq, ___fmt, sizeof(___fmt),		\
236		       ___param, sizeof(___param));		\
237})
238
239/*
240 * BPF_SNPRINTF wraps the bpf_snprintf helper with variadic arguments instead of
241 * an array of u64.
242 */
243#define BPF_SNPRINTF(out, out_size, fmt, args...)		\
244({								\
245	static const char ___fmt[] = fmt;			\
246	unsigned long long ___param[___bpf_narg(args)];		\
247								\
248	_Pragma("GCC diagnostic push")				\
249	_Pragma("GCC diagnostic ignored \"-Wint-conversion\"")	\
250	___bpf_fill(___param, args);				\
251	_Pragma("GCC diagnostic pop")				\
252								\
253	bpf_snprintf(out, out_size, ___fmt,			\
254		     ___param, sizeof(___param));		\
255})
256
257#ifdef BPF_NO_GLOBAL_DATA
258#define BPF_PRINTK_FMT_MOD
259#else
260#define BPF_PRINTK_FMT_MOD static const
261#endif
262
263#define __bpf_printk(fmt, ...)				\
264({							\
265	BPF_PRINTK_FMT_MOD char ____fmt[] = fmt;	\
266	bpf_trace_printk(____fmt, sizeof(____fmt),	\
267			 ##__VA_ARGS__);		\
268})
269
270/*
271 * __bpf_vprintk wraps the bpf_trace_vprintk helper with variadic arguments
272 * instead of an array of u64.
273 */
274#define __bpf_vprintk(fmt, args...)				\
275({								\
276	static const char ___fmt[] = fmt;			\
277	unsigned long long ___param[___bpf_narg(args)];		\
278								\
279	_Pragma("GCC diagnostic push")				\
280	_Pragma("GCC diagnostic ignored \"-Wint-conversion\"")	\
281	___bpf_fill(___param, args);				\
282	_Pragma("GCC diagnostic pop")				\
283								\
284	bpf_trace_vprintk(___fmt, sizeof(___fmt),		\
285			  ___param, sizeof(___param));		\
286})
287
288/* Use __bpf_printk when bpf_printk call has 3 or fewer fmt args
289 * Otherwise use __bpf_vprintk
290 */
291#define ___bpf_pick_printk(...) \
292	___bpf_nth(_, ##__VA_ARGS__, __bpf_vprintk, __bpf_vprintk, __bpf_vprintk,	\
293		   __bpf_vprintk, __bpf_vprintk, __bpf_vprintk, __bpf_vprintk,		\
294		   __bpf_vprintk, __bpf_vprintk, __bpf_printk /*3*/, __bpf_printk /*2*/,\
295		   __bpf_printk /*1*/, __bpf_printk /*0*/)
296
297/* Helper macro to print out debug messages */
298#define bpf_printk(fmt, args...) ___bpf_pick_printk(args)(fmt, ##args)
299
300struct bpf_iter_num;
301
302extern int bpf_iter_num_new(struct bpf_iter_num *it, int start, int end) __weak __ksym;
303extern int *bpf_iter_num_next(struct bpf_iter_num *it) __weak __ksym;
304extern void bpf_iter_num_destroy(struct bpf_iter_num *it) __weak __ksym;
305
306#ifndef bpf_for_each
307/* bpf_for_each(iter_type, cur_elem, args...) provides generic construct for
308 * using BPF open-coded iterators without having to write mundane explicit
309 * low-level loop logic. Instead, it provides for()-like generic construct
310 * that can be used pretty naturally. E.g., for some hypothetical cgroup
311 * iterator, you'd write:
312 *
313 * struct cgroup *cg, *parent_cg = <...>;
314 *
315 * bpf_for_each(cgroup, cg, parent_cg, CG_ITER_CHILDREN) {
316 *     bpf_printk("Child cgroup id = %d", cg->cgroup_id);
317 *     if (cg->cgroup_id == 123)
318 *         break;
319 * }
320 *
321 * I.e., it looks almost like high-level for each loop in other languages,
322 * supports continue/break, and is verifiable by BPF verifier.
323 *
324 * For iterating integers, the difference betwen bpf_for_each(num, i, N, M)
325 * and bpf_for(i, N, M) is in that bpf_for() provides additional proof to
326 * verifier that i is in [N, M) range, and in bpf_for_each() case i is `int
327 * *`, not just `int`. So for integers bpf_for() is more convenient.
328 *
329 * Note: this macro relies on C99 feature of allowing to declare variables
330 * inside for() loop, bound to for() loop lifetime. It also utilizes GCC
331 * extension: __attribute__((cleanup(<func>))), supported by both GCC and
332 * Clang.
333 */
334#define bpf_for_each(type, cur, args...) for (							\
335	/* initialize and define destructor */							\
336	struct bpf_iter_##type ___it __attribute__((aligned(8), /* enforce, just in case */,	\
337						    cleanup(bpf_iter_##type##_destroy))),	\
338	/* ___p pointer is just to call bpf_iter_##type##_new() *once* to init ___it */		\
339			       *___p __attribute__((unused)) = (				\
340					bpf_iter_##type##_new(&___it, ##args),			\
341	/* this is a workaround for Clang bug: it currently doesn't emit BTF */			\
342	/* for bpf_iter_##type##_destroy() when used from cleanup() attribute */		\
343					(void)bpf_iter_##type##_destroy, (void *)0);		\
344	/* iteration and termination check */							\
345	(((cur) = bpf_iter_##type##_next(&___it)));						\
346)
347#endif /* bpf_for_each */
348
349#ifndef bpf_for
350/* bpf_for(i, start, end) implements a for()-like looping construct that sets
351 * provided integer variable *i* to values starting from *start* through,
352 * but not including, *end*. It also proves to BPF verifier that *i* belongs
353 * to range [start, end), so this can be used for accessing arrays without
354 * extra checks.
355 *
356 * Note: *start* and *end* are assumed to be expressions with no side effects
357 * and whose values do not change throughout bpf_for() loop execution. They do
358 * not have to be statically known or constant, though.
359 *
360 * Note: similarly to bpf_for_each(), it relies on C99 feature of declaring for()
361 * loop bound variables and cleanup attribute, supported by GCC and Clang.
362 */
363#define bpf_for(i, start, end) for (								\
364	/* initialize and define destructor */							\
365	struct bpf_iter_num ___it __attribute__((aligned(8), /* enforce, just in case */	\
366						 cleanup(bpf_iter_num_destroy))),		\
367	/* ___p pointer is necessary to call bpf_iter_num_new() *once* to init ___it */		\
368			    *___p __attribute__((unused)) = (					\
369				bpf_iter_num_new(&___it, (start), (end)),			\
370	/* this is a workaround for Clang bug: it currently doesn't emit BTF */			\
371	/* for bpf_iter_num_destroy() when used from cleanup() attribute */			\
372				(void)bpf_iter_num_destroy, (void *)0);				\
373	({											\
374		/* iteration step */								\
375		int *___t = bpf_iter_num_next(&___it);						\
376		/* termination and bounds check */						\
377		(___t && ((i) = *___t, (i) >= (start) && (i) < (end)));				\
378	});											\
379)
380#endif /* bpf_for */
381
382#ifndef bpf_repeat
383/* bpf_repeat(N) performs N iterations without exposing iteration number
384 *
385 * Note: similarly to bpf_for_each(), it relies on C99 feature of declaring for()
386 * loop bound variables and cleanup attribute, supported by GCC and Clang.
387 */
388#define bpf_repeat(N) for (									\
389	/* initialize and define destructor */							\
390	struct bpf_iter_num ___it __attribute__((aligned(8), /* enforce, just in case */	\
391						 cleanup(bpf_iter_num_destroy))),		\
392	/* ___p pointer is necessary to call bpf_iter_num_new() *once* to init ___it */		\
393			    *___p __attribute__((unused)) = (					\
394				bpf_iter_num_new(&___it, 0, (N)),				\
395	/* this is a workaround for Clang bug: it currently doesn't emit BTF */			\
396	/* for bpf_iter_num_destroy() when used from cleanup() attribute */			\
397				(void)bpf_iter_num_destroy, (void *)0);				\
398	bpf_iter_num_next(&___it);								\
399	/* nothing here  */									\
400)
401#endif /* bpf_repeat */
402
403#endif
404