1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2/*
3 * Performance events:
4 *
5 *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
6 *    Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
7 *    Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
8 *
9 * Data type definitions, declarations, prototypes.
10 *
11 *    Started by: Thomas Gleixner and Ingo Molnar
12 *
13 * For licencing details see kernel-base/COPYING
14 */
15#ifndef _UAPI_LINUX_PERF_EVENT_H
16#define _UAPI_LINUX_PERF_EVENT_H
17
18#include <linux/types.h>
19#include <linux/ioctl.h>
20#include <asm/byteorder.h>
21
22/*
23 * User-space ABI bits:
24 */
25
26/*
27 * attr.type
28 */
29enum perf_type_id {
30	PERF_TYPE_HARDWARE			= 0,
31	PERF_TYPE_SOFTWARE			= 1,
32	PERF_TYPE_TRACEPOINT			= 2,
33	PERF_TYPE_HW_CACHE			= 3,
34	PERF_TYPE_RAW				= 4,
35	PERF_TYPE_BREAKPOINT			= 5,
36
37	PERF_TYPE_MAX,				/* non-ABI */
38};
39
40/*
41 * attr.config layout for type PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
42 * PERF_TYPE_HARDWARE:			0xEEEEEEEE000000AA
43 *					AA: hardware event ID
44 *					EEEEEEEE: PMU type ID
45 * PERF_TYPE_HW_CACHE:			0xEEEEEEEE00DDCCBB
46 *					BB: hardware cache ID
47 *					CC: hardware cache op ID
48 *					DD: hardware cache op result ID
49 *					EEEEEEEE: PMU type ID
50 * If the PMU type ID is 0, the PERF_TYPE_RAW will be applied.
51 */
52#define PERF_PMU_TYPE_SHIFT		32
53#define PERF_HW_EVENT_MASK		0xffffffff
54
55/*
56 * Generalized performance event event_id types, used by the
57 * attr.event_id parameter of the sys_perf_event_open()
58 * syscall:
59 */
60enum perf_hw_id {
61	/*
62	 * Common hardware events, generalized by the kernel:
63	 */
64	PERF_COUNT_HW_CPU_CYCLES		= 0,
65	PERF_COUNT_HW_INSTRUCTIONS		= 1,
66	PERF_COUNT_HW_CACHE_REFERENCES		= 2,
67	PERF_COUNT_HW_CACHE_MISSES		= 3,
68	PERF_COUNT_HW_BRANCH_INSTRUCTIONS	= 4,
69	PERF_COUNT_HW_BRANCH_MISSES		= 5,
70	PERF_COUNT_HW_BUS_CYCLES		= 6,
71	PERF_COUNT_HW_STALLED_CYCLES_FRONTEND	= 7,
72	PERF_COUNT_HW_STALLED_CYCLES_BACKEND	= 8,
73	PERF_COUNT_HW_REF_CPU_CYCLES		= 9,
74
75	PERF_COUNT_HW_MAX,			/* non-ABI */
76};
77
78/*
79 * Generalized hardware cache events:
80 *
81 *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
82 *       { read, write, prefetch } x
83 *       { accesses, misses }
84 */
85enum perf_hw_cache_id {
86	PERF_COUNT_HW_CACHE_L1D			= 0,
87	PERF_COUNT_HW_CACHE_L1I			= 1,
88	PERF_COUNT_HW_CACHE_LL			= 2,
89	PERF_COUNT_HW_CACHE_DTLB		= 3,
90	PERF_COUNT_HW_CACHE_ITLB		= 4,
91	PERF_COUNT_HW_CACHE_BPU			= 5,
92	PERF_COUNT_HW_CACHE_NODE		= 6,
93
94	PERF_COUNT_HW_CACHE_MAX,		/* non-ABI */
95};
96
97enum perf_hw_cache_op_id {
98	PERF_COUNT_HW_CACHE_OP_READ		= 0,
99	PERF_COUNT_HW_CACHE_OP_WRITE		= 1,
100	PERF_COUNT_HW_CACHE_OP_PREFETCH		= 2,
101
102	PERF_COUNT_HW_CACHE_OP_MAX,		/* non-ABI */
103};
104
105enum perf_hw_cache_op_result_id {
106	PERF_COUNT_HW_CACHE_RESULT_ACCESS	= 0,
107	PERF_COUNT_HW_CACHE_RESULT_MISS		= 1,
108
109	PERF_COUNT_HW_CACHE_RESULT_MAX,		/* non-ABI */
110};
111
112/*
113 * Special "software" events provided by the kernel, even if the hardware
114 * does not support performance events. These events measure various
115 * physical and sw events of the kernel (and allow the profiling of them as
116 * well):
117 */
118enum perf_sw_ids {
119	PERF_COUNT_SW_CPU_CLOCK			= 0,
120	PERF_COUNT_SW_TASK_CLOCK		= 1,
121	PERF_COUNT_SW_PAGE_FAULTS		= 2,
122	PERF_COUNT_SW_CONTEXT_SWITCHES		= 3,
123	PERF_COUNT_SW_CPU_MIGRATIONS		= 4,
124	PERF_COUNT_SW_PAGE_FAULTS_MIN		= 5,
125	PERF_COUNT_SW_PAGE_FAULTS_MAJ		= 6,
126	PERF_COUNT_SW_ALIGNMENT_FAULTS		= 7,
127	PERF_COUNT_SW_EMULATION_FAULTS		= 8,
128	PERF_COUNT_SW_DUMMY			= 9,
129	PERF_COUNT_SW_BPF_OUTPUT		= 10,
130	PERF_COUNT_SW_CGROUP_SWITCHES		= 11,
131
132	PERF_COUNT_SW_MAX,			/* non-ABI */
133};
134
135/*
136 * Bits that can be set in attr.sample_type to request information
137 * in the overflow packets.
138 */
139enum perf_event_sample_format {
140	PERF_SAMPLE_IP				= 1U << 0,
141	PERF_SAMPLE_TID				= 1U << 1,
142	PERF_SAMPLE_TIME			= 1U << 2,
143	PERF_SAMPLE_ADDR			= 1U << 3,
144	PERF_SAMPLE_READ			= 1U << 4,
145	PERF_SAMPLE_CALLCHAIN			= 1U << 5,
146	PERF_SAMPLE_ID				= 1U << 6,
147	PERF_SAMPLE_CPU				= 1U << 7,
148	PERF_SAMPLE_PERIOD			= 1U << 8,
149	PERF_SAMPLE_STREAM_ID			= 1U << 9,
150	PERF_SAMPLE_RAW				= 1U << 10,
151	PERF_SAMPLE_BRANCH_STACK		= 1U << 11,
152	PERF_SAMPLE_REGS_USER			= 1U << 12,
153	PERF_SAMPLE_STACK_USER			= 1U << 13,
154	PERF_SAMPLE_WEIGHT			= 1U << 14,
155	PERF_SAMPLE_DATA_SRC			= 1U << 15,
156	PERF_SAMPLE_IDENTIFIER			= 1U << 16,
157	PERF_SAMPLE_TRANSACTION			= 1U << 17,
158	PERF_SAMPLE_REGS_INTR			= 1U << 18,
159	PERF_SAMPLE_PHYS_ADDR			= 1U << 19,
160	PERF_SAMPLE_AUX				= 1U << 20,
161	PERF_SAMPLE_CGROUP			= 1U << 21,
162	PERF_SAMPLE_DATA_PAGE_SIZE		= 1U << 22,
163	PERF_SAMPLE_CODE_PAGE_SIZE		= 1U << 23,
164	PERF_SAMPLE_WEIGHT_STRUCT		= 1U << 24,
165
166	PERF_SAMPLE_MAX = 1U << 25,		/* non-ABI */
167};
168
169#define PERF_SAMPLE_WEIGHT_TYPE	(PERF_SAMPLE_WEIGHT | PERF_SAMPLE_WEIGHT_STRUCT)
170/*
171 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
172 *
173 * If the user does not pass priv level information via branch_sample_type,
174 * the kernel uses the event's priv level. Branch and event priv levels do
175 * not have to match. Branch priv level is checked for permissions.
176 *
177 * The branch types can be combined, however BRANCH_ANY covers all types
178 * of branches and therefore it supersedes all the other types.
179 */
180enum perf_branch_sample_type_shift {
181	PERF_SAMPLE_BRANCH_USER_SHIFT		= 0, /* user branches */
182	PERF_SAMPLE_BRANCH_KERNEL_SHIFT		= 1, /* kernel branches */
183	PERF_SAMPLE_BRANCH_HV_SHIFT		= 2, /* hypervisor branches */
184
185	PERF_SAMPLE_BRANCH_ANY_SHIFT		= 3, /* any branch types */
186	PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT	= 4, /* any call branch */
187	PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT	= 5, /* any return branch */
188	PERF_SAMPLE_BRANCH_IND_CALL_SHIFT	= 6, /* indirect calls */
189	PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT	= 7, /* transaction aborts */
190	PERF_SAMPLE_BRANCH_IN_TX_SHIFT		= 8, /* in transaction */
191	PERF_SAMPLE_BRANCH_NO_TX_SHIFT		= 9, /* not in transaction */
192	PERF_SAMPLE_BRANCH_COND_SHIFT		= 10, /* conditional branches */
193
194	PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT	= 11, /* call/ret stack */
195	PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT	= 12, /* indirect jumps */
196	PERF_SAMPLE_BRANCH_CALL_SHIFT		= 13, /* direct call */
197
198	PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT	= 14, /* no flags */
199	PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT	= 15, /* no cycles */
200
201	PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT	= 16, /* save branch type */
202
203	PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT	= 17, /* save low level index of raw branch records */
204
205	PERF_SAMPLE_BRANCH_PRIV_SAVE_SHIFT	= 18, /* save privilege mode */
206
207	PERF_SAMPLE_BRANCH_MAX_SHIFT		/* non-ABI */
208};
209
210enum perf_branch_sample_type {
211	PERF_SAMPLE_BRANCH_USER		= 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
212	PERF_SAMPLE_BRANCH_KERNEL	= 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
213	PERF_SAMPLE_BRANCH_HV		= 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
214
215	PERF_SAMPLE_BRANCH_ANY		= 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
216	PERF_SAMPLE_BRANCH_ANY_CALL	= 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
217	PERF_SAMPLE_BRANCH_ANY_RETURN	= 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
218	PERF_SAMPLE_BRANCH_IND_CALL	= 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
219	PERF_SAMPLE_BRANCH_ABORT_TX	= 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
220	PERF_SAMPLE_BRANCH_IN_TX	= 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
221	PERF_SAMPLE_BRANCH_NO_TX	= 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
222	PERF_SAMPLE_BRANCH_COND		= 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
223
224	PERF_SAMPLE_BRANCH_CALL_STACK	= 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
225	PERF_SAMPLE_BRANCH_IND_JUMP	= 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
226	PERF_SAMPLE_BRANCH_CALL		= 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
227
228	PERF_SAMPLE_BRANCH_NO_FLAGS	= 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
229	PERF_SAMPLE_BRANCH_NO_CYCLES	= 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
230
231	PERF_SAMPLE_BRANCH_TYPE_SAVE	=
232		1U << PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT,
233
234	PERF_SAMPLE_BRANCH_HW_INDEX	= 1U << PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT,
235
236	PERF_SAMPLE_BRANCH_PRIV_SAVE	= 1U << PERF_SAMPLE_BRANCH_PRIV_SAVE_SHIFT,
237
238	PERF_SAMPLE_BRANCH_MAX		= 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
239};
240
241/*
242 * Common flow change classification
243 */
244enum {
245	PERF_BR_UNKNOWN		= 0,	/* unknown */
246	PERF_BR_COND		= 1,	/* conditional */
247	PERF_BR_UNCOND		= 2,	/* unconditional  */
248	PERF_BR_IND		= 3,	/* indirect */
249	PERF_BR_CALL		= 4,	/* function call */
250	PERF_BR_IND_CALL	= 5,	/* indirect function call */
251	PERF_BR_RET		= 6,	/* function return */
252	PERF_BR_SYSCALL		= 7,	/* syscall */
253	PERF_BR_SYSRET		= 8,	/* syscall return */
254	PERF_BR_COND_CALL	= 9,	/* conditional function call */
255	PERF_BR_COND_RET	= 10,	/* conditional function return */
256	PERF_BR_ERET		= 11,	/* exception return */
257	PERF_BR_IRQ		= 12,	/* irq */
258	PERF_BR_SERROR		= 13,	/* system error */
259	PERF_BR_NO_TX		= 14,	/* not in transaction */
260	PERF_BR_EXTEND_ABI	= 15,	/* extend ABI */
261	PERF_BR_MAX,
262};
263
264/*
265 * Common branch speculation outcome classification
266 */
267enum {
268	PERF_BR_SPEC_NA			= 0,	/* Not available */
269	PERF_BR_SPEC_WRONG_PATH		= 1,	/* Speculative but on wrong path */
270	PERF_BR_NON_SPEC_CORRECT_PATH	= 2,	/* Non-speculative but on correct path */
271	PERF_BR_SPEC_CORRECT_PATH	= 3,	/* Speculative and on correct path */
272	PERF_BR_SPEC_MAX,
273};
274
275enum {
276	PERF_BR_NEW_FAULT_ALGN		= 0,    /* Alignment fault */
277	PERF_BR_NEW_FAULT_DATA		= 1,    /* Data fault */
278	PERF_BR_NEW_FAULT_INST		= 2,    /* Inst fault */
279	PERF_BR_NEW_ARCH_1		= 3,    /* Architecture specific */
280	PERF_BR_NEW_ARCH_2		= 4,    /* Architecture specific */
281	PERF_BR_NEW_ARCH_3		= 5,    /* Architecture specific */
282	PERF_BR_NEW_ARCH_4		= 6,    /* Architecture specific */
283	PERF_BR_NEW_ARCH_5		= 7,    /* Architecture specific */
284	PERF_BR_NEW_MAX,
285};
286
287enum {
288	PERF_BR_PRIV_UNKNOWN	= 0,
289	PERF_BR_PRIV_USER	= 1,
290	PERF_BR_PRIV_KERNEL	= 2,
291	PERF_BR_PRIV_HV		= 3,
292};
293
294#define PERF_BR_ARM64_FIQ		PERF_BR_NEW_ARCH_1
295#define PERF_BR_ARM64_DEBUG_HALT	PERF_BR_NEW_ARCH_2
296#define PERF_BR_ARM64_DEBUG_EXIT	PERF_BR_NEW_ARCH_3
297#define PERF_BR_ARM64_DEBUG_INST	PERF_BR_NEW_ARCH_4
298#define PERF_BR_ARM64_DEBUG_DATA	PERF_BR_NEW_ARCH_5
299
300#define PERF_SAMPLE_BRANCH_PLM_ALL \
301	(PERF_SAMPLE_BRANCH_USER|\
302	 PERF_SAMPLE_BRANCH_KERNEL|\
303	 PERF_SAMPLE_BRANCH_HV)
304
305/*
306 * Values to determine ABI of the registers dump.
307 */
308enum perf_sample_regs_abi {
309	PERF_SAMPLE_REGS_ABI_NONE	= 0,
310	PERF_SAMPLE_REGS_ABI_32		= 1,
311	PERF_SAMPLE_REGS_ABI_64		= 2,
312};
313
314/*
315 * Values for the memory transaction event qualifier, mostly for
316 * abort events. Multiple bits can be set.
317 */
318enum {
319	PERF_TXN_ELISION        = (1 << 0), /* From elision */
320	PERF_TXN_TRANSACTION    = (1 << 1), /* From transaction */
321	PERF_TXN_SYNC           = (1 << 2), /* Instruction is related */
322	PERF_TXN_ASYNC          = (1 << 3), /* Instruction not related */
323	PERF_TXN_RETRY          = (1 << 4), /* Retry possible */
324	PERF_TXN_CONFLICT       = (1 << 5), /* Conflict abort */
325	PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
326	PERF_TXN_CAPACITY_READ  = (1 << 7), /* Capacity read abort */
327
328	PERF_TXN_MAX	        = (1 << 8), /* non-ABI */
329
330	/* bits 32..63 are reserved for the abort code */
331
332	PERF_TXN_ABORT_MASK  = (0xffffffffULL << 32),
333	PERF_TXN_ABORT_SHIFT = 32,
334};
335
336/*
337 * The format of the data returned by read() on a perf event fd,
338 * as specified by attr.read_format:
339 *
340 * struct read_format {
341 *	{ u64		value;
342 *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
343 *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
344 *	  { u64		id;           } && PERF_FORMAT_ID
345 *	  { u64		lost;         } && PERF_FORMAT_LOST
346 *	} && !PERF_FORMAT_GROUP
347 *
348 *	{ u64		nr;
349 *	  { u64		time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
350 *	  { u64		time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
351 *	  { u64		value;
352 *	    { u64	id;           } && PERF_FORMAT_ID
353 *	    { u64	lost;         } && PERF_FORMAT_LOST
354 *	  }		cntr[nr];
355 *	} && PERF_FORMAT_GROUP
356 * };
357 */
358enum perf_event_read_format {
359	PERF_FORMAT_TOTAL_TIME_ENABLED		= 1U << 0,
360	PERF_FORMAT_TOTAL_TIME_RUNNING		= 1U << 1,
361	PERF_FORMAT_ID				= 1U << 2,
362	PERF_FORMAT_GROUP			= 1U << 3,
363	PERF_FORMAT_LOST			= 1U << 4,
364
365	PERF_FORMAT_MAX = 1U << 5,		/* non-ABI */
366};
367
368#define PERF_ATTR_SIZE_VER0	64	/* sizeof first published struct */
369#define PERF_ATTR_SIZE_VER1	72	/* add: config2 */
370#define PERF_ATTR_SIZE_VER2	80	/* add: branch_sample_type */
371#define PERF_ATTR_SIZE_VER3	96	/* add: sample_regs_user */
372					/* add: sample_stack_user */
373#define PERF_ATTR_SIZE_VER4	104	/* add: sample_regs_intr */
374#define PERF_ATTR_SIZE_VER5	112	/* add: aux_watermark */
375#define PERF_ATTR_SIZE_VER6	120	/* add: aux_sample_size */
376#define PERF_ATTR_SIZE_VER7	128	/* add: sig_data */
377#define PERF_ATTR_SIZE_VER8	136	/* add: config3 */
378
379/*
380 * Hardware event_id to monitor via a performance monitoring event:
381 *
382 * @sample_max_stack: Max number of frame pointers in a callchain,
383 *		      should be < /proc/sys/kernel/perf_event_max_stack
384 */
385struct perf_event_attr {
386
387	/*
388	 * Major type: hardware/software/tracepoint/etc.
389	 */
390	__u32			type;
391
392	/*
393	 * Size of the attr structure, for fwd/bwd compat.
394	 */
395	__u32			size;
396
397	/*
398	 * Type specific configuration information.
399	 */
400	__u64			config;
401
402	union {
403		__u64		sample_period;
404		__u64		sample_freq;
405	};
406
407	__u64			sample_type;
408	__u64			read_format;
409
410	__u64			disabled       :  1, /* off by default        */
411				inherit	       :  1, /* children inherit it   */
412				pinned	       :  1, /* must always be on PMU */
413				exclusive      :  1, /* only group on PMU     */
414				exclude_user   :  1, /* don't count user      */
415				exclude_kernel :  1, /* ditto kernel          */
416				exclude_hv     :  1, /* ditto hypervisor      */
417				exclude_idle   :  1, /* don't count when idle */
418				mmap           :  1, /* include mmap data     */
419				comm	       :  1, /* include comm data     */
420				freq           :  1, /* use freq, not period  */
421				inherit_stat   :  1, /* per task counts       */
422				enable_on_exec :  1, /* next exec enables     */
423				task           :  1, /* trace fork/exit       */
424				watermark      :  1, /* wakeup_watermark      */
425				/*
426				 * precise_ip:
427				 *
428				 *  0 - SAMPLE_IP can have arbitrary skid
429				 *  1 - SAMPLE_IP must have constant skid
430				 *  2 - SAMPLE_IP requested to have 0 skid
431				 *  3 - SAMPLE_IP must have 0 skid
432				 *
433				 *  See also PERF_RECORD_MISC_EXACT_IP
434				 */
435				precise_ip     :  2, /* skid constraint       */
436				mmap_data      :  1, /* non-exec mmap data    */
437				sample_id_all  :  1, /* sample_type all events */
438
439				exclude_host   :  1, /* don't count in host   */
440				exclude_guest  :  1, /* don't count in guest  */
441
442				exclude_callchain_kernel : 1, /* exclude kernel callchains */
443				exclude_callchain_user   : 1, /* exclude user callchains */
444				mmap2          :  1, /* include mmap with inode data     */
445				comm_exec      :  1, /* flag comm events that are due to an exec */
446				use_clockid    :  1, /* use @clockid for time fields */
447				context_switch :  1, /* context switch data */
448				write_backward :  1, /* Write ring buffer from end to beginning */
449				namespaces     :  1, /* include namespaces data */
450				ksymbol        :  1, /* include ksymbol events */
451				bpf_event      :  1, /* include bpf events */
452				aux_output     :  1, /* generate AUX records instead of events */
453				cgroup         :  1, /* include cgroup events */
454				text_poke      :  1, /* include text poke events */
455				build_id       :  1, /* use build id in mmap2 events */
456				inherit_thread :  1, /* children only inherit if cloned with CLONE_THREAD */
457				remove_on_exec :  1, /* event is removed from task on exec */
458				sigtrap        :  1, /* send synchronous SIGTRAP on event */
459				__reserved_1   : 26;
460
461	union {
462		__u32		wakeup_events;	  /* wakeup every n events */
463		__u32		wakeup_watermark; /* bytes before wakeup   */
464	};
465
466	__u32			bp_type;
467	union {
468		__u64		bp_addr;
469		__u64		kprobe_func; /* for perf_kprobe */
470		__u64		uprobe_path; /* for perf_uprobe */
471		__u64		config1; /* extension of config */
472	};
473	union {
474		__u64		bp_len;
475		__u64		kprobe_addr; /* when kprobe_func == NULL */
476		__u64		probe_offset; /* for perf_[k,u]probe */
477		__u64		config2; /* extension of config1 */
478	};
479	__u64	branch_sample_type; /* enum perf_branch_sample_type */
480
481	/*
482	 * Defines set of user regs to dump on samples.
483	 * See asm/perf_regs.h for details.
484	 */
485	__u64	sample_regs_user;
486
487	/*
488	 * Defines size of the user stack to dump on samples.
489	 */
490	__u32	sample_stack_user;
491
492	__s32	clockid;
493	/*
494	 * Defines set of regs to dump for each sample
495	 * state captured on:
496	 *  - precise = 0: PMU interrupt
497	 *  - precise > 0: sampled instruction
498	 *
499	 * See asm/perf_regs.h for details.
500	 */
501	__u64	sample_regs_intr;
502
503	/*
504	 * Wakeup watermark for AUX area
505	 */
506	__u32	aux_watermark;
507	__u16	sample_max_stack;
508	__u16	__reserved_2;
509	__u32	aux_sample_size;
510	__u32	__reserved_3;
511
512	/*
513	 * User provided data if sigtrap=1, passed back to user via
514	 * siginfo_t::si_perf_data, e.g. to permit user to identify the event.
515	 * Note, siginfo_t::si_perf_data is long-sized, and sig_data will be
516	 * truncated accordingly on 32 bit architectures.
517	 */
518	__u64	sig_data;
519
520	__u64	config3; /* extension of config2 */
521};
522
523/*
524 * Structure used by below PERF_EVENT_IOC_QUERY_BPF command
525 * to query bpf programs attached to the same perf tracepoint
526 * as the given perf event.
527 */
528struct perf_event_query_bpf {
529	/*
530	 * The below ids array length
531	 */
532	__u32	ids_len;
533	/*
534	 * Set by the kernel to indicate the number of
535	 * available programs
536	 */
537	__u32	prog_cnt;
538	/*
539	 * User provided buffer to store program ids
540	 */
541	__u32	ids[];
542};
543
544/*
545 * Ioctls that can be done on a perf event fd:
546 */
547#define PERF_EVENT_IOC_ENABLE			_IO ('$', 0)
548#define PERF_EVENT_IOC_DISABLE			_IO ('$', 1)
549#define PERF_EVENT_IOC_REFRESH			_IO ('$', 2)
550#define PERF_EVENT_IOC_RESET			_IO ('$', 3)
551#define PERF_EVENT_IOC_PERIOD			_IOW('$', 4, __u64)
552#define PERF_EVENT_IOC_SET_OUTPUT		_IO ('$', 5)
553#define PERF_EVENT_IOC_SET_FILTER		_IOW('$', 6, char *)
554#define PERF_EVENT_IOC_ID			_IOR('$', 7, __u64 *)
555#define PERF_EVENT_IOC_SET_BPF			_IOW('$', 8, __u32)
556#define PERF_EVENT_IOC_PAUSE_OUTPUT		_IOW('$', 9, __u32)
557#define PERF_EVENT_IOC_QUERY_BPF		_IOWR('$', 10, struct perf_event_query_bpf *)
558#define PERF_EVENT_IOC_MODIFY_ATTRIBUTES	_IOW('$', 11, struct perf_event_attr *)
559
560enum perf_event_ioc_flags {
561	PERF_IOC_FLAG_GROUP		= 1U << 0,
562};
563
564/*
565 * Structure of the page that can be mapped via mmap
566 */
567struct perf_event_mmap_page {
568	__u32	version;		/* version number of this structure */
569	__u32	compat_version;		/* lowest version this is compat with */
570
571	/*
572	 * Bits needed to read the hw events in user-space.
573	 *
574	 *   u32 seq, time_mult, time_shift, index, width;
575	 *   u64 count, enabled, running;
576	 *   u64 cyc, time_offset;
577	 *   s64 pmc = 0;
578	 *
579	 *   do {
580	 *     seq = pc->lock;
581	 *     barrier()
582	 *
583	 *     enabled = pc->time_enabled;
584	 *     running = pc->time_running;
585	 *
586	 *     if (pc->cap_usr_time && enabled != running) {
587	 *       cyc = rdtsc();
588	 *       time_offset = pc->time_offset;
589	 *       time_mult   = pc->time_mult;
590	 *       time_shift  = pc->time_shift;
591	 *     }
592	 *
593	 *     index = pc->index;
594	 *     count = pc->offset;
595	 *     if (pc->cap_user_rdpmc && index) {
596	 *       width = pc->pmc_width;
597	 *       pmc = rdpmc(index - 1);
598	 *     }
599	 *
600	 *     barrier();
601	 *   } while (pc->lock != seq);
602	 *
603	 * NOTE: for obvious reason this only works on self-monitoring
604	 *       processes.
605	 */
606	__u32	lock;			/* seqlock for synchronization */
607	__u32	index;			/* hardware event identifier */
608	__s64	offset;			/* add to hardware event value */
609	__u64	time_enabled;		/* time event active */
610	__u64	time_running;		/* time event on cpu */
611	union {
612		__u64	capabilities;
613		struct {
614			__u64	cap_bit0		: 1, /* Always 0, deprecated, see commit 860f085b74e9 */
615				cap_bit0_is_deprecated	: 1, /* Always 1, signals that bit 0 is zero */
616
617				cap_user_rdpmc		: 1, /* The RDPMC instruction can be used to read counts */
618				cap_user_time		: 1, /* The time_{shift,mult,offset} fields are used */
619				cap_user_time_zero	: 1, /* The time_zero field is used */
620				cap_user_time_short	: 1, /* the time_{cycle,mask} fields are used */
621				cap_____res		: 58;
622		};
623	};
624
625	/*
626	 * If cap_user_rdpmc this field provides the bit-width of the value
627	 * read using the rdpmc() or equivalent instruction. This can be used
628	 * to sign extend the result like:
629	 *
630	 *   pmc <<= 64 - width;
631	 *   pmc >>= 64 - width; // signed shift right
632	 *   count += pmc;
633	 */
634	__u16	pmc_width;
635
636	/*
637	 * If cap_usr_time the below fields can be used to compute the time
638	 * delta since time_enabled (in ns) using rdtsc or similar.
639	 *
640	 *   u64 quot, rem;
641	 *   u64 delta;
642	 *
643	 *   quot = (cyc >> time_shift);
644	 *   rem = cyc & (((u64)1 << time_shift) - 1);
645	 *   delta = time_offset + quot * time_mult +
646	 *              ((rem * time_mult) >> time_shift);
647	 *
648	 * Where time_offset,time_mult,time_shift and cyc are read in the
649	 * seqcount loop described above. This delta can then be added to
650	 * enabled and possible running (if index), improving the scaling:
651	 *
652	 *   enabled += delta;
653	 *   if (index)
654	 *     running += delta;
655	 *
656	 *   quot = count / running;
657	 *   rem  = count % running;
658	 *   count = quot * enabled + (rem * enabled) / running;
659	 */
660	__u16	time_shift;
661	__u32	time_mult;
662	__u64	time_offset;
663	/*
664	 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
665	 * from sample timestamps.
666	 *
667	 *   time = timestamp - time_zero;
668	 *   quot = time / time_mult;
669	 *   rem  = time % time_mult;
670	 *   cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
671	 *
672	 * And vice versa:
673	 *
674	 *   quot = cyc >> time_shift;
675	 *   rem  = cyc & (((u64)1 << time_shift) - 1);
676	 *   timestamp = time_zero + quot * time_mult +
677	 *               ((rem * time_mult) >> time_shift);
678	 */
679	__u64	time_zero;
680
681	__u32	size;			/* Header size up to __reserved[] fields. */
682	__u32	__reserved_1;
683
684	/*
685	 * If cap_usr_time_short, the hardware clock is less than 64bit wide
686	 * and we must compute the 'cyc' value, as used by cap_usr_time, as:
687	 *
688	 *   cyc = time_cycles + ((cyc - time_cycles) & time_mask)
689	 *
690	 * NOTE: this form is explicitly chosen such that cap_usr_time_short
691	 *       is a correction on top of cap_usr_time, and code that doesn't
692	 *       know about cap_usr_time_short still works under the assumption
693	 *       the counter doesn't wrap.
694	 */
695	__u64	time_cycles;
696	__u64	time_mask;
697
698		/*
699		 * Hole for extension of the self monitor capabilities
700		 */
701
702	__u8	__reserved[116*8];	/* align to 1k. */
703
704	/*
705	 * Control data for the mmap() data buffer.
706	 *
707	 * User-space reading the @data_head value should issue an smp_rmb(),
708	 * after reading this value.
709	 *
710	 * When the mapping is PROT_WRITE the @data_tail value should be
711	 * written by userspace to reflect the last read data, after issueing
712	 * an smp_mb() to separate the data read from the ->data_tail store.
713	 * In this case the kernel will not over-write unread data.
714	 *
715	 * See perf_output_put_handle() for the data ordering.
716	 *
717	 * data_{offset,size} indicate the location and size of the perf record
718	 * buffer within the mmapped area.
719	 */
720	__u64   data_head;		/* head in the data section */
721	__u64	data_tail;		/* user-space written tail */
722	__u64	data_offset;		/* where the buffer starts */
723	__u64	data_size;		/* data buffer size */
724
725	/*
726	 * AUX area is defined by aux_{offset,size} fields that should be set
727	 * by the userspace, so that
728	 *
729	 *   aux_offset >= data_offset + data_size
730	 *
731	 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
732	 *
733	 * Ring buffer pointers aux_{head,tail} have the same semantics as
734	 * data_{head,tail} and same ordering rules apply.
735	 */
736	__u64	aux_head;
737	__u64	aux_tail;
738	__u64	aux_offset;
739	__u64	aux_size;
740};
741
742/*
743 * The current state of perf_event_header::misc bits usage:
744 * ('|' used bit, '-' unused bit)
745 *
746 *  012         CDEF
747 *  |||---------||||
748 *
749 *  Where:
750 *    0-2     CPUMODE_MASK
751 *
752 *    C       PROC_MAP_PARSE_TIMEOUT
753 *    D       MMAP_DATA / COMM_EXEC / FORK_EXEC / SWITCH_OUT
754 *    E       MMAP_BUILD_ID / EXACT_IP / SCHED_OUT_PREEMPT
755 *    F       (reserved)
756 */
757
758#define PERF_RECORD_MISC_CPUMODE_MASK		(7 << 0)
759#define PERF_RECORD_MISC_CPUMODE_UNKNOWN	(0 << 0)
760#define PERF_RECORD_MISC_KERNEL			(1 << 0)
761#define PERF_RECORD_MISC_USER			(2 << 0)
762#define PERF_RECORD_MISC_HYPERVISOR		(3 << 0)
763#define PERF_RECORD_MISC_GUEST_KERNEL		(4 << 0)
764#define PERF_RECORD_MISC_GUEST_USER		(5 << 0)
765
766/*
767 * Indicates that /proc/PID/maps parsing are truncated by time out.
768 */
769#define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT	(1 << 12)
770/*
771 * Following PERF_RECORD_MISC_* are used on different
772 * events, so can reuse the same bit position:
773 *
774 *   PERF_RECORD_MISC_MMAP_DATA  - PERF_RECORD_MMAP* events
775 *   PERF_RECORD_MISC_COMM_EXEC  - PERF_RECORD_COMM event
776 *   PERF_RECORD_MISC_FORK_EXEC  - PERF_RECORD_FORK event (perf internal)
777 *   PERF_RECORD_MISC_SWITCH_OUT - PERF_RECORD_SWITCH* events
778 */
779#define PERF_RECORD_MISC_MMAP_DATA		(1 << 13)
780#define PERF_RECORD_MISC_COMM_EXEC		(1 << 13)
781#define PERF_RECORD_MISC_FORK_EXEC		(1 << 13)
782#define PERF_RECORD_MISC_SWITCH_OUT		(1 << 13)
783/*
784 * These PERF_RECORD_MISC_* flags below are safely reused
785 * for the following events:
786 *
787 *   PERF_RECORD_MISC_EXACT_IP           - PERF_RECORD_SAMPLE of precise events
788 *   PERF_RECORD_MISC_SWITCH_OUT_PREEMPT - PERF_RECORD_SWITCH* events
789 *   PERF_RECORD_MISC_MMAP_BUILD_ID      - PERF_RECORD_MMAP2 event
790 *
791 *
792 * PERF_RECORD_MISC_EXACT_IP:
793 *   Indicates that the content of PERF_SAMPLE_IP points to
794 *   the actual instruction that triggered the event. See also
795 *   perf_event_attr::precise_ip.
796 *
797 * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT:
798 *   Indicates that thread was preempted in TASK_RUNNING state.
799 *
800 * PERF_RECORD_MISC_MMAP_BUILD_ID:
801 *   Indicates that mmap2 event carries build id data.
802 */
803#define PERF_RECORD_MISC_EXACT_IP		(1 << 14)
804#define PERF_RECORD_MISC_SWITCH_OUT_PREEMPT	(1 << 14)
805#define PERF_RECORD_MISC_MMAP_BUILD_ID		(1 << 14)
806/*
807 * Reserve the last bit to indicate some extended misc field
808 */
809#define PERF_RECORD_MISC_EXT_RESERVED		(1 << 15)
810
811struct perf_event_header {
812	__u32	type;
813	__u16	misc;
814	__u16	size;
815};
816
817struct perf_ns_link_info {
818	__u64	dev;
819	__u64	ino;
820};
821
822enum {
823	NET_NS_INDEX		= 0,
824	UTS_NS_INDEX		= 1,
825	IPC_NS_INDEX		= 2,
826	PID_NS_INDEX		= 3,
827	USER_NS_INDEX		= 4,
828	MNT_NS_INDEX		= 5,
829	CGROUP_NS_INDEX		= 6,
830
831	NR_NAMESPACES,		/* number of available namespaces */
832};
833
834enum perf_event_type {
835
836	/*
837	 * If perf_event_attr.sample_id_all is set then all event types will
838	 * have the sample_type selected fields related to where/when
839	 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
840	 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
841	 * just after the perf_event_header and the fields already present for
842	 * the existing fields, i.e. at the end of the payload. That way a newer
843	 * perf.data file will be supported by older perf tools, with these new
844	 * optional fields being ignored.
845	 *
846	 * struct sample_id {
847	 * 	{ u32			pid, tid; } && PERF_SAMPLE_TID
848	 * 	{ u64			time;     } && PERF_SAMPLE_TIME
849	 * 	{ u64			id;       } && PERF_SAMPLE_ID
850	 * 	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
851	 * 	{ u32			cpu, res; } && PERF_SAMPLE_CPU
852	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
853	 * } && perf_event_attr::sample_id_all
854	 *
855	 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.  The
856	 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
857	 * relative to header.size.
858	 */
859
860	/*
861	 * The MMAP events record the PROT_EXEC mappings so that we can
862	 * correlate userspace IPs to code. They have the following structure:
863	 *
864	 * struct {
865	 *	struct perf_event_header	header;
866	 *
867	 *	u32				pid, tid;
868	 *	u64				addr;
869	 *	u64				len;
870	 *	u64				pgoff;
871	 *	char				filename[];
872	 * 	struct sample_id		sample_id;
873	 * };
874	 */
875	PERF_RECORD_MMAP			= 1,
876
877	/*
878	 * struct {
879	 *	struct perf_event_header	header;
880	 *	u64				id;
881	 *	u64				lost;
882	 * 	struct sample_id		sample_id;
883	 * };
884	 */
885	PERF_RECORD_LOST			= 2,
886
887	/*
888	 * struct {
889	 *	struct perf_event_header	header;
890	 *
891	 *	u32				pid, tid;
892	 *	char				comm[];
893	 * 	struct sample_id		sample_id;
894	 * };
895	 */
896	PERF_RECORD_COMM			= 3,
897
898	/*
899	 * struct {
900	 *	struct perf_event_header	header;
901	 *	u32				pid, ppid;
902	 *	u32				tid, ptid;
903	 *	u64				time;
904	 * 	struct sample_id		sample_id;
905	 * };
906	 */
907	PERF_RECORD_EXIT			= 4,
908
909	/*
910	 * struct {
911	 *	struct perf_event_header	header;
912	 *	u64				time;
913	 *	u64				id;
914	 *	u64				stream_id;
915	 * 	struct sample_id		sample_id;
916	 * };
917	 */
918	PERF_RECORD_THROTTLE			= 5,
919	PERF_RECORD_UNTHROTTLE			= 6,
920
921	/*
922	 * struct {
923	 *	struct perf_event_header	header;
924	 *	u32				pid, ppid;
925	 *	u32				tid, ptid;
926	 *	u64				time;
927	 * 	struct sample_id		sample_id;
928	 * };
929	 */
930	PERF_RECORD_FORK			= 7,
931
932	/*
933	 * struct {
934	 *	struct perf_event_header	header;
935	 *	u32				pid, tid;
936	 *
937	 *	struct read_format		values;
938	 * 	struct sample_id		sample_id;
939	 * };
940	 */
941	PERF_RECORD_READ			= 8,
942
943	/*
944	 * struct {
945	 *	struct perf_event_header	header;
946	 *
947	 *	#
948	 *	# Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
949	 *	# The advantage of PERF_SAMPLE_IDENTIFIER is that its position
950	 *	# is fixed relative to header.
951	 *	#
952	 *
953	 *	{ u64			id;	  } && PERF_SAMPLE_IDENTIFIER
954	 *	{ u64			ip;	  } && PERF_SAMPLE_IP
955	 *	{ u32			pid, tid; } && PERF_SAMPLE_TID
956	 *	{ u64			time;     } && PERF_SAMPLE_TIME
957	 *	{ u64			addr;     } && PERF_SAMPLE_ADDR
958	 *	{ u64			id;	  } && PERF_SAMPLE_ID
959	 *	{ u64			stream_id;} && PERF_SAMPLE_STREAM_ID
960	 *	{ u32			cpu, res; } && PERF_SAMPLE_CPU
961	 *	{ u64			period;   } && PERF_SAMPLE_PERIOD
962	 *
963	 *	{ struct read_format	values;	  } && PERF_SAMPLE_READ
964	 *
965	 *	{ u64			nr,
966	 *	  u64			ips[nr];  } && PERF_SAMPLE_CALLCHAIN
967	 *
968	 *	#
969	 *	# The RAW record below is opaque data wrt the ABI
970	 *	#
971	 *	# That is, the ABI doesn't make any promises wrt to
972	 *	# the stability of its content, it may vary depending
973	 *	# on event, hardware, kernel version and phase of
974	 *	# the moon.
975	 *	#
976	 *	# In other words, PERF_SAMPLE_RAW contents are not an ABI.
977	 *	#
978	 *
979	 *	{ u32			size;
980	 *	  char                  data[size];}&& PERF_SAMPLE_RAW
981	 *
982	 *	{ u64                   nr;
983	 *	  { u64	hw_idx; } && PERF_SAMPLE_BRANCH_HW_INDEX
984	 *        { u64 from, to, flags } lbr[nr];
985	 *      } && PERF_SAMPLE_BRANCH_STACK
986	 *
987	 * 	{ u64			abi; # enum perf_sample_regs_abi
988	 * 	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
989	 *
990	 * 	{ u64			size;
991	 * 	  char			data[size];
992	 * 	  u64			dyn_size; } && PERF_SAMPLE_STACK_USER
993	 *
994	 *	{ union perf_sample_weight
995	 *	 {
996	 *		u64		full; && PERF_SAMPLE_WEIGHT
997	 *	#if defined(__LITTLE_ENDIAN_BITFIELD)
998	 *		struct {
999	 *			u32	var1_dw;
1000	 *			u16	var2_w;
1001	 *			u16	var3_w;
1002	 *		} && PERF_SAMPLE_WEIGHT_STRUCT
1003	 *	#elif defined(__BIG_ENDIAN_BITFIELD)
1004	 *		struct {
1005	 *			u16	var3_w;
1006	 *			u16	var2_w;
1007	 *			u32	var1_dw;
1008	 *		} && PERF_SAMPLE_WEIGHT_STRUCT
1009	 *	#endif
1010	 *	 }
1011	 *	}
1012	 *	{ u64			data_src; } && PERF_SAMPLE_DATA_SRC
1013	 *	{ u64			transaction; } && PERF_SAMPLE_TRANSACTION
1014	 *	{ u64			abi; # enum perf_sample_regs_abi
1015	 *	  u64			regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
1016	 *	{ u64			phys_addr;} && PERF_SAMPLE_PHYS_ADDR
1017	 *	{ u64			size;
1018	 *	  char			data[size]; } && PERF_SAMPLE_AUX
1019	 *	{ u64			data_page_size;} && PERF_SAMPLE_DATA_PAGE_SIZE
1020	 *	{ u64			code_page_size;} && PERF_SAMPLE_CODE_PAGE_SIZE
1021	 * };
1022	 */
1023	PERF_RECORD_SAMPLE			= 9,
1024
1025	/*
1026	 * The MMAP2 records are an augmented version of MMAP, they add
1027	 * maj, min, ino numbers to be used to uniquely identify each mapping
1028	 *
1029	 * struct {
1030	 *	struct perf_event_header	header;
1031	 *
1032	 *	u32				pid, tid;
1033	 *	u64				addr;
1034	 *	u64				len;
1035	 *	u64				pgoff;
1036	 *	union {
1037	 *		struct {
1038	 *			u32		maj;
1039	 *			u32		min;
1040	 *			u64		ino;
1041	 *			u64		ino_generation;
1042	 *		};
1043	 *		struct {
1044	 *			u8		build_id_size;
1045	 *			u8		__reserved_1;
1046	 *			u16		__reserved_2;
1047	 *			u8		build_id[20];
1048	 *		};
1049	 *	};
1050	 *	u32				prot, flags;
1051	 *	char				filename[];
1052	 * 	struct sample_id		sample_id;
1053	 * };
1054	 */
1055	PERF_RECORD_MMAP2			= 10,
1056
1057	/*
1058	 * Records that new data landed in the AUX buffer part.
1059	 *
1060	 * struct {
1061	 * 	struct perf_event_header	header;
1062	 *
1063	 * 	u64				aux_offset;
1064	 * 	u64				aux_size;
1065	 *	u64				flags;
1066	 * 	struct sample_id		sample_id;
1067	 * };
1068	 */
1069	PERF_RECORD_AUX				= 11,
1070
1071	/*
1072	 * Indicates that instruction trace has started
1073	 *
1074	 * struct {
1075	 *	struct perf_event_header	header;
1076	 *	u32				pid;
1077	 *	u32				tid;
1078	 *	struct sample_id		sample_id;
1079	 * };
1080	 */
1081	PERF_RECORD_ITRACE_START		= 12,
1082
1083	/*
1084	 * Records the dropped/lost sample number.
1085	 *
1086	 * struct {
1087	 *	struct perf_event_header	header;
1088	 *
1089	 *	u64				lost;
1090	 *	struct sample_id		sample_id;
1091	 * };
1092	 */
1093	PERF_RECORD_LOST_SAMPLES		= 13,
1094
1095	/*
1096	 * Records a context switch in or out (flagged by
1097	 * PERF_RECORD_MISC_SWITCH_OUT). See also
1098	 * PERF_RECORD_SWITCH_CPU_WIDE.
1099	 *
1100	 * struct {
1101	 *	struct perf_event_header	header;
1102	 *	struct sample_id		sample_id;
1103	 * };
1104	 */
1105	PERF_RECORD_SWITCH			= 14,
1106
1107	/*
1108	 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
1109	 * next_prev_tid that are the next (switching out) or previous
1110	 * (switching in) pid/tid.
1111	 *
1112	 * struct {
1113	 *	struct perf_event_header	header;
1114	 *	u32				next_prev_pid;
1115	 *	u32				next_prev_tid;
1116	 *	struct sample_id		sample_id;
1117	 * };
1118	 */
1119	PERF_RECORD_SWITCH_CPU_WIDE		= 15,
1120
1121	/*
1122	 * struct {
1123	 *	struct perf_event_header	header;
1124	 *	u32				pid;
1125	 *	u32				tid;
1126	 *	u64				nr_namespaces;
1127	 *	{ u64				dev, inode; } [nr_namespaces];
1128	 *	struct sample_id		sample_id;
1129	 * };
1130	 */
1131	PERF_RECORD_NAMESPACES			= 16,
1132
1133	/*
1134	 * Record ksymbol register/unregister events:
1135	 *
1136	 * struct {
1137	 *	struct perf_event_header	header;
1138	 *	u64				addr;
1139	 *	u32				len;
1140	 *	u16				ksym_type;
1141	 *	u16				flags;
1142	 *	char				name[];
1143	 *	struct sample_id		sample_id;
1144	 * };
1145	 */
1146	PERF_RECORD_KSYMBOL			= 17,
1147
1148	/*
1149	 * Record bpf events:
1150	 *  enum perf_bpf_event_type {
1151	 *	PERF_BPF_EVENT_UNKNOWN		= 0,
1152	 *	PERF_BPF_EVENT_PROG_LOAD	= 1,
1153	 *	PERF_BPF_EVENT_PROG_UNLOAD	= 2,
1154	 *  };
1155	 *
1156	 * struct {
1157	 *	struct perf_event_header	header;
1158	 *	u16				type;
1159	 *	u16				flags;
1160	 *	u32				id;
1161	 *	u8				tag[BPF_TAG_SIZE];
1162	 *	struct sample_id		sample_id;
1163	 * };
1164	 */
1165	PERF_RECORD_BPF_EVENT			= 18,
1166
1167	/*
1168	 * struct {
1169	 *	struct perf_event_header	header;
1170	 *	u64				id;
1171	 *	char				path[];
1172	 *	struct sample_id		sample_id;
1173	 * };
1174	 */
1175	PERF_RECORD_CGROUP			= 19,
1176
1177	/*
1178	 * Records changes to kernel text i.e. self-modified code. 'old_len' is
1179	 * the number of old bytes, 'new_len' is the number of new bytes. Either
1180	 * 'old_len' or 'new_len' may be zero to indicate, for example, the
1181	 * addition or removal of a trampoline. 'bytes' contains the old bytes
1182	 * followed immediately by the new bytes.
1183	 *
1184	 * struct {
1185	 *	struct perf_event_header	header;
1186	 *	u64				addr;
1187	 *	u16				old_len;
1188	 *	u16				new_len;
1189	 *	u8				bytes[];
1190	 *	struct sample_id		sample_id;
1191	 * };
1192	 */
1193	PERF_RECORD_TEXT_POKE			= 20,
1194
1195	/*
1196	 * Data written to the AUX area by hardware due to aux_output, may need
1197	 * to be matched to the event by an architecture-specific hardware ID.
1198	 * This records the hardware ID, but requires sample_id to provide the
1199	 * event ID. e.g. Intel PT uses this record to disambiguate PEBS-via-PT
1200	 * records from multiple events.
1201	 *
1202	 * struct {
1203	 *	struct perf_event_header	header;
1204	 *	u64				hw_id;
1205	 *	struct sample_id		sample_id;
1206	 * };
1207	 */
1208	PERF_RECORD_AUX_OUTPUT_HW_ID		= 21,
1209
1210	PERF_RECORD_MAX,			/* non-ABI */
1211};
1212
1213enum perf_record_ksymbol_type {
1214	PERF_RECORD_KSYMBOL_TYPE_UNKNOWN	= 0,
1215	PERF_RECORD_KSYMBOL_TYPE_BPF		= 1,
1216	/*
1217	 * Out of line code such as kprobe-replaced instructions or optimized
1218	 * kprobes or ftrace trampolines.
1219	 */
1220	PERF_RECORD_KSYMBOL_TYPE_OOL		= 2,
1221	PERF_RECORD_KSYMBOL_TYPE_MAX		/* non-ABI */
1222};
1223
1224#define PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER	(1 << 0)
1225
1226enum perf_bpf_event_type {
1227	PERF_BPF_EVENT_UNKNOWN		= 0,
1228	PERF_BPF_EVENT_PROG_LOAD	= 1,
1229	PERF_BPF_EVENT_PROG_UNLOAD	= 2,
1230	PERF_BPF_EVENT_MAX,		/* non-ABI */
1231};
1232
1233#define PERF_MAX_STACK_DEPTH		127
1234#define PERF_MAX_CONTEXTS_PER_STACK	  8
1235
1236enum perf_callchain_context {
1237	PERF_CONTEXT_HV			= (__u64)-32,
1238	PERF_CONTEXT_KERNEL		= (__u64)-128,
1239	PERF_CONTEXT_USER		= (__u64)-512,
1240
1241	PERF_CONTEXT_GUEST		= (__u64)-2048,
1242	PERF_CONTEXT_GUEST_KERNEL	= (__u64)-2176,
1243	PERF_CONTEXT_GUEST_USER		= (__u64)-2560,
1244
1245	PERF_CONTEXT_MAX		= (__u64)-4095,
1246};
1247
1248/**
1249 * PERF_RECORD_AUX::flags bits
1250 */
1251#define PERF_AUX_FLAG_TRUNCATED			0x01	/* record was truncated to fit */
1252#define PERF_AUX_FLAG_OVERWRITE			0x02	/* snapshot from overwrite mode */
1253#define PERF_AUX_FLAG_PARTIAL			0x04	/* record contains gaps */
1254#define PERF_AUX_FLAG_COLLISION			0x08	/* sample collided with another */
1255#define PERF_AUX_FLAG_PMU_FORMAT_TYPE_MASK	0xff00	/* PMU specific trace format type */
1256
1257/* CoreSight PMU AUX buffer formats */
1258#define PERF_AUX_FLAG_CORESIGHT_FORMAT_CORESIGHT	0x0000 /* Default for backward compatibility */
1259#define PERF_AUX_FLAG_CORESIGHT_FORMAT_RAW		0x0100 /* Raw format of the source */
1260
1261#define PERF_FLAG_FD_NO_GROUP		(1UL << 0)
1262#define PERF_FLAG_FD_OUTPUT		(1UL << 1)
1263#define PERF_FLAG_PID_CGROUP		(1UL << 2) /* pid=cgroup id, per-cpu mode only */
1264#define PERF_FLAG_FD_CLOEXEC		(1UL << 3) /* O_CLOEXEC */
1265
1266#if defined(__LITTLE_ENDIAN_BITFIELD)
1267union perf_mem_data_src {
1268	__u64 val;
1269	struct {
1270		__u64   mem_op:5,	/* type of opcode */
1271			mem_lvl:14,	/* memory hierarchy level */
1272			mem_snoop:5,	/* snoop mode */
1273			mem_lock:2,	/* lock instr */
1274			mem_dtlb:7,	/* tlb access */
1275			mem_lvl_num:4,	/* memory hierarchy level number */
1276			mem_remote:1,   /* remote */
1277			mem_snoopx:2,	/* snoop mode, ext */
1278			mem_blk:3,	/* access blocked */
1279			mem_hops:3,	/* hop level */
1280			mem_rsvd:18;
1281	};
1282};
1283#elif defined(__BIG_ENDIAN_BITFIELD)
1284union perf_mem_data_src {
1285	__u64 val;
1286	struct {
1287		__u64	mem_rsvd:18,
1288			mem_hops:3,	/* hop level */
1289			mem_blk:3,	/* access blocked */
1290			mem_snoopx:2,	/* snoop mode, ext */
1291			mem_remote:1,   /* remote */
1292			mem_lvl_num:4,	/* memory hierarchy level number */
1293			mem_dtlb:7,	/* tlb access */
1294			mem_lock:2,	/* lock instr */
1295			mem_snoop:5,	/* snoop mode */
1296			mem_lvl:14,	/* memory hierarchy level */
1297			mem_op:5;	/* type of opcode */
1298	};
1299};
1300#else
1301#error "Unknown endianness"
1302#endif
1303
1304/* type of opcode (load/store/prefetch,code) */
1305#define PERF_MEM_OP_NA		0x01 /* not available */
1306#define PERF_MEM_OP_LOAD	0x02 /* load instruction */
1307#define PERF_MEM_OP_STORE	0x04 /* store instruction */
1308#define PERF_MEM_OP_PFETCH	0x08 /* prefetch */
1309#define PERF_MEM_OP_EXEC	0x10 /* code (execution) */
1310#define PERF_MEM_OP_SHIFT	0
1311
1312/*
1313 * PERF_MEM_LVL_* namespace being depricated to some extent in the
1314 * favour of newer composite PERF_MEM_{LVLNUM_,REMOTE_,SNOOPX_} fields.
1315 * Supporting this namespace inorder to not break defined ABIs.
1316 *
1317 * memory hierarchy (memory level, hit or miss)
1318 */
1319#define PERF_MEM_LVL_NA		0x01  /* not available */
1320#define PERF_MEM_LVL_HIT	0x02  /* hit level */
1321#define PERF_MEM_LVL_MISS	0x04  /* miss level  */
1322#define PERF_MEM_LVL_L1		0x08  /* L1 */
1323#define PERF_MEM_LVL_LFB	0x10  /* Line Fill Buffer */
1324#define PERF_MEM_LVL_L2		0x20  /* L2 */
1325#define PERF_MEM_LVL_L3		0x40  /* L3 */
1326#define PERF_MEM_LVL_LOC_RAM	0x80  /* Local DRAM */
1327#define PERF_MEM_LVL_REM_RAM1	0x100 /* Remote DRAM (1 hop) */
1328#define PERF_MEM_LVL_REM_RAM2	0x200 /* Remote DRAM (2 hops) */
1329#define PERF_MEM_LVL_REM_CCE1	0x400 /* Remote Cache (1 hop) */
1330#define PERF_MEM_LVL_REM_CCE2	0x800 /* Remote Cache (2 hops) */
1331#define PERF_MEM_LVL_IO		0x1000 /* I/O memory */
1332#define PERF_MEM_LVL_UNC	0x2000 /* Uncached memory */
1333#define PERF_MEM_LVL_SHIFT	5
1334
1335#define PERF_MEM_REMOTE_REMOTE	0x01  /* Remote */
1336#define PERF_MEM_REMOTE_SHIFT	37
1337
1338#define PERF_MEM_LVLNUM_L1	0x01 /* L1 */
1339#define PERF_MEM_LVLNUM_L2	0x02 /* L2 */
1340#define PERF_MEM_LVLNUM_L3	0x03 /* L3 */
1341#define PERF_MEM_LVLNUM_L4	0x04 /* L4 */
1342/* 5-0x7 available */
1343#define PERF_MEM_LVLNUM_UNC	0x08 /* Uncached */
1344#define PERF_MEM_LVLNUM_CXL	0x09 /* CXL */
1345#define PERF_MEM_LVLNUM_IO	0x0a /* I/O */
1346#define PERF_MEM_LVLNUM_ANY_CACHE 0x0b /* Any cache */
1347#define PERF_MEM_LVLNUM_LFB	0x0c /* LFB */
1348#define PERF_MEM_LVLNUM_RAM	0x0d /* RAM */
1349#define PERF_MEM_LVLNUM_PMEM	0x0e /* PMEM */
1350#define PERF_MEM_LVLNUM_NA	0x0f /* N/A */
1351
1352#define PERF_MEM_LVLNUM_SHIFT	33
1353
1354/* snoop mode */
1355#define PERF_MEM_SNOOP_NA	0x01 /* not available */
1356#define PERF_MEM_SNOOP_NONE	0x02 /* no snoop */
1357#define PERF_MEM_SNOOP_HIT	0x04 /* snoop hit */
1358#define PERF_MEM_SNOOP_MISS	0x08 /* snoop miss */
1359#define PERF_MEM_SNOOP_HITM	0x10 /* snoop hit modified */
1360#define PERF_MEM_SNOOP_SHIFT	19
1361
1362#define PERF_MEM_SNOOPX_FWD	0x01 /* forward */
1363#define PERF_MEM_SNOOPX_PEER	0x02 /* xfer from peer */
1364#define PERF_MEM_SNOOPX_SHIFT  38
1365
1366/* locked instruction */
1367#define PERF_MEM_LOCK_NA	0x01 /* not available */
1368#define PERF_MEM_LOCK_LOCKED	0x02 /* locked transaction */
1369#define PERF_MEM_LOCK_SHIFT	24
1370
1371/* TLB access */
1372#define PERF_MEM_TLB_NA		0x01 /* not available */
1373#define PERF_MEM_TLB_HIT	0x02 /* hit level */
1374#define PERF_MEM_TLB_MISS	0x04 /* miss level */
1375#define PERF_MEM_TLB_L1		0x08 /* L1 */
1376#define PERF_MEM_TLB_L2		0x10 /* L2 */
1377#define PERF_MEM_TLB_WK		0x20 /* Hardware Walker*/
1378#define PERF_MEM_TLB_OS		0x40 /* OS fault handler */
1379#define PERF_MEM_TLB_SHIFT	26
1380
1381/* Access blocked */
1382#define PERF_MEM_BLK_NA		0x01 /* not available */
1383#define PERF_MEM_BLK_DATA	0x02 /* data could not be forwarded */
1384#define PERF_MEM_BLK_ADDR	0x04 /* address conflict */
1385#define PERF_MEM_BLK_SHIFT	40
1386
1387/* hop level */
1388#define PERF_MEM_HOPS_0		0x01 /* remote core, same node */
1389#define PERF_MEM_HOPS_1		0x02 /* remote node, same socket */
1390#define PERF_MEM_HOPS_2		0x03 /* remote socket, same board */
1391#define PERF_MEM_HOPS_3		0x04 /* remote board */
1392/* 5-7 available */
1393#define PERF_MEM_HOPS_SHIFT	43
1394
1395#define PERF_MEM_S(a, s) \
1396	(((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
1397
1398/*
1399 * single taken branch record layout:
1400 *
1401 *      from: source instruction (may not always be a branch insn)
1402 *        to: branch target
1403 *   mispred: branch target was mispredicted
1404 * predicted: branch target was predicted
1405 *
1406 * support for mispred, predicted is optional. In case it
1407 * is not supported mispred = predicted = 0.
1408 *
1409 *     in_tx: running in a hardware transaction
1410 *     abort: aborting a hardware transaction
1411 *    cycles: cycles from last branch (or 0 if not supported)
1412 *      type: branch type
1413 *      spec: branch speculation info (or 0 if not supported)
1414 */
1415struct perf_branch_entry {
1416	__u64	from;
1417	__u64	to;
1418	__u64	mispred:1,  /* target mispredicted */
1419		predicted:1,/* target predicted */
1420		in_tx:1,    /* in transaction */
1421		abort:1,    /* transaction abort */
1422		cycles:16,  /* cycle count to last branch */
1423		type:4,     /* branch type */
1424		spec:2,     /* branch speculation info */
1425		new_type:4, /* additional branch type */
1426		priv:3,     /* privilege level */
1427		reserved:31;
1428};
1429
1430union perf_sample_weight {
1431	__u64		full;
1432#if defined(__LITTLE_ENDIAN_BITFIELD)
1433	struct {
1434		__u32	var1_dw;
1435		__u16	var2_w;
1436		__u16	var3_w;
1437	};
1438#elif defined(__BIG_ENDIAN_BITFIELD)
1439	struct {
1440		__u16	var3_w;
1441		__u16	var2_w;
1442		__u32	var1_dw;
1443	};
1444#else
1445#error "Unknown endianness"
1446#endif
1447};
1448
1449#endif /* _UAPI_LINUX_PERF_EVENT_H */
1450