xref: /third_party/libbpf/include/uapi/linux/bpf.h (revision 7c2aad20)
1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 */
8#ifndef _UAPI__LINUX_BPF_H__
9#define _UAPI__LINUX_BPF_H__
10
11#include <linux/types.h>
12#include <linux/bpf_common.h>
13
14/* Extended instruction set based on top of classic BPF */
15
16/* instruction classes */
17#define BPF_JMP32	0x06	/* jmp mode in word width */
18#define BPF_ALU64	0x07	/* alu mode in double word width */
19
20/* ld/ldx fields */
21#define BPF_DW		0x18	/* double word (64-bit) */
22#define BPF_MEMSX	0x80	/* load with sign extension */
23#define BPF_ATOMIC	0xc0	/* atomic memory ops - op type in immediate */
24#define BPF_XADD	0xc0	/* exclusive add - legacy name */
25
26/* alu/jmp fields */
27#define BPF_MOV		0xb0	/* mov reg to reg */
28#define BPF_ARSH	0xc0	/* sign extending arithmetic shift right */
29
30/* change endianness of a register */
31#define BPF_END		0xd0	/* flags for endianness conversion: */
32#define BPF_TO_LE	0x00	/* convert to little-endian */
33#define BPF_TO_BE	0x08	/* convert to big-endian */
34#define BPF_FROM_LE	BPF_TO_LE
35#define BPF_FROM_BE	BPF_TO_BE
36
37/* jmp encodings */
38#define BPF_JNE		0x50	/* jump != */
39#define BPF_JLT		0xa0	/* LT is unsigned, '<' */
40#define BPF_JLE		0xb0	/* LE is unsigned, '<=' */
41#define BPF_JSGT	0x60	/* SGT is signed '>', GT in x86 */
42#define BPF_JSGE	0x70	/* SGE is signed '>=', GE in x86 */
43#define BPF_JSLT	0xc0	/* SLT is signed, '<' */
44#define BPF_JSLE	0xd0	/* SLE is signed, '<=' */
45#define BPF_CALL	0x80	/* function call */
46#define BPF_EXIT	0x90	/* function return */
47
48/* atomic op type fields (stored in immediate) */
49#define BPF_FETCH	0x01	/* not an opcode on its own, used to build others */
50#define BPF_XCHG	(0xe0 | BPF_FETCH)	/* atomic exchange */
51#define BPF_CMPXCHG	(0xf0 | BPF_FETCH)	/* atomic compare-and-write */
52
53/* Register numbers */
54enum {
55	BPF_REG_0 = 0,
56	BPF_REG_1,
57	BPF_REG_2,
58	BPF_REG_3,
59	BPF_REG_4,
60	BPF_REG_5,
61	BPF_REG_6,
62	BPF_REG_7,
63	BPF_REG_8,
64	BPF_REG_9,
65	BPF_REG_10,
66	__MAX_BPF_REG,
67};
68
69/* BPF has 10 general purpose 64-bit registers and stack frame. */
70#define MAX_BPF_REG	__MAX_BPF_REG
71
72struct bpf_insn {
73	__u8	code;		/* opcode */
74	__u8	dst_reg:4;	/* dest register */
75	__u8	src_reg:4;	/* source register */
76	__s16	off;		/* signed offset */
77	__s32	imm;		/* signed immediate constant */
78};
79
80/* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */
81struct bpf_lpm_trie_key {
82	__u32	prefixlen;	/* up to 32 for AF_INET, 128 for AF_INET6 */
83	__u8	data[0];	/* Arbitrary size */
84};
85
86struct bpf_cgroup_storage_key {
87	__u64	cgroup_inode_id;	/* cgroup inode id */
88	__u32	attach_type;		/* program attach type (enum bpf_attach_type) */
89};
90
91enum bpf_cgroup_iter_order {
92	BPF_CGROUP_ITER_ORDER_UNSPEC = 0,
93	BPF_CGROUP_ITER_SELF_ONLY,		/* process only a single object. */
94	BPF_CGROUP_ITER_DESCENDANTS_PRE,	/* walk descendants in pre-order. */
95	BPF_CGROUP_ITER_DESCENDANTS_POST,	/* walk descendants in post-order. */
96	BPF_CGROUP_ITER_ANCESTORS_UP,		/* walk ancestors upward. */
97};
98
99union bpf_iter_link_info {
100	struct {
101		__u32	map_fd;
102	} map;
103	struct {
104		enum bpf_cgroup_iter_order order;
105
106		/* At most one of cgroup_fd and cgroup_id can be non-zero. If
107		 * both are zero, the walk starts from the default cgroup v2
108		 * root. For walking v1 hierarchy, one should always explicitly
109		 * specify cgroup_fd.
110		 */
111		__u32	cgroup_fd;
112		__u64	cgroup_id;
113	} cgroup;
114	/* Parameters of task iterators. */
115	struct {
116		__u32	tid;
117		__u32	pid;
118		__u32	pid_fd;
119	} task;
120};
121
122/* BPF syscall commands, see bpf(2) man-page for more details. */
123/**
124 * DOC: eBPF Syscall Preamble
125 *
126 * The operation to be performed by the **bpf**\ () system call is determined
127 * by the *cmd* argument. Each operation takes an accompanying argument,
128 * provided via *attr*, which is a pointer to a union of type *bpf_attr* (see
129 * below). The size argument is the size of the union pointed to by *attr*.
130 */
131/**
132 * DOC: eBPF Syscall Commands
133 *
134 * BPF_MAP_CREATE
135 *	Description
136 *		Create a map and return a file descriptor that refers to the
137 *		map. The close-on-exec file descriptor flag (see **fcntl**\ (2))
138 *		is automatically enabled for the new file descriptor.
139 *
140 *		Applying **close**\ (2) to the file descriptor returned by
141 *		**BPF_MAP_CREATE** will delete the map (but see NOTES).
142 *
143 *	Return
144 *		A new file descriptor (a nonnegative integer), or -1 if an
145 *		error occurred (in which case, *errno* is set appropriately).
146 *
147 * BPF_MAP_LOOKUP_ELEM
148 *	Description
149 *		Look up an element with a given *key* in the map referred to
150 *		by the file descriptor *map_fd*.
151 *
152 *		The *flags* argument may be specified as one of the
153 *		following:
154 *
155 *		**BPF_F_LOCK**
156 *			Look up the value of a spin-locked map without
157 *			returning the lock. This must be specified if the
158 *			elements contain a spinlock.
159 *
160 *	Return
161 *		Returns zero on success. On error, -1 is returned and *errno*
162 *		is set appropriately.
163 *
164 * BPF_MAP_UPDATE_ELEM
165 *	Description
166 *		Create or update an element (key/value pair) in a specified map.
167 *
168 *		The *flags* argument should be specified as one of the
169 *		following:
170 *
171 *		**BPF_ANY**
172 *			Create a new element or update an existing element.
173 *		**BPF_NOEXIST**
174 *			Create a new element only if it did not exist.
175 *		**BPF_EXIST**
176 *			Update an existing element.
177 *		**BPF_F_LOCK**
178 *			Update a spin_lock-ed map element.
179 *
180 *	Return
181 *		Returns zero on success. On error, -1 is returned and *errno*
182 *		is set appropriately.
183 *
184 *		May set *errno* to **EINVAL**, **EPERM**, **ENOMEM**,
185 *		**E2BIG**, **EEXIST**, or **ENOENT**.
186 *
187 *		**E2BIG**
188 *			The number of elements in the map reached the
189 *			*max_entries* limit specified at map creation time.
190 *		**EEXIST**
191 *			If *flags* specifies **BPF_NOEXIST** and the element
192 *			with *key* already exists in the map.
193 *		**ENOENT**
194 *			If *flags* specifies **BPF_EXIST** and the element with
195 *			*key* does not exist in the map.
196 *
197 * BPF_MAP_DELETE_ELEM
198 *	Description
199 *		Look up and delete an element by key in a specified map.
200 *
201 *	Return
202 *		Returns zero on success. On error, -1 is returned and *errno*
203 *		is set appropriately.
204 *
205 * BPF_MAP_GET_NEXT_KEY
206 *	Description
207 *		Look up an element by key in a specified map and return the key
208 *		of the next element. Can be used to iterate over all elements
209 *		in the map.
210 *
211 *	Return
212 *		Returns zero on success. On error, -1 is returned and *errno*
213 *		is set appropriately.
214 *
215 *		The following cases can be used to iterate over all elements of
216 *		the map:
217 *
218 *		* If *key* is not found, the operation returns zero and sets
219 *		  the *next_key* pointer to the key of the first element.
220 *		* If *key* is found, the operation returns zero and sets the
221 *		  *next_key* pointer to the key of the next element.
222 *		* If *key* is the last element, returns -1 and *errno* is set
223 *		  to **ENOENT**.
224 *
225 *		May set *errno* to **ENOMEM**, **EFAULT**, **EPERM**, or
226 *		**EINVAL** on error.
227 *
228 * BPF_PROG_LOAD
229 *	Description
230 *		Verify and load an eBPF program, returning a new file
231 *		descriptor associated with the program.
232 *
233 *		Applying **close**\ (2) to the file descriptor returned by
234 *		**BPF_PROG_LOAD** will unload the eBPF program (but see NOTES).
235 *
236 *		The close-on-exec file descriptor flag (see **fcntl**\ (2)) is
237 *		automatically enabled for the new file descriptor.
238 *
239 *	Return
240 *		A new file descriptor (a nonnegative integer), or -1 if an
241 *		error occurred (in which case, *errno* is set appropriately).
242 *
243 * BPF_OBJ_PIN
244 *	Description
245 *		Pin an eBPF program or map referred by the specified *bpf_fd*
246 *		to the provided *pathname* on the filesystem.
247 *
248 *		The *pathname* argument must not contain a dot (".").
249 *
250 *		On success, *pathname* retains a reference to the eBPF object,
251 *		preventing deallocation of the object when the original
252 *		*bpf_fd* is closed. This allow the eBPF object to live beyond
253 *		**close**\ (\ *bpf_fd*\ ), and hence the lifetime of the parent
254 *		process.
255 *
256 *		Applying **unlink**\ (2) or similar calls to the *pathname*
257 *		unpins the object from the filesystem, removing the reference.
258 *		If no other file descriptors or filesystem nodes refer to the
259 *		same object, it will be deallocated (see NOTES).
260 *
261 *		The filesystem type for the parent directory of *pathname* must
262 *		be **BPF_FS_MAGIC**.
263 *
264 *	Return
265 *		Returns zero on success. On error, -1 is returned and *errno*
266 *		is set appropriately.
267 *
268 * BPF_OBJ_GET
269 *	Description
270 *		Open a file descriptor for the eBPF object pinned to the
271 *		specified *pathname*.
272 *
273 *	Return
274 *		A new file descriptor (a nonnegative integer), or -1 if an
275 *		error occurred (in which case, *errno* is set appropriately).
276 *
277 * BPF_PROG_ATTACH
278 *	Description
279 *		Attach an eBPF program to a *target_fd* at the specified
280 *		*attach_type* hook.
281 *
282 *		The *attach_type* specifies the eBPF attachment point to
283 *		attach the program to, and must be one of *bpf_attach_type*
284 *		(see below).
285 *
286 *		The *attach_bpf_fd* must be a valid file descriptor for a
287 *		loaded eBPF program of a cgroup, flow dissector, LIRC, sockmap
288 *		or sock_ops type corresponding to the specified *attach_type*.
289 *
290 *		The *target_fd* must be a valid file descriptor for a kernel
291 *		object which depends on the attach type of *attach_bpf_fd*:
292 *
293 *		**BPF_PROG_TYPE_CGROUP_DEVICE**,
294 *		**BPF_PROG_TYPE_CGROUP_SKB**,
295 *		**BPF_PROG_TYPE_CGROUP_SOCK**,
296 *		**BPF_PROG_TYPE_CGROUP_SOCK_ADDR**,
297 *		**BPF_PROG_TYPE_CGROUP_SOCKOPT**,
298 *		**BPF_PROG_TYPE_CGROUP_SYSCTL**,
299 *		**BPF_PROG_TYPE_SOCK_OPS**
300 *
301 *			Control Group v2 hierarchy with the eBPF controller
302 *			enabled. Requires the kernel to be compiled with
303 *			**CONFIG_CGROUP_BPF**.
304 *
305 *		**BPF_PROG_TYPE_FLOW_DISSECTOR**
306 *
307 *			Network namespace (eg /proc/self/ns/net).
308 *
309 *		**BPF_PROG_TYPE_LIRC_MODE2**
310 *
311 *			LIRC device path (eg /dev/lircN). Requires the kernel
312 *			to be compiled with **CONFIG_BPF_LIRC_MODE2**.
313 *
314 *		**BPF_PROG_TYPE_SK_SKB**,
315 *		**BPF_PROG_TYPE_SK_MSG**
316 *
317 *			eBPF map of socket type (eg **BPF_MAP_TYPE_SOCKHASH**).
318 *
319 *	Return
320 *		Returns zero on success. On error, -1 is returned and *errno*
321 *		is set appropriately.
322 *
323 * BPF_PROG_DETACH
324 *	Description
325 *		Detach the eBPF program associated with the *target_fd* at the
326 *		hook specified by *attach_type*. The program must have been
327 *		previously attached using **BPF_PROG_ATTACH**.
328 *
329 *	Return
330 *		Returns zero on success. On error, -1 is returned and *errno*
331 *		is set appropriately.
332 *
333 * BPF_PROG_TEST_RUN
334 *	Description
335 *		Run the eBPF program associated with the *prog_fd* a *repeat*
336 *		number of times against a provided program context *ctx_in* and
337 *		data *data_in*, and return the modified program context
338 *		*ctx_out*, *data_out* (for example, packet data), result of the
339 *		execution *retval*, and *duration* of the test run.
340 *
341 *		The sizes of the buffers provided as input and output
342 *		parameters *ctx_in*, *ctx_out*, *data_in*, and *data_out* must
343 *		be provided in the corresponding variables *ctx_size_in*,
344 *		*ctx_size_out*, *data_size_in*, and/or *data_size_out*. If any
345 *		of these parameters are not provided (ie set to NULL), the
346 *		corresponding size field must be zero.
347 *
348 *		Some program types have particular requirements:
349 *
350 *		**BPF_PROG_TYPE_SK_LOOKUP**
351 *			*data_in* and *data_out* must be NULL.
352 *
353 *		**BPF_PROG_TYPE_RAW_TRACEPOINT**,
354 *		**BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE**
355 *
356 *			*ctx_out*, *data_in* and *data_out* must be NULL.
357 *			*repeat* must be zero.
358 *
359 *		BPF_PROG_RUN is an alias for BPF_PROG_TEST_RUN.
360 *
361 *	Return
362 *		Returns zero on success. On error, -1 is returned and *errno*
363 *		is set appropriately.
364 *
365 *		**ENOSPC**
366 *			Either *data_size_out* or *ctx_size_out* is too small.
367 *		**ENOTSUPP**
368 *			This command is not supported by the program type of
369 *			the program referred to by *prog_fd*.
370 *
371 * BPF_PROG_GET_NEXT_ID
372 *	Description
373 *		Fetch the next eBPF program currently loaded into the kernel.
374 *
375 *		Looks for the eBPF program with an id greater than *start_id*
376 *		and updates *next_id* on success. If no other eBPF programs
377 *		remain with ids higher than *start_id*, returns -1 and sets
378 *		*errno* to **ENOENT**.
379 *
380 *	Return
381 *		Returns zero on success. On error, or when no id remains, -1
382 *		is returned and *errno* is set appropriately.
383 *
384 * BPF_MAP_GET_NEXT_ID
385 *	Description
386 *		Fetch the next eBPF map currently loaded into the kernel.
387 *
388 *		Looks for the eBPF map with an id greater than *start_id*
389 *		and updates *next_id* on success. If no other eBPF maps
390 *		remain with ids higher than *start_id*, returns -1 and sets
391 *		*errno* to **ENOENT**.
392 *
393 *	Return
394 *		Returns zero on success. On error, or when no id remains, -1
395 *		is returned and *errno* is set appropriately.
396 *
397 * BPF_PROG_GET_FD_BY_ID
398 *	Description
399 *		Open a file descriptor for the eBPF program corresponding to
400 *		*prog_id*.
401 *
402 *	Return
403 *		A new file descriptor (a nonnegative integer), or -1 if an
404 *		error occurred (in which case, *errno* is set appropriately).
405 *
406 * BPF_MAP_GET_FD_BY_ID
407 *	Description
408 *		Open a file descriptor for the eBPF map corresponding to
409 *		*map_id*.
410 *
411 *	Return
412 *		A new file descriptor (a nonnegative integer), or -1 if an
413 *		error occurred (in which case, *errno* is set appropriately).
414 *
415 * BPF_OBJ_GET_INFO_BY_FD
416 *	Description
417 *		Obtain information about the eBPF object corresponding to
418 *		*bpf_fd*.
419 *
420 *		Populates up to *info_len* bytes of *info*, which will be in
421 *		one of the following formats depending on the eBPF object type
422 *		of *bpf_fd*:
423 *
424 *		* **struct bpf_prog_info**
425 *		* **struct bpf_map_info**
426 *		* **struct bpf_btf_info**
427 *		* **struct bpf_link_info**
428 *
429 *	Return
430 *		Returns zero on success. On error, -1 is returned and *errno*
431 *		is set appropriately.
432 *
433 * BPF_PROG_QUERY
434 *	Description
435 *		Obtain information about eBPF programs associated with the
436 *		specified *attach_type* hook.
437 *
438 *		The *target_fd* must be a valid file descriptor for a kernel
439 *		object which depends on the attach type of *attach_bpf_fd*:
440 *
441 *		**BPF_PROG_TYPE_CGROUP_DEVICE**,
442 *		**BPF_PROG_TYPE_CGROUP_SKB**,
443 *		**BPF_PROG_TYPE_CGROUP_SOCK**,
444 *		**BPF_PROG_TYPE_CGROUP_SOCK_ADDR**,
445 *		**BPF_PROG_TYPE_CGROUP_SOCKOPT**,
446 *		**BPF_PROG_TYPE_CGROUP_SYSCTL**,
447 *		**BPF_PROG_TYPE_SOCK_OPS**
448 *
449 *			Control Group v2 hierarchy with the eBPF controller
450 *			enabled. Requires the kernel to be compiled with
451 *			**CONFIG_CGROUP_BPF**.
452 *
453 *		**BPF_PROG_TYPE_FLOW_DISSECTOR**
454 *
455 *			Network namespace (eg /proc/self/ns/net).
456 *
457 *		**BPF_PROG_TYPE_LIRC_MODE2**
458 *
459 *			LIRC device path (eg /dev/lircN). Requires the kernel
460 *			to be compiled with **CONFIG_BPF_LIRC_MODE2**.
461 *
462 *		**BPF_PROG_QUERY** always fetches the number of programs
463 *		attached and the *attach_flags* which were used to attach those
464 *		programs. Additionally, if *prog_ids* is nonzero and the number
465 *		of attached programs is less than *prog_cnt*, populates
466 *		*prog_ids* with the eBPF program ids of the programs attached
467 *		at *target_fd*.
468 *
469 *		The following flags may alter the result:
470 *
471 *		**BPF_F_QUERY_EFFECTIVE**
472 *			Only return information regarding programs which are
473 *			currently effective at the specified *target_fd*.
474 *
475 *	Return
476 *		Returns zero on success. On error, -1 is returned and *errno*
477 *		is set appropriately.
478 *
479 * BPF_RAW_TRACEPOINT_OPEN
480 *	Description
481 *		Attach an eBPF program to a tracepoint *name* to access kernel
482 *		internal arguments of the tracepoint in their raw form.
483 *
484 *		The *prog_fd* must be a valid file descriptor associated with
485 *		a loaded eBPF program of type **BPF_PROG_TYPE_RAW_TRACEPOINT**.
486 *
487 *		No ABI guarantees are made about the content of tracepoint
488 *		arguments exposed to the corresponding eBPF program.
489 *
490 *		Applying **close**\ (2) to the file descriptor returned by
491 *		**BPF_RAW_TRACEPOINT_OPEN** will delete the map (but see NOTES).
492 *
493 *	Return
494 *		A new file descriptor (a nonnegative integer), or -1 if an
495 *		error occurred (in which case, *errno* is set appropriately).
496 *
497 * BPF_BTF_LOAD
498 *	Description
499 *		Verify and load BPF Type Format (BTF) metadata into the kernel,
500 *		returning a new file descriptor associated with the metadata.
501 *		BTF is described in more detail at
502 *		https://www.kernel.org/doc/html/latest/bpf/btf.html.
503 *
504 *		The *btf* parameter must point to valid memory providing
505 *		*btf_size* bytes of BTF binary metadata.
506 *
507 *		The returned file descriptor can be passed to other **bpf**\ ()
508 *		subcommands such as **BPF_PROG_LOAD** or **BPF_MAP_CREATE** to
509 *		associate the BTF with those objects.
510 *
511 *		Similar to **BPF_PROG_LOAD**, **BPF_BTF_LOAD** has optional
512 *		parameters to specify a *btf_log_buf*, *btf_log_size* and
513 *		*btf_log_level* which allow the kernel to return freeform log
514 *		output regarding the BTF verification process.
515 *
516 *	Return
517 *		A new file descriptor (a nonnegative integer), or -1 if an
518 *		error occurred (in which case, *errno* is set appropriately).
519 *
520 * BPF_BTF_GET_FD_BY_ID
521 *	Description
522 *		Open a file descriptor for the BPF Type Format (BTF)
523 *		corresponding to *btf_id*.
524 *
525 *	Return
526 *		A new file descriptor (a nonnegative integer), or -1 if an
527 *		error occurred (in which case, *errno* is set appropriately).
528 *
529 * BPF_TASK_FD_QUERY
530 *	Description
531 *		Obtain information about eBPF programs associated with the
532 *		target process identified by *pid* and *fd*.
533 *
534 *		If the *pid* and *fd* are associated with a tracepoint, kprobe
535 *		or uprobe perf event, then the *prog_id* and *fd_type* will
536 *		be populated with the eBPF program id and file descriptor type
537 *		of type **bpf_task_fd_type**. If associated with a kprobe or
538 *		uprobe, the  *probe_offset* and *probe_addr* will also be
539 *		populated. Optionally, if *buf* is provided, then up to
540 *		*buf_len* bytes of *buf* will be populated with the name of
541 *		the tracepoint, kprobe or uprobe.
542 *
543 *		The resulting *prog_id* may be introspected in deeper detail
544 *		using **BPF_PROG_GET_FD_BY_ID** and **BPF_OBJ_GET_INFO_BY_FD**.
545 *
546 *	Return
547 *		Returns zero on success. On error, -1 is returned and *errno*
548 *		is set appropriately.
549 *
550 * BPF_MAP_LOOKUP_AND_DELETE_ELEM
551 *	Description
552 *		Look up an element with the given *key* in the map referred to
553 *		by the file descriptor *fd*, and if found, delete the element.
554 *
555 *		For **BPF_MAP_TYPE_QUEUE** and **BPF_MAP_TYPE_STACK** map
556 *		types, the *flags* argument needs to be set to 0, but for other
557 *		map types, it may be specified as:
558 *
559 *		**BPF_F_LOCK**
560 *			Look up and delete the value of a spin-locked map
561 *			without returning the lock. This must be specified if
562 *			the elements contain a spinlock.
563 *
564 *		The **BPF_MAP_TYPE_QUEUE** and **BPF_MAP_TYPE_STACK** map types
565 *		implement this command as a "pop" operation, deleting the top
566 *		element rather than one corresponding to *key*.
567 *		The *key* and *key_len* parameters should be zeroed when
568 *		issuing this operation for these map types.
569 *
570 *		This command is only valid for the following map types:
571 *		* **BPF_MAP_TYPE_QUEUE**
572 *		* **BPF_MAP_TYPE_STACK**
573 *		* **BPF_MAP_TYPE_HASH**
574 *		* **BPF_MAP_TYPE_PERCPU_HASH**
575 *		* **BPF_MAP_TYPE_LRU_HASH**
576 *		* **BPF_MAP_TYPE_LRU_PERCPU_HASH**
577 *
578 *	Return
579 *		Returns zero on success. On error, -1 is returned and *errno*
580 *		is set appropriately.
581 *
582 * BPF_MAP_FREEZE
583 *	Description
584 *		Freeze the permissions of the specified map.
585 *
586 *		Write permissions may be frozen by passing zero *flags*.
587 *		Upon success, no future syscall invocations may alter the
588 *		map state of *map_fd*. Write operations from eBPF programs
589 *		are still possible for a frozen map.
590 *
591 *		Not supported for maps of type **BPF_MAP_TYPE_STRUCT_OPS**.
592 *
593 *	Return
594 *		Returns zero on success. On error, -1 is returned and *errno*
595 *		is set appropriately.
596 *
597 * BPF_BTF_GET_NEXT_ID
598 *	Description
599 *		Fetch the next BPF Type Format (BTF) object currently loaded
600 *		into the kernel.
601 *
602 *		Looks for the BTF object with an id greater than *start_id*
603 *		and updates *next_id* on success. If no other BTF objects
604 *		remain with ids higher than *start_id*, returns -1 and sets
605 *		*errno* to **ENOENT**.
606 *
607 *	Return
608 *		Returns zero on success. On error, or when no id remains, -1
609 *		is returned and *errno* is set appropriately.
610 *
611 * BPF_MAP_LOOKUP_BATCH
612 *	Description
613 *		Iterate and fetch multiple elements in a map.
614 *
615 *		Two opaque values are used to manage batch operations,
616 *		*in_batch* and *out_batch*. Initially, *in_batch* must be set
617 *		to NULL to begin the batched operation. After each subsequent
618 *		**BPF_MAP_LOOKUP_BATCH**, the caller should pass the resultant
619 *		*out_batch* as the *in_batch* for the next operation to
620 *		continue iteration from the current point.
621 *
622 *		The *keys* and *values* are output parameters which must point
623 *		to memory large enough to hold *count* items based on the key
624 *		and value size of the map *map_fd*. The *keys* buffer must be
625 *		of *key_size* * *count*. The *values* buffer must be of
626 *		*value_size* * *count*.
627 *
628 *		The *elem_flags* argument may be specified as one of the
629 *		following:
630 *
631 *		**BPF_F_LOCK**
632 *			Look up the value of a spin-locked map without
633 *			returning the lock. This must be specified if the
634 *			elements contain a spinlock.
635 *
636 *		On success, *count* elements from the map are copied into the
637 *		user buffer, with the keys copied into *keys* and the values
638 *		copied into the corresponding indices in *values*.
639 *
640 *		If an error is returned and *errno* is not **EFAULT**, *count*
641 *		is set to the number of successfully processed elements.
642 *
643 *	Return
644 *		Returns zero on success. On error, -1 is returned and *errno*
645 *		is set appropriately.
646 *
647 *		May set *errno* to **ENOSPC** to indicate that *keys* or
648 *		*values* is too small to dump an entire bucket during
649 *		iteration of a hash-based map type.
650 *
651 * BPF_MAP_LOOKUP_AND_DELETE_BATCH
652 *	Description
653 *		Iterate and delete all elements in a map.
654 *
655 *		This operation has the same behavior as
656 *		**BPF_MAP_LOOKUP_BATCH** with two exceptions:
657 *
658 *		* Every element that is successfully returned is also deleted
659 *		  from the map. This is at least *count* elements. Note that
660 *		  *count* is both an input and an output parameter.
661 *		* Upon returning with *errno* set to **EFAULT**, up to
662 *		  *count* elements may be deleted without returning the keys
663 *		  and values of the deleted elements.
664 *
665 *	Return
666 *		Returns zero on success. On error, -1 is returned and *errno*
667 *		is set appropriately.
668 *
669 * BPF_MAP_UPDATE_BATCH
670 *	Description
671 *		Update multiple elements in a map by *key*.
672 *
673 *		The *keys* and *values* are input parameters which must point
674 *		to memory large enough to hold *count* items based on the key
675 *		and value size of the map *map_fd*. The *keys* buffer must be
676 *		of *key_size* * *count*. The *values* buffer must be of
677 *		*value_size* * *count*.
678 *
679 *		Each element specified in *keys* is sequentially updated to the
680 *		value in the corresponding index in *values*. The *in_batch*
681 *		and *out_batch* parameters are ignored and should be zeroed.
682 *
683 *		The *elem_flags* argument should be specified as one of the
684 *		following:
685 *
686 *		**BPF_ANY**
687 *			Create new elements or update a existing elements.
688 *		**BPF_NOEXIST**
689 *			Create new elements only if they do not exist.
690 *		**BPF_EXIST**
691 *			Update existing elements.
692 *		**BPF_F_LOCK**
693 *			Update spin_lock-ed map elements. This must be
694 *			specified if the map value contains a spinlock.
695 *
696 *		On success, *count* elements from the map are updated.
697 *
698 *		If an error is returned and *errno* is not **EFAULT**, *count*
699 *		is set to the number of successfully processed elements.
700 *
701 *	Return
702 *		Returns zero on success. On error, -1 is returned and *errno*
703 *		is set appropriately.
704 *
705 *		May set *errno* to **EINVAL**, **EPERM**, **ENOMEM**, or
706 *		**E2BIG**. **E2BIG** indicates that the number of elements in
707 *		the map reached the *max_entries* limit specified at map
708 *		creation time.
709 *
710 *		May set *errno* to one of the following error codes under
711 *		specific circumstances:
712 *
713 *		**EEXIST**
714 *			If *flags* specifies **BPF_NOEXIST** and the element
715 *			with *key* already exists in the map.
716 *		**ENOENT**
717 *			If *flags* specifies **BPF_EXIST** and the element with
718 *			*key* does not exist in the map.
719 *
720 * BPF_MAP_DELETE_BATCH
721 *	Description
722 *		Delete multiple elements in a map by *key*.
723 *
724 *		The *keys* parameter is an input parameter which must point
725 *		to memory large enough to hold *count* items based on the key
726 *		size of the map *map_fd*, that is, *key_size* * *count*.
727 *
728 *		Each element specified in *keys* is sequentially deleted. The
729 *		*in_batch*, *out_batch*, and *values* parameters are ignored
730 *		and should be zeroed.
731 *
732 *		The *elem_flags* argument may be specified as one of the
733 *		following:
734 *
735 *		**BPF_F_LOCK**
736 *			Look up the value of a spin-locked map without
737 *			returning the lock. This must be specified if the
738 *			elements contain a spinlock.
739 *
740 *		On success, *count* elements from the map are updated.
741 *
742 *		If an error is returned and *errno* is not **EFAULT**, *count*
743 *		is set to the number of successfully processed elements. If
744 *		*errno* is **EFAULT**, up to *count* elements may be been
745 *		deleted.
746 *
747 *	Return
748 *		Returns zero on success. On error, -1 is returned and *errno*
749 *		is set appropriately.
750 *
751 * BPF_LINK_CREATE
752 *	Description
753 *		Attach an eBPF program to a *target_fd* at the specified
754 *		*attach_type* hook and return a file descriptor handle for
755 *		managing the link.
756 *
757 *	Return
758 *		A new file descriptor (a nonnegative integer), or -1 if an
759 *		error occurred (in which case, *errno* is set appropriately).
760 *
761 * BPF_LINK_UPDATE
762 *	Description
763 *		Update the eBPF program in the specified *link_fd* to
764 *		*new_prog_fd*.
765 *
766 *	Return
767 *		Returns zero on success. On error, -1 is returned and *errno*
768 *		is set appropriately.
769 *
770 * BPF_LINK_GET_FD_BY_ID
771 *	Description
772 *		Open a file descriptor for the eBPF Link corresponding to
773 *		*link_id*.
774 *
775 *	Return
776 *		A new file descriptor (a nonnegative integer), or -1 if an
777 *		error occurred (in which case, *errno* is set appropriately).
778 *
779 * BPF_LINK_GET_NEXT_ID
780 *	Description
781 *		Fetch the next eBPF link currently loaded into the kernel.
782 *
783 *		Looks for the eBPF link with an id greater than *start_id*
784 *		and updates *next_id* on success. If no other eBPF links
785 *		remain with ids higher than *start_id*, returns -1 and sets
786 *		*errno* to **ENOENT**.
787 *
788 *	Return
789 *		Returns zero on success. On error, or when no id remains, -1
790 *		is returned and *errno* is set appropriately.
791 *
792 * BPF_ENABLE_STATS
793 *	Description
794 *		Enable eBPF runtime statistics gathering.
795 *
796 *		Runtime statistics gathering for the eBPF runtime is disabled
797 *		by default to minimize the corresponding performance overhead.
798 *		This command enables statistics globally.
799 *
800 *		Multiple programs may independently enable statistics.
801 *		After gathering the desired statistics, eBPF runtime statistics
802 *		may be disabled again by calling **close**\ (2) for the file
803 *		descriptor returned by this function. Statistics will only be
804 *		disabled system-wide when all outstanding file descriptors
805 *		returned by prior calls for this subcommand are closed.
806 *
807 *	Return
808 *		A new file descriptor (a nonnegative integer), or -1 if an
809 *		error occurred (in which case, *errno* is set appropriately).
810 *
811 * BPF_ITER_CREATE
812 *	Description
813 *		Create an iterator on top of the specified *link_fd* (as
814 *		previously created using **BPF_LINK_CREATE**) and return a
815 *		file descriptor that can be used to trigger the iteration.
816 *
817 *		If the resulting file descriptor is pinned to the filesystem
818 *		using  **BPF_OBJ_PIN**, then subsequent **read**\ (2) syscalls
819 *		for that path will trigger the iterator to read kernel state
820 *		using the eBPF program attached to *link_fd*.
821 *
822 *	Return
823 *		A new file descriptor (a nonnegative integer), or -1 if an
824 *		error occurred (in which case, *errno* is set appropriately).
825 *
826 * BPF_LINK_DETACH
827 *	Description
828 *		Forcefully detach the specified *link_fd* from its
829 *		corresponding attachment point.
830 *
831 *	Return
832 *		Returns zero on success. On error, -1 is returned and *errno*
833 *		is set appropriately.
834 *
835 * BPF_PROG_BIND_MAP
836 *	Description
837 *		Bind a map to the lifetime of an eBPF program.
838 *
839 *		The map identified by *map_fd* is bound to the program
840 *		identified by *prog_fd* and only released when *prog_fd* is
841 *		released. This may be used in cases where metadata should be
842 *		associated with a program which otherwise does not contain any
843 *		references to the map (for example, embedded in the eBPF
844 *		program instructions).
845 *
846 *	Return
847 *		Returns zero on success. On error, -1 is returned and *errno*
848 *		is set appropriately.
849 *
850 * NOTES
851 *	eBPF objects (maps and programs) can be shared between processes.
852 *
853 *	* After **fork**\ (2), the child inherits file descriptors
854 *	  referring to the same eBPF objects.
855 *	* File descriptors referring to eBPF objects can be transferred over
856 *	  **unix**\ (7) domain sockets.
857 *	* File descriptors referring to eBPF objects can be duplicated in the
858 *	  usual way, using **dup**\ (2) and similar calls.
859 *	* File descriptors referring to eBPF objects can be pinned to the
860 *	  filesystem using the **BPF_OBJ_PIN** command of **bpf**\ (2).
861 *
862 *	An eBPF object is deallocated only after all file descriptors referring
863 *	to the object have been closed and no references remain pinned to the
864 *	filesystem or attached (for example, bound to a program or device).
865 */
866enum bpf_cmd {
867	BPF_MAP_CREATE,
868	BPF_MAP_LOOKUP_ELEM,
869	BPF_MAP_UPDATE_ELEM,
870	BPF_MAP_DELETE_ELEM,
871	BPF_MAP_GET_NEXT_KEY,
872	BPF_PROG_LOAD,
873	BPF_OBJ_PIN,
874	BPF_OBJ_GET,
875	BPF_PROG_ATTACH,
876	BPF_PROG_DETACH,
877	BPF_PROG_TEST_RUN,
878	BPF_PROG_RUN = BPF_PROG_TEST_RUN,
879	BPF_PROG_GET_NEXT_ID,
880	BPF_MAP_GET_NEXT_ID,
881	BPF_PROG_GET_FD_BY_ID,
882	BPF_MAP_GET_FD_BY_ID,
883	BPF_OBJ_GET_INFO_BY_FD,
884	BPF_PROG_QUERY,
885	BPF_RAW_TRACEPOINT_OPEN,
886	BPF_BTF_LOAD,
887	BPF_BTF_GET_FD_BY_ID,
888	BPF_TASK_FD_QUERY,
889	BPF_MAP_LOOKUP_AND_DELETE_ELEM,
890	BPF_MAP_FREEZE,
891	BPF_BTF_GET_NEXT_ID,
892	BPF_MAP_LOOKUP_BATCH,
893	BPF_MAP_LOOKUP_AND_DELETE_BATCH,
894	BPF_MAP_UPDATE_BATCH,
895	BPF_MAP_DELETE_BATCH,
896	BPF_LINK_CREATE,
897	BPF_LINK_UPDATE,
898	BPF_LINK_GET_FD_BY_ID,
899	BPF_LINK_GET_NEXT_ID,
900	BPF_ENABLE_STATS,
901	BPF_ITER_CREATE,
902	BPF_LINK_DETACH,
903	BPF_PROG_BIND_MAP,
904};
905
906enum bpf_map_type {
907	BPF_MAP_TYPE_UNSPEC,
908	BPF_MAP_TYPE_HASH,
909	BPF_MAP_TYPE_ARRAY,
910	BPF_MAP_TYPE_PROG_ARRAY,
911	BPF_MAP_TYPE_PERF_EVENT_ARRAY,
912	BPF_MAP_TYPE_PERCPU_HASH,
913	BPF_MAP_TYPE_PERCPU_ARRAY,
914	BPF_MAP_TYPE_STACK_TRACE,
915	BPF_MAP_TYPE_CGROUP_ARRAY,
916	BPF_MAP_TYPE_LRU_HASH,
917	BPF_MAP_TYPE_LRU_PERCPU_HASH,
918	BPF_MAP_TYPE_LPM_TRIE,
919	BPF_MAP_TYPE_ARRAY_OF_MAPS,
920	BPF_MAP_TYPE_HASH_OF_MAPS,
921	BPF_MAP_TYPE_DEVMAP,
922	BPF_MAP_TYPE_SOCKMAP,
923	BPF_MAP_TYPE_CPUMAP,
924	BPF_MAP_TYPE_XSKMAP,
925	BPF_MAP_TYPE_SOCKHASH,
926	BPF_MAP_TYPE_CGROUP_STORAGE_DEPRECATED,
927	/* BPF_MAP_TYPE_CGROUP_STORAGE is available to bpf programs attaching
928	 * to a cgroup. The newer BPF_MAP_TYPE_CGRP_STORAGE is available to
929	 * both cgroup-attached and other progs and supports all functionality
930	 * provided by BPF_MAP_TYPE_CGROUP_STORAGE. So mark
931	 * BPF_MAP_TYPE_CGROUP_STORAGE deprecated.
932	 */
933	BPF_MAP_TYPE_CGROUP_STORAGE = BPF_MAP_TYPE_CGROUP_STORAGE_DEPRECATED,
934	BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
935	BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE_DEPRECATED,
936	/* BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE is available to bpf programs
937	 * attaching to a cgroup. The new mechanism (BPF_MAP_TYPE_CGRP_STORAGE +
938	 * local percpu kptr) supports all BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE
939	 * functionality and more. So mark * BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE
940	 * deprecated.
941	 */
942	BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE = BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE_DEPRECATED,
943	BPF_MAP_TYPE_QUEUE,
944	BPF_MAP_TYPE_STACK,
945	BPF_MAP_TYPE_SK_STORAGE,
946	BPF_MAP_TYPE_DEVMAP_HASH,
947	BPF_MAP_TYPE_STRUCT_OPS,
948	BPF_MAP_TYPE_RINGBUF,
949	BPF_MAP_TYPE_INODE_STORAGE,
950	BPF_MAP_TYPE_TASK_STORAGE,
951	BPF_MAP_TYPE_BLOOM_FILTER,
952	BPF_MAP_TYPE_USER_RINGBUF,
953	BPF_MAP_TYPE_CGRP_STORAGE,
954};
955
956/* Note that tracing related programs such as
957 * BPF_PROG_TYPE_{KPROBE,TRACEPOINT,PERF_EVENT,RAW_TRACEPOINT}
958 * are not subject to a stable API since kernel internal data
959 * structures can change from release to release and may
960 * therefore break existing tracing BPF programs. Tracing BPF
961 * programs correspond to /a/ specific kernel which is to be
962 * analyzed, and not /a/ specific kernel /and/ all future ones.
963 */
964enum bpf_prog_type {
965	BPF_PROG_TYPE_UNSPEC,
966	BPF_PROG_TYPE_SOCKET_FILTER,
967	BPF_PROG_TYPE_KPROBE,
968	BPF_PROG_TYPE_SCHED_CLS,
969	BPF_PROG_TYPE_SCHED_ACT,
970	BPF_PROG_TYPE_TRACEPOINT,
971	BPF_PROG_TYPE_XDP,
972	BPF_PROG_TYPE_PERF_EVENT,
973	BPF_PROG_TYPE_CGROUP_SKB,
974	BPF_PROG_TYPE_CGROUP_SOCK,
975	BPF_PROG_TYPE_LWT_IN,
976	BPF_PROG_TYPE_LWT_OUT,
977	BPF_PROG_TYPE_LWT_XMIT,
978	BPF_PROG_TYPE_SOCK_OPS,
979	BPF_PROG_TYPE_SK_SKB,
980	BPF_PROG_TYPE_CGROUP_DEVICE,
981	BPF_PROG_TYPE_SK_MSG,
982	BPF_PROG_TYPE_RAW_TRACEPOINT,
983	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
984	BPF_PROG_TYPE_LWT_SEG6LOCAL,
985	BPF_PROG_TYPE_LIRC_MODE2,
986	BPF_PROG_TYPE_SK_REUSEPORT,
987	BPF_PROG_TYPE_FLOW_DISSECTOR,
988	BPF_PROG_TYPE_CGROUP_SYSCTL,
989	BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE,
990	BPF_PROG_TYPE_CGROUP_SOCKOPT,
991	BPF_PROG_TYPE_TRACING,
992	BPF_PROG_TYPE_STRUCT_OPS,
993	BPF_PROG_TYPE_EXT,
994	BPF_PROG_TYPE_LSM,
995	BPF_PROG_TYPE_SK_LOOKUP,
996	BPF_PROG_TYPE_SYSCALL, /* a program that can execute syscalls */
997	BPF_PROG_TYPE_NETFILTER,
998};
999
1000enum bpf_attach_type {
1001	BPF_CGROUP_INET_INGRESS,
1002	BPF_CGROUP_INET_EGRESS,
1003	BPF_CGROUP_INET_SOCK_CREATE,
1004	BPF_CGROUP_SOCK_OPS,
1005	BPF_SK_SKB_STREAM_PARSER,
1006	BPF_SK_SKB_STREAM_VERDICT,
1007	BPF_CGROUP_DEVICE,
1008	BPF_SK_MSG_VERDICT,
1009	BPF_CGROUP_INET4_BIND,
1010	BPF_CGROUP_INET6_BIND,
1011	BPF_CGROUP_INET4_CONNECT,
1012	BPF_CGROUP_INET6_CONNECT,
1013	BPF_CGROUP_INET4_POST_BIND,
1014	BPF_CGROUP_INET6_POST_BIND,
1015	BPF_CGROUP_UDP4_SENDMSG,
1016	BPF_CGROUP_UDP6_SENDMSG,
1017	BPF_LIRC_MODE2,
1018	BPF_FLOW_DISSECTOR,
1019	BPF_CGROUP_SYSCTL,
1020	BPF_CGROUP_UDP4_RECVMSG,
1021	BPF_CGROUP_UDP6_RECVMSG,
1022	BPF_CGROUP_GETSOCKOPT,
1023	BPF_CGROUP_SETSOCKOPT,
1024	BPF_TRACE_RAW_TP,
1025	BPF_TRACE_FENTRY,
1026	BPF_TRACE_FEXIT,
1027	BPF_MODIFY_RETURN,
1028	BPF_LSM_MAC,
1029	BPF_TRACE_ITER,
1030	BPF_CGROUP_INET4_GETPEERNAME,
1031	BPF_CGROUP_INET6_GETPEERNAME,
1032	BPF_CGROUP_INET4_GETSOCKNAME,
1033	BPF_CGROUP_INET6_GETSOCKNAME,
1034	BPF_XDP_DEVMAP,
1035	BPF_CGROUP_INET_SOCK_RELEASE,
1036	BPF_XDP_CPUMAP,
1037	BPF_SK_LOOKUP,
1038	BPF_XDP,
1039	BPF_SK_SKB_VERDICT,
1040	BPF_SK_REUSEPORT_SELECT,
1041	BPF_SK_REUSEPORT_SELECT_OR_MIGRATE,
1042	BPF_PERF_EVENT,
1043	BPF_TRACE_KPROBE_MULTI,
1044	BPF_LSM_CGROUP,
1045	BPF_STRUCT_OPS,
1046	BPF_NETFILTER,
1047	BPF_TCX_INGRESS,
1048	BPF_TCX_EGRESS,
1049	BPF_TRACE_UPROBE_MULTI,
1050	BPF_CGROUP_UNIX_CONNECT,
1051	BPF_CGROUP_UNIX_SENDMSG,
1052	BPF_CGROUP_UNIX_RECVMSG,
1053	BPF_CGROUP_UNIX_GETPEERNAME,
1054	BPF_CGROUP_UNIX_GETSOCKNAME,
1055	BPF_NETKIT_PRIMARY,
1056	BPF_NETKIT_PEER,
1057	__MAX_BPF_ATTACH_TYPE
1058};
1059
1060#define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE
1061
1062enum bpf_link_type {
1063	BPF_LINK_TYPE_UNSPEC = 0,
1064	BPF_LINK_TYPE_RAW_TRACEPOINT = 1,
1065	BPF_LINK_TYPE_TRACING = 2,
1066	BPF_LINK_TYPE_CGROUP = 3,
1067	BPF_LINK_TYPE_ITER = 4,
1068	BPF_LINK_TYPE_NETNS = 5,
1069	BPF_LINK_TYPE_XDP = 6,
1070	BPF_LINK_TYPE_PERF_EVENT = 7,
1071	BPF_LINK_TYPE_KPROBE_MULTI = 8,
1072	BPF_LINK_TYPE_STRUCT_OPS = 9,
1073	BPF_LINK_TYPE_NETFILTER = 10,
1074	BPF_LINK_TYPE_TCX = 11,
1075	BPF_LINK_TYPE_UPROBE_MULTI = 12,
1076	BPF_LINK_TYPE_NETKIT = 13,
1077	MAX_BPF_LINK_TYPE,
1078};
1079
1080enum bpf_perf_event_type {
1081	BPF_PERF_EVENT_UNSPEC = 0,
1082	BPF_PERF_EVENT_UPROBE = 1,
1083	BPF_PERF_EVENT_URETPROBE = 2,
1084	BPF_PERF_EVENT_KPROBE = 3,
1085	BPF_PERF_EVENT_KRETPROBE = 4,
1086	BPF_PERF_EVENT_TRACEPOINT = 5,
1087	BPF_PERF_EVENT_EVENT = 6,
1088};
1089
1090/* cgroup-bpf attach flags used in BPF_PROG_ATTACH command
1091 *
1092 * NONE(default): No further bpf programs allowed in the subtree.
1093 *
1094 * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
1095 * the program in this cgroup yields to sub-cgroup program.
1096 *
1097 * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
1098 * that cgroup program gets run in addition to the program in this cgroup.
1099 *
1100 * Only one program is allowed to be attached to a cgroup with
1101 * NONE or BPF_F_ALLOW_OVERRIDE flag.
1102 * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will
1103 * release old program and attach the new one. Attach flags has to match.
1104 *
1105 * Multiple programs are allowed to be attached to a cgroup with
1106 * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
1107 * (those that were attached first, run first)
1108 * The programs of sub-cgroup are executed first, then programs of
1109 * this cgroup and then programs of parent cgroup.
1110 * When children program makes decision (like picking TCP CA or sock bind)
1111 * parent program has a chance to override it.
1112 *
1113 * With BPF_F_ALLOW_MULTI a new program is added to the end of the list of
1114 * programs for a cgroup. Though it's possible to replace an old program at
1115 * any position by also specifying BPF_F_REPLACE flag and position itself in
1116 * replace_bpf_fd attribute. Old program at this position will be released.
1117 *
1118 * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups.
1119 * A cgroup with NONE doesn't allow any programs in sub-cgroups.
1120 * Ex1:
1121 * cgrp1 (MULTI progs A, B) ->
1122 *    cgrp2 (OVERRIDE prog C) ->
1123 *      cgrp3 (MULTI prog D) ->
1124 *        cgrp4 (OVERRIDE prog E) ->
1125 *          cgrp5 (NONE prog F)
1126 * the event in cgrp5 triggers execution of F,D,A,B in that order.
1127 * if prog F is detached, the execution is E,D,A,B
1128 * if prog F and D are detached, the execution is E,A,B
1129 * if prog F, E and D are detached, the execution is C,A,B
1130 *
1131 * All eligible programs are executed regardless of return code from
1132 * earlier programs.
1133 */
1134#define BPF_F_ALLOW_OVERRIDE	(1U << 0)
1135#define BPF_F_ALLOW_MULTI	(1U << 1)
1136/* Generic attachment flags. */
1137#define BPF_F_REPLACE		(1U << 2)
1138#define BPF_F_BEFORE		(1U << 3)
1139#define BPF_F_AFTER		(1U << 4)
1140#define BPF_F_ID		(1U << 5)
1141#define BPF_F_LINK		BPF_F_LINK /* 1 << 13 */
1142
1143/* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the
1144 * verifier will perform strict alignment checking as if the kernel
1145 * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set,
1146 * and NET_IP_ALIGN defined to 2.
1147 */
1148#define BPF_F_STRICT_ALIGNMENT	(1U << 0)
1149
1150/* If BPF_F_ANY_ALIGNMENT is used in BPF_PROG_LOAD command, the
1151 * verifier will allow any alignment whatsoever.  On platforms
1152 * with strict alignment requirements for loads ands stores (such
1153 * as sparc and mips) the verifier validates that all loads and
1154 * stores provably follow this requirement.  This flag turns that
1155 * checking and enforcement off.
1156 *
1157 * It is mostly used for testing when we want to validate the
1158 * context and memory access aspects of the verifier, but because
1159 * of an unaligned access the alignment check would trigger before
1160 * the one we are interested in.
1161 */
1162#define BPF_F_ANY_ALIGNMENT	(1U << 1)
1163
1164/* BPF_F_TEST_RND_HI32 is used in BPF_PROG_LOAD command for testing purpose.
1165 * Verifier does sub-register def/use analysis and identifies instructions whose
1166 * def only matters for low 32-bit, high 32-bit is never referenced later
1167 * through implicit zero extension. Therefore verifier notifies JIT back-ends
1168 * that it is safe to ignore clearing high 32-bit for these instructions. This
1169 * saves some back-ends a lot of code-gen. However such optimization is not
1170 * necessary on some arches, for example x86_64, arm64 etc, whose JIT back-ends
1171 * hence hasn't used verifier's analysis result. But, we really want to have a
1172 * way to be able to verify the correctness of the described optimization on
1173 * x86_64 on which testsuites are frequently exercised.
1174 *
1175 * So, this flag is introduced. Once it is set, verifier will randomize high
1176 * 32-bit for those instructions who has been identified as safe to ignore them.
1177 * Then, if verifier is not doing correct analysis, such randomization will
1178 * regress tests to expose bugs.
1179 */
1180#define BPF_F_TEST_RND_HI32	(1U << 2)
1181
1182/* The verifier internal test flag. Behavior is undefined */
1183#define BPF_F_TEST_STATE_FREQ	(1U << 3)
1184
1185/* If BPF_F_SLEEPABLE is used in BPF_PROG_LOAD command, the verifier will
1186 * restrict map and helper usage for such programs. Sleepable BPF programs can
1187 * only be attached to hooks where kernel execution context allows sleeping.
1188 * Such programs are allowed to use helpers that may sleep like
1189 * bpf_copy_from_user().
1190 */
1191#define BPF_F_SLEEPABLE		(1U << 4)
1192
1193/* If BPF_F_XDP_HAS_FRAGS is used in BPF_PROG_LOAD command, the loaded program
1194 * fully support xdp frags.
1195 */
1196#define BPF_F_XDP_HAS_FRAGS	(1U << 5)
1197
1198/* If BPF_F_XDP_DEV_BOUND_ONLY is used in BPF_PROG_LOAD command, the loaded
1199 * program becomes device-bound but can access XDP metadata.
1200 */
1201#define BPF_F_XDP_DEV_BOUND_ONLY	(1U << 6)
1202
1203/* The verifier internal test flag. Behavior is undefined */
1204#define BPF_F_TEST_REG_INVARIANTS	(1U << 7)
1205
1206/* link_create.kprobe_multi.flags used in LINK_CREATE command for
1207 * BPF_TRACE_KPROBE_MULTI attach type to create return probe.
1208 */
1209enum {
1210	BPF_F_KPROBE_MULTI_RETURN = (1U << 0)
1211};
1212
1213/* link_create.uprobe_multi.flags used in LINK_CREATE command for
1214 * BPF_TRACE_UPROBE_MULTI attach type to create return probe.
1215 */
1216enum {
1217	BPF_F_UPROBE_MULTI_RETURN = (1U << 0)
1218};
1219
1220/* link_create.netfilter.flags used in LINK_CREATE command for
1221 * BPF_PROG_TYPE_NETFILTER to enable IP packet defragmentation.
1222 */
1223#define BPF_F_NETFILTER_IP_DEFRAG (1U << 0)
1224
1225/* When BPF ldimm64's insn[0].src_reg != 0 then this can have
1226 * the following extensions:
1227 *
1228 * insn[0].src_reg:  BPF_PSEUDO_MAP_[FD|IDX]
1229 * insn[0].imm:      map fd or fd_idx
1230 * insn[1].imm:      0
1231 * insn[0].off:      0
1232 * insn[1].off:      0
1233 * ldimm64 rewrite:  address of map
1234 * verifier type:    CONST_PTR_TO_MAP
1235 */
1236#define BPF_PSEUDO_MAP_FD	1
1237#define BPF_PSEUDO_MAP_IDX	5
1238
1239/* insn[0].src_reg:  BPF_PSEUDO_MAP_[IDX_]VALUE
1240 * insn[0].imm:      map fd or fd_idx
1241 * insn[1].imm:      offset into value
1242 * insn[0].off:      0
1243 * insn[1].off:      0
1244 * ldimm64 rewrite:  address of map[0]+offset
1245 * verifier type:    PTR_TO_MAP_VALUE
1246 */
1247#define BPF_PSEUDO_MAP_VALUE		2
1248#define BPF_PSEUDO_MAP_IDX_VALUE	6
1249
1250/* insn[0].src_reg:  BPF_PSEUDO_BTF_ID
1251 * insn[0].imm:      kernel btd id of VAR
1252 * insn[1].imm:      0
1253 * insn[0].off:      0
1254 * insn[1].off:      0
1255 * ldimm64 rewrite:  address of the kernel variable
1256 * verifier type:    PTR_TO_BTF_ID or PTR_TO_MEM, depending on whether the var
1257 *                   is struct/union.
1258 */
1259#define BPF_PSEUDO_BTF_ID	3
1260/* insn[0].src_reg:  BPF_PSEUDO_FUNC
1261 * insn[0].imm:      insn offset to the func
1262 * insn[1].imm:      0
1263 * insn[0].off:      0
1264 * insn[1].off:      0
1265 * ldimm64 rewrite:  address of the function
1266 * verifier type:    PTR_TO_FUNC.
1267 */
1268#define BPF_PSEUDO_FUNC		4
1269
1270/* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative
1271 * offset to another bpf function
1272 */
1273#define BPF_PSEUDO_CALL		1
1274/* when bpf_call->src_reg == BPF_PSEUDO_KFUNC_CALL,
1275 * bpf_call->imm == btf_id of a BTF_KIND_FUNC in the running kernel
1276 */
1277#define BPF_PSEUDO_KFUNC_CALL	2
1278
1279/* flags for BPF_MAP_UPDATE_ELEM command */
1280enum {
1281	BPF_ANY		= 0, /* create new element or update existing */
1282	BPF_NOEXIST	= 1, /* create new element if it didn't exist */
1283	BPF_EXIST	= 2, /* update existing element */
1284	BPF_F_LOCK	= 4, /* spin_lock-ed map_lookup/map_update */
1285};
1286
1287/* flags for BPF_MAP_CREATE command */
1288enum {
1289	BPF_F_NO_PREALLOC	= (1U << 0),
1290/* Instead of having one common LRU list in the
1291 * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list
1292 * which can scale and perform better.
1293 * Note, the LRU nodes (including free nodes) cannot be moved
1294 * across different LRU lists.
1295 */
1296	BPF_F_NO_COMMON_LRU	= (1U << 1),
1297/* Specify numa node during map creation */
1298	BPF_F_NUMA_NODE		= (1U << 2),
1299
1300/* Flags for accessing BPF object from syscall side. */
1301	BPF_F_RDONLY		= (1U << 3),
1302	BPF_F_WRONLY		= (1U << 4),
1303
1304/* Flag for stack_map, store build_id+offset instead of pointer */
1305	BPF_F_STACK_BUILD_ID	= (1U << 5),
1306
1307/* Zero-initialize hash function seed. This should only be used for testing. */
1308	BPF_F_ZERO_SEED		= (1U << 6),
1309
1310/* Flags for accessing BPF object from program side. */
1311	BPF_F_RDONLY_PROG	= (1U << 7),
1312	BPF_F_WRONLY_PROG	= (1U << 8),
1313
1314/* Clone map from listener for newly accepted socket */
1315	BPF_F_CLONE		= (1U << 9),
1316
1317/* Enable memory-mapping BPF map */
1318	BPF_F_MMAPABLE		= (1U << 10),
1319
1320/* Share perf_event among processes */
1321	BPF_F_PRESERVE_ELEMS	= (1U << 11),
1322
1323/* Create a map that is suitable to be an inner map with dynamic max entries */
1324	BPF_F_INNER_MAP		= (1U << 12),
1325
1326/* Create a map that will be registered/unregesitered by the backed bpf_link */
1327	BPF_F_LINK		= (1U << 13),
1328
1329/* Get path from provided FD in BPF_OBJ_PIN/BPF_OBJ_GET commands */
1330	BPF_F_PATH_FD		= (1U << 14),
1331};
1332
1333/* Flags for BPF_PROG_QUERY. */
1334
1335/* Query effective (directly attached + inherited from ancestor cgroups)
1336 * programs that will be executed for events within a cgroup.
1337 * attach_flags with this flag are always returned 0.
1338 */
1339#define BPF_F_QUERY_EFFECTIVE	(1U << 0)
1340
1341/* Flags for BPF_PROG_TEST_RUN */
1342
1343/* If set, run the test on the cpu specified by bpf_attr.test.cpu */
1344#define BPF_F_TEST_RUN_ON_CPU	(1U << 0)
1345/* If set, XDP frames will be transmitted after processing */
1346#define BPF_F_TEST_XDP_LIVE_FRAMES	(1U << 1)
1347
1348/* type for BPF_ENABLE_STATS */
1349enum bpf_stats_type {
1350	/* enabled run_time_ns and run_cnt */
1351	BPF_STATS_RUN_TIME = 0,
1352};
1353
1354enum bpf_stack_build_id_status {
1355	/* user space need an empty entry to identify end of a trace */
1356	BPF_STACK_BUILD_ID_EMPTY = 0,
1357	/* with valid build_id and offset */
1358	BPF_STACK_BUILD_ID_VALID = 1,
1359	/* couldn't get build_id, fallback to ip */
1360	BPF_STACK_BUILD_ID_IP = 2,
1361};
1362
1363#define BPF_BUILD_ID_SIZE 20
1364struct bpf_stack_build_id {
1365	__s32		status;
1366	unsigned char	build_id[BPF_BUILD_ID_SIZE];
1367	union {
1368		__u64	offset;
1369		__u64	ip;
1370	};
1371};
1372
1373#define BPF_OBJ_NAME_LEN 16U
1374
1375union bpf_attr {
1376	struct { /* anonymous struct used by BPF_MAP_CREATE command */
1377		__u32	map_type;	/* one of enum bpf_map_type */
1378		__u32	key_size;	/* size of key in bytes */
1379		__u32	value_size;	/* size of value in bytes */
1380		__u32	max_entries;	/* max number of entries in a map */
1381		__u32	map_flags;	/* BPF_MAP_CREATE related
1382					 * flags defined above.
1383					 */
1384		__u32	inner_map_fd;	/* fd pointing to the inner map */
1385		__u32	numa_node;	/* numa node (effective only if
1386					 * BPF_F_NUMA_NODE is set).
1387					 */
1388		char	map_name[BPF_OBJ_NAME_LEN];
1389		__u32	map_ifindex;	/* ifindex of netdev to create on */
1390		__u32	btf_fd;		/* fd pointing to a BTF type data */
1391		__u32	btf_key_type_id;	/* BTF type_id of the key */
1392		__u32	btf_value_type_id;	/* BTF type_id of the value */
1393		__u32	btf_vmlinux_value_type_id;/* BTF type_id of a kernel-
1394						   * struct stored as the
1395						   * map value
1396						   */
1397		/* Any per-map-type extra fields
1398		 *
1399		 * BPF_MAP_TYPE_BLOOM_FILTER - the lowest 4 bits indicate the
1400		 * number of hash functions (if 0, the bloom filter will default
1401		 * to using 5 hash functions).
1402		 */
1403		__u64	map_extra;
1404	};
1405
1406	struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */
1407		__u32		map_fd;
1408		__aligned_u64	key;
1409		union {
1410			__aligned_u64 value;
1411			__aligned_u64 next_key;
1412		};
1413		__u64		flags;
1414	};
1415
1416	struct { /* struct used by BPF_MAP_*_BATCH commands */
1417		__aligned_u64	in_batch;	/* start batch,
1418						 * NULL to start from beginning
1419						 */
1420		__aligned_u64	out_batch;	/* output: next start batch */
1421		__aligned_u64	keys;
1422		__aligned_u64	values;
1423		__u32		count;		/* input/output:
1424						 * input: # of key/value
1425						 * elements
1426						 * output: # of filled elements
1427						 */
1428		__u32		map_fd;
1429		__u64		elem_flags;
1430		__u64		flags;
1431	} batch;
1432
1433	struct { /* anonymous struct used by BPF_PROG_LOAD command */
1434		__u32		prog_type;	/* one of enum bpf_prog_type */
1435		__u32		insn_cnt;
1436		__aligned_u64	insns;
1437		__aligned_u64	license;
1438		__u32		log_level;	/* verbosity level of verifier */
1439		__u32		log_size;	/* size of user buffer */
1440		__aligned_u64	log_buf;	/* user supplied buffer */
1441		__u32		kern_version;	/* not used */
1442		__u32		prog_flags;
1443		char		prog_name[BPF_OBJ_NAME_LEN];
1444		__u32		prog_ifindex;	/* ifindex of netdev to prep for */
1445		/* For some prog types expected attach type must be known at
1446		 * load time to verify attach type specific parts of prog
1447		 * (context accesses, allowed helpers, etc).
1448		 */
1449		__u32		expected_attach_type;
1450		__u32		prog_btf_fd;	/* fd pointing to BTF type data */
1451		__u32		func_info_rec_size;	/* userspace bpf_func_info size */
1452		__aligned_u64	func_info;	/* func info */
1453		__u32		func_info_cnt;	/* number of bpf_func_info records */
1454		__u32		line_info_rec_size;	/* userspace bpf_line_info size */
1455		__aligned_u64	line_info;	/* line info */
1456		__u32		line_info_cnt;	/* number of bpf_line_info records */
1457		__u32		attach_btf_id;	/* in-kernel BTF type id to attach to */
1458		union {
1459			/* valid prog_fd to attach to bpf prog */
1460			__u32		attach_prog_fd;
1461			/* or valid module BTF object fd or 0 to attach to vmlinux */
1462			__u32		attach_btf_obj_fd;
1463		};
1464		__u32		core_relo_cnt;	/* number of bpf_core_relo */
1465		__aligned_u64	fd_array;	/* array of FDs */
1466		__aligned_u64	core_relos;
1467		__u32		core_relo_rec_size; /* sizeof(struct bpf_core_relo) */
1468		/* output: actual total log contents size (including termintaing zero).
1469		 * It could be both larger than original log_size (if log was
1470		 * truncated), or smaller (if log buffer wasn't filled completely).
1471		 */
1472		__u32		log_true_size;
1473	};
1474
1475	struct { /* anonymous struct used by BPF_OBJ_* commands */
1476		__aligned_u64	pathname;
1477		__u32		bpf_fd;
1478		__u32		file_flags;
1479		/* Same as dirfd in openat() syscall; see openat(2)
1480		 * manpage for details of path FD and pathname semantics;
1481		 * path_fd should accompanied by BPF_F_PATH_FD flag set in
1482		 * file_flags field, otherwise it should be set to zero;
1483		 * if BPF_F_PATH_FD flag is not set, AT_FDCWD is assumed.
1484		 */
1485		__s32		path_fd;
1486	};
1487
1488	struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */
1489		union {
1490			__u32	target_fd;	/* target object to attach to or ... */
1491			__u32	target_ifindex;	/* target ifindex */
1492		};
1493		__u32		attach_bpf_fd;
1494		__u32		attach_type;
1495		__u32		attach_flags;
1496		__u32		replace_bpf_fd;
1497		union {
1498			__u32	relative_fd;
1499			__u32	relative_id;
1500		};
1501		__u64		expected_revision;
1502	};
1503
1504	struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */
1505		__u32		prog_fd;
1506		__u32		retval;
1507		__u32		data_size_in;	/* input: len of data_in */
1508		__u32		data_size_out;	/* input/output: len of data_out
1509						 *   returns ENOSPC if data_out
1510						 *   is too small.
1511						 */
1512		__aligned_u64	data_in;
1513		__aligned_u64	data_out;
1514		__u32		repeat;
1515		__u32		duration;
1516		__u32		ctx_size_in;	/* input: len of ctx_in */
1517		__u32		ctx_size_out;	/* input/output: len of ctx_out
1518						 *   returns ENOSPC if ctx_out
1519						 *   is too small.
1520						 */
1521		__aligned_u64	ctx_in;
1522		__aligned_u64	ctx_out;
1523		__u32		flags;
1524		__u32		cpu;
1525		__u32		batch_size;
1526	} test;
1527
1528	struct { /* anonymous struct used by BPF_*_GET_*_ID */
1529		union {
1530			__u32		start_id;
1531			__u32		prog_id;
1532			__u32		map_id;
1533			__u32		btf_id;
1534			__u32		link_id;
1535		};
1536		__u32		next_id;
1537		__u32		open_flags;
1538	};
1539
1540	struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */
1541		__u32		bpf_fd;
1542		__u32		info_len;
1543		__aligned_u64	info;
1544	} info;
1545
1546	struct { /* anonymous struct used by BPF_PROG_QUERY command */
1547		union {
1548			__u32	target_fd;	/* target object to query or ... */
1549			__u32	target_ifindex;	/* target ifindex */
1550		};
1551		__u32		attach_type;
1552		__u32		query_flags;
1553		__u32		attach_flags;
1554		__aligned_u64	prog_ids;
1555		union {
1556			__u32	prog_cnt;
1557			__u32	count;
1558		};
1559		__u32		:32;
1560		/* output: per-program attach_flags.
1561		 * not allowed to be set during effective query.
1562		 */
1563		__aligned_u64	prog_attach_flags;
1564		__aligned_u64	link_ids;
1565		__aligned_u64	link_attach_flags;
1566		__u64		revision;
1567	} query;
1568
1569	struct { /* anonymous struct used by BPF_RAW_TRACEPOINT_OPEN command */
1570		__u64 name;
1571		__u32 prog_fd;
1572	} raw_tracepoint;
1573
1574	struct { /* anonymous struct for BPF_BTF_LOAD */
1575		__aligned_u64	btf;
1576		__aligned_u64	btf_log_buf;
1577		__u32		btf_size;
1578		__u32		btf_log_size;
1579		__u32		btf_log_level;
1580		/* output: actual total log contents size (including termintaing zero).
1581		 * It could be both larger than original log_size (if log was
1582		 * truncated), or smaller (if log buffer wasn't filled completely).
1583		 */
1584		__u32		btf_log_true_size;
1585	};
1586
1587	struct {
1588		__u32		pid;		/* input: pid */
1589		__u32		fd;		/* input: fd */
1590		__u32		flags;		/* input: flags */
1591		__u32		buf_len;	/* input/output: buf len */
1592		__aligned_u64	buf;		/* input/output:
1593						 *   tp_name for tracepoint
1594						 *   symbol for kprobe
1595						 *   filename for uprobe
1596						 */
1597		__u32		prog_id;	/* output: prod_id */
1598		__u32		fd_type;	/* output: BPF_FD_TYPE_* */
1599		__u64		probe_offset;	/* output: probe_offset */
1600		__u64		probe_addr;	/* output: probe_addr */
1601	} task_fd_query;
1602
1603	struct { /* struct used by BPF_LINK_CREATE command */
1604		union {
1605			__u32		prog_fd;	/* eBPF program to attach */
1606			__u32		map_fd;		/* struct_ops to attach */
1607		};
1608		union {
1609			__u32	target_fd;	/* target object to attach to or ... */
1610			__u32	target_ifindex; /* target ifindex */
1611		};
1612		__u32		attach_type;	/* attach type */
1613		__u32		flags;		/* extra flags */
1614		union {
1615			__u32	target_btf_id;	/* btf_id of target to attach to */
1616			struct {
1617				__aligned_u64	iter_info;	/* extra bpf_iter_link_info */
1618				__u32		iter_info_len;	/* iter_info length */
1619			};
1620			struct {
1621				/* black box user-provided value passed through
1622				 * to BPF program at the execution time and
1623				 * accessible through bpf_get_attach_cookie() BPF helper
1624				 */
1625				__u64		bpf_cookie;
1626			} perf_event;
1627			struct {
1628				__u32		flags;
1629				__u32		cnt;
1630				__aligned_u64	syms;
1631				__aligned_u64	addrs;
1632				__aligned_u64	cookies;
1633			} kprobe_multi;
1634			struct {
1635				/* this is overlaid with the target_btf_id above. */
1636				__u32		target_btf_id;
1637				/* black box user-provided value passed through
1638				 * to BPF program at the execution time and
1639				 * accessible through bpf_get_attach_cookie() BPF helper
1640				 */
1641				__u64		cookie;
1642			} tracing;
1643			struct {
1644				__u32		pf;
1645				__u32		hooknum;
1646				__s32		priority;
1647				__u32		flags;
1648			} netfilter;
1649			struct {
1650				union {
1651					__u32	relative_fd;
1652					__u32	relative_id;
1653				};
1654				__u64		expected_revision;
1655			} tcx;
1656			struct {
1657				__aligned_u64	path;
1658				__aligned_u64	offsets;
1659				__aligned_u64	ref_ctr_offsets;
1660				__aligned_u64	cookies;
1661				__u32		cnt;
1662				__u32		flags;
1663				__u32		pid;
1664			} uprobe_multi;
1665			struct {
1666				union {
1667					__u32	relative_fd;
1668					__u32	relative_id;
1669				};
1670				__u64		expected_revision;
1671			} netkit;
1672		};
1673	} link_create;
1674
1675	struct { /* struct used by BPF_LINK_UPDATE command */
1676		__u32		link_fd;	/* link fd */
1677		union {
1678			/* new program fd to update link with */
1679			__u32		new_prog_fd;
1680			/* new struct_ops map fd to update link with */
1681			__u32           new_map_fd;
1682		};
1683		__u32		flags;		/* extra flags */
1684		union {
1685			/* expected link's program fd; is specified only if
1686			 * BPF_F_REPLACE flag is set in flags.
1687			 */
1688			__u32		old_prog_fd;
1689			/* expected link's map fd; is specified only
1690			 * if BPF_F_REPLACE flag is set.
1691			 */
1692			__u32           old_map_fd;
1693		};
1694	} link_update;
1695
1696	struct {
1697		__u32		link_fd;
1698	} link_detach;
1699
1700	struct { /* struct used by BPF_ENABLE_STATS command */
1701		__u32		type;
1702	} enable_stats;
1703
1704	struct { /* struct used by BPF_ITER_CREATE command */
1705		__u32		link_fd;
1706		__u32		flags;
1707	} iter_create;
1708
1709	struct { /* struct used by BPF_PROG_BIND_MAP command */
1710		__u32		prog_fd;
1711		__u32		map_fd;
1712		__u32		flags;		/* extra flags */
1713	} prog_bind_map;
1714
1715} __attribute__((aligned(8)));
1716
1717/* The description below is an attempt at providing documentation to eBPF
1718 * developers about the multiple available eBPF helper functions. It can be
1719 * parsed and used to produce a manual page. The workflow is the following,
1720 * and requires the rst2man utility:
1721 *
1722 *     $ ./scripts/bpf_doc.py \
1723 *             --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst
1724 *     $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7
1725 *     $ man /tmp/bpf-helpers.7
1726 *
1727 * Note that in order to produce this external documentation, some RST
1728 * formatting is used in the descriptions to get "bold" and "italics" in
1729 * manual pages. Also note that the few trailing white spaces are
1730 * intentional, removing them would break paragraphs for rst2man.
1731 *
1732 * Start of BPF helper function descriptions:
1733 *
1734 * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)
1735 * 	Description
1736 * 		Perform a lookup in *map* for an entry associated to *key*.
1737 * 	Return
1738 * 		Map value associated to *key*, or **NULL** if no entry was
1739 * 		found.
1740 *
1741 * long bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags)
1742 * 	Description
1743 * 		Add or update the value of the entry associated to *key* in
1744 * 		*map* with *value*. *flags* is one of:
1745 *
1746 * 		**BPF_NOEXIST**
1747 * 			The entry for *key* must not exist in the map.
1748 * 		**BPF_EXIST**
1749 * 			The entry for *key* must already exist in the map.
1750 * 		**BPF_ANY**
1751 * 			No condition on the existence of the entry for *key*.
1752 *
1753 * 		Flag value **BPF_NOEXIST** cannot be used for maps of types
1754 * 		**BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY**  (all
1755 * 		elements always exist), the helper would return an error.
1756 * 	Return
1757 * 		0 on success, or a negative error in case of failure.
1758 *
1759 * long bpf_map_delete_elem(struct bpf_map *map, const void *key)
1760 * 	Description
1761 * 		Delete entry with *key* from *map*.
1762 * 	Return
1763 * 		0 on success, or a negative error in case of failure.
1764 *
1765 * long bpf_probe_read(void *dst, u32 size, const void *unsafe_ptr)
1766 * 	Description
1767 * 		For tracing programs, safely attempt to read *size* bytes from
1768 * 		kernel space address *unsafe_ptr* and store the data in *dst*.
1769 *
1770 * 		Generally, use **bpf_probe_read_user**\ () or
1771 * 		**bpf_probe_read_kernel**\ () instead.
1772 * 	Return
1773 * 		0 on success, or a negative error in case of failure.
1774 *
1775 * u64 bpf_ktime_get_ns(void)
1776 * 	Description
1777 * 		Return the time elapsed since system boot, in nanoseconds.
1778 * 		Does not include time the system was suspended.
1779 * 		See: **clock_gettime**\ (**CLOCK_MONOTONIC**)
1780 * 	Return
1781 * 		Current *ktime*.
1782 *
1783 * long bpf_trace_printk(const char *fmt, u32 fmt_size, ...)
1784 * 	Description
1785 * 		This helper is a "printk()-like" facility for debugging. It
1786 * 		prints a message defined by format *fmt* (of size *fmt_size*)
1787 * 		to file *\/sys/kernel/tracing/trace* from TraceFS, if
1788 * 		available. It can take up to three additional **u64**
1789 * 		arguments (as an eBPF helpers, the total number of arguments is
1790 * 		limited to five).
1791 *
1792 * 		Each time the helper is called, it appends a line to the trace.
1793 * 		Lines are discarded while *\/sys/kernel/tracing/trace* is
1794 * 		open, use *\/sys/kernel/tracing/trace_pipe* to avoid this.
1795 * 		The format of the trace is customizable, and the exact output
1796 * 		one will get depends on the options set in
1797 * 		*\/sys/kernel/tracing/trace_options* (see also the
1798 * 		*README* file under the same directory). However, it usually
1799 * 		defaults to something like:
1800 *
1801 * 		::
1802 *
1803 * 			telnet-470   [001] .N.. 419421.045894: 0x00000001: <formatted msg>
1804 *
1805 * 		In the above:
1806 *
1807 * 			* ``telnet`` is the name of the current task.
1808 * 			* ``470`` is the PID of the current task.
1809 * 			* ``001`` is the CPU number on which the task is
1810 * 			  running.
1811 * 			* In ``.N..``, each character refers to a set of
1812 * 			  options (whether irqs are enabled, scheduling
1813 * 			  options, whether hard/softirqs are running, level of
1814 * 			  preempt_disabled respectively). **N** means that
1815 * 			  **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED**
1816 * 			  are set.
1817 * 			* ``419421.045894`` is a timestamp.
1818 * 			* ``0x00000001`` is a fake value used by BPF for the
1819 * 			  instruction pointer register.
1820 * 			* ``<formatted msg>`` is the message formatted with
1821 * 			  *fmt*.
1822 *
1823 * 		The conversion specifiers supported by *fmt* are similar, but
1824 * 		more limited than for printk(). They are **%d**, **%i**,
1825 * 		**%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**,
1826 * 		**%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size
1827 * 		of field, padding with zeroes, etc.) is available, and the
1828 * 		helper will return **-EINVAL** (but print nothing) if it
1829 * 		encounters an unknown specifier.
1830 *
1831 * 		Also, note that **bpf_trace_printk**\ () is slow, and should
1832 * 		only be used for debugging purposes. For this reason, a notice
1833 * 		block (spanning several lines) is printed to kernel logs and
1834 * 		states that the helper should not be used "for production use"
1835 * 		the first time this helper is used (or more precisely, when
1836 * 		**trace_printk**\ () buffers are allocated). For passing values
1837 * 		to user space, perf events should be preferred.
1838 * 	Return
1839 * 		The number of bytes written to the buffer, or a negative error
1840 * 		in case of failure.
1841 *
1842 * u32 bpf_get_prandom_u32(void)
1843 * 	Description
1844 * 		Get a pseudo-random number.
1845 *
1846 * 		From a security point of view, this helper uses its own
1847 * 		pseudo-random internal state, and cannot be used to infer the
1848 * 		seed of other random functions in the kernel. However, it is
1849 * 		essential to note that the generator used by the helper is not
1850 * 		cryptographically secure.
1851 * 	Return
1852 * 		A random 32-bit unsigned value.
1853 *
1854 * u32 bpf_get_smp_processor_id(void)
1855 * 	Description
1856 * 		Get the SMP (symmetric multiprocessing) processor id. Note that
1857 * 		all programs run with migration disabled, which means that the
1858 * 		SMP processor id is stable during all the execution of the
1859 * 		program.
1860 * 	Return
1861 * 		The SMP id of the processor running the program.
1862 *
1863 * long bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags)
1864 * 	Description
1865 * 		Store *len* bytes from address *from* into the packet
1866 * 		associated to *skb*, at *offset*. *flags* are a combination of
1867 * 		**BPF_F_RECOMPUTE_CSUM** (automatically recompute the
1868 * 		checksum for the packet after storing the bytes) and
1869 * 		**BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\
1870 * 		**->swhash** and *skb*\ **->l4hash** to 0).
1871 *
1872 * 		A call to this helper is susceptible to change the underlying
1873 * 		packet buffer. Therefore, at load time, all checks on pointers
1874 * 		previously done by the verifier are invalidated and must be
1875 * 		performed again, if the helper is used in combination with
1876 * 		direct packet access.
1877 * 	Return
1878 * 		0 on success, or a negative error in case of failure.
1879 *
1880 * long bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size)
1881 * 	Description
1882 * 		Recompute the layer 3 (e.g. IP) checksum for the packet
1883 * 		associated to *skb*. Computation is incremental, so the helper
1884 * 		must know the former value of the header field that was
1885 * 		modified (*from*), the new value of this field (*to*), and the
1886 * 		number of bytes (2 or 4) for this field, stored in *size*.
1887 * 		Alternatively, it is possible to store the difference between
1888 * 		the previous and the new values of the header field in *to*, by
1889 * 		setting *from* and *size* to 0. For both methods, *offset*
1890 * 		indicates the location of the IP checksum within the packet.
1891 *
1892 * 		This helper works in combination with **bpf_csum_diff**\ (),
1893 * 		which does not update the checksum in-place, but offers more
1894 * 		flexibility and can handle sizes larger than 2 or 4 for the
1895 * 		checksum to update.
1896 *
1897 * 		A call to this helper is susceptible to change the underlying
1898 * 		packet buffer. Therefore, at load time, all checks on pointers
1899 * 		previously done by the verifier are invalidated and must be
1900 * 		performed again, if the helper is used in combination with
1901 * 		direct packet access.
1902 * 	Return
1903 * 		0 on success, or a negative error in case of failure.
1904 *
1905 * long bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags)
1906 * 	Description
1907 * 		Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the
1908 * 		packet associated to *skb*. Computation is incremental, so the
1909 * 		helper must know the former value of the header field that was
1910 * 		modified (*from*), the new value of this field (*to*), and the
1911 * 		number of bytes (2 or 4) for this field, stored on the lowest
1912 * 		four bits of *flags*. Alternatively, it is possible to store
1913 * 		the difference between the previous and the new values of the
1914 * 		header field in *to*, by setting *from* and the four lowest
1915 * 		bits of *flags* to 0. For both methods, *offset* indicates the
1916 * 		location of the IP checksum within the packet. In addition to
1917 * 		the size of the field, *flags* can be added (bitwise OR) actual
1918 * 		flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left
1919 * 		untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and
1920 * 		for updates resulting in a null checksum the value is set to
1921 * 		**CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates
1922 * 		the checksum is to be computed against a pseudo-header.
1923 *
1924 * 		This helper works in combination with **bpf_csum_diff**\ (),
1925 * 		which does not update the checksum in-place, but offers more
1926 * 		flexibility and can handle sizes larger than 2 or 4 for the
1927 * 		checksum to update.
1928 *
1929 * 		A call to this helper is susceptible to change the underlying
1930 * 		packet buffer. Therefore, at load time, all checks on pointers
1931 * 		previously done by the verifier are invalidated and must be
1932 * 		performed again, if the helper is used in combination with
1933 * 		direct packet access.
1934 * 	Return
1935 * 		0 on success, or a negative error in case of failure.
1936 *
1937 * long bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index)
1938 * 	Description
1939 * 		This special helper is used to trigger a "tail call", or in
1940 * 		other words, to jump into another eBPF program. The same stack
1941 * 		frame is used (but values on stack and in registers for the
1942 * 		caller are not accessible to the callee). This mechanism allows
1943 * 		for program chaining, either for raising the maximum number of
1944 * 		available eBPF instructions, or to execute given programs in
1945 * 		conditional blocks. For security reasons, there is an upper
1946 * 		limit to the number of successive tail calls that can be
1947 * 		performed.
1948 *
1949 * 		Upon call of this helper, the program attempts to jump into a
1950 * 		program referenced at index *index* in *prog_array_map*, a
1951 * 		special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes
1952 * 		*ctx*, a pointer to the context.
1953 *
1954 * 		If the call succeeds, the kernel immediately runs the first
1955 * 		instruction of the new program. This is not a function call,
1956 * 		and it never returns to the previous program. If the call
1957 * 		fails, then the helper has no effect, and the caller continues
1958 * 		to run its subsequent instructions. A call can fail if the
1959 * 		destination program for the jump does not exist (i.e. *index*
1960 * 		is superior to the number of entries in *prog_array_map*), or
1961 * 		if the maximum number of tail calls has been reached for this
1962 * 		chain of programs. This limit is defined in the kernel by the
1963 * 		macro **MAX_TAIL_CALL_CNT** (not accessible to user space),
1964 *		which is currently set to 33.
1965 * 	Return
1966 * 		0 on success, or a negative error in case of failure.
1967 *
1968 * long bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)
1969 * 	Description
1970 * 		Clone and redirect the packet associated to *skb* to another
1971 * 		net device of index *ifindex*. Both ingress and egress
1972 * 		interfaces can be used for redirection. The **BPF_F_INGRESS**
1973 * 		value in *flags* is used to make the distinction (ingress path
1974 * 		is selected if the flag is present, egress path otherwise).
1975 * 		This is the only flag supported for now.
1976 *
1977 * 		In comparison with **bpf_redirect**\ () helper,
1978 * 		**bpf_clone_redirect**\ () has the associated cost of
1979 * 		duplicating the packet buffer, but this can be executed out of
1980 * 		the eBPF program. Conversely, **bpf_redirect**\ () is more
1981 * 		efficient, but it is handled through an action code where the
1982 * 		redirection happens only after the eBPF program has returned.
1983 *
1984 * 		A call to this helper is susceptible to change the underlying
1985 * 		packet buffer. Therefore, at load time, all checks on pointers
1986 * 		previously done by the verifier are invalidated and must be
1987 * 		performed again, if the helper is used in combination with
1988 * 		direct packet access.
1989 * 	Return
1990 * 		0 on success, or a negative error in case of failure. Positive
1991 * 		error indicates a potential drop or congestion in the target
1992 * 		device. The particular positive error codes are not defined.
1993 *
1994 * u64 bpf_get_current_pid_tgid(void)
1995 * 	Description
1996 * 		Get the current pid and tgid.
1997 * 	Return
1998 * 		A 64-bit integer containing the current tgid and pid, and
1999 * 		created as such:
2000 * 		*current_task*\ **->tgid << 32 \|**
2001 * 		*current_task*\ **->pid**.
2002 *
2003 * u64 bpf_get_current_uid_gid(void)
2004 * 	Description
2005 * 		Get the current uid and gid.
2006 * 	Return
2007 * 		A 64-bit integer containing the current GID and UID, and
2008 * 		created as such: *current_gid* **<< 32 \|** *current_uid*.
2009 *
2010 * long bpf_get_current_comm(void *buf, u32 size_of_buf)
2011 * 	Description
2012 * 		Copy the **comm** attribute of the current task into *buf* of
2013 * 		*size_of_buf*. The **comm** attribute contains the name of
2014 * 		the executable (excluding the path) for the current task. The
2015 * 		*size_of_buf* must be strictly positive. On success, the
2016 * 		helper makes sure that the *buf* is NUL-terminated. On failure,
2017 * 		it is filled with zeroes.
2018 * 	Return
2019 * 		0 on success, or a negative error in case of failure.
2020 *
2021 * u32 bpf_get_cgroup_classid(struct sk_buff *skb)
2022 * 	Description
2023 * 		Retrieve the classid for the current task, i.e. for the net_cls
2024 * 		cgroup to which *skb* belongs.
2025 *
2026 * 		This helper can be used on TC egress path, but not on ingress.
2027 *
2028 * 		The net_cls cgroup provides an interface to tag network packets
2029 * 		based on a user-provided identifier for all traffic coming from
2030 * 		the tasks belonging to the related cgroup. See also the related
2031 * 		kernel documentation, available from the Linux sources in file
2032 * 		*Documentation/admin-guide/cgroup-v1/net_cls.rst*.
2033 *
2034 * 		The Linux kernel has two versions for cgroups: there are
2035 * 		cgroups v1 and cgroups v2. Both are available to users, who can
2036 * 		use a mixture of them, but note that the net_cls cgroup is for
2037 * 		cgroup v1 only. This makes it incompatible with BPF programs
2038 * 		run on cgroups, which is a cgroup-v2-only feature (a socket can
2039 * 		only hold data for one version of cgroups at a time).
2040 *
2041 * 		This helper is only available is the kernel was compiled with
2042 * 		the **CONFIG_CGROUP_NET_CLASSID** configuration option set to
2043 * 		"**y**" or to "**m**".
2044 * 	Return
2045 * 		The classid, or 0 for the default unconfigured classid.
2046 *
2047 * long bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
2048 * 	Description
2049 * 		Push a *vlan_tci* (VLAN tag control information) of protocol
2050 * 		*vlan_proto* to the packet associated to *skb*, then update
2051 * 		the checksum. Note that if *vlan_proto* is different from
2052 * 		**ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to
2053 * 		be **ETH_P_8021Q**.
2054 *
2055 * 		A call to this helper is susceptible to change the underlying
2056 * 		packet buffer. Therefore, at load time, all checks on pointers
2057 * 		previously done by the verifier are invalidated and must be
2058 * 		performed again, if the helper is used in combination with
2059 * 		direct packet access.
2060 * 	Return
2061 * 		0 on success, or a negative error in case of failure.
2062 *
2063 * long bpf_skb_vlan_pop(struct sk_buff *skb)
2064 * 	Description
2065 * 		Pop a VLAN header from the packet associated to *skb*.
2066 *
2067 * 		A call to this helper is susceptible to change the underlying
2068 * 		packet buffer. Therefore, at load time, all checks on pointers
2069 * 		previously done by the verifier are invalidated and must be
2070 * 		performed again, if the helper is used in combination with
2071 * 		direct packet access.
2072 * 	Return
2073 * 		0 on success, or a negative error in case of failure.
2074 *
2075 * long bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
2076 * 	Description
2077 * 		Get tunnel metadata. This helper takes a pointer *key* to an
2078 * 		empty **struct bpf_tunnel_key** of **size**, that will be
2079 * 		filled with tunnel metadata for the packet associated to *skb*.
2080 * 		The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which
2081 * 		indicates that the tunnel is based on IPv6 protocol instead of
2082 * 		IPv4.
2083 *
2084 * 		The **struct bpf_tunnel_key** is an object that generalizes the
2085 * 		principal parameters used by various tunneling protocols into a
2086 * 		single struct. This way, it can be used to easily make a
2087 * 		decision based on the contents of the encapsulation header,
2088 * 		"summarized" in this struct. In particular, it holds the IP
2089 * 		address of the remote end (IPv4 or IPv6, depending on the case)
2090 * 		in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also,
2091 * 		this struct exposes the *key*\ **->tunnel_id**, which is
2092 * 		generally mapped to a VNI (Virtual Network Identifier), making
2093 * 		it programmable together with the **bpf_skb_set_tunnel_key**\
2094 * 		() helper.
2095 *
2096 * 		Let's imagine that the following code is part of a program
2097 * 		attached to the TC ingress interface, on one end of a GRE
2098 * 		tunnel, and is supposed to filter out all messages coming from
2099 * 		remote ends with IPv4 address other than 10.0.0.1:
2100 *
2101 * 		::
2102 *
2103 * 			int ret;
2104 * 			struct bpf_tunnel_key key = {};
2105 *
2106 * 			ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);
2107 * 			if (ret < 0)
2108 * 				return TC_ACT_SHOT;	// drop packet
2109 *
2110 * 			if (key.remote_ipv4 != 0x0a000001)
2111 * 				return TC_ACT_SHOT;	// drop packet
2112 *
2113 * 			return TC_ACT_OK;		// accept packet
2114 *
2115 * 		This interface can also be used with all encapsulation devices
2116 * 		that can operate in "collect metadata" mode: instead of having
2117 * 		one network device per specific configuration, the "collect
2118 * 		metadata" mode only requires a single device where the
2119 * 		configuration can be extracted from this helper.
2120 *
2121 * 		This can be used together with various tunnels such as VXLan,
2122 * 		Geneve, GRE or IP in IP (IPIP).
2123 * 	Return
2124 * 		0 on success, or a negative error in case of failure.
2125 *
2126 * long bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
2127 * 	Description
2128 * 		Populate tunnel metadata for packet associated to *skb.* The
2129 * 		tunnel metadata is set to the contents of *key*, of *size*. The
2130 * 		*flags* can be set to a combination of the following values:
2131 *
2132 * 		**BPF_F_TUNINFO_IPV6**
2133 * 			Indicate that the tunnel is based on IPv6 protocol
2134 * 			instead of IPv4.
2135 * 		**BPF_F_ZERO_CSUM_TX**
2136 * 			For IPv4 packets, add a flag to tunnel metadata
2137 * 			indicating that checksum computation should be skipped
2138 * 			and checksum set to zeroes.
2139 * 		**BPF_F_DONT_FRAGMENT**
2140 * 			Add a flag to tunnel metadata indicating that the
2141 * 			packet should not be fragmented.
2142 * 		**BPF_F_SEQ_NUMBER**
2143 * 			Add a flag to tunnel metadata indicating that a
2144 * 			sequence number should be added to tunnel header before
2145 * 			sending the packet. This flag was added for GRE
2146 * 			encapsulation, but might be used with other protocols
2147 * 			as well in the future.
2148 * 		**BPF_F_NO_TUNNEL_KEY**
2149 * 			Add a flag to tunnel metadata indicating that no tunnel
2150 * 			key should be set in the resulting tunnel header.
2151 *
2152 * 		Here is a typical usage on the transmit path:
2153 *
2154 * 		::
2155 *
2156 * 			struct bpf_tunnel_key key;
2157 * 			     populate key ...
2158 * 			bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);
2159 * 			bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);
2160 *
2161 * 		See also the description of the **bpf_skb_get_tunnel_key**\ ()
2162 * 		helper for additional information.
2163 * 	Return
2164 * 		0 on success, or a negative error in case of failure.
2165 *
2166 * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)
2167 * 	Description
2168 * 		Read the value of a perf event counter. This helper relies on a
2169 * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of
2170 * 		the perf event counter is selected when *map* is updated with
2171 * 		perf event file descriptors. The *map* is an array whose size
2172 * 		is the number of available CPUs, and each cell contains a value
2173 * 		relative to one CPU. The value to retrieve is indicated by
2174 * 		*flags*, that contains the index of the CPU to look up, masked
2175 * 		with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
2176 * 		**BPF_F_CURRENT_CPU** to indicate that the value for the
2177 * 		current CPU should be retrieved.
2178 *
2179 * 		Note that before Linux 4.13, only hardware perf event can be
2180 * 		retrieved.
2181 *
2182 * 		Also, be aware that the newer helper
2183 * 		**bpf_perf_event_read_value**\ () is recommended over
2184 * 		**bpf_perf_event_read**\ () in general. The latter has some ABI
2185 * 		quirks where error and counter value are used as a return code
2186 * 		(which is wrong to do since ranges may overlap). This issue is
2187 * 		fixed with **bpf_perf_event_read_value**\ (), which at the same
2188 * 		time provides more features over the **bpf_perf_event_read**\
2189 * 		() interface. Please refer to the description of
2190 * 		**bpf_perf_event_read_value**\ () for details.
2191 * 	Return
2192 * 		The value of the perf event counter read from the map, or a
2193 * 		negative error code in case of failure.
2194 *
2195 * long bpf_redirect(u32 ifindex, u64 flags)
2196 * 	Description
2197 * 		Redirect the packet to another net device of index *ifindex*.
2198 * 		This helper is somewhat similar to **bpf_clone_redirect**\
2199 * 		(), except that the packet is not cloned, which provides
2200 * 		increased performance.
2201 *
2202 * 		Except for XDP, both ingress and egress interfaces can be used
2203 * 		for redirection. The **BPF_F_INGRESS** value in *flags* is used
2204 * 		to make the distinction (ingress path is selected if the flag
2205 * 		is present, egress path otherwise). Currently, XDP only
2206 * 		supports redirection to the egress interface, and accepts no
2207 * 		flag at all.
2208 *
2209 * 		The same effect can also be attained with the more generic
2210 * 		**bpf_redirect_map**\ (), which uses a BPF map to store the
2211 * 		redirect target instead of providing it directly to the helper.
2212 * 	Return
2213 * 		For XDP, the helper returns **XDP_REDIRECT** on success or
2214 * 		**XDP_ABORTED** on error. For other program types, the values
2215 * 		are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on
2216 * 		error.
2217 *
2218 * u32 bpf_get_route_realm(struct sk_buff *skb)
2219 * 	Description
2220 * 		Retrieve the realm or the route, that is to say the
2221 * 		**tclassid** field of the destination for the *skb*. The
2222 * 		identifier retrieved is a user-provided tag, similar to the
2223 * 		one used with the net_cls cgroup (see description for
2224 * 		**bpf_get_cgroup_classid**\ () helper), but here this tag is
2225 * 		held by a route (a destination entry), not by a task.
2226 *
2227 * 		Retrieving this identifier works with the clsact TC egress hook
2228 * 		(see also **tc-bpf(8)**), or alternatively on conventional
2229 * 		classful egress qdiscs, but not on TC ingress path. In case of
2230 * 		clsact TC egress hook, this has the advantage that, internally,
2231 * 		the destination entry has not been dropped yet in the transmit
2232 * 		path. Therefore, the destination entry does not need to be
2233 * 		artificially held via **netif_keep_dst**\ () for a classful
2234 * 		qdisc until the *skb* is freed.
2235 *
2236 * 		This helper is available only if the kernel was compiled with
2237 * 		**CONFIG_IP_ROUTE_CLASSID** configuration option.
2238 * 	Return
2239 * 		The realm of the route for the packet associated to *skb*, or 0
2240 * 		if none was found.
2241 *
2242 * long bpf_perf_event_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
2243 * 	Description
2244 * 		Write raw *data* blob into a special BPF perf event held by
2245 * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
2246 * 		event must have the following attributes: **PERF_SAMPLE_RAW**
2247 * 		as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
2248 * 		**PERF_COUNT_SW_BPF_OUTPUT** as **config**.
2249 *
2250 * 		The *flags* are used to indicate the index in *map* for which
2251 * 		the value must be put, masked with **BPF_F_INDEX_MASK**.
2252 * 		Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
2253 * 		to indicate that the index of the current CPU core should be
2254 * 		used.
2255 *
2256 * 		The value to write, of *size*, is passed through eBPF stack and
2257 * 		pointed by *data*.
2258 *
2259 * 		The context of the program *ctx* needs also be passed to the
2260 * 		helper.
2261 *
2262 * 		On user space, a program willing to read the values needs to
2263 * 		call **perf_event_open**\ () on the perf event (either for
2264 * 		one or for all CPUs) and to store the file descriptor into the
2265 * 		*map*. This must be done before the eBPF program can send data
2266 * 		into it. An example is available in file
2267 * 		*samples/bpf/trace_output_user.c* in the Linux kernel source
2268 * 		tree (the eBPF program counterpart is in
2269 * 		*samples/bpf/trace_output_kern.c*).
2270 *
2271 * 		**bpf_perf_event_output**\ () achieves better performance
2272 * 		than **bpf_trace_printk**\ () for sharing data with user
2273 * 		space, and is much better suitable for streaming data from eBPF
2274 * 		programs.
2275 *
2276 * 		Note that this helper is not restricted to tracing use cases
2277 * 		and can be used with programs attached to TC or XDP as well,
2278 * 		where it allows for passing data to user space listeners. Data
2279 * 		can be:
2280 *
2281 * 		* Only custom structs,
2282 * 		* Only the packet payload, or
2283 * 		* A combination of both.
2284 * 	Return
2285 * 		0 on success, or a negative error in case of failure.
2286 *
2287 * long bpf_skb_load_bytes(const void *skb, u32 offset, void *to, u32 len)
2288 * 	Description
2289 * 		This helper was provided as an easy way to load data from a
2290 * 		packet. It can be used to load *len* bytes from *offset* from
2291 * 		the packet associated to *skb*, into the buffer pointed by
2292 * 		*to*.
2293 *
2294 * 		Since Linux 4.7, usage of this helper has mostly been replaced
2295 * 		by "direct packet access", enabling packet data to be
2296 * 		manipulated with *skb*\ **->data** and *skb*\ **->data_end**
2297 * 		pointing respectively to the first byte of packet data and to
2298 * 		the byte after the last byte of packet data. However, it
2299 * 		remains useful if one wishes to read large quantities of data
2300 * 		at once from a packet into the eBPF stack.
2301 * 	Return
2302 * 		0 on success, or a negative error in case of failure.
2303 *
2304 * long bpf_get_stackid(void *ctx, struct bpf_map *map, u64 flags)
2305 * 	Description
2306 * 		Walk a user or a kernel stack and return its id. To achieve
2307 * 		this, the helper needs *ctx*, which is a pointer to the context
2308 * 		on which the tracing program is executed, and a pointer to a
2309 * 		*map* of type **BPF_MAP_TYPE_STACK_TRACE**.
2310 *
2311 * 		The last argument, *flags*, holds the number of stack frames to
2312 * 		skip (from 0 to 255), masked with
2313 * 		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
2314 * 		a combination of the following flags:
2315 *
2316 * 		**BPF_F_USER_STACK**
2317 * 			Collect a user space stack instead of a kernel stack.
2318 * 		**BPF_F_FAST_STACK_CMP**
2319 * 			Compare stacks by hash only.
2320 * 		**BPF_F_REUSE_STACKID**
2321 * 			If two different stacks hash into the same *stackid*,
2322 * 			discard the old one.
2323 *
2324 * 		The stack id retrieved is a 32 bit long integer handle which
2325 * 		can be further combined with other data (including other stack
2326 * 		ids) and used as a key into maps. This can be useful for
2327 * 		generating a variety of graphs (such as flame graphs or off-cpu
2328 * 		graphs).
2329 *
2330 * 		For walking a stack, this helper is an improvement over
2331 * 		**bpf_probe_read**\ (), which can be used with unrolled loops
2332 * 		but is not efficient and consumes a lot of eBPF instructions.
2333 * 		Instead, **bpf_get_stackid**\ () can collect up to
2334 * 		**PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that
2335 * 		this limit can be controlled with the **sysctl** program, and
2336 * 		that it should be manually increased in order to profile long
2337 * 		user stacks (such as stacks for Java programs). To do so, use:
2338 *
2339 * 		::
2340 *
2341 * 			# sysctl kernel.perf_event_max_stack=<new value>
2342 * 	Return
2343 * 		The positive or null stack id on success, or a negative error
2344 * 		in case of failure.
2345 *
2346 * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed)
2347 * 	Description
2348 * 		Compute a checksum difference, from the raw buffer pointed by
2349 * 		*from*, of length *from_size* (that must be a multiple of 4),
2350 * 		towards the raw buffer pointed by *to*, of size *to_size*
2351 * 		(same remark). An optional *seed* can be added to the value
2352 * 		(this can be cascaded, the seed may come from a previous call
2353 * 		to the helper).
2354 *
2355 * 		This is flexible enough to be used in several ways:
2356 *
2357 * 		* With *from_size* == 0, *to_size* > 0 and *seed* set to
2358 * 		  checksum, it can be used when pushing new data.
2359 * 		* With *from_size* > 0, *to_size* == 0 and *seed* set to
2360 * 		  checksum, it can be used when removing data from a packet.
2361 * 		* With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it
2362 * 		  can be used to compute a diff. Note that *from_size* and
2363 * 		  *to_size* do not need to be equal.
2364 *
2365 * 		This helper can be used in combination with
2366 * 		**bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to
2367 * 		which one can feed in the difference computed with
2368 * 		**bpf_csum_diff**\ ().
2369 * 	Return
2370 * 		The checksum result, or a negative error code in case of
2371 * 		failure.
2372 *
2373 * long bpf_skb_get_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)
2374 * 	Description
2375 * 		Retrieve tunnel options metadata for the packet associated to
2376 * 		*skb*, and store the raw tunnel option data to the buffer *opt*
2377 * 		of *size*.
2378 *
2379 * 		This helper can be used with encapsulation devices that can
2380 * 		operate in "collect metadata" mode (please refer to the related
2381 * 		note in the description of **bpf_skb_get_tunnel_key**\ () for
2382 * 		more details). A particular example where this can be used is
2383 * 		in combination with the Geneve encapsulation protocol, where it
2384 * 		allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper)
2385 * 		and retrieving arbitrary TLVs (Type-Length-Value headers) from
2386 * 		the eBPF program. This allows for full customization of these
2387 * 		headers.
2388 * 	Return
2389 * 		The size of the option data retrieved.
2390 *
2391 * long bpf_skb_set_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)
2392 * 	Description
2393 * 		Set tunnel options metadata for the packet associated to *skb*
2394 * 		to the option data contained in the raw buffer *opt* of *size*.
2395 *
2396 * 		See also the description of the **bpf_skb_get_tunnel_opt**\ ()
2397 * 		helper for additional information.
2398 * 	Return
2399 * 		0 on success, or a negative error in case of failure.
2400 *
2401 * long bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags)
2402 * 	Description
2403 * 		Change the protocol of the *skb* to *proto*. Currently
2404 * 		supported are transition from IPv4 to IPv6, and from IPv6 to
2405 * 		IPv4. The helper takes care of the groundwork for the
2406 * 		transition, including resizing the socket buffer. The eBPF
2407 * 		program is expected to fill the new headers, if any, via
2408 * 		**skb_store_bytes**\ () and to recompute the checksums with
2409 * 		**bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\
2410 * 		(). The main case for this helper is to perform NAT64
2411 * 		operations out of an eBPF program.
2412 *
2413 * 		Internally, the GSO type is marked as dodgy so that headers are
2414 * 		checked and segments are recalculated by the GSO/GRO engine.
2415 * 		The size for GSO target is adapted as well.
2416 *
2417 * 		All values for *flags* are reserved for future usage, and must
2418 * 		be left at zero.
2419 *
2420 * 		A call to this helper is susceptible to change the underlying
2421 * 		packet buffer. Therefore, at load time, all checks on pointers
2422 * 		previously done by the verifier are invalidated and must be
2423 * 		performed again, if the helper is used in combination with
2424 * 		direct packet access.
2425 * 	Return
2426 * 		0 on success, or a negative error in case of failure.
2427 *
2428 * long bpf_skb_change_type(struct sk_buff *skb, u32 type)
2429 * 	Description
2430 * 		Change the packet type for the packet associated to *skb*. This
2431 * 		comes down to setting *skb*\ **->pkt_type** to *type*, except
2432 * 		the eBPF program does not have a write access to *skb*\
2433 * 		**->pkt_type** beside this helper. Using a helper here allows
2434 * 		for graceful handling of errors.
2435 *
2436 * 		The major use case is to change incoming *skb*s to
2437 * 		**PACKET_HOST** in a programmatic way instead of having to
2438 * 		recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for
2439 * 		example.
2440 *
2441 * 		Note that *type* only allows certain values. At this time, they
2442 * 		are:
2443 *
2444 * 		**PACKET_HOST**
2445 * 			Packet is for us.
2446 * 		**PACKET_BROADCAST**
2447 * 			Send packet to all.
2448 * 		**PACKET_MULTICAST**
2449 * 			Send packet to group.
2450 * 		**PACKET_OTHERHOST**
2451 * 			Send packet to someone else.
2452 * 	Return
2453 * 		0 on success, or a negative error in case of failure.
2454 *
2455 * long bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index)
2456 * 	Description
2457 * 		Check whether *skb* is a descendant of the cgroup2 held by
2458 * 		*map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
2459 * 	Return
2460 * 		The return value depends on the result of the test, and can be:
2461 *
2462 * 		* 0, if the *skb* failed the cgroup2 descendant test.
2463 * 		* 1, if the *skb* succeeded the cgroup2 descendant test.
2464 * 		* A negative error code, if an error occurred.
2465 *
2466 * u32 bpf_get_hash_recalc(struct sk_buff *skb)
2467 * 	Description
2468 * 		Retrieve the hash of the packet, *skb*\ **->hash**. If it is
2469 * 		not set, in particular if the hash was cleared due to mangling,
2470 * 		recompute this hash. Later accesses to the hash can be done
2471 * 		directly with *skb*\ **->hash**.
2472 *
2473 * 		Calling **bpf_set_hash_invalid**\ (), changing a packet
2474 * 		prototype with **bpf_skb_change_proto**\ (), or calling
2475 * 		**bpf_skb_store_bytes**\ () with the
2476 * 		**BPF_F_INVALIDATE_HASH** are actions susceptible to clear
2477 * 		the hash and to trigger a new computation for the next call to
2478 * 		**bpf_get_hash_recalc**\ ().
2479 * 	Return
2480 * 		The 32-bit hash.
2481 *
2482 * u64 bpf_get_current_task(void)
2483 * 	Description
2484 * 		Get the current task.
2485 * 	Return
2486 * 		A pointer to the current task struct.
2487 *
2488 * long bpf_probe_write_user(void *dst, const void *src, u32 len)
2489 * 	Description
2490 * 		Attempt in a safe way to write *len* bytes from the buffer
2491 * 		*src* to *dst* in memory. It only works for threads that are in
2492 * 		user context, and *dst* must be a valid user space address.
2493 *
2494 * 		This helper should not be used to implement any kind of
2495 * 		security mechanism because of TOC-TOU attacks, but rather to
2496 * 		debug, divert, and manipulate execution of semi-cooperative
2497 * 		processes.
2498 *
2499 * 		Keep in mind that this feature is meant for experiments, and it
2500 * 		has a risk of crashing the system and running programs.
2501 * 		Therefore, when an eBPF program using this helper is attached,
2502 * 		a warning including PID and process name is printed to kernel
2503 * 		logs.
2504 * 	Return
2505 * 		0 on success, or a negative error in case of failure.
2506 *
2507 * long bpf_current_task_under_cgroup(struct bpf_map *map, u32 index)
2508 * 	Description
2509 * 		Check whether the probe is being run is the context of a given
2510 * 		subset of the cgroup2 hierarchy. The cgroup2 to test is held by
2511 * 		*map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
2512 * 	Return
2513 * 		The return value depends on the result of the test, and can be:
2514 *
2515 *		* 1, if current task belongs to the cgroup2.
2516 *		* 0, if current task does not belong to the cgroup2.
2517 * 		* A negative error code, if an error occurred.
2518 *
2519 * long bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags)
2520 * 	Description
2521 * 		Resize (trim or grow) the packet associated to *skb* to the
2522 * 		new *len*. The *flags* are reserved for future usage, and must
2523 * 		be left at zero.
2524 *
2525 * 		The basic idea is that the helper performs the needed work to
2526 * 		change the size of the packet, then the eBPF program rewrites
2527 * 		the rest via helpers like **bpf_skb_store_bytes**\ (),
2528 * 		**bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ ()
2529 * 		and others. This helper is a slow path utility intended for
2530 * 		replies with control messages. And because it is targeted for
2531 * 		slow path, the helper itself can afford to be slow: it
2532 * 		implicitly linearizes, unclones and drops offloads from the
2533 * 		*skb*.
2534 *
2535 * 		A call to this helper is susceptible to change the underlying
2536 * 		packet buffer. Therefore, at load time, all checks on pointers
2537 * 		previously done by the verifier are invalidated and must be
2538 * 		performed again, if the helper is used in combination with
2539 * 		direct packet access.
2540 * 	Return
2541 * 		0 on success, or a negative error in case of failure.
2542 *
2543 * long bpf_skb_pull_data(struct sk_buff *skb, u32 len)
2544 * 	Description
2545 * 		Pull in non-linear data in case the *skb* is non-linear and not
2546 * 		all of *len* are part of the linear section. Make *len* bytes
2547 * 		from *skb* readable and writable. If a zero value is passed for
2548 *		*len*, then all bytes in the linear part of *skb* will be made
2549 *		readable and writable.
2550 *
2551 * 		This helper is only needed for reading and writing with direct
2552 * 		packet access.
2553 *
2554 * 		For direct packet access, testing that offsets to access
2555 * 		are within packet boundaries (test on *skb*\ **->data_end**) is
2556 * 		susceptible to fail if offsets are invalid, or if the requested
2557 * 		data is in non-linear parts of the *skb*. On failure the
2558 * 		program can just bail out, or in the case of a non-linear
2559 * 		buffer, use a helper to make the data available. The
2560 * 		**bpf_skb_load_bytes**\ () helper is a first solution to access
2561 * 		the data. Another one consists in using **bpf_skb_pull_data**
2562 * 		to pull in once the non-linear parts, then retesting and
2563 * 		eventually access the data.
2564 *
2565 * 		At the same time, this also makes sure the *skb* is uncloned,
2566 * 		which is a necessary condition for direct write. As this needs
2567 * 		to be an invariant for the write part only, the verifier
2568 * 		detects writes and adds a prologue that is calling
2569 * 		**bpf_skb_pull_data()** to effectively unclone the *skb* from
2570 * 		the very beginning in case it is indeed cloned.
2571 *
2572 * 		A call to this helper is susceptible to change the underlying
2573 * 		packet buffer. Therefore, at load time, all checks on pointers
2574 * 		previously done by the verifier are invalidated and must be
2575 * 		performed again, if the helper is used in combination with
2576 * 		direct packet access.
2577 * 	Return
2578 * 		0 on success, or a negative error in case of failure.
2579 *
2580 * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum)
2581 * 	Description
2582 * 		Add the checksum *csum* into *skb*\ **->csum** in case the
2583 * 		driver has supplied a checksum for the entire packet into that
2584 * 		field. Return an error otherwise. This helper is intended to be
2585 * 		used in combination with **bpf_csum_diff**\ (), in particular
2586 * 		when the checksum needs to be updated after data has been
2587 * 		written into the packet through direct packet access.
2588 * 	Return
2589 * 		The checksum on success, or a negative error code in case of
2590 * 		failure.
2591 *
2592 * void bpf_set_hash_invalid(struct sk_buff *skb)
2593 * 	Description
2594 * 		Invalidate the current *skb*\ **->hash**. It can be used after
2595 * 		mangling on headers through direct packet access, in order to
2596 * 		indicate that the hash is outdated and to trigger a
2597 * 		recalculation the next time the kernel tries to access this
2598 * 		hash or when the **bpf_get_hash_recalc**\ () helper is called.
2599 * 	Return
2600 * 		void.
2601 *
2602 * long bpf_get_numa_node_id(void)
2603 * 	Description
2604 * 		Return the id of the current NUMA node. The primary use case
2605 * 		for this helper is the selection of sockets for the local NUMA
2606 * 		node, when the program is attached to sockets using the
2607 * 		**SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**),
2608 * 		but the helper is also available to other eBPF program types,
2609 * 		similarly to **bpf_get_smp_processor_id**\ ().
2610 * 	Return
2611 * 		The id of current NUMA node.
2612 *
2613 * long bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags)
2614 * 	Description
2615 * 		Grows headroom of packet associated to *skb* and adjusts the
2616 * 		offset of the MAC header accordingly, adding *len* bytes of
2617 * 		space. It automatically extends and reallocates memory as
2618 * 		required.
2619 *
2620 * 		This helper can be used on a layer 3 *skb* to push a MAC header
2621 * 		for redirection into a layer 2 device.
2622 *
2623 * 		All values for *flags* are reserved for future usage, and must
2624 * 		be left at zero.
2625 *
2626 * 		A call to this helper is susceptible to change the underlying
2627 * 		packet buffer. Therefore, at load time, all checks on pointers
2628 * 		previously done by the verifier are invalidated and must be
2629 * 		performed again, if the helper is used in combination with
2630 * 		direct packet access.
2631 * 	Return
2632 * 		0 on success, or a negative error in case of failure.
2633 *
2634 * long bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta)
2635 * 	Description
2636 * 		Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that
2637 * 		it is possible to use a negative value for *delta*. This helper
2638 * 		can be used to prepare the packet for pushing or popping
2639 * 		headers.
2640 *
2641 * 		A call to this helper is susceptible to change the underlying
2642 * 		packet buffer. Therefore, at load time, all checks on pointers
2643 * 		previously done by the verifier are invalidated and must be
2644 * 		performed again, if the helper is used in combination with
2645 * 		direct packet access.
2646 * 	Return
2647 * 		0 on success, or a negative error in case of failure.
2648 *
2649 * long bpf_probe_read_str(void *dst, u32 size, const void *unsafe_ptr)
2650 * 	Description
2651 * 		Copy a NUL terminated string from an unsafe kernel address
2652 * 		*unsafe_ptr* to *dst*. See **bpf_probe_read_kernel_str**\ () for
2653 * 		more details.
2654 *
2655 * 		Generally, use **bpf_probe_read_user_str**\ () or
2656 * 		**bpf_probe_read_kernel_str**\ () instead.
2657 * 	Return
2658 * 		On success, the strictly positive length of the string,
2659 * 		including the trailing NUL character. On error, a negative
2660 * 		value.
2661 *
2662 * u64 bpf_get_socket_cookie(struct sk_buff *skb)
2663 * 	Description
2664 * 		If the **struct sk_buff** pointed by *skb* has a known socket,
2665 * 		retrieve the cookie (generated by the kernel) of this socket.
2666 * 		If no cookie has been set yet, generate a new cookie. Once
2667 * 		generated, the socket cookie remains stable for the life of the
2668 * 		socket. This helper can be useful for monitoring per socket
2669 * 		networking traffic statistics as it provides a global socket
2670 * 		identifier that can be assumed unique.
2671 * 	Return
2672 * 		A 8-byte long unique number on success, or 0 if the socket
2673 * 		field is missing inside *skb*.
2674 *
2675 * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx)
2676 * 	Description
2677 * 		Equivalent to bpf_get_socket_cookie() helper that accepts
2678 * 		*skb*, but gets socket from **struct bpf_sock_addr** context.
2679 * 	Return
2680 * 		A 8-byte long unique number.
2681 *
2682 * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx)
2683 * 	Description
2684 * 		Equivalent to **bpf_get_socket_cookie**\ () helper that accepts
2685 * 		*skb*, but gets socket from **struct bpf_sock_ops** context.
2686 * 	Return
2687 * 		A 8-byte long unique number.
2688 *
2689 * u64 bpf_get_socket_cookie(struct sock *sk)
2690 * 	Description
2691 * 		Equivalent to **bpf_get_socket_cookie**\ () helper that accepts
2692 * 		*sk*, but gets socket from a BTF **struct sock**. This helper
2693 * 		also works for sleepable programs.
2694 * 	Return
2695 * 		A 8-byte long unique number or 0 if *sk* is NULL.
2696 *
2697 * u32 bpf_get_socket_uid(struct sk_buff *skb)
2698 * 	Description
2699 * 		Get the owner UID of the socked associated to *skb*.
2700 * 	Return
2701 * 		The owner UID of the socket associated to *skb*. If the socket
2702 * 		is **NULL**, or if it is not a full socket (i.e. if it is a
2703 * 		time-wait or a request socket instead), **overflowuid** value
2704 * 		is returned (note that **overflowuid** might also be the actual
2705 * 		UID value for the socket).
2706 *
2707 * long bpf_set_hash(struct sk_buff *skb, u32 hash)
2708 * 	Description
2709 * 		Set the full hash for *skb* (set the field *skb*\ **->hash**)
2710 * 		to value *hash*.
2711 * 	Return
2712 * 		0
2713 *
2714 * long bpf_setsockopt(void *bpf_socket, int level, int optname, void *optval, int optlen)
2715 * 	Description
2716 * 		Emulate a call to **setsockopt()** on the socket associated to
2717 * 		*bpf_socket*, which must be a full socket. The *level* at
2718 * 		which the option resides and the name *optname* of the option
2719 * 		must be specified, see **setsockopt(2)** for more information.
2720 * 		The option value of length *optlen* is pointed by *optval*.
2721 *
2722 * 		*bpf_socket* should be one of the following:
2723 *
2724 * 		* **struct bpf_sock_ops** for **BPF_PROG_TYPE_SOCK_OPS**.
2725 *		* **struct bpf_sock_addr** for **BPF_CGROUP_INET4_CONNECT**,
2726 *		  **BPF_CGROUP_INET6_CONNECT** and **BPF_CGROUP_UNIX_CONNECT**.
2727 *
2728 * 		This helper actually implements a subset of **setsockopt()**.
2729 * 		It supports the following *level*\ s:
2730 *
2731 * 		* **SOL_SOCKET**, which supports the following *optname*\ s:
2732 * 		  **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**,
2733 * 		  **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**,
2734 * 		  **SO_BINDTODEVICE**, **SO_KEEPALIVE**, **SO_REUSEADDR**,
2735 * 		  **SO_REUSEPORT**, **SO_BINDTOIFINDEX**, **SO_TXREHASH**.
2736 * 		* **IPPROTO_TCP**, which supports the following *optname*\ s:
2737 * 		  **TCP_CONGESTION**, **TCP_BPF_IW**,
2738 * 		  **TCP_BPF_SNDCWND_CLAMP**, **TCP_SAVE_SYN**,
2739 * 		  **TCP_KEEPIDLE**, **TCP_KEEPINTVL**, **TCP_KEEPCNT**,
2740 * 		  **TCP_SYNCNT**, **TCP_USER_TIMEOUT**, **TCP_NOTSENT_LOWAT**,
2741 * 		  **TCP_NODELAY**, **TCP_MAXSEG**, **TCP_WINDOW_CLAMP**,
2742 * 		  **TCP_THIN_LINEAR_TIMEOUTS**, **TCP_BPF_DELACK_MAX**,
2743 * 		  **TCP_BPF_RTO_MIN**.
2744 * 		* **IPPROTO_IP**, which supports *optname* **IP_TOS**.
2745 * 		* **IPPROTO_IPV6**, which supports the following *optname*\ s:
2746 * 		  **IPV6_TCLASS**, **IPV6_AUTOFLOWLABEL**.
2747 * 	Return
2748 * 		0 on success, or a negative error in case of failure.
2749 *
2750 * long bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags)
2751 * 	Description
2752 * 		Grow or shrink the room for data in the packet associated to
2753 * 		*skb* by *len_diff*, and according to the selected *mode*.
2754 *
2755 * 		By default, the helper will reset any offloaded checksum
2756 * 		indicator of the skb to CHECKSUM_NONE. This can be avoided
2757 * 		by the following flag:
2758 *
2759 * 		* **BPF_F_ADJ_ROOM_NO_CSUM_RESET**: Do not reset offloaded
2760 * 		  checksum data of the skb to CHECKSUM_NONE.
2761 *
2762 *		There are two supported modes at this time:
2763 *
2764 *		* **BPF_ADJ_ROOM_MAC**: Adjust room at the mac layer
2765 * 		  (room space is added or removed between the layer 2 and
2766 * 		  layer 3 headers).
2767 *
2768 * 		* **BPF_ADJ_ROOM_NET**: Adjust room at the network layer
2769 * 		  (room space is added or removed between the layer 3 and
2770 * 		  layer 4 headers).
2771 *
2772 *		The following flags are supported at this time:
2773 *
2774 *		* **BPF_F_ADJ_ROOM_FIXED_GSO**: Do not adjust gso_size.
2775 *		  Adjusting mss in this way is not allowed for datagrams.
2776 *
2777 *		* **BPF_F_ADJ_ROOM_ENCAP_L3_IPV4**,
2778 *		  **BPF_F_ADJ_ROOM_ENCAP_L3_IPV6**:
2779 *		  Any new space is reserved to hold a tunnel header.
2780 *		  Configure skb offsets and other fields accordingly.
2781 *
2782 *		* **BPF_F_ADJ_ROOM_ENCAP_L4_GRE**,
2783 *		  **BPF_F_ADJ_ROOM_ENCAP_L4_UDP**:
2784 *		  Use with ENCAP_L3 flags to further specify the tunnel type.
2785 *
2786 *		* **BPF_F_ADJ_ROOM_ENCAP_L2**\ (*len*):
2787 *		  Use with ENCAP_L3/L4 flags to further specify the tunnel
2788 *		  type; *len* is the length of the inner MAC header.
2789 *
2790 *		* **BPF_F_ADJ_ROOM_ENCAP_L2_ETH**:
2791 *		  Use with BPF_F_ADJ_ROOM_ENCAP_L2 flag to further specify the
2792 *		  L2 type as Ethernet.
2793 *
2794 *		* **BPF_F_ADJ_ROOM_DECAP_L3_IPV4**,
2795 *		  **BPF_F_ADJ_ROOM_DECAP_L3_IPV6**:
2796 *		  Indicate the new IP header version after decapsulating the outer
2797 *		  IP header. Used when the inner and outer IP versions are different.
2798 *
2799 * 		A call to this helper is susceptible to change the underlying
2800 * 		packet buffer. Therefore, at load time, all checks on pointers
2801 * 		previously done by the verifier are invalidated and must be
2802 * 		performed again, if the helper is used in combination with
2803 * 		direct packet access.
2804 * 	Return
2805 * 		0 on success, or a negative error in case of failure.
2806 *
2807 * long bpf_redirect_map(struct bpf_map *map, u64 key, u64 flags)
2808 * 	Description
2809 * 		Redirect the packet to the endpoint referenced by *map* at
2810 * 		index *key*. Depending on its type, this *map* can contain
2811 * 		references to net devices (for forwarding packets through other
2812 * 		ports), or to CPUs (for redirecting XDP frames to another CPU;
2813 * 		but this is only implemented for native XDP (with driver
2814 * 		support) as of this writing).
2815 *
2816 * 		The lower two bits of *flags* are used as the return code if
2817 * 		the map lookup fails. This is so that the return value can be
2818 * 		one of the XDP program return codes up to **XDP_TX**, as chosen
2819 * 		by the caller. The higher bits of *flags* can be set to
2820 * 		BPF_F_BROADCAST or BPF_F_EXCLUDE_INGRESS as defined below.
2821 *
2822 * 		With BPF_F_BROADCAST the packet will be broadcasted to all the
2823 * 		interfaces in the map, with BPF_F_EXCLUDE_INGRESS the ingress
2824 * 		interface will be excluded when do broadcasting.
2825 *
2826 * 		See also **bpf_redirect**\ (), which only supports redirecting
2827 * 		to an ifindex, but doesn't require a map to do so.
2828 * 	Return
2829 * 		**XDP_REDIRECT** on success, or the value of the two lower bits
2830 * 		of the *flags* argument on error.
2831 *
2832 * long bpf_sk_redirect_map(struct sk_buff *skb, struct bpf_map *map, u32 key, u64 flags)
2833 * 	Description
2834 * 		Redirect the packet to the socket referenced by *map* (of type
2835 * 		**BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
2836 * 		egress interfaces can be used for redirection. The
2837 * 		**BPF_F_INGRESS** value in *flags* is used to make the
2838 * 		distinction (ingress path is selected if the flag is present,
2839 * 		egress path otherwise). This is the only flag supported for now.
2840 * 	Return
2841 * 		**SK_PASS** on success, or **SK_DROP** on error.
2842 *
2843 * long bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
2844 * 	Description
2845 * 		Add an entry to, or update a *map* referencing sockets. The
2846 * 		*skops* is used as a new value for the entry associated to
2847 * 		*key*. *flags* is one of:
2848 *
2849 * 		**BPF_NOEXIST**
2850 * 			The entry for *key* must not exist in the map.
2851 * 		**BPF_EXIST**
2852 * 			The entry for *key* must already exist in the map.
2853 * 		**BPF_ANY**
2854 * 			No condition on the existence of the entry for *key*.
2855 *
2856 * 		If the *map* has eBPF programs (parser and verdict), those will
2857 * 		be inherited by the socket being added. If the socket is
2858 * 		already attached to eBPF programs, this results in an error.
2859 * 	Return
2860 * 		0 on success, or a negative error in case of failure.
2861 *
2862 * long bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta)
2863 * 	Description
2864 * 		Adjust the address pointed by *xdp_md*\ **->data_meta** by
2865 * 		*delta* (which can be positive or negative). Note that this
2866 * 		operation modifies the address stored in *xdp_md*\ **->data**,
2867 * 		so the latter must be loaded only after the helper has been
2868 * 		called.
2869 *
2870 * 		The use of *xdp_md*\ **->data_meta** is optional and programs
2871 * 		are not required to use it. The rationale is that when the
2872 * 		packet is processed with XDP (e.g. as DoS filter), it is
2873 * 		possible to push further meta data along with it before passing
2874 * 		to the stack, and to give the guarantee that an ingress eBPF
2875 * 		program attached as a TC classifier on the same device can pick
2876 * 		this up for further post-processing. Since TC works with socket
2877 * 		buffers, it remains possible to set from XDP the **mark** or
2878 * 		**priority** pointers, or other pointers for the socket buffer.
2879 * 		Having this scratch space generic and programmable allows for
2880 * 		more flexibility as the user is free to store whatever meta
2881 * 		data they need.
2882 *
2883 * 		A call to this helper is susceptible to change the underlying
2884 * 		packet buffer. Therefore, at load time, all checks on pointers
2885 * 		previously done by the verifier are invalidated and must be
2886 * 		performed again, if the helper is used in combination with
2887 * 		direct packet access.
2888 * 	Return
2889 * 		0 on success, or a negative error in case of failure.
2890 *
2891 * long bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size)
2892 * 	Description
2893 * 		Read the value of a perf event counter, and store it into *buf*
2894 * 		of size *buf_size*. This helper relies on a *map* of type
2895 * 		**BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event
2896 * 		counter is selected when *map* is updated with perf event file
2897 * 		descriptors. The *map* is an array whose size is the number of
2898 * 		available CPUs, and each cell contains a value relative to one
2899 * 		CPU. The value to retrieve is indicated by *flags*, that
2900 * 		contains the index of the CPU to look up, masked with
2901 * 		**BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
2902 * 		**BPF_F_CURRENT_CPU** to indicate that the value for the
2903 * 		current CPU should be retrieved.
2904 *
2905 * 		This helper behaves in a way close to
2906 * 		**bpf_perf_event_read**\ () helper, save that instead of
2907 * 		just returning the value observed, it fills the *buf*
2908 * 		structure. This allows for additional data to be retrieved: in
2909 * 		particular, the enabled and running times (in *buf*\
2910 * 		**->enabled** and *buf*\ **->running**, respectively) are
2911 * 		copied. In general, **bpf_perf_event_read_value**\ () is
2912 * 		recommended over **bpf_perf_event_read**\ (), which has some
2913 * 		ABI issues and provides fewer functionalities.
2914 *
2915 * 		These values are interesting, because hardware PMU (Performance
2916 * 		Monitoring Unit) counters are limited resources. When there are
2917 * 		more PMU based perf events opened than available counters,
2918 * 		kernel will multiplex these events so each event gets certain
2919 * 		percentage (but not all) of the PMU time. In case that
2920 * 		multiplexing happens, the number of samples or counter value
2921 * 		will not reflect the case compared to when no multiplexing
2922 * 		occurs. This makes comparison between different runs difficult.
2923 * 		Typically, the counter value should be normalized before
2924 * 		comparing to other experiments. The usual normalization is done
2925 * 		as follows.
2926 *
2927 * 		::
2928 *
2929 * 			normalized_counter = counter * t_enabled / t_running
2930 *
2931 * 		Where t_enabled is the time enabled for event and t_running is
2932 * 		the time running for event since last normalization. The
2933 * 		enabled and running times are accumulated since the perf event
2934 * 		open. To achieve scaling factor between two invocations of an
2935 * 		eBPF program, users can use CPU id as the key (which is
2936 * 		typical for perf array usage model) to remember the previous
2937 * 		value and do the calculation inside the eBPF program.
2938 * 	Return
2939 * 		0 on success, or a negative error in case of failure.
2940 *
2941 * long bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size)
2942 * 	Description
2943 * 		For an eBPF program attached to a perf event, retrieve the
2944 * 		value of the event counter associated to *ctx* and store it in
2945 * 		the structure pointed by *buf* and of size *buf_size*. Enabled
2946 * 		and running times are also stored in the structure (see
2947 * 		description of helper **bpf_perf_event_read_value**\ () for
2948 * 		more details).
2949 * 	Return
2950 * 		0 on success, or a negative error in case of failure.
2951 *
2952 * long bpf_getsockopt(void *bpf_socket, int level, int optname, void *optval, int optlen)
2953 * 	Description
2954 * 		Emulate a call to **getsockopt()** on the socket associated to
2955 * 		*bpf_socket*, which must be a full socket. The *level* at
2956 * 		which the option resides and the name *optname* of the option
2957 * 		must be specified, see **getsockopt(2)** for more information.
2958 * 		The retrieved value is stored in the structure pointed by
2959 * 		*opval* and of length *optlen*.
2960 *
2961 * 		*bpf_socket* should be one of the following:
2962 *
2963 * 		* **struct bpf_sock_ops** for **BPF_PROG_TYPE_SOCK_OPS**.
2964 *		* **struct bpf_sock_addr** for **BPF_CGROUP_INET4_CONNECT**,
2965 *		  **BPF_CGROUP_INET6_CONNECT** and **BPF_CGROUP_UNIX_CONNECT**.
2966 *
2967 * 		This helper actually implements a subset of **getsockopt()**.
2968 * 		It supports the same set of *optname*\ s that is supported by
2969 * 		the **bpf_setsockopt**\ () helper.  The exceptions are
2970 * 		**TCP_BPF_*** is **bpf_setsockopt**\ () only and
2971 * 		**TCP_SAVED_SYN** is **bpf_getsockopt**\ () only.
2972 * 	Return
2973 * 		0 on success, or a negative error in case of failure.
2974 *
2975 * long bpf_override_return(struct pt_regs *regs, u64 rc)
2976 * 	Description
2977 * 		Used for error injection, this helper uses kprobes to override
2978 * 		the return value of the probed function, and to set it to *rc*.
2979 * 		The first argument is the context *regs* on which the kprobe
2980 * 		works.
2981 *
2982 * 		This helper works by setting the PC (program counter)
2983 * 		to an override function which is run in place of the original
2984 * 		probed function. This means the probed function is not run at
2985 * 		all. The replacement function just returns with the required
2986 * 		value.
2987 *
2988 * 		This helper has security implications, and thus is subject to
2989 * 		restrictions. It is only available if the kernel was compiled
2990 * 		with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration
2991 * 		option, and in this case it only works on functions tagged with
2992 * 		**ALLOW_ERROR_INJECTION** in the kernel code.
2993 *
2994 * 		Also, the helper is only available for the architectures having
2995 * 		the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing,
2996 * 		x86 architecture is the only one to support this feature.
2997 * 	Return
2998 * 		0
2999 *
3000 * long bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval)
3001 * 	Description
3002 * 		Attempt to set the value of the **bpf_sock_ops_cb_flags** field
3003 * 		for the full TCP socket associated to *bpf_sock_ops* to
3004 * 		*argval*.
3005 *
3006 * 		The primary use of this field is to determine if there should
3007 * 		be calls to eBPF programs of type
3008 * 		**BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP
3009 * 		code. A program of the same type can change its value, per
3010 * 		connection and as necessary, when the connection is
3011 * 		established. This field is directly accessible for reading, but
3012 * 		this helper must be used for updates in order to return an
3013 * 		error if an eBPF program tries to set a callback that is not
3014 * 		supported in the current kernel.
3015 *
3016 * 		*argval* is a flag array which can combine these flags:
3017 *
3018 * 		* **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out)
3019 * 		* **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission)
3020 * 		* **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change)
3021 * 		* **BPF_SOCK_OPS_RTT_CB_FLAG** (every RTT)
3022 *
3023 * 		Therefore, this function can be used to clear a callback flag by
3024 * 		setting the appropriate bit to zero. e.g. to disable the RTO
3025 * 		callback:
3026 *
3027 * 		**bpf_sock_ops_cb_flags_set(bpf_sock,**
3028 * 			**bpf_sock->bpf_sock_ops_cb_flags & ~BPF_SOCK_OPS_RTO_CB_FLAG)**
3029 *
3030 * 		Here are some examples of where one could call such eBPF
3031 * 		program:
3032 *
3033 * 		* When RTO fires.
3034 * 		* When a packet is retransmitted.
3035 * 		* When the connection terminates.
3036 * 		* When a packet is sent.
3037 * 		* When a packet is received.
3038 * 	Return
3039 * 		Code **-EINVAL** if the socket is not a full TCP socket;
3040 * 		otherwise, a positive number containing the bits that could not
3041 * 		be set is returned (which comes down to 0 if all bits were set
3042 * 		as required).
3043 *
3044 * long bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags)
3045 * 	Description
3046 * 		This helper is used in programs implementing policies at the
3047 * 		socket level. If the message *msg* is allowed to pass (i.e. if
3048 * 		the verdict eBPF program returns **SK_PASS**), redirect it to
3049 * 		the socket referenced by *map* (of type
3050 * 		**BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
3051 * 		egress interfaces can be used for redirection. The
3052 * 		**BPF_F_INGRESS** value in *flags* is used to make the
3053 * 		distinction (ingress path is selected if the flag is present,
3054 * 		egress path otherwise). This is the only flag supported for now.
3055 * 	Return
3056 * 		**SK_PASS** on success, or **SK_DROP** on error.
3057 *
3058 * long bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes)
3059 * 	Description
3060 * 		For socket policies, apply the verdict of the eBPF program to
3061 * 		the next *bytes* (number of bytes) of message *msg*.
3062 *
3063 * 		For example, this helper can be used in the following cases:
3064 *
3065 * 		* A single **sendmsg**\ () or **sendfile**\ () system call
3066 * 		  contains multiple logical messages that the eBPF program is
3067 * 		  supposed to read and for which it should apply a verdict.
3068 * 		* An eBPF program only cares to read the first *bytes* of a
3069 * 		  *msg*. If the message has a large payload, then setting up
3070 * 		  and calling the eBPF program repeatedly for all bytes, even
3071 * 		  though the verdict is already known, would create unnecessary
3072 * 		  overhead.
3073 *
3074 * 		When called from within an eBPF program, the helper sets a
3075 * 		counter internal to the BPF infrastructure, that is used to
3076 * 		apply the last verdict to the next *bytes*. If *bytes* is
3077 * 		smaller than the current data being processed from a
3078 * 		**sendmsg**\ () or **sendfile**\ () system call, the first
3079 * 		*bytes* will be sent and the eBPF program will be re-run with
3080 * 		the pointer for start of data pointing to byte number *bytes*
3081 * 		**+ 1**. If *bytes* is larger than the current data being
3082 * 		processed, then the eBPF verdict will be applied to multiple
3083 * 		**sendmsg**\ () or **sendfile**\ () calls until *bytes* are
3084 * 		consumed.
3085 *
3086 * 		Note that if a socket closes with the internal counter holding
3087 * 		a non-zero value, this is not a problem because data is not
3088 * 		being buffered for *bytes* and is sent as it is received.
3089 * 	Return
3090 * 		0
3091 *
3092 * long bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes)
3093 * 	Description
3094 * 		For socket policies, prevent the execution of the verdict eBPF
3095 * 		program for message *msg* until *bytes* (byte number) have been
3096 * 		accumulated.
3097 *
3098 * 		This can be used when one needs a specific number of bytes
3099 * 		before a verdict can be assigned, even if the data spans
3100 * 		multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme
3101 * 		case would be a user calling **sendmsg**\ () repeatedly with
3102 * 		1-byte long message segments. Obviously, this is bad for
3103 * 		performance, but it is still valid. If the eBPF program needs
3104 * 		*bytes* bytes to validate a header, this helper can be used to
3105 * 		prevent the eBPF program to be called again until *bytes* have
3106 * 		been accumulated.
3107 * 	Return
3108 * 		0
3109 *
3110 * long bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags)
3111 * 	Description
3112 * 		For socket policies, pull in non-linear data from user space
3113 * 		for *msg* and set pointers *msg*\ **->data** and *msg*\
3114 * 		**->data_end** to *start* and *end* bytes offsets into *msg*,
3115 * 		respectively.
3116 *
3117 * 		If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
3118 * 		*msg* it can only parse data that the (**data**, **data_end**)
3119 * 		pointers have already consumed. For **sendmsg**\ () hooks this
3120 * 		is likely the first scatterlist element. But for calls relying
3121 * 		on the **sendpage** handler (e.g. **sendfile**\ ()) this will
3122 * 		be the range (**0**, **0**) because the data is shared with
3123 * 		user space and by default the objective is to avoid allowing
3124 * 		user space to modify data while (or after) eBPF verdict is
3125 * 		being decided. This helper can be used to pull in data and to
3126 * 		set the start and end pointer to given values. Data will be
3127 * 		copied if necessary (i.e. if data was not linear and if start
3128 * 		and end pointers do not point to the same chunk).
3129 *
3130 * 		A call to this helper is susceptible to change the underlying
3131 * 		packet buffer. Therefore, at load time, all checks on pointers
3132 * 		previously done by the verifier are invalidated and must be
3133 * 		performed again, if the helper is used in combination with
3134 * 		direct packet access.
3135 *
3136 * 		All values for *flags* are reserved for future usage, and must
3137 * 		be left at zero.
3138 * 	Return
3139 * 		0 on success, or a negative error in case of failure.
3140 *
3141 * long bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len)
3142 * 	Description
3143 * 		Bind the socket associated to *ctx* to the address pointed by
3144 * 		*addr*, of length *addr_len*. This allows for making outgoing
3145 * 		connection from the desired IP address, which can be useful for
3146 * 		example when all processes inside a cgroup should use one
3147 * 		single IP address on a host that has multiple IP configured.
3148 *
3149 * 		This helper works for IPv4 and IPv6, TCP and UDP sockets. The
3150 * 		domain (*addr*\ **->sa_family**) must be **AF_INET** (or
3151 * 		**AF_INET6**). It's advised to pass zero port (**sin_port**
3152 * 		or **sin6_port**) which triggers IP_BIND_ADDRESS_NO_PORT-like
3153 * 		behavior and lets the kernel efficiently pick up an unused
3154 * 		port as long as 4-tuple is unique. Passing non-zero port might
3155 * 		lead to degraded performance.
3156 * 	Return
3157 * 		0 on success, or a negative error in case of failure.
3158 *
3159 * long bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta)
3160 * 	Description
3161 * 		Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is
3162 * 		possible to both shrink and grow the packet tail.
3163 * 		Shrink done via *delta* being a negative integer.
3164 *
3165 * 		A call to this helper is susceptible to change the underlying
3166 * 		packet buffer. Therefore, at load time, all checks on pointers
3167 * 		previously done by the verifier are invalidated and must be
3168 * 		performed again, if the helper is used in combination with
3169 * 		direct packet access.
3170 * 	Return
3171 * 		0 on success, or a negative error in case of failure.
3172 *
3173 * long bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags)
3174 * 	Description
3175 * 		Retrieve the XFRM state (IP transform framework, see also
3176 * 		**ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*.
3177 *
3178 * 		The retrieved value is stored in the **struct bpf_xfrm_state**
3179 * 		pointed by *xfrm_state* and of length *size*.
3180 *
3181 * 		All values for *flags* are reserved for future usage, and must
3182 * 		be left at zero.
3183 *
3184 * 		This helper is available only if the kernel was compiled with
3185 * 		**CONFIG_XFRM** configuration option.
3186 * 	Return
3187 * 		0 on success, or a negative error in case of failure.
3188 *
3189 * long bpf_get_stack(void *ctx, void *buf, u32 size, u64 flags)
3190 * 	Description
3191 * 		Return a user or a kernel stack in bpf program provided buffer.
3192 * 		To achieve this, the helper needs *ctx*, which is a pointer
3193 * 		to the context on which the tracing program is executed.
3194 * 		To store the stacktrace, the bpf program provides *buf* with
3195 * 		a nonnegative *size*.
3196 *
3197 * 		The last argument, *flags*, holds the number of stack frames to
3198 * 		skip (from 0 to 255), masked with
3199 * 		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
3200 * 		the following flags:
3201 *
3202 * 		**BPF_F_USER_STACK**
3203 * 			Collect a user space stack instead of a kernel stack.
3204 * 		**BPF_F_USER_BUILD_ID**
3205 * 			Collect (build_id, file_offset) instead of ips for user
3206 * 			stack, only valid if **BPF_F_USER_STACK** is also
3207 * 			specified.
3208 *
3209 * 			*file_offset* is an offset relative to the beginning
3210 * 			of the executable or shared object file backing the vma
3211 * 			which the *ip* falls in. It is *not* an offset relative
3212 * 			to that object's base address. Accordingly, it must be
3213 * 			adjusted by adding (sh_addr - sh_offset), where
3214 * 			sh_{addr,offset} correspond to the executable section
3215 * 			containing *file_offset* in the object, for comparisons
3216 * 			to symbols' st_value to be valid.
3217 *
3218 * 		**bpf_get_stack**\ () can collect up to
3219 * 		**PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
3220 * 		to sufficient large buffer size. Note that
3221 * 		this limit can be controlled with the **sysctl** program, and
3222 * 		that it should be manually increased in order to profile long
3223 * 		user stacks (such as stacks for Java programs). To do so, use:
3224 *
3225 * 		::
3226 *
3227 * 			# sysctl kernel.perf_event_max_stack=<new value>
3228 * 	Return
3229 * 		The non-negative copied *buf* length equal to or less than
3230 * 		*size* on success, or a negative error in case of failure.
3231 *
3232 * long bpf_skb_load_bytes_relative(const void *skb, u32 offset, void *to, u32 len, u32 start_header)
3233 * 	Description
3234 * 		This helper is similar to **bpf_skb_load_bytes**\ () in that
3235 * 		it provides an easy way to load *len* bytes from *offset*
3236 * 		from the packet associated to *skb*, into the buffer pointed
3237 * 		by *to*. The difference to **bpf_skb_load_bytes**\ () is that
3238 * 		a fifth argument *start_header* exists in order to select a
3239 * 		base offset to start from. *start_header* can be one of:
3240 *
3241 * 		**BPF_HDR_START_MAC**
3242 * 			Base offset to load data from is *skb*'s mac header.
3243 * 		**BPF_HDR_START_NET**
3244 * 			Base offset to load data from is *skb*'s network header.
3245 *
3246 * 		In general, "direct packet access" is the preferred method to
3247 * 		access packet data, however, this helper is in particular useful
3248 * 		in socket filters where *skb*\ **->data** does not always point
3249 * 		to the start of the mac header and where "direct packet access"
3250 * 		is not available.
3251 * 	Return
3252 * 		0 on success, or a negative error in case of failure.
3253 *
3254 * long bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags)
3255 *	Description
3256 *		Do FIB lookup in kernel tables using parameters in *params*.
3257 *		If lookup is successful and result shows packet is to be
3258 *		forwarded, the neighbor tables are searched for the nexthop.
3259 *		If successful (ie., FIB lookup shows forwarding and nexthop
3260 *		is resolved), the nexthop address is returned in ipv4_dst
3261 *		or ipv6_dst based on family, smac is set to mac address of
3262 *		egress device, dmac is set to nexthop mac address, rt_metric
3263 *		is set to metric from route (IPv4/IPv6 only), and ifindex
3264 *		is set to the device index of the nexthop from the FIB lookup.
3265 *
3266 *		*plen* argument is the size of the passed in struct.
3267 *		*flags* argument can be a combination of one or more of the
3268 *		following values:
3269 *
3270 *		**BPF_FIB_LOOKUP_DIRECT**
3271 *			Do a direct table lookup vs full lookup using FIB
3272 *			rules.
3273 *		**BPF_FIB_LOOKUP_TBID**
3274 *			Used with BPF_FIB_LOOKUP_DIRECT.
3275 *			Use the routing table ID present in *params*->tbid
3276 *			for the fib lookup.
3277 *		**BPF_FIB_LOOKUP_OUTPUT**
3278 *			Perform lookup from an egress perspective (default is
3279 *			ingress).
3280 *		**BPF_FIB_LOOKUP_SKIP_NEIGH**
3281 *			Skip the neighbour table lookup. *params*->dmac
3282 *			and *params*->smac will not be set as output. A common
3283 *			use case is to call **bpf_redirect_neigh**\ () after
3284 *			doing **bpf_fib_lookup**\ ().
3285 *		**BPF_FIB_LOOKUP_SRC**
3286 *			Derive and set source IP addr in *params*->ipv{4,6}_src
3287 *			for the nexthop. If the src addr cannot be derived,
3288 *			**BPF_FIB_LKUP_RET_NO_SRC_ADDR** is returned. In this
3289 *			case, *params*->dmac and *params*->smac are not set either.
3290 *
3291 *		*ctx* is either **struct xdp_md** for XDP programs or
3292 *		**struct sk_buff** tc cls_act programs.
3293 *	Return
3294 *		* < 0 if any input argument is invalid
3295 *		*   0 on success (packet is forwarded, nexthop neighbor exists)
3296 *		* > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the
3297 *		  packet is not forwarded or needs assist from full stack
3298 *
3299 *		If lookup fails with BPF_FIB_LKUP_RET_FRAG_NEEDED, then the MTU
3300 *		was exceeded and output params->mtu_result contains the MTU.
3301 *
3302 * long bpf_sock_hash_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
3303 *	Description
3304 *		Add an entry to, or update a sockhash *map* referencing sockets.
3305 *		The *skops* is used as a new value for the entry associated to
3306 *		*key*. *flags* is one of:
3307 *
3308 *		**BPF_NOEXIST**
3309 *			The entry for *key* must not exist in the map.
3310 *		**BPF_EXIST**
3311 *			The entry for *key* must already exist in the map.
3312 *		**BPF_ANY**
3313 *			No condition on the existence of the entry for *key*.
3314 *
3315 *		If the *map* has eBPF programs (parser and verdict), those will
3316 *		be inherited by the socket being added. If the socket is
3317 *		already attached to eBPF programs, this results in an error.
3318 *	Return
3319 *		0 on success, or a negative error in case of failure.
3320 *
3321 * long bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags)
3322 *	Description
3323 *		This helper is used in programs implementing policies at the
3324 *		socket level. If the message *msg* is allowed to pass (i.e. if
3325 *		the verdict eBPF program returns **SK_PASS**), redirect it to
3326 *		the socket referenced by *map* (of type
3327 *		**BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
3328 *		egress interfaces can be used for redirection. The
3329 *		**BPF_F_INGRESS** value in *flags* is used to make the
3330 *		distinction (ingress path is selected if the flag is present,
3331 *		egress path otherwise). This is the only flag supported for now.
3332 *	Return
3333 *		**SK_PASS** on success, or **SK_DROP** on error.
3334 *
3335 * long bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags)
3336 *	Description
3337 *		This helper is used in programs implementing policies at the
3338 *		skb socket level. If the sk_buff *skb* is allowed to pass (i.e.
3339 *		if the verdict eBPF program returns **SK_PASS**), redirect it
3340 *		to the socket referenced by *map* (of type
3341 *		**BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
3342 *		egress interfaces can be used for redirection. The
3343 *		**BPF_F_INGRESS** value in *flags* is used to make the
3344 *		distinction (ingress path is selected if the flag is present,
3345 *		egress otherwise). This is the only flag supported for now.
3346 *	Return
3347 *		**SK_PASS** on success, or **SK_DROP** on error.
3348 *
3349 * long bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
3350 *	Description
3351 *		Encapsulate the packet associated to *skb* within a Layer 3
3352 *		protocol header. This header is provided in the buffer at
3353 *		address *hdr*, with *len* its size in bytes. *type* indicates
3354 *		the protocol of the header and can be one of:
3355 *
3356 *		**BPF_LWT_ENCAP_SEG6**
3357 *			IPv6 encapsulation with Segment Routing Header
3358 *			(**struct ipv6_sr_hdr**). *hdr* only contains the SRH,
3359 *			the IPv6 header is computed by the kernel.
3360 *		**BPF_LWT_ENCAP_SEG6_INLINE**
3361 *			Only works if *skb* contains an IPv6 packet. Insert a
3362 *			Segment Routing Header (**struct ipv6_sr_hdr**) inside
3363 *			the IPv6 header.
3364 *		**BPF_LWT_ENCAP_IP**
3365 *			IP encapsulation (GRE/GUE/IPIP/etc). The outer header
3366 *			must be IPv4 or IPv6, followed by zero or more
3367 *			additional headers, up to **LWT_BPF_MAX_HEADROOM**
3368 *			total bytes in all prepended headers. Please note that
3369 *			if **skb_is_gso**\ (*skb*) is true, no more than two
3370 *			headers can be prepended, and the inner header, if
3371 *			present, should be either GRE or UDP/GUE.
3372 *
3373 *		**BPF_LWT_ENCAP_SEG6**\ \* types can be called by BPF programs
3374 *		of type **BPF_PROG_TYPE_LWT_IN**; **BPF_LWT_ENCAP_IP** type can
3375 *		be called by bpf programs of types **BPF_PROG_TYPE_LWT_IN** and
3376 *		**BPF_PROG_TYPE_LWT_XMIT**.
3377 *
3378 * 		A call to this helper is susceptible to change the underlying
3379 * 		packet buffer. Therefore, at load time, all checks on pointers
3380 * 		previously done by the verifier are invalidated and must be
3381 * 		performed again, if the helper is used in combination with
3382 * 		direct packet access.
3383 *	Return
3384 * 		0 on success, or a negative error in case of failure.
3385 *
3386 * long bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len)
3387 *	Description
3388 *		Store *len* bytes from address *from* into the packet
3389 *		associated to *skb*, at *offset*. Only the flags, tag and TLVs
3390 *		inside the outermost IPv6 Segment Routing Header can be
3391 *		modified through this helper.
3392 *
3393 * 		A call to this helper is susceptible to change the underlying
3394 * 		packet buffer. Therefore, at load time, all checks on pointers
3395 * 		previously done by the verifier are invalidated and must be
3396 * 		performed again, if the helper is used in combination with
3397 * 		direct packet access.
3398 *	Return
3399 * 		0 on success, or a negative error in case of failure.
3400 *
3401 * long bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta)
3402 *	Description
3403 *		Adjust the size allocated to TLVs in the outermost IPv6
3404 *		Segment Routing Header contained in the packet associated to
3405 *		*skb*, at position *offset* by *delta* bytes. Only offsets
3406 *		after the segments are accepted. *delta* can be as well
3407 *		positive (growing) as negative (shrinking).
3408 *
3409 * 		A call to this helper is susceptible to change the underlying
3410 * 		packet buffer. Therefore, at load time, all checks on pointers
3411 * 		previously done by the verifier are invalidated and must be
3412 * 		performed again, if the helper is used in combination with
3413 * 		direct packet access.
3414 *	Return
3415 * 		0 on success, or a negative error in case of failure.
3416 *
3417 * long bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len)
3418 *	Description
3419 *		Apply an IPv6 Segment Routing action of type *action* to the
3420 *		packet associated to *skb*. Each action takes a parameter
3421 *		contained at address *param*, and of length *param_len* bytes.
3422 *		*action* can be one of:
3423 *
3424 *		**SEG6_LOCAL_ACTION_END_X**
3425 *			End.X action: Endpoint with Layer-3 cross-connect.
3426 *			Type of *param*: **struct in6_addr**.
3427 *		**SEG6_LOCAL_ACTION_END_T**
3428 *			End.T action: Endpoint with specific IPv6 table lookup.
3429 *			Type of *param*: **int**.
3430 *		**SEG6_LOCAL_ACTION_END_B6**
3431 *			End.B6 action: Endpoint bound to an SRv6 policy.
3432 *			Type of *param*: **struct ipv6_sr_hdr**.
3433 *		**SEG6_LOCAL_ACTION_END_B6_ENCAP**
3434 *			End.B6.Encap action: Endpoint bound to an SRv6
3435 *			encapsulation policy.
3436 *			Type of *param*: **struct ipv6_sr_hdr**.
3437 *
3438 * 		A call to this helper is susceptible to change the underlying
3439 * 		packet buffer. Therefore, at load time, all checks on pointers
3440 * 		previously done by the verifier are invalidated and must be
3441 * 		performed again, if the helper is used in combination with
3442 * 		direct packet access.
3443 *	Return
3444 * 		0 on success, or a negative error in case of failure.
3445 *
3446 * long bpf_rc_repeat(void *ctx)
3447 *	Description
3448 *		This helper is used in programs implementing IR decoding, to
3449 *		report a successfully decoded repeat key message. This delays
3450 *		the generation of a key up event for previously generated
3451 *		key down event.
3452 *
3453 *		Some IR protocols like NEC have a special IR message for
3454 *		repeating last button, for when a button is held down.
3455 *
3456 *		The *ctx* should point to the lirc sample as passed into
3457 *		the program.
3458 *
3459 *		This helper is only available is the kernel was compiled with
3460 *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
3461 *		"**y**".
3462 *	Return
3463 *		0
3464 *
3465 * long bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle)
3466 *	Description
3467 *		This helper is used in programs implementing IR decoding, to
3468 *		report a successfully decoded key press with *scancode*,
3469 *		*toggle* value in the given *protocol*. The scancode will be
3470 *		translated to a keycode using the rc keymap, and reported as
3471 *		an input key down event. After a period a key up event is
3472 *		generated. This period can be extended by calling either
3473 *		**bpf_rc_keydown**\ () again with the same values, or calling
3474 *		**bpf_rc_repeat**\ ().
3475 *
3476 *		Some protocols include a toggle bit, in case the button was
3477 *		released and pressed again between consecutive scancodes.
3478 *
3479 *		The *ctx* should point to the lirc sample as passed into
3480 *		the program.
3481 *
3482 *		The *protocol* is the decoded protocol number (see
3483 *		**enum rc_proto** for some predefined values).
3484 *
3485 *		This helper is only available is the kernel was compiled with
3486 *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
3487 *		"**y**".
3488 *	Return
3489 *		0
3490 *
3491 * u64 bpf_skb_cgroup_id(struct sk_buff *skb)
3492 * 	Description
3493 * 		Return the cgroup v2 id of the socket associated with the *skb*.
3494 * 		This is roughly similar to the **bpf_get_cgroup_classid**\ ()
3495 * 		helper for cgroup v1 by providing a tag resp. identifier that
3496 * 		can be matched on or used for map lookups e.g. to implement
3497 * 		policy. The cgroup v2 id of a given path in the hierarchy is
3498 * 		exposed in user space through the f_handle API in order to get
3499 * 		to the same 64-bit id.
3500 *
3501 * 		This helper can be used on TC egress path, but not on ingress,
3502 * 		and is available only if the kernel was compiled with the
3503 * 		**CONFIG_SOCK_CGROUP_DATA** configuration option.
3504 * 	Return
3505 * 		The id is returned or 0 in case the id could not be retrieved.
3506 *
3507 * u64 bpf_get_current_cgroup_id(void)
3508 * 	Description
3509 * 		Get the current cgroup id based on the cgroup within which
3510 * 		the current task is running.
3511 * 	Return
3512 * 		A 64-bit integer containing the current cgroup id based
3513 * 		on the cgroup within which the current task is running.
3514 *
3515 * void *bpf_get_local_storage(void *map, u64 flags)
3516 *	Description
3517 *		Get the pointer to the local storage area.
3518 *		The type and the size of the local storage is defined
3519 *		by the *map* argument.
3520 *		The *flags* meaning is specific for each map type,
3521 *		and has to be 0 for cgroup local storage.
3522 *
3523 *		Depending on the BPF program type, a local storage area
3524 *		can be shared between multiple instances of the BPF program,
3525 *		running simultaneously.
3526 *
3527 *		A user should care about the synchronization by himself.
3528 *		For example, by using the **BPF_ATOMIC** instructions to alter
3529 *		the shared data.
3530 *	Return
3531 *		A pointer to the local storage area.
3532 *
3533 * long bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags)
3534 *	Description
3535 *		Select a **SO_REUSEPORT** socket from a
3536 *		**BPF_MAP_TYPE_REUSEPORT_SOCKARRAY** *map*.
3537 *		It checks the selected socket is matching the incoming
3538 *		request in the socket buffer.
3539 *	Return
3540 *		0 on success, or a negative error in case of failure.
3541 *
3542 * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level)
3543 *	Description
3544 *		Return id of cgroup v2 that is ancestor of cgroup associated
3545 *		with the *skb* at the *ancestor_level*.  The root cgroup is at
3546 *		*ancestor_level* zero and each step down the hierarchy
3547 *		increments the level. If *ancestor_level* == level of cgroup
3548 *		associated with *skb*, then return value will be same as that
3549 *		of **bpf_skb_cgroup_id**\ ().
3550 *
3551 *		The helper is useful to implement policies based on cgroups
3552 *		that are upper in hierarchy than immediate cgroup associated
3553 *		with *skb*.
3554 *
3555 *		The format of returned id and helper limitations are same as in
3556 *		**bpf_skb_cgroup_id**\ ().
3557 *	Return
3558 *		The id is returned or 0 in case the id could not be retrieved.
3559 *
3560 * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
3561 *	Description
3562 *		Look for TCP socket matching *tuple*, optionally in a child
3563 *		network namespace *netns*. The return value must be checked,
3564 *		and if non-**NULL**, released via **bpf_sk_release**\ ().
3565 *
3566 *		The *ctx* should point to the context of the program, such as
3567 *		the skb or socket (depending on the hook in use). This is used
3568 *		to determine the base network namespace for the lookup.
3569 *
3570 *		*tuple_size* must be one of:
3571 *
3572 *		**sizeof**\ (*tuple*\ **->ipv4**)
3573 *			Look for an IPv4 socket.
3574 *		**sizeof**\ (*tuple*\ **->ipv6**)
3575 *			Look for an IPv6 socket.
3576 *
3577 *		If the *netns* is a negative signed 32-bit integer, then the
3578 *		socket lookup table in the netns associated with the *ctx*
3579 *		will be used. For the TC hooks, this is the netns of the device
3580 *		in the skb. For socket hooks, this is the netns of the socket.
3581 *		If *netns* is any other signed 32-bit value greater than or
3582 *		equal to zero then it specifies the ID of the netns relative to
3583 *		the netns associated with the *ctx*. *netns* values beyond the
3584 *		range of 32-bit integers are reserved for future use.
3585 *
3586 *		All values for *flags* are reserved for future usage, and must
3587 *		be left at zero.
3588 *
3589 *		This helper is available only if the kernel was compiled with
3590 *		**CONFIG_NET** configuration option.
3591 *	Return
3592 *		Pointer to **struct bpf_sock**, or **NULL** in case of failure.
3593 *		For sockets with reuseport option, the **struct bpf_sock**
3594 *		result is from *reuse*\ **->socks**\ [] using the hash of the
3595 *		tuple.
3596 *
3597 * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
3598 *	Description
3599 *		Look for UDP socket matching *tuple*, optionally in a child
3600 *		network namespace *netns*. The return value must be checked,
3601 *		and if non-**NULL**, released via **bpf_sk_release**\ ().
3602 *
3603 *		The *ctx* should point to the context of the program, such as
3604 *		the skb or socket (depending on the hook in use). This is used
3605 *		to determine the base network namespace for the lookup.
3606 *
3607 *		*tuple_size* must be one of:
3608 *
3609 *		**sizeof**\ (*tuple*\ **->ipv4**)
3610 *			Look for an IPv4 socket.
3611 *		**sizeof**\ (*tuple*\ **->ipv6**)
3612 *			Look for an IPv6 socket.
3613 *
3614 *		If the *netns* is a negative signed 32-bit integer, then the
3615 *		socket lookup table in the netns associated with the *ctx*
3616 *		will be used. For the TC hooks, this is the netns of the device
3617 *		in the skb. For socket hooks, this is the netns of the socket.
3618 *		If *netns* is any other signed 32-bit value greater than or
3619 *		equal to zero then it specifies the ID of the netns relative to
3620 *		the netns associated with the *ctx*. *netns* values beyond the
3621 *		range of 32-bit integers are reserved for future use.
3622 *
3623 *		All values for *flags* are reserved for future usage, and must
3624 *		be left at zero.
3625 *
3626 *		This helper is available only if the kernel was compiled with
3627 *		**CONFIG_NET** configuration option.
3628 *	Return
3629 *		Pointer to **struct bpf_sock**, or **NULL** in case of failure.
3630 *		For sockets with reuseport option, the **struct bpf_sock**
3631 *		result is from *reuse*\ **->socks**\ [] using the hash of the
3632 *		tuple.
3633 *
3634 * long bpf_sk_release(void *sock)
3635 *	Description
3636 *		Release the reference held by *sock*. *sock* must be a
3637 *		non-**NULL** pointer that was returned from
3638 *		**bpf_sk_lookup_xxx**\ ().
3639 *	Return
3640 *		0 on success, or a negative error in case of failure.
3641 *
3642 * long bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags)
3643 * 	Description
3644 * 		Push an element *value* in *map*. *flags* is one of:
3645 *
3646 * 		**BPF_EXIST**
3647 * 			If the queue/stack is full, the oldest element is
3648 * 			removed to make room for this.
3649 * 	Return
3650 * 		0 on success, or a negative error in case of failure.
3651 *
3652 * long bpf_map_pop_elem(struct bpf_map *map, void *value)
3653 * 	Description
3654 * 		Pop an element from *map*.
3655 * 	Return
3656 * 		0 on success, or a negative error in case of failure.
3657 *
3658 * long bpf_map_peek_elem(struct bpf_map *map, void *value)
3659 * 	Description
3660 * 		Get an element from *map* without removing it.
3661 * 	Return
3662 * 		0 on success, or a negative error in case of failure.
3663 *
3664 * long bpf_msg_push_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)
3665 *	Description
3666 *		For socket policies, insert *len* bytes into *msg* at offset
3667 *		*start*.
3668 *
3669 *		If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
3670 *		*msg* it may want to insert metadata or options into the *msg*.
3671 *		This can later be read and used by any of the lower layer BPF
3672 *		hooks.
3673 *
3674 *		This helper may fail if under memory pressure (a malloc
3675 *		fails) in these cases BPF programs will get an appropriate
3676 *		error and BPF programs will need to handle them.
3677 *	Return
3678 *		0 on success, or a negative error in case of failure.
3679 *
3680 * long bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)
3681 *	Description
3682 *		Will remove *len* bytes from a *msg* starting at byte *start*.
3683 *		This may result in **ENOMEM** errors under certain situations if
3684 *		an allocation and copy are required due to a full ring buffer.
3685 *		However, the helper will try to avoid doing the allocation
3686 *		if possible. Other errors can occur if input parameters are
3687 *		invalid either due to *start* byte not being valid part of *msg*
3688 *		payload and/or *pop* value being to large.
3689 *	Return
3690 *		0 on success, or a negative error in case of failure.
3691 *
3692 * long bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y)
3693 *	Description
3694 *		This helper is used in programs implementing IR decoding, to
3695 *		report a successfully decoded pointer movement.
3696 *
3697 *		The *ctx* should point to the lirc sample as passed into
3698 *		the program.
3699 *
3700 *		This helper is only available is the kernel was compiled with
3701 *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
3702 *		"**y**".
3703 *	Return
3704 *		0
3705 *
3706 * long bpf_spin_lock(struct bpf_spin_lock *lock)
3707 *	Description
3708 *		Acquire a spinlock represented by the pointer *lock*, which is
3709 *		stored as part of a value of a map. Taking the lock allows to
3710 *		safely update the rest of the fields in that value. The
3711 *		spinlock can (and must) later be released with a call to
3712 *		**bpf_spin_unlock**\ (\ *lock*\ ).
3713 *
3714 *		Spinlocks in BPF programs come with a number of restrictions
3715 *		and constraints:
3716 *
3717 *		* **bpf_spin_lock** objects are only allowed inside maps of
3718 *		  types **BPF_MAP_TYPE_HASH** and **BPF_MAP_TYPE_ARRAY** (this
3719 *		  list could be extended in the future).
3720 *		* BTF description of the map is mandatory.
3721 *		* The BPF program can take ONE lock at a time, since taking two
3722 *		  or more could cause dead locks.
3723 *		* Only one **struct bpf_spin_lock** is allowed per map element.
3724 *		* When the lock is taken, calls (either BPF to BPF or helpers)
3725 *		  are not allowed.
3726 *		* The **BPF_LD_ABS** and **BPF_LD_IND** instructions are not
3727 *		  allowed inside a spinlock-ed region.
3728 *		* The BPF program MUST call **bpf_spin_unlock**\ () to release
3729 *		  the lock, on all execution paths, before it returns.
3730 *		* The BPF program can access **struct bpf_spin_lock** only via
3731 *		  the **bpf_spin_lock**\ () and **bpf_spin_unlock**\ ()
3732 *		  helpers. Loading or storing data into the **struct
3733 *		  bpf_spin_lock** *lock*\ **;** field of a map is not allowed.
3734 *		* To use the **bpf_spin_lock**\ () helper, the BTF description
3735 *		  of the map value must be a struct and have **struct
3736 *		  bpf_spin_lock** *anyname*\ **;** field at the top level.
3737 *		  Nested lock inside another struct is not allowed.
3738 *		* The **struct bpf_spin_lock** *lock* field in a map value must
3739 *		  be aligned on a multiple of 4 bytes in that value.
3740 *		* Syscall with command **BPF_MAP_LOOKUP_ELEM** does not copy
3741 *		  the **bpf_spin_lock** field to user space.
3742 *		* Syscall with command **BPF_MAP_UPDATE_ELEM**, or update from
3743 *		  a BPF program, do not update the **bpf_spin_lock** field.
3744 *		* **bpf_spin_lock** cannot be on the stack or inside a
3745 *		  networking packet (it can only be inside of a map values).
3746 *		* **bpf_spin_lock** is available to root only.
3747 *		* Tracing programs and socket filter programs cannot use
3748 *		  **bpf_spin_lock**\ () due to insufficient preemption checks
3749 *		  (but this may change in the future).
3750 *		* **bpf_spin_lock** is not allowed in inner maps of map-in-map.
3751 *	Return
3752 *		0
3753 *
3754 * long bpf_spin_unlock(struct bpf_spin_lock *lock)
3755 *	Description
3756 *		Release the *lock* previously locked by a call to
3757 *		**bpf_spin_lock**\ (\ *lock*\ ).
3758 *	Return
3759 *		0
3760 *
3761 * struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk)
3762 *	Description
3763 *		This helper gets a **struct bpf_sock** pointer such
3764 *		that all the fields in this **bpf_sock** can be accessed.
3765 *	Return
3766 *		A **struct bpf_sock** pointer on success, or **NULL** in
3767 *		case of failure.
3768 *
3769 * struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk)
3770 *	Description
3771 *		This helper gets a **struct bpf_tcp_sock** pointer from a
3772 *		**struct bpf_sock** pointer.
3773 *	Return
3774 *		A **struct bpf_tcp_sock** pointer on success, or **NULL** in
3775 *		case of failure.
3776 *
3777 * long bpf_skb_ecn_set_ce(struct sk_buff *skb)
3778 *	Description
3779 *		Set ECN (Explicit Congestion Notification) field of IP header
3780 *		to **CE** (Congestion Encountered) if current value is **ECT**
3781 *		(ECN Capable Transport). Otherwise, do nothing. Works with IPv6
3782 *		and IPv4.
3783 *	Return
3784 *		1 if the **CE** flag is set (either by the current helper call
3785 *		or because it was already present), 0 if it is not set.
3786 *
3787 * struct bpf_sock *bpf_get_listener_sock(struct bpf_sock *sk)
3788 *	Description
3789 *		Return a **struct bpf_sock** pointer in **TCP_LISTEN** state.
3790 *		**bpf_sk_release**\ () is unnecessary and not allowed.
3791 *	Return
3792 *		A **struct bpf_sock** pointer on success, or **NULL** in
3793 *		case of failure.
3794 *
3795 * struct bpf_sock *bpf_skc_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
3796 *	Description
3797 *		Look for TCP socket matching *tuple*, optionally in a child
3798 *		network namespace *netns*. The return value must be checked,
3799 *		and if non-**NULL**, released via **bpf_sk_release**\ ().
3800 *
3801 *		This function is identical to **bpf_sk_lookup_tcp**\ (), except
3802 *		that it also returns timewait or request sockets. Use
3803 *		**bpf_sk_fullsock**\ () or **bpf_tcp_sock**\ () to access the
3804 *		full structure.
3805 *
3806 *		This helper is available only if the kernel was compiled with
3807 *		**CONFIG_NET** configuration option.
3808 *	Return
3809 *		Pointer to **struct bpf_sock**, or **NULL** in case of failure.
3810 *		For sockets with reuseport option, the **struct bpf_sock**
3811 *		result is from *reuse*\ **->socks**\ [] using the hash of the
3812 *		tuple.
3813 *
3814 * long bpf_tcp_check_syncookie(void *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
3815 * 	Description
3816 * 		Check whether *iph* and *th* contain a valid SYN cookie ACK for
3817 * 		the listening socket in *sk*.
3818 *
3819 * 		*iph* points to the start of the IPv4 or IPv6 header, while
3820 * 		*iph_len* contains **sizeof**\ (**struct iphdr**) or
3821 * 		**sizeof**\ (**struct ipv6hdr**).
3822 *
3823 * 		*th* points to the start of the TCP header, while *th_len*
3824 *		contains the length of the TCP header (at least
3825 *		**sizeof**\ (**struct tcphdr**)).
3826 * 	Return
3827 * 		0 if *iph* and *th* are a valid SYN cookie ACK, or a negative
3828 * 		error otherwise.
3829 *
3830 * long bpf_sysctl_get_name(struct bpf_sysctl *ctx, char *buf, size_t buf_len, u64 flags)
3831 *	Description
3832 *		Get name of sysctl in /proc/sys/ and copy it into provided by
3833 *		program buffer *buf* of size *buf_len*.
3834 *
3835 *		The buffer is always NUL terminated, unless it's zero-sized.
3836 *
3837 *		If *flags* is zero, full name (e.g. "net/ipv4/tcp_mem") is
3838 *		copied. Use **BPF_F_SYSCTL_BASE_NAME** flag to copy base name
3839 *		only (e.g. "tcp_mem").
3840 *	Return
3841 *		Number of character copied (not including the trailing NUL).
3842 *
3843 *		**-E2BIG** if the buffer wasn't big enough (*buf* will contain
3844 *		truncated name in this case).
3845 *
3846 * long bpf_sysctl_get_current_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
3847 *	Description
3848 *		Get current value of sysctl as it is presented in /proc/sys
3849 *		(incl. newline, etc), and copy it as a string into provided
3850 *		by program buffer *buf* of size *buf_len*.
3851 *
3852 *		The whole value is copied, no matter what file position user
3853 *		space issued e.g. sys_read at.
3854 *
3855 *		The buffer is always NUL terminated, unless it's zero-sized.
3856 *	Return
3857 *		Number of character copied (not including the trailing NUL).
3858 *
3859 *		**-E2BIG** if the buffer wasn't big enough (*buf* will contain
3860 *		truncated name in this case).
3861 *
3862 *		**-EINVAL** if current value was unavailable, e.g. because
3863 *		sysctl is uninitialized and read returns -EIO for it.
3864 *
3865 * long bpf_sysctl_get_new_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
3866 *	Description
3867 *		Get new value being written by user space to sysctl (before
3868 *		the actual write happens) and copy it as a string into
3869 *		provided by program buffer *buf* of size *buf_len*.
3870 *
3871 *		User space may write new value at file position > 0.
3872 *
3873 *		The buffer is always NUL terminated, unless it's zero-sized.
3874 *	Return
3875 *		Number of character copied (not including the trailing NUL).
3876 *
3877 *		**-E2BIG** if the buffer wasn't big enough (*buf* will contain
3878 *		truncated name in this case).
3879 *
3880 *		**-EINVAL** if sysctl is being read.
3881 *
3882 * long bpf_sysctl_set_new_value(struct bpf_sysctl *ctx, const char *buf, size_t buf_len)
3883 *	Description
3884 *		Override new value being written by user space to sysctl with
3885 *		value provided by program in buffer *buf* of size *buf_len*.
3886 *
3887 *		*buf* should contain a string in same form as provided by user
3888 *		space on sysctl write.
3889 *
3890 *		User space may write new value at file position > 0. To override
3891 *		the whole sysctl value file position should be set to zero.
3892 *	Return
3893 *		0 on success.
3894 *
3895 *		**-E2BIG** if the *buf_len* is too big.
3896 *
3897 *		**-EINVAL** if sysctl is being read.
3898 *
3899 * long bpf_strtol(const char *buf, size_t buf_len, u64 flags, long *res)
3900 *	Description
3901 *		Convert the initial part of the string from buffer *buf* of
3902 *		size *buf_len* to a long integer according to the given base
3903 *		and save the result in *res*.
3904 *
3905 *		The string may begin with an arbitrary amount of white space
3906 *		(as determined by **isspace**\ (3)) followed by a single
3907 *		optional '**-**' sign.
3908 *
3909 *		Five least significant bits of *flags* encode base, other bits
3910 *		are currently unused.
3911 *
3912 *		Base must be either 8, 10, 16 or 0 to detect it automatically
3913 *		similar to user space **strtol**\ (3).
3914 *	Return
3915 *		Number of characters consumed on success. Must be positive but
3916 *		no more than *buf_len*.
3917 *
3918 *		**-EINVAL** if no valid digits were found or unsupported base
3919 *		was provided.
3920 *
3921 *		**-ERANGE** if resulting value was out of range.
3922 *
3923 * long bpf_strtoul(const char *buf, size_t buf_len, u64 flags, unsigned long *res)
3924 *	Description
3925 *		Convert the initial part of the string from buffer *buf* of
3926 *		size *buf_len* to an unsigned long integer according to the
3927 *		given base and save the result in *res*.
3928 *
3929 *		The string may begin with an arbitrary amount of white space
3930 *		(as determined by **isspace**\ (3)).
3931 *
3932 *		Five least significant bits of *flags* encode base, other bits
3933 *		are currently unused.
3934 *
3935 *		Base must be either 8, 10, 16 or 0 to detect it automatically
3936 *		similar to user space **strtoul**\ (3).
3937 *	Return
3938 *		Number of characters consumed on success. Must be positive but
3939 *		no more than *buf_len*.
3940 *
3941 *		**-EINVAL** if no valid digits were found or unsupported base
3942 *		was provided.
3943 *
3944 *		**-ERANGE** if resulting value was out of range.
3945 *
3946 * void *bpf_sk_storage_get(struct bpf_map *map, void *sk, void *value, u64 flags)
3947 *	Description
3948 *		Get a bpf-local-storage from a *sk*.
3949 *
3950 *		Logically, it could be thought of getting the value from
3951 *		a *map* with *sk* as the **key**.  From this
3952 *		perspective,  the usage is not much different from
3953 *		**bpf_map_lookup_elem**\ (*map*, **&**\ *sk*) except this
3954 *		helper enforces the key must be a full socket and the map must
3955 *		be a **BPF_MAP_TYPE_SK_STORAGE** also.
3956 *
3957 *		Underneath, the value is stored locally at *sk* instead of
3958 *		the *map*.  The *map* is used as the bpf-local-storage
3959 *		"type". The bpf-local-storage "type" (i.e. the *map*) is
3960 *		searched against all bpf-local-storages residing at *sk*.
3961 *
3962 *		*sk* is a kernel **struct sock** pointer for LSM program.
3963 *		*sk* is a **struct bpf_sock** pointer for other program types.
3964 *
3965 *		An optional *flags* (**BPF_SK_STORAGE_GET_F_CREATE**) can be
3966 *		used such that a new bpf-local-storage will be
3967 *		created if one does not exist.  *value* can be used
3968 *		together with **BPF_SK_STORAGE_GET_F_CREATE** to specify
3969 *		the initial value of a bpf-local-storage.  If *value* is
3970 *		**NULL**, the new bpf-local-storage will be zero initialized.
3971 *	Return
3972 *		A bpf-local-storage pointer is returned on success.
3973 *
3974 *		**NULL** if not found or there was an error in adding
3975 *		a new bpf-local-storage.
3976 *
3977 * long bpf_sk_storage_delete(struct bpf_map *map, void *sk)
3978 *	Description
3979 *		Delete a bpf-local-storage from a *sk*.
3980 *	Return
3981 *		0 on success.
3982 *
3983 *		**-ENOENT** if the bpf-local-storage cannot be found.
3984 *		**-EINVAL** if sk is not a fullsock (e.g. a request_sock).
3985 *
3986 * long bpf_send_signal(u32 sig)
3987 *	Description
3988 *		Send signal *sig* to the process of the current task.
3989 *		The signal may be delivered to any of this process's threads.
3990 *	Return
3991 *		0 on success or successfully queued.
3992 *
3993 *		**-EBUSY** if work queue under nmi is full.
3994 *
3995 *		**-EINVAL** if *sig* is invalid.
3996 *
3997 *		**-EPERM** if no permission to send the *sig*.
3998 *
3999 *		**-EAGAIN** if bpf program can try again.
4000 *
4001 * s64 bpf_tcp_gen_syncookie(void *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
4002 *	Description
4003 *		Try to issue a SYN cookie for the packet with corresponding
4004 *		IP/TCP headers, *iph* and *th*, on the listening socket in *sk*.
4005 *
4006 *		*iph* points to the start of the IPv4 or IPv6 header, while
4007 *		*iph_len* contains **sizeof**\ (**struct iphdr**) or
4008 *		**sizeof**\ (**struct ipv6hdr**).
4009 *
4010 *		*th* points to the start of the TCP header, while *th_len*
4011 *		contains the length of the TCP header with options (at least
4012 *		**sizeof**\ (**struct tcphdr**)).
4013 *	Return
4014 *		On success, lower 32 bits hold the generated SYN cookie in
4015 *		followed by 16 bits which hold the MSS value for that cookie,
4016 *		and the top 16 bits are unused.
4017 *
4018 *		On failure, the returned value is one of the following:
4019 *
4020 *		**-EINVAL** SYN cookie cannot be issued due to error
4021 *
4022 *		**-ENOENT** SYN cookie should not be issued (no SYN flood)
4023 *
4024 *		**-EOPNOTSUPP** kernel configuration does not enable SYN cookies
4025 *
4026 *		**-EPROTONOSUPPORT** IP packet version is not 4 or 6
4027 *
4028 * long bpf_skb_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
4029 * 	Description
4030 * 		Write raw *data* blob into a special BPF perf event held by
4031 * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
4032 * 		event must have the following attributes: **PERF_SAMPLE_RAW**
4033 * 		as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
4034 * 		**PERF_COUNT_SW_BPF_OUTPUT** as **config**.
4035 *
4036 * 		The *flags* are used to indicate the index in *map* for which
4037 * 		the value must be put, masked with **BPF_F_INDEX_MASK**.
4038 * 		Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
4039 * 		to indicate that the index of the current CPU core should be
4040 * 		used.
4041 *
4042 * 		The value to write, of *size*, is passed through eBPF stack and
4043 * 		pointed by *data*.
4044 *
4045 * 		*ctx* is a pointer to in-kernel struct sk_buff.
4046 *
4047 * 		This helper is similar to **bpf_perf_event_output**\ () but
4048 * 		restricted to raw_tracepoint bpf programs.
4049 * 	Return
4050 * 		0 on success, or a negative error in case of failure.
4051 *
4052 * long bpf_probe_read_user(void *dst, u32 size, const void *unsafe_ptr)
4053 * 	Description
4054 * 		Safely attempt to read *size* bytes from user space address
4055 * 		*unsafe_ptr* and store the data in *dst*.
4056 * 	Return
4057 * 		0 on success, or a negative error in case of failure.
4058 *
4059 * long bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)
4060 * 	Description
4061 * 		Safely attempt to read *size* bytes from kernel space address
4062 * 		*unsafe_ptr* and store the data in *dst*.
4063 * 	Return
4064 * 		0 on success, or a negative error in case of failure.
4065 *
4066 * long bpf_probe_read_user_str(void *dst, u32 size, const void *unsafe_ptr)
4067 * 	Description
4068 * 		Copy a NUL terminated string from an unsafe user address
4069 * 		*unsafe_ptr* to *dst*. The *size* should include the
4070 * 		terminating NUL byte. In case the string length is smaller than
4071 * 		*size*, the target is not padded with further NUL bytes. If the
4072 * 		string length is larger than *size*, just *size*-1 bytes are
4073 * 		copied and the last byte is set to NUL.
4074 *
4075 * 		On success, returns the number of bytes that were written,
4076 * 		including the terminal NUL. This makes this helper useful in
4077 * 		tracing programs for reading strings, and more importantly to
4078 * 		get its length at runtime. See the following snippet:
4079 *
4080 * 		::
4081 *
4082 * 			SEC("kprobe/sys_open")
4083 * 			void bpf_sys_open(struct pt_regs *ctx)
4084 * 			{
4085 * 			        char buf[PATHLEN]; // PATHLEN is defined to 256
4086 * 			        int res = bpf_probe_read_user_str(buf, sizeof(buf),
4087 * 				                                  ctx->di);
4088 *
4089 * 				// Consume buf, for example push it to
4090 * 				// userspace via bpf_perf_event_output(); we
4091 * 				// can use res (the string length) as event
4092 * 				// size, after checking its boundaries.
4093 * 			}
4094 *
4095 * 		In comparison, using **bpf_probe_read_user**\ () helper here
4096 * 		instead to read the string would require to estimate the length
4097 * 		at compile time, and would often result in copying more memory
4098 * 		than necessary.
4099 *
4100 * 		Another useful use case is when parsing individual process
4101 * 		arguments or individual environment variables navigating
4102 * 		*current*\ **->mm->arg_start** and *current*\
4103 * 		**->mm->env_start**: using this helper and the return value,
4104 * 		one can quickly iterate at the right offset of the memory area.
4105 * 	Return
4106 * 		On success, the strictly positive length of the output string,
4107 * 		including the trailing NUL character. On error, a negative
4108 * 		value.
4109 *
4110 * long bpf_probe_read_kernel_str(void *dst, u32 size, const void *unsafe_ptr)
4111 * 	Description
4112 * 		Copy a NUL terminated string from an unsafe kernel address *unsafe_ptr*
4113 * 		to *dst*. Same semantics as with **bpf_probe_read_user_str**\ () apply.
4114 * 	Return
4115 * 		On success, the strictly positive length of the string, including
4116 * 		the trailing NUL character. On error, a negative value.
4117 *
4118 * long bpf_tcp_send_ack(void *tp, u32 rcv_nxt)
4119 *	Description
4120 *		Send out a tcp-ack. *tp* is the in-kernel struct **tcp_sock**.
4121 *		*rcv_nxt* is the ack_seq to be sent out.
4122 *	Return
4123 *		0 on success, or a negative error in case of failure.
4124 *
4125 * long bpf_send_signal_thread(u32 sig)
4126 *	Description
4127 *		Send signal *sig* to the thread corresponding to the current task.
4128 *	Return
4129 *		0 on success or successfully queued.
4130 *
4131 *		**-EBUSY** if work queue under nmi is full.
4132 *
4133 *		**-EINVAL** if *sig* is invalid.
4134 *
4135 *		**-EPERM** if no permission to send the *sig*.
4136 *
4137 *		**-EAGAIN** if bpf program can try again.
4138 *
4139 * u64 bpf_jiffies64(void)
4140 *	Description
4141 *		Obtain the 64bit jiffies
4142 *	Return
4143 *		The 64 bit jiffies
4144 *
4145 * long bpf_read_branch_records(struct bpf_perf_event_data *ctx, void *buf, u32 size, u64 flags)
4146 *	Description
4147 *		For an eBPF program attached to a perf event, retrieve the
4148 *		branch records (**struct perf_branch_entry**) associated to *ctx*
4149 *		and store it in the buffer pointed by *buf* up to size
4150 *		*size* bytes.
4151 *	Return
4152 *		On success, number of bytes written to *buf*. On error, a
4153 *		negative value.
4154 *
4155 *		The *flags* can be set to **BPF_F_GET_BRANCH_RECORDS_SIZE** to
4156 *		instead return the number of bytes required to store all the
4157 *		branch entries. If this flag is set, *buf* may be NULL.
4158 *
4159 *		**-EINVAL** if arguments invalid or **size** not a multiple
4160 *		of **sizeof**\ (**struct perf_branch_entry**\ ).
4161 *
4162 *		**-ENOENT** if architecture does not support branch records.
4163 *
4164 * long bpf_get_ns_current_pid_tgid(u64 dev, u64 ino, struct bpf_pidns_info *nsdata, u32 size)
4165 *	Description
4166 *		Returns 0 on success, values for *pid* and *tgid* as seen from the current
4167 *		*namespace* will be returned in *nsdata*.
4168 *	Return
4169 *		0 on success, or one of the following in case of failure:
4170 *
4171 *		**-EINVAL** if dev and inum supplied don't match dev_t and inode number
4172 *              with nsfs of current task, or if dev conversion to dev_t lost high bits.
4173 *
4174 *		**-ENOENT** if pidns does not exists for the current task.
4175 *
4176 * long bpf_xdp_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
4177 *	Description
4178 *		Write raw *data* blob into a special BPF perf event held by
4179 *		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
4180 *		event must have the following attributes: **PERF_SAMPLE_RAW**
4181 *		as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
4182 *		**PERF_COUNT_SW_BPF_OUTPUT** as **config**.
4183 *
4184 *		The *flags* are used to indicate the index in *map* for which
4185 *		the value must be put, masked with **BPF_F_INDEX_MASK**.
4186 *		Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
4187 *		to indicate that the index of the current CPU core should be
4188 *		used.
4189 *
4190 *		The value to write, of *size*, is passed through eBPF stack and
4191 *		pointed by *data*.
4192 *
4193 *		*ctx* is a pointer to in-kernel struct xdp_buff.
4194 *
4195 *		This helper is similar to **bpf_perf_eventoutput**\ () but
4196 *		restricted to raw_tracepoint bpf programs.
4197 *	Return
4198 *		0 on success, or a negative error in case of failure.
4199 *
4200 * u64 bpf_get_netns_cookie(void *ctx)
4201 * 	Description
4202 * 		Retrieve the cookie (generated by the kernel) of the network
4203 * 		namespace the input *ctx* is associated with. The network
4204 * 		namespace cookie remains stable for its lifetime and provides
4205 * 		a global identifier that can be assumed unique. If *ctx* is
4206 * 		NULL, then the helper returns the cookie for the initial
4207 * 		network namespace. The cookie itself is very similar to that
4208 * 		of **bpf_get_socket_cookie**\ () helper, but for network
4209 * 		namespaces instead of sockets.
4210 * 	Return
4211 * 		A 8-byte long opaque number.
4212 *
4213 * u64 bpf_get_current_ancestor_cgroup_id(int ancestor_level)
4214 * 	Description
4215 * 		Return id of cgroup v2 that is ancestor of the cgroup associated
4216 * 		with the current task at the *ancestor_level*. The root cgroup
4217 * 		is at *ancestor_level* zero and each step down the hierarchy
4218 * 		increments the level. If *ancestor_level* == level of cgroup
4219 * 		associated with the current task, then return value will be the
4220 * 		same as that of **bpf_get_current_cgroup_id**\ ().
4221 *
4222 * 		The helper is useful to implement policies based on cgroups
4223 * 		that are upper in hierarchy than immediate cgroup associated
4224 * 		with the current task.
4225 *
4226 * 		The format of returned id and helper limitations are same as in
4227 * 		**bpf_get_current_cgroup_id**\ ().
4228 * 	Return
4229 * 		The id is returned or 0 in case the id could not be retrieved.
4230 *
4231 * long bpf_sk_assign(struct sk_buff *skb, void *sk, u64 flags)
4232 *	Description
4233 *		Helper is overloaded depending on BPF program type. This
4234 *		description applies to **BPF_PROG_TYPE_SCHED_CLS** and
4235 *		**BPF_PROG_TYPE_SCHED_ACT** programs.
4236 *
4237 *		Assign the *sk* to the *skb*. When combined with appropriate
4238 *		routing configuration to receive the packet towards the socket,
4239 *		will cause *skb* to be delivered to the specified socket.
4240 *		Subsequent redirection of *skb* via  **bpf_redirect**\ (),
4241 *		**bpf_clone_redirect**\ () or other methods outside of BPF may
4242 *		interfere with successful delivery to the socket.
4243 *
4244 *		This operation is only valid from TC ingress path.
4245 *
4246 *		The *flags* argument must be zero.
4247 *	Return
4248 *		0 on success, or a negative error in case of failure:
4249 *
4250 *		**-EINVAL** if specified *flags* are not supported.
4251 *
4252 *		**-ENOENT** if the socket is unavailable for assignment.
4253 *
4254 *		**-ENETUNREACH** if the socket is unreachable (wrong netns).
4255 *
4256 *		**-EOPNOTSUPP** if the operation is not supported, for example
4257 *		a call from outside of TC ingress.
4258 *
4259 * long bpf_sk_assign(struct bpf_sk_lookup *ctx, struct bpf_sock *sk, u64 flags)
4260 *	Description
4261 *		Helper is overloaded depending on BPF program type. This
4262 *		description applies to **BPF_PROG_TYPE_SK_LOOKUP** programs.
4263 *
4264 *		Select the *sk* as a result of a socket lookup.
4265 *
4266 *		For the operation to succeed passed socket must be compatible
4267 *		with the packet description provided by the *ctx* object.
4268 *
4269 *		L4 protocol (**IPPROTO_TCP** or **IPPROTO_UDP**) must
4270 *		be an exact match. While IP family (**AF_INET** or
4271 *		**AF_INET6**) must be compatible, that is IPv6 sockets
4272 *		that are not v6-only can be selected for IPv4 packets.
4273 *
4274 *		Only TCP listeners and UDP unconnected sockets can be
4275 *		selected. *sk* can also be NULL to reset any previous
4276 *		selection.
4277 *
4278 *		*flags* argument can combination of following values:
4279 *
4280 *		* **BPF_SK_LOOKUP_F_REPLACE** to override the previous
4281 *		  socket selection, potentially done by a BPF program
4282 *		  that ran before us.
4283 *
4284 *		* **BPF_SK_LOOKUP_F_NO_REUSEPORT** to skip
4285 *		  load-balancing within reuseport group for the socket
4286 *		  being selected.
4287 *
4288 *		On success *ctx->sk* will point to the selected socket.
4289 *
4290 *	Return
4291 *		0 on success, or a negative errno in case of failure.
4292 *
4293 *		* **-EAFNOSUPPORT** if socket family (*sk->family*) is
4294 *		  not compatible with packet family (*ctx->family*).
4295 *
4296 *		* **-EEXIST** if socket has been already selected,
4297 *		  potentially by another program, and
4298 *		  **BPF_SK_LOOKUP_F_REPLACE** flag was not specified.
4299 *
4300 *		* **-EINVAL** if unsupported flags were specified.
4301 *
4302 *		* **-EPROTOTYPE** if socket L4 protocol
4303 *		  (*sk->protocol*) doesn't match packet protocol
4304 *		  (*ctx->protocol*).
4305 *
4306 *		* **-ESOCKTNOSUPPORT** if socket is not in allowed
4307 *		  state (TCP listening or UDP unconnected).
4308 *
4309 * u64 bpf_ktime_get_boot_ns(void)
4310 * 	Description
4311 * 		Return the time elapsed since system boot, in nanoseconds.
4312 * 		Does include the time the system was suspended.
4313 * 		See: **clock_gettime**\ (**CLOCK_BOOTTIME**)
4314 * 	Return
4315 * 		Current *ktime*.
4316 *
4317 * long bpf_seq_printf(struct seq_file *m, const char *fmt, u32 fmt_size, const void *data, u32 data_len)
4318 * 	Description
4319 * 		**bpf_seq_printf**\ () uses seq_file **seq_printf**\ () to print
4320 * 		out the format string.
4321 * 		The *m* represents the seq_file. The *fmt* and *fmt_size* are for
4322 * 		the format string itself. The *data* and *data_len* are format string
4323 * 		arguments. The *data* are a **u64** array and corresponding format string
4324 * 		values are stored in the array. For strings and pointers where pointees
4325 * 		are accessed, only the pointer values are stored in the *data* array.
4326 * 		The *data_len* is the size of *data* in bytes - must be a multiple of 8.
4327 *
4328 *		Formats **%s**, **%p{i,I}{4,6}** requires to read kernel memory.
4329 *		Reading kernel memory may fail due to either invalid address or
4330 *		valid address but requiring a major memory fault. If reading kernel memory
4331 *		fails, the string for **%s** will be an empty string, and the ip
4332 *		address for **%p{i,I}{4,6}** will be 0. Not returning error to
4333 *		bpf program is consistent with what **bpf_trace_printk**\ () does for now.
4334 * 	Return
4335 * 		0 on success, or a negative error in case of failure:
4336 *
4337 *		**-EBUSY** if per-CPU memory copy buffer is busy, can try again
4338 *		by returning 1 from bpf program.
4339 *
4340 *		**-EINVAL** if arguments are invalid, or if *fmt* is invalid/unsupported.
4341 *
4342 *		**-E2BIG** if *fmt* contains too many format specifiers.
4343 *
4344 *		**-EOVERFLOW** if an overflow happened: The same object will be tried again.
4345 *
4346 * long bpf_seq_write(struct seq_file *m, const void *data, u32 len)
4347 * 	Description
4348 * 		**bpf_seq_write**\ () uses seq_file **seq_write**\ () to write the data.
4349 * 		The *m* represents the seq_file. The *data* and *len* represent the
4350 * 		data to write in bytes.
4351 * 	Return
4352 * 		0 on success, or a negative error in case of failure:
4353 *
4354 *		**-EOVERFLOW** if an overflow happened: The same object will be tried again.
4355 *
4356 * u64 bpf_sk_cgroup_id(void *sk)
4357 *	Description
4358 *		Return the cgroup v2 id of the socket *sk*.
4359 *
4360 *		*sk* must be a non-**NULL** pointer to a socket, e.g. one
4361 *		returned from **bpf_sk_lookup_xxx**\ (),
4362 *		**bpf_sk_fullsock**\ (), etc. The format of returned id is
4363 *		same as in **bpf_skb_cgroup_id**\ ().
4364 *
4365 *		This helper is available only if the kernel was compiled with
4366 *		the **CONFIG_SOCK_CGROUP_DATA** configuration option.
4367 *	Return
4368 *		The id is returned or 0 in case the id could not be retrieved.
4369 *
4370 * u64 bpf_sk_ancestor_cgroup_id(void *sk, int ancestor_level)
4371 *	Description
4372 *		Return id of cgroup v2 that is ancestor of cgroup associated
4373 *		with the *sk* at the *ancestor_level*.  The root cgroup is at
4374 *		*ancestor_level* zero and each step down the hierarchy
4375 *		increments the level. If *ancestor_level* == level of cgroup
4376 *		associated with *sk*, then return value will be same as that
4377 *		of **bpf_sk_cgroup_id**\ ().
4378 *
4379 *		The helper is useful to implement policies based on cgroups
4380 *		that are upper in hierarchy than immediate cgroup associated
4381 *		with *sk*.
4382 *
4383 *		The format of returned id and helper limitations are same as in
4384 *		**bpf_sk_cgroup_id**\ ().
4385 *	Return
4386 *		The id is returned or 0 in case the id could not be retrieved.
4387 *
4388 * long bpf_ringbuf_output(void *ringbuf, void *data, u64 size, u64 flags)
4389 * 	Description
4390 * 		Copy *size* bytes from *data* into a ring buffer *ringbuf*.
4391 * 		If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification
4392 * 		of new data availability is sent.
4393 * 		If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification
4394 * 		of new data availability is sent unconditionally.
4395 * 		If **0** is specified in *flags*, an adaptive notification
4396 * 		of new data availability is sent.
4397 *
4398 * 		An adaptive notification is a notification sent whenever the user-space
4399 * 		process has caught up and consumed all available payloads. In case the user-space
4400 * 		process is still processing a previous payload, then no notification is needed
4401 * 		as it will process the newly added payload automatically.
4402 * 	Return
4403 * 		0 on success, or a negative error in case of failure.
4404 *
4405 * void *bpf_ringbuf_reserve(void *ringbuf, u64 size, u64 flags)
4406 * 	Description
4407 * 		Reserve *size* bytes of payload in a ring buffer *ringbuf*.
4408 * 		*flags* must be 0.
4409 * 	Return
4410 * 		Valid pointer with *size* bytes of memory available; NULL,
4411 * 		otherwise.
4412 *
4413 * void bpf_ringbuf_submit(void *data, u64 flags)
4414 * 	Description
4415 * 		Submit reserved ring buffer sample, pointed to by *data*.
4416 * 		If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification
4417 * 		of new data availability is sent.
4418 * 		If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification
4419 * 		of new data availability is sent unconditionally.
4420 * 		If **0** is specified in *flags*, an adaptive notification
4421 * 		of new data availability is sent.
4422 *
4423 * 		See 'bpf_ringbuf_output()' for the definition of adaptive notification.
4424 * 	Return
4425 * 		Nothing. Always succeeds.
4426 *
4427 * void bpf_ringbuf_discard(void *data, u64 flags)
4428 * 	Description
4429 * 		Discard reserved ring buffer sample, pointed to by *data*.
4430 * 		If **BPF_RB_NO_WAKEUP** is specified in *flags*, no notification
4431 * 		of new data availability is sent.
4432 * 		If **BPF_RB_FORCE_WAKEUP** is specified in *flags*, notification
4433 * 		of new data availability is sent unconditionally.
4434 * 		If **0** is specified in *flags*, an adaptive notification
4435 * 		of new data availability is sent.
4436 *
4437 * 		See 'bpf_ringbuf_output()' for the definition of adaptive notification.
4438 * 	Return
4439 * 		Nothing. Always succeeds.
4440 *
4441 * u64 bpf_ringbuf_query(void *ringbuf, u64 flags)
4442 *	Description
4443 *		Query various characteristics of provided ring buffer. What
4444 *		exactly is queries is determined by *flags*:
4445 *
4446 *		* **BPF_RB_AVAIL_DATA**: Amount of data not yet consumed.
4447 *		* **BPF_RB_RING_SIZE**: The size of ring buffer.
4448 *		* **BPF_RB_CONS_POS**: Consumer position (can wrap around).
4449 *		* **BPF_RB_PROD_POS**: Producer(s) position (can wrap around).
4450 *
4451 *		Data returned is just a momentary snapshot of actual values
4452 *		and could be inaccurate, so this facility should be used to
4453 *		power heuristics and for reporting, not to make 100% correct
4454 *		calculation.
4455 *	Return
4456 *		Requested value, or 0, if *flags* are not recognized.
4457 *
4458 * long bpf_csum_level(struct sk_buff *skb, u64 level)
4459 * 	Description
4460 * 		Change the skbs checksum level by one layer up or down, or
4461 * 		reset it entirely to none in order to have the stack perform
4462 * 		checksum validation. The level is applicable to the following
4463 * 		protocols: TCP, UDP, GRE, SCTP, FCOE. For example, a decap of
4464 * 		| ETH | IP | UDP | GUE | IP | TCP | into | ETH | IP | TCP |
4465 * 		through **bpf_skb_adjust_room**\ () helper with passing in
4466 * 		**BPF_F_ADJ_ROOM_NO_CSUM_RESET** flag would require one	call
4467 * 		to **bpf_csum_level**\ () with **BPF_CSUM_LEVEL_DEC** since
4468 * 		the UDP header is removed. Similarly, an encap of the latter
4469 * 		into the former could be accompanied by a helper call to
4470 * 		**bpf_csum_level**\ () with **BPF_CSUM_LEVEL_INC** if the
4471 * 		skb is still intended to be processed in higher layers of the
4472 * 		stack instead of just egressing at tc.
4473 *
4474 * 		There are three supported level settings at this time:
4475 *
4476 * 		* **BPF_CSUM_LEVEL_INC**: Increases skb->csum_level for skbs
4477 * 		  with CHECKSUM_UNNECESSARY.
4478 * 		* **BPF_CSUM_LEVEL_DEC**: Decreases skb->csum_level for skbs
4479 * 		  with CHECKSUM_UNNECESSARY.
4480 * 		* **BPF_CSUM_LEVEL_RESET**: Resets skb->csum_level to 0 and
4481 * 		  sets CHECKSUM_NONE to force checksum validation by the stack.
4482 * 		* **BPF_CSUM_LEVEL_QUERY**: No-op, returns the current
4483 * 		  skb->csum_level.
4484 * 	Return
4485 * 		0 on success, or a negative error in case of failure. In the
4486 * 		case of **BPF_CSUM_LEVEL_QUERY**, the current skb->csum_level
4487 * 		is returned or the error code -EACCES in case the skb is not
4488 * 		subject to CHECKSUM_UNNECESSARY.
4489 *
4490 * struct tcp6_sock *bpf_skc_to_tcp6_sock(void *sk)
4491 *	Description
4492 *		Dynamically cast a *sk* pointer to a *tcp6_sock* pointer.
4493 *	Return
4494 *		*sk* if casting is valid, or **NULL** otherwise.
4495 *
4496 * struct tcp_sock *bpf_skc_to_tcp_sock(void *sk)
4497 *	Description
4498 *		Dynamically cast a *sk* pointer to a *tcp_sock* pointer.
4499 *	Return
4500 *		*sk* if casting is valid, or **NULL** otherwise.
4501 *
4502 * struct tcp_timewait_sock *bpf_skc_to_tcp_timewait_sock(void *sk)
4503 * 	Description
4504 *		Dynamically cast a *sk* pointer to a *tcp_timewait_sock* pointer.
4505 *	Return
4506 *		*sk* if casting is valid, or **NULL** otherwise.
4507 *
4508 * struct tcp_request_sock *bpf_skc_to_tcp_request_sock(void *sk)
4509 * 	Description
4510 *		Dynamically cast a *sk* pointer to a *tcp_request_sock* pointer.
4511 *	Return
4512 *		*sk* if casting is valid, or **NULL** otherwise.
4513 *
4514 * struct udp6_sock *bpf_skc_to_udp6_sock(void *sk)
4515 * 	Description
4516 *		Dynamically cast a *sk* pointer to a *udp6_sock* pointer.
4517 *	Return
4518 *		*sk* if casting is valid, or **NULL** otherwise.
4519 *
4520 * long bpf_get_task_stack(struct task_struct *task, void *buf, u32 size, u64 flags)
4521 *	Description
4522 *		Return a user or a kernel stack in bpf program provided buffer.
4523 *		Note: the user stack will only be populated if the *task* is
4524 *		the current task; all other tasks will return -EOPNOTSUPP.
4525 *		To achieve this, the helper needs *task*, which is a valid
4526 *		pointer to **struct task_struct**. To store the stacktrace, the
4527 *		bpf program provides *buf* with a nonnegative *size*.
4528 *
4529 *		The last argument, *flags*, holds the number of stack frames to
4530 *		skip (from 0 to 255), masked with
4531 *		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
4532 *		the following flags:
4533 *
4534 *		**BPF_F_USER_STACK**
4535 *			Collect a user space stack instead of a kernel stack.
4536 *			The *task* must be the current task.
4537 *		**BPF_F_USER_BUILD_ID**
4538 *			Collect buildid+offset instead of ips for user stack,
4539 *			only valid if **BPF_F_USER_STACK** is also specified.
4540 *
4541 *		**bpf_get_task_stack**\ () can collect up to
4542 *		**PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
4543 *		to sufficient large buffer size. Note that
4544 *		this limit can be controlled with the **sysctl** program, and
4545 *		that it should be manually increased in order to profile long
4546 *		user stacks (such as stacks for Java programs). To do so, use:
4547 *
4548 *		::
4549 *
4550 *			# sysctl kernel.perf_event_max_stack=<new value>
4551 *	Return
4552 * 		The non-negative copied *buf* length equal to or less than
4553 * 		*size* on success, or a negative error in case of failure.
4554 *
4555 * long bpf_load_hdr_opt(struct bpf_sock_ops *skops, void *searchby_res, u32 len, u64 flags)
4556 *	Description
4557 *		Load header option.  Support reading a particular TCP header
4558 *		option for bpf program (**BPF_PROG_TYPE_SOCK_OPS**).
4559 *
4560 *		If *flags* is 0, it will search the option from the
4561 *		*skops*\ **->skb_data**.  The comment in **struct bpf_sock_ops**
4562 *		has details on what skb_data contains under different
4563 *		*skops*\ **->op**.
4564 *
4565 *		The first byte of the *searchby_res* specifies the
4566 *		kind that it wants to search.
4567 *
4568 *		If the searching kind is an experimental kind
4569 *		(i.e. 253 or 254 according to RFC6994).  It also
4570 *		needs to specify the "magic" which is either
4571 *		2 bytes or 4 bytes.  It then also needs to
4572 *		specify the size of the magic by using
4573 *		the 2nd byte which is "kind-length" of a TCP
4574 *		header option and the "kind-length" also
4575 *		includes the first 2 bytes "kind" and "kind-length"
4576 *		itself as a normal TCP header option also does.
4577 *
4578 *		For example, to search experimental kind 254 with
4579 *		2 byte magic 0xeB9F, the searchby_res should be
4580 *		[ 254, 4, 0xeB, 0x9F, 0, 0, .... 0 ].
4581 *
4582 *		To search for the standard window scale option (3),
4583 *		the *searchby_res* should be [ 3, 0, 0, .... 0 ].
4584 *		Note, kind-length must be 0 for regular option.
4585 *
4586 *		Searching for No-Op (0) and End-of-Option-List (1) are
4587 *		not supported.
4588 *
4589 *		*len* must be at least 2 bytes which is the minimal size
4590 *		of a header option.
4591 *
4592 *		Supported flags:
4593 *
4594 *		* **BPF_LOAD_HDR_OPT_TCP_SYN** to search from the
4595 *		  saved_syn packet or the just-received syn packet.
4596 *
4597 *	Return
4598 *		> 0 when found, the header option is copied to *searchby_res*.
4599 *		The return value is the total length copied. On failure, a
4600 *		negative error code is returned:
4601 *
4602 *		**-EINVAL** if a parameter is invalid.
4603 *
4604 *		**-ENOMSG** if the option is not found.
4605 *
4606 *		**-ENOENT** if no syn packet is available when
4607 *		**BPF_LOAD_HDR_OPT_TCP_SYN** is used.
4608 *
4609 *		**-ENOSPC** if there is not enough space.  Only *len* number of
4610 *		bytes are copied.
4611 *
4612 *		**-EFAULT** on failure to parse the header options in the
4613 *		packet.
4614 *
4615 *		**-EPERM** if the helper cannot be used under the current
4616 *		*skops*\ **->op**.
4617 *
4618 * long bpf_store_hdr_opt(struct bpf_sock_ops *skops, const void *from, u32 len, u64 flags)
4619 *	Description
4620 *		Store header option.  The data will be copied
4621 *		from buffer *from* with length *len* to the TCP header.
4622 *
4623 *		The buffer *from* should have the whole option that
4624 *		includes the kind, kind-length, and the actual
4625 *		option data.  The *len* must be at least kind-length
4626 *		long.  The kind-length does not have to be 4 byte
4627 *		aligned.  The kernel will take care of the padding
4628 *		and setting the 4 bytes aligned value to th->doff.
4629 *
4630 *		This helper will check for duplicated option
4631 *		by searching the same option in the outgoing skb.
4632 *
4633 *		This helper can only be called during
4634 *		**BPF_SOCK_OPS_WRITE_HDR_OPT_CB**.
4635 *
4636 *	Return
4637 *		0 on success, or negative error in case of failure:
4638 *
4639 *		**-EINVAL** If param is invalid.
4640 *
4641 *		**-ENOSPC** if there is not enough space in the header.
4642 *		Nothing has been written
4643 *
4644 *		**-EEXIST** if the option already exists.
4645 *
4646 *		**-EFAULT** on failure to parse the existing header options.
4647 *
4648 *		**-EPERM** if the helper cannot be used under the current
4649 *		*skops*\ **->op**.
4650 *
4651 * long bpf_reserve_hdr_opt(struct bpf_sock_ops *skops, u32 len, u64 flags)
4652 *	Description
4653 *		Reserve *len* bytes for the bpf header option.  The
4654 *		space will be used by **bpf_store_hdr_opt**\ () later in
4655 *		**BPF_SOCK_OPS_WRITE_HDR_OPT_CB**.
4656 *
4657 *		If **bpf_reserve_hdr_opt**\ () is called multiple times,
4658 *		the total number of bytes will be reserved.
4659 *
4660 *		This helper can only be called during
4661 *		**BPF_SOCK_OPS_HDR_OPT_LEN_CB**.
4662 *
4663 *	Return
4664 *		0 on success, or negative error in case of failure:
4665 *
4666 *		**-EINVAL** if a parameter is invalid.
4667 *
4668 *		**-ENOSPC** if there is not enough space in the header.
4669 *
4670 *		**-EPERM** if the helper cannot be used under the current
4671 *		*skops*\ **->op**.
4672 *
4673 * void *bpf_inode_storage_get(struct bpf_map *map, void *inode, void *value, u64 flags)
4674 *	Description
4675 *		Get a bpf_local_storage from an *inode*.
4676 *
4677 *		Logically, it could be thought of as getting the value from
4678 *		a *map* with *inode* as the **key**.  From this
4679 *		perspective,  the usage is not much different from
4680 *		**bpf_map_lookup_elem**\ (*map*, **&**\ *inode*) except this
4681 *		helper enforces the key must be an inode and the map must also
4682 *		be a **BPF_MAP_TYPE_INODE_STORAGE**.
4683 *
4684 *		Underneath, the value is stored locally at *inode* instead of
4685 *		the *map*.  The *map* is used as the bpf-local-storage
4686 *		"type". The bpf-local-storage "type" (i.e. the *map*) is
4687 *		searched against all bpf_local_storage residing at *inode*.
4688 *
4689 *		An optional *flags* (**BPF_LOCAL_STORAGE_GET_F_CREATE**) can be
4690 *		used such that a new bpf_local_storage will be
4691 *		created if one does not exist.  *value* can be used
4692 *		together with **BPF_LOCAL_STORAGE_GET_F_CREATE** to specify
4693 *		the initial value of a bpf_local_storage.  If *value* is
4694 *		**NULL**, the new bpf_local_storage will be zero initialized.
4695 *	Return
4696 *		A bpf_local_storage pointer is returned on success.
4697 *
4698 *		**NULL** if not found or there was an error in adding
4699 *		a new bpf_local_storage.
4700 *
4701 * int bpf_inode_storage_delete(struct bpf_map *map, void *inode)
4702 *	Description
4703 *		Delete a bpf_local_storage from an *inode*.
4704 *	Return
4705 *		0 on success.
4706 *
4707 *		**-ENOENT** if the bpf_local_storage cannot be found.
4708 *
4709 * long bpf_d_path(struct path *path, char *buf, u32 sz)
4710 *	Description
4711 *		Return full path for given **struct path** object, which
4712 *		needs to be the kernel BTF *path* object. The path is
4713 *		returned in the provided buffer *buf* of size *sz* and
4714 *		is zero terminated.
4715 *
4716 *	Return
4717 *		On success, the strictly positive length of the string,
4718 *		including the trailing NUL character. On error, a negative
4719 *		value.
4720 *
4721 * long bpf_copy_from_user(void *dst, u32 size, const void *user_ptr)
4722 * 	Description
4723 * 		Read *size* bytes from user space address *user_ptr* and store
4724 * 		the data in *dst*. This is a wrapper of **copy_from_user**\ ().
4725 * 	Return
4726 * 		0 on success, or a negative error in case of failure.
4727 *
4728 * long bpf_snprintf_btf(char *str, u32 str_size, struct btf_ptr *ptr, u32 btf_ptr_size, u64 flags)
4729 *	Description
4730 *		Use BTF to store a string representation of *ptr*->ptr in *str*,
4731 *		using *ptr*->type_id.  This value should specify the type
4732 *		that *ptr*->ptr points to. LLVM __builtin_btf_type_id(type, 1)
4733 *		can be used to look up vmlinux BTF type ids. Traversing the
4734 *		data structure using BTF, the type information and values are
4735 *		stored in the first *str_size* - 1 bytes of *str*.  Safe copy of
4736 *		the pointer data is carried out to avoid kernel crashes during
4737 *		operation.  Smaller types can use string space on the stack;
4738 *		larger programs can use map data to store the string
4739 *		representation.
4740 *
4741 *		The string can be subsequently shared with userspace via
4742 *		bpf_perf_event_output() or ring buffer interfaces.
4743 *		bpf_trace_printk() is to be avoided as it places too small
4744 *		a limit on string size to be useful.
4745 *
4746 *		*flags* is a combination of
4747 *
4748 *		**BTF_F_COMPACT**
4749 *			no formatting around type information
4750 *		**BTF_F_NONAME**
4751 *			no struct/union member names/types
4752 *		**BTF_F_PTR_RAW**
4753 *			show raw (unobfuscated) pointer values;
4754 *			equivalent to printk specifier %px.
4755 *		**BTF_F_ZERO**
4756 *			show zero-valued struct/union members; they
4757 *			are not displayed by default
4758 *
4759 *	Return
4760 *		The number of bytes that were written (or would have been
4761 *		written if output had to be truncated due to string size),
4762 *		or a negative error in cases of failure.
4763 *
4764 * long bpf_seq_printf_btf(struct seq_file *m, struct btf_ptr *ptr, u32 ptr_size, u64 flags)
4765 *	Description
4766 *		Use BTF to write to seq_write a string representation of
4767 *		*ptr*->ptr, using *ptr*->type_id as per bpf_snprintf_btf().
4768 *		*flags* are identical to those used for bpf_snprintf_btf.
4769 *	Return
4770 *		0 on success or a negative error in case of failure.
4771 *
4772 * u64 bpf_skb_cgroup_classid(struct sk_buff *skb)
4773 * 	Description
4774 * 		See **bpf_get_cgroup_classid**\ () for the main description.
4775 * 		This helper differs from **bpf_get_cgroup_classid**\ () in that
4776 * 		the cgroup v1 net_cls class is retrieved only from the *skb*'s
4777 * 		associated socket instead of the current process.
4778 * 	Return
4779 * 		The id is returned or 0 in case the id could not be retrieved.
4780 *
4781 * long bpf_redirect_neigh(u32 ifindex, struct bpf_redir_neigh *params, int plen, u64 flags)
4782 * 	Description
4783 * 		Redirect the packet to another net device of index *ifindex*
4784 * 		and fill in L2 addresses from neighboring subsystem. This helper
4785 * 		is somewhat similar to **bpf_redirect**\ (), except that it
4786 * 		populates L2 addresses as well, meaning, internally, the helper
4787 * 		relies on the neighbor lookup for the L2 address of the nexthop.
4788 *
4789 * 		The helper will perform a FIB lookup based on the skb's
4790 * 		networking header to get the address of the next hop, unless
4791 * 		this is supplied by the caller in the *params* argument. The
4792 * 		*plen* argument indicates the len of *params* and should be set
4793 * 		to 0 if *params* is NULL.
4794 *
4795 * 		The *flags* argument is reserved and must be 0. The helper is
4796 * 		currently only supported for tc BPF program types, and enabled
4797 * 		for IPv4 and IPv6 protocols.
4798 * 	Return
4799 * 		The helper returns **TC_ACT_REDIRECT** on success or
4800 * 		**TC_ACT_SHOT** on error.
4801 *
4802 * void *bpf_per_cpu_ptr(const void *percpu_ptr, u32 cpu)
4803 *     Description
4804 *             Take a pointer to a percpu ksym, *percpu_ptr*, and return a
4805 *             pointer to the percpu kernel variable on *cpu*. A ksym is an
4806 *             extern variable decorated with '__ksym'. For ksym, there is a
4807 *             global var (either static or global) defined of the same name
4808 *             in the kernel. The ksym is percpu if the global var is percpu.
4809 *             The returned pointer points to the global percpu var on *cpu*.
4810 *
4811 *             bpf_per_cpu_ptr() has the same semantic as per_cpu_ptr() in the
4812 *             kernel, except that bpf_per_cpu_ptr() may return NULL. This
4813 *             happens if *cpu* is larger than nr_cpu_ids. The caller of
4814 *             bpf_per_cpu_ptr() must check the returned value.
4815 *     Return
4816 *             A pointer pointing to the kernel percpu variable on *cpu*, or
4817 *             NULL, if *cpu* is invalid.
4818 *
4819 * void *bpf_this_cpu_ptr(const void *percpu_ptr)
4820 *	Description
4821 *		Take a pointer to a percpu ksym, *percpu_ptr*, and return a
4822 *		pointer to the percpu kernel variable on this cpu. See the
4823 *		description of 'ksym' in **bpf_per_cpu_ptr**\ ().
4824 *
4825 *		bpf_this_cpu_ptr() has the same semantic as this_cpu_ptr() in
4826 *		the kernel. Different from **bpf_per_cpu_ptr**\ (), it would
4827 *		never return NULL.
4828 *	Return
4829 *		A pointer pointing to the kernel percpu variable on this cpu.
4830 *
4831 * long bpf_redirect_peer(u32 ifindex, u64 flags)
4832 * 	Description
4833 * 		Redirect the packet to another net device of index *ifindex*.
4834 * 		This helper is somewhat similar to **bpf_redirect**\ (), except
4835 * 		that the redirection happens to the *ifindex*' peer device and
4836 * 		the netns switch takes place from ingress to ingress without
4837 * 		going through the CPU's backlog queue.
4838 *
4839 * 		The *flags* argument is reserved and must be 0. The helper is
4840 * 		currently only supported for tc BPF program types at the ingress
4841 * 		hook and for veth device types. The peer device must reside in a
4842 * 		different network namespace.
4843 * 	Return
4844 * 		The helper returns **TC_ACT_REDIRECT** on success or
4845 * 		**TC_ACT_SHOT** on error.
4846 *
4847 * void *bpf_task_storage_get(struct bpf_map *map, struct task_struct *task, void *value, u64 flags)
4848 *	Description
4849 *		Get a bpf_local_storage from the *task*.
4850 *
4851 *		Logically, it could be thought of as getting the value from
4852 *		a *map* with *task* as the **key**.  From this
4853 *		perspective,  the usage is not much different from
4854 *		**bpf_map_lookup_elem**\ (*map*, **&**\ *task*) except this
4855 *		helper enforces the key must be a task_struct and the map must also
4856 *		be a **BPF_MAP_TYPE_TASK_STORAGE**.
4857 *
4858 *		Underneath, the value is stored locally at *task* instead of
4859 *		the *map*.  The *map* is used as the bpf-local-storage
4860 *		"type". The bpf-local-storage "type" (i.e. the *map*) is
4861 *		searched against all bpf_local_storage residing at *task*.
4862 *
4863 *		An optional *flags* (**BPF_LOCAL_STORAGE_GET_F_CREATE**) can be
4864 *		used such that a new bpf_local_storage will be
4865 *		created if one does not exist.  *value* can be used
4866 *		together with **BPF_LOCAL_STORAGE_GET_F_CREATE** to specify
4867 *		the initial value of a bpf_local_storage.  If *value* is
4868 *		**NULL**, the new bpf_local_storage will be zero initialized.
4869 *	Return
4870 *		A bpf_local_storage pointer is returned on success.
4871 *
4872 *		**NULL** if not found or there was an error in adding
4873 *		a new bpf_local_storage.
4874 *
4875 * long bpf_task_storage_delete(struct bpf_map *map, struct task_struct *task)
4876 *	Description
4877 *		Delete a bpf_local_storage from a *task*.
4878 *	Return
4879 *		0 on success.
4880 *
4881 *		**-ENOENT** if the bpf_local_storage cannot be found.
4882 *
4883 * struct task_struct *bpf_get_current_task_btf(void)
4884 *	Description
4885 *		Return a BTF pointer to the "current" task.
4886 *		This pointer can also be used in helpers that accept an
4887 *		*ARG_PTR_TO_BTF_ID* of type *task_struct*.
4888 *	Return
4889 *		Pointer to the current task.
4890 *
4891 * long bpf_bprm_opts_set(struct linux_binprm *bprm, u64 flags)
4892 *	Description
4893 *		Set or clear certain options on *bprm*:
4894 *
4895 *		**BPF_F_BPRM_SECUREEXEC** Set the secureexec bit
4896 *		which sets the **AT_SECURE** auxv for glibc. The bit
4897 *		is cleared if the flag is not specified.
4898 *	Return
4899 *		**-EINVAL** if invalid *flags* are passed, zero otherwise.
4900 *
4901 * u64 bpf_ktime_get_coarse_ns(void)
4902 * 	Description
4903 * 		Return a coarse-grained version of the time elapsed since
4904 * 		system boot, in nanoseconds. Does not include time the system
4905 * 		was suspended.
4906 *
4907 * 		See: **clock_gettime**\ (**CLOCK_MONOTONIC_COARSE**)
4908 * 	Return
4909 * 		Current *ktime*.
4910 *
4911 * long bpf_ima_inode_hash(struct inode *inode, void *dst, u32 size)
4912 *	Description
4913 *		Returns the stored IMA hash of the *inode* (if it's available).
4914 *		If the hash is larger than *size*, then only *size*
4915 *		bytes will be copied to *dst*
4916 *	Return
4917 *		The **hash_algo** is returned on success,
4918 *		**-EOPNOTSUP** if IMA is disabled or **-EINVAL** if
4919 *		invalid arguments are passed.
4920 *
4921 * struct socket *bpf_sock_from_file(struct file *file)
4922 *	Description
4923 *		If the given file represents a socket, returns the associated
4924 *		socket.
4925 *	Return
4926 *		A pointer to a struct socket on success or NULL if the file is
4927 *		not a socket.
4928 *
4929 * long bpf_check_mtu(void *ctx, u32 ifindex, u32 *mtu_len, s32 len_diff, u64 flags)
4930 *	Description
4931 *		Check packet size against exceeding MTU of net device (based
4932 *		on *ifindex*).  This helper will likely be used in combination
4933 *		with helpers that adjust/change the packet size.
4934 *
4935 *		The argument *len_diff* can be used for querying with a planned
4936 *		size change. This allows to check MTU prior to changing packet
4937 *		ctx. Providing a *len_diff* adjustment that is larger than the
4938 *		actual packet size (resulting in negative packet size) will in
4939 *		principle not exceed the MTU, which is why it is not considered
4940 *		a failure.  Other BPF helpers are needed for performing the
4941 *		planned size change; therefore the responsibility for catching
4942 *		a negative packet size belongs in those helpers.
4943 *
4944 *		Specifying *ifindex* zero means the MTU check is performed
4945 *		against the current net device.  This is practical if this isn't
4946 *		used prior to redirect.
4947 *
4948 *		On input *mtu_len* must be a valid pointer, else verifier will
4949 *		reject BPF program.  If the value *mtu_len* is initialized to
4950 *		zero then the ctx packet size is use.  When value *mtu_len* is
4951 *		provided as input this specify the L3 length that the MTU check
4952 *		is done against. Remember XDP and TC length operate at L2, but
4953 *		this value is L3 as this correlate to MTU and IP-header tot_len
4954 *		values which are L3 (similar behavior as bpf_fib_lookup).
4955 *
4956 *		The Linux kernel route table can configure MTUs on a more
4957 *		specific per route level, which is not provided by this helper.
4958 *		For route level MTU checks use the **bpf_fib_lookup**\ ()
4959 *		helper.
4960 *
4961 *		*ctx* is either **struct xdp_md** for XDP programs or
4962 *		**struct sk_buff** for tc cls_act programs.
4963 *
4964 *		The *flags* argument can be a combination of one or more of the
4965 *		following values:
4966 *
4967 *		**BPF_MTU_CHK_SEGS**
4968 *			This flag will only works for *ctx* **struct sk_buff**.
4969 *			If packet context contains extra packet segment buffers
4970 *			(often knows as GSO skb), then MTU check is harder to
4971 *			check at this point, because in transmit path it is
4972 *			possible for the skb packet to get re-segmented
4973 *			(depending on net device features).  This could still be
4974 *			a MTU violation, so this flag enables performing MTU
4975 *			check against segments, with a different violation
4976 *			return code to tell it apart. Check cannot use len_diff.
4977 *
4978 *		On return *mtu_len* pointer contains the MTU value of the net
4979 *		device.  Remember the net device configured MTU is the L3 size,
4980 *		which is returned here and XDP and TC length operate at L2.
4981 *		Helper take this into account for you, but remember when using
4982 *		MTU value in your BPF-code.
4983 *
4984 *	Return
4985 *		* 0 on success, and populate MTU value in *mtu_len* pointer.
4986 *
4987 *		* < 0 if any input argument is invalid (*mtu_len* not updated)
4988 *
4989 *		MTU violations return positive values, but also populate MTU
4990 *		value in *mtu_len* pointer, as this can be needed for
4991 *		implementing PMTU handing:
4992 *
4993 *		* **BPF_MTU_CHK_RET_FRAG_NEEDED**
4994 *		* **BPF_MTU_CHK_RET_SEGS_TOOBIG**
4995 *
4996 * long bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, void *callback_ctx, u64 flags)
4997 *	Description
4998 *		For each element in **map**, call **callback_fn** function with
4999 *		**map**, **callback_ctx** and other map-specific parameters.
5000 *		The **callback_fn** should be a static function and
5001 *		the **callback_ctx** should be a pointer to the stack.
5002 *		The **flags** is used to control certain aspects of the helper.
5003 *		Currently, the **flags** must be 0.
5004 *
5005 *		The following are a list of supported map types and their
5006 *		respective expected callback signatures:
5007 *
5008 *		BPF_MAP_TYPE_HASH, BPF_MAP_TYPE_PERCPU_HASH,
5009 *		BPF_MAP_TYPE_LRU_HASH, BPF_MAP_TYPE_LRU_PERCPU_HASH,
5010 *		BPF_MAP_TYPE_ARRAY, BPF_MAP_TYPE_PERCPU_ARRAY
5011 *
5012 *		long (\*callback_fn)(struct bpf_map \*map, const void \*key, void \*value, void \*ctx);
5013 *
5014 *		For per_cpu maps, the map_value is the value on the cpu where the
5015 *		bpf_prog is running.
5016 *
5017 *		If **callback_fn** return 0, the helper will continue to the next
5018 *		element. If return value is 1, the helper will skip the rest of
5019 *		elements and return. Other return values are not used now.
5020 *
5021 *	Return
5022 *		The number of traversed map elements for success, **-EINVAL** for
5023 *		invalid **flags**.
5024 *
5025 * long bpf_snprintf(char *str, u32 str_size, const char *fmt, u64 *data, u32 data_len)
5026 *	Description
5027 *		Outputs a string into the **str** buffer of size **str_size**
5028 *		based on a format string stored in a read-only map pointed by
5029 *		**fmt**.
5030 *
5031 *		Each format specifier in **fmt** corresponds to one u64 element
5032 *		in the **data** array. For strings and pointers where pointees
5033 *		are accessed, only the pointer values are stored in the *data*
5034 *		array. The *data_len* is the size of *data* in bytes - must be
5035 *		a multiple of 8.
5036 *
5037 *		Formats **%s** and **%p{i,I}{4,6}** require to read kernel
5038 *		memory. Reading kernel memory may fail due to either invalid
5039 *		address or valid address but requiring a major memory fault. If
5040 *		reading kernel memory fails, the string for **%s** will be an
5041 *		empty string, and the ip address for **%p{i,I}{4,6}** will be 0.
5042 *		Not returning error to bpf program is consistent with what
5043 *		**bpf_trace_printk**\ () does for now.
5044 *
5045 *	Return
5046 *		The strictly positive length of the formatted string, including
5047 *		the trailing zero character. If the return value is greater than
5048 *		**str_size**, **str** contains a truncated string, guaranteed to
5049 *		be zero-terminated except when **str_size** is 0.
5050 *
5051 *		Or **-EBUSY** if the per-CPU memory copy buffer is busy.
5052 *
5053 * long bpf_sys_bpf(u32 cmd, void *attr, u32 attr_size)
5054 * 	Description
5055 * 		Execute bpf syscall with given arguments.
5056 * 	Return
5057 * 		A syscall result.
5058 *
5059 * long bpf_btf_find_by_name_kind(char *name, int name_sz, u32 kind, int flags)
5060 * 	Description
5061 * 		Find BTF type with given name and kind in vmlinux BTF or in module's BTFs.
5062 * 	Return
5063 * 		Returns btf_id and btf_obj_fd in lower and upper 32 bits.
5064 *
5065 * long bpf_sys_close(u32 fd)
5066 * 	Description
5067 * 		Execute close syscall for given FD.
5068 * 	Return
5069 * 		A syscall result.
5070 *
5071 * long bpf_timer_init(struct bpf_timer *timer, struct bpf_map *map, u64 flags)
5072 *	Description
5073 *		Initialize the timer.
5074 *		First 4 bits of *flags* specify clockid.
5075 *		Only CLOCK_MONOTONIC, CLOCK_REALTIME, CLOCK_BOOTTIME are allowed.
5076 *		All other bits of *flags* are reserved.
5077 *		The verifier will reject the program if *timer* is not from
5078 *		the same *map*.
5079 *	Return
5080 *		0 on success.
5081 *		**-EBUSY** if *timer* is already initialized.
5082 *		**-EINVAL** if invalid *flags* are passed.
5083 *		**-EPERM** if *timer* is in a map that doesn't have any user references.
5084 *		The user space should either hold a file descriptor to a map with timers
5085 *		or pin such map in bpffs. When map is unpinned or file descriptor is
5086 *		closed all timers in the map will be cancelled and freed.
5087 *
5088 * long bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn)
5089 *	Description
5090 *		Configure the timer to call *callback_fn* static function.
5091 *	Return
5092 *		0 on success.
5093 *		**-EINVAL** if *timer* was not initialized with bpf_timer_init() earlier.
5094 *		**-EPERM** if *timer* is in a map that doesn't have any user references.
5095 *		The user space should either hold a file descriptor to a map with timers
5096 *		or pin such map in bpffs. When map is unpinned or file descriptor is
5097 *		closed all timers in the map will be cancelled and freed.
5098 *
5099 * long bpf_timer_start(struct bpf_timer *timer, u64 nsecs, u64 flags)
5100 *	Description
5101 *		Set timer expiration N nanoseconds from the current time. The
5102 *		configured callback will be invoked in soft irq context on some cpu
5103 *		and will not repeat unless another bpf_timer_start() is made.
5104 *		In such case the next invocation can migrate to a different cpu.
5105 *		Since struct bpf_timer is a field inside map element the map
5106 *		owns the timer. The bpf_timer_set_callback() will increment refcnt
5107 *		of BPF program to make sure that callback_fn code stays valid.
5108 *		When user space reference to a map reaches zero all timers
5109 *		in a map are cancelled and corresponding program's refcnts are
5110 *		decremented. This is done to make sure that Ctrl-C of a user
5111 *		process doesn't leave any timers running. If map is pinned in
5112 *		bpffs the callback_fn can re-arm itself indefinitely.
5113 *		bpf_map_update/delete_elem() helpers and user space sys_bpf commands
5114 *		cancel and free the timer in the given map element.
5115 *		The map can contain timers that invoke callback_fn-s from different
5116 *		programs. The same callback_fn can serve different timers from
5117 *		different maps if key/value layout matches across maps.
5118 *		Every bpf_timer_set_callback() can have different callback_fn.
5119 *
5120 *		*flags* can be one of:
5121 *
5122 *		**BPF_F_TIMER_ABS**
5123 *			Start the timer in absolute expire value instead of the
5124 *			default relative one.
5125 *		**BPF_F_TIMER_CPU_PIN**
5126 *			Timer will be pinned to the CPU of the caller.
5127 *
5128 *	Return
5129 *		0 on success.
5130 *		**-EINVAL** if *timer* was not initialized with bpf_timer_init() earlier
5131 *		or invalid *flags* are passed.
5132 *
5133 * long bpf_timer_cancel(struct bpf_timer *timer)
5134 *	Description
5135 *		Cancel the timer and wait for callback_fn to finish if it was running.
5136 *	Return
5137 *		0 if the timer was not active.
5138 *		1 if the timer was active.
5139 *		**-EINVAL** if *timer* was not initialized with bpf_timer_init() earlier.
5140 *		**-EDEADLK** if callback_fn tried to call bpf_timer_cancel() on its
5141 *		own timer which would have led to a deadlock otherwise.
5142 *
5143 * u64 bpf_get_func_ip(void *ctx)
5144 * 	Description
5145 * 		Get address of the traced function (for tracing and kprobe programs).
5146 *
5147 * 		When called for kprobe program attached as uprobe it returns
5148 * 		probe address for both entry and return uprobe.
5149 *
5150 * 	Return
5151 * 		Address of the traced function for kprobe.
5152 * 		0 for kprobes placed within the function (not at the entry).
5153 * 		Address of the probe for uprobe and return uprobe.
5154 *
5155 * u64 bpf_get_attach_cookie(void *ctx)
5156 * 	Description
5157 * 		Get bpf_cookie value provided (optionally) during the program
5158 * 		attachment. It might be different for each individual
5159 * 		attachment, even if BPF program itself is the same.
5160 * 		Expects BPF program context *ctx* as a first argument.
5161 *
5162 * 		Supported for the following program types:
5163 *			- kprobe/uprobe;
5164 *			- tracepoint;
5165 *			- perf_event.
5166 * 	Return
5167 *		Value specified by user at BPF link creation/attachment time
5168 *		or 0, if it was not specified.
5169 *
5170 * long bpf_task_pt_regs(struct task_struct *task)
5171 *	Description
5172 *		Get the struct pt_regs associated with **task**.
5173 *	Return
5174 *		A pointer to struct pt_regs.
5175 *
5176 * long bpf_get_branch_snapshot(void *entries, u32 size, u64 flags)
5177 *	Description
5178 *		Get branch trace from hardware engines like Intel LBR. The
5179 *		hardware engine is stopped shortly after the helper is
5180 *		called. Therefore, the user need to filter branch entries
5181 *		based on the actual use case. To capture branch trace
5182 *		before the trigger point of the BPF program, the helper
5183 *		should be called at the beginning of the BPF program.
5184 *
5185 *		The data is stored as struct perf_branch_entry into output
5186 *		buffer *entries*. *size* is the size of *entries* in bytes.
5187 *		*flags* is reserved for now and must be zero.
5188 *
5189 *	Return
5190 *		On success, number of bytes written to *buf*. On error, a
5191 *		negative value.
5192 *
5193 *		**-EINVAL** if *flags* is not zero.
5194 *
5195 *		**-ENOENT** if architecture does not support branch records.
5196 *
5197 * long bpf_trace_vprintk(const char *fmt, u32 fmt_size, const void *data, u32 data_len)
5198 *	Description
5199 *		Behaves like **bpf_trace_printk**\ () helper, but takes an array of u64
5200 *		to format and can handle more format args as a result.
5201 *
5202 *		Arguments are to be used as in **bpf_seq_printf**\ () helper.
5203 *	Return
5204 *		The number of bytes written to the buffer, or a negative error
5205 *		in case of failure.
5206 *
5207 * struct unix_sock *bpf_skc_to_unix_sock(void *sk)
5208 * 	Description
5209 *		Dynamically cast a *sk* pointer to a *unix_sock* pointer.
5210 *	Return
5211 *		*sk* if casting is valid, or **NULL** otherwise.
5212 *
5213 * long bpf_kallsyms_lookup_name(const char *name, int name_sz, int flags, u64 *res)
5214 *	Description
5215 *		Get the address of a kernel symbol, returned in *res*. *res* is
5216 *		set to 0 if the symbol is not found.
5217 *	Return
5218 *		On success, zero. On error, a negative value.
5219 *
5220 *		**-EINVAL** if *flags* is not zero.
5221 *
5222 *		**-EINVAL** if string *name* is not the same size as *name_sz*.
5223 *
5224 *		**-ENOENT** if symbol is not found.
5225 *
5226 *		**-EPERM** if caller does not have permission to obtain kernel address.
5227 *
5228 * long bpf_find_vma(struct task_struct *task, u64 addr, void *callback_fn, void *callback_ctx, u64 flags)
5229 *	Description
5230 *		Find vma of *task* that contains *addr*, call *callback_fn*
5231 *		function with *task*, *vma*, and *callback_ctx*.
5232 *		The *callback_fn* should be a static function and
5233 *		the *callback_ctx* should be a pointer to the stack.
5234 *		The *flags* is used to control certain aspects of the helper.
5235 *		Currently, the *flags* must be 0.
5236 *
5237 *		The expected callback signature is
5238 *
5239 *		long (\*callback_fn)(struct task_struct \*task, struct vm_area_struct \*vma, void \*callback_ctx);
5240 *
5241 *	Return
5242 *		0 on success.
5243 *		**-ENOENT** if *task->mm* is NULL, or no vma contains *addr*.
5244 *		**-EBUSY** if failed to try lock mmap_lock.
5245 *		**-EINVAL** for invalid **flags**.
5246 *
5247 * long bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, u64 flags)
5248 *	Description
5249 *		For **nr_loops**, call **callback_fn** function
5250 *		with **callback_ctx** as the context parameter.
5251 *		The **callback_fn** should be a static function and
5252 *		the **callback_ctx** should be a pointer to the stack.
5253 *		The **flags** is used to control certain aspects of the helper.
5254 *		Currently, the **flags** must be 0. Currently, nr_loops is
5255 *		limited to 1 << 23 (~8 million) loops.
5256 *
5257 *		long (\*callback_fn)(u32 index, void \*ctx);
5258 *
5259 *		where **index** is the current index in the loop. The index
5260 *		is zero-indexed.
5261 *
5262 *		If **callback_fn** returns 0, the helper will continue to the next
5263 *		loop. If return value is 1, the helper will skip the rest of
5264 *		the loops and return. Other return values are not used now,
5265 *		and will be rejected by the verifier.
5266 *
5267 *	Return
5268 *		The number of loops performed, **-EINVAL** for invalid **flags**,
5269 *		**-E2BIG** if **nr_loops** exceeds the maximum number of loops.
5270 *
5271 * long bpf_strncmp(const char *s1, u32 s1_sz, const char *s2)
5272 *	Description
5273 *		Do strncmp() between **s1** and **s2**. **s1** doesn't need
5274 *		to be null-terminated and **s1_sz** is the maximum storage
5275 *		size of **s1**. **s2** must be a read-only string.
5276 *	Return
5277 *		An integer less than, equal to, or greater than zero
5278 *		if the first **s1_sz** bytes of **s1** is found to be
5279 *		less than, to match, or be greater than **s2**.
5280 *
5281 * long bpf_get_func_arg(void *ctx, u32 n, u64 *value)
5282 *	Description
5283 *		Get **n**-th argument register (zero based) of the traced function (for tracing programs)
5284 *		returned in **value**.
5285 *
5286 *	Return
5287 *		0 on success.
5288 *		**-EINVAL** if n >= argument register count of traced function.
5289 *
5290 * long bpf_get_func_ret(void *ctx, u64 *value)
5291 *	Description
5292 *		Get return value of the traced function (for tracing programs)
5293 *		in **value**.
5294 *
5295 *	Return
5296 *		0 on success.
5297 *		**-EOPNOTSUPP** for tracing programs other than BPF_TRACE_FEXIT or BPF_MODIFY_RETURN.
5298 *
5299 * long bpf_get_func_arg_cnt(void *ctx)
5300 *	Description
5301 *		Get number of registers of the traced function (for tracing programs) where
5302 *		function arguments are stored in these registers.
5303 *
5304 *	Return
5305 *		The number of argument registers of the traced function.
5306 *
5307 * int bpf_get_retval(void)
5308 *	Description
5309 *		Get the BPF program's return value that will be returned to the upper layers.
5310 *
5311 *		This helper is currently supported by cgroup programs and only by the hooks
5312 *		where BPF program's return value is returned to the userspace via errno.
5313 *	Return
5314 *		The BPF program's return value.
5315 *
5316 * int bpf_set_retval(int retval)
5317 *	Description
5318 *		Set the BPF program's return value that will be returned to the upper layers.
5319 *
5320 *		This helper is currently supported by cgroup programs and only by the hooks
5321 *		where BPF program's return value is returned to the userspace via errno.
5322 *
5323 *		Note that there is the following corner case where the program exports an error
5324 *		via bpf_set_retval but signals success via 'return 1':
5325 *
5326 *			bpf_set_retval(-EPERM);
5327 *			return 1;
5328 *
5329 *		In this case, the BPF program's return value will use helper's -EPERM. This
5330 *		still holds true for cgroup/bind{4,6} which supports extra 'return 3' success case.
5331 *
5332 *	Return
5333 *		0 on success, or a negative error in case of failure.
5334 *
5335 * u64 bpf_xdp_get_buff_len(struct xdp_buff *xdp_md)
5336 *	Description
5337 *		Get the total size of a given xdp buff (linear and paged area)
5338 *	Return
5339 *		The total size of a given xdp buffer.
5340 *
5341 * long bpf_xdp_load_bytes(struct xdp_buff *xdp_md, u32 offset, void *buf, u32 len)
5342 *	Description
5343 *		This helper is provided as an easy way to load data from a
5344 *		xdp buffer. It can be used to load *len* bytes from *offset* from
5345 *		the frame associated to *xdp_md*, into the buffer pointed by
5346 *		*buf*.
5347 *	Return
5348 *		0 on success, or a negative error in case of failure.
5349 *
5350 * long bpf_xdp_store_bytes(struct xdp_buff *xdp_md, u32 offset, void *buf, u32 len)
5351 *	Description
5352 *		Store *len* bytes from buffer *buf* into the frame
5353 *		associated to *xdp_md*, at *offset*.
5354 *	Return
5355 *		0 on success, or a negative error in case of failure.
5356 *
5357 * long bpf_copy_from_user_task(void *dst, u32 size, const void *user_ptr, struct task_struct *tsk, u64 flags)
5358 *	Description
5359 *		Read *size* bytes from user space address *user_ptr* in *tsk*'s
5360 *		address space, and stores the data in *dst*. *flags* is not
5361 *		used yet and is provided for future extensibility. This helper
5362 *		can only be used by sleepable programs.
5363 *	Return
5364 *		0 on success, or a negative error in case of failure. On error
5365 *		*dst* buffer is zeroed out.
5366 *
5367 * long bpf_skb_set_tstamp(struct sk_buff *skb, u64 tstamp, u32 tstamp_type)
5368 *	Description
5369 *		Change the __sk_buff->tstamp_type to *tstamp_type*
5370 *		and set *tstamp* to the __sk_buff->tstamp together.
5371 *
5372 *		If there is no need to change the __sk_buff->tstamp_type,
5373 *		the tstamp value can be directly written to __sk_buff->tstamp
5374 *		instead.
5375 *
5376 *		BPF_SKB_TSTAMP_DELIVERY_MONO is the only tstamp that
5377 *		will be kept during bpf_redirect_*().  A non zero
5378 *		*tstamp* must be used with the BPF_SKB_TSTAMP_DELIVERY_MONO
5379 *		*tstamp_type*.
5380 *
5381 *		A BPF_SKB_TSTAMP_UNSPEC *tstamp_type* can only be used
5382 *		with a zero *tstamp*.
5383 *
5384 *		Only IPv4 and IPv6 skb->protocol are supported.
5385 *
5386 *		This function is most useful when it needs to set a
5387 *		mono delivery time to __sk_buff->tstamp and then
5388 *		bpf_redirect_*() to the egress of an iface.  For example,
5389 *		changing the (rcv) timestamp in __sk_buff->tstamp at
5390 *		ingress to a mono delivery time and then bpf_redirect_*()
5391 *		to sch_fq@phy-dev.
5392 *	Return
5393 *		0 on success.
5394 *		**-EINVAL** for invalid input
5395 *		**-EOPNOTSUPP** for unsupported protocol
5396 *
5397 * long bpf_ima_file_hash(struct file *file, void *dst, u32 size)
5398 *	Description
5399 *		Returns a calculated IMA hash of the *file*.
5400 *		If the hash is larger than *size*, then only *size*
5401 *		bytes will be copied to *dst*
5402 *	Return
5403 *		The **hash_algo** is returned on success,
5404 *		**-EOPNOTSUP** if the hash calculation failed or **-EINVAL** if
5405 *		invalid arguments are passed.
5406 *
5407 * void *bpf_kptr_xchg(void *map_value, void *ptr)
5408 *	Description
5409 *		Exchange kptr at pointer *map_value* with *ptr*, and return the
5410 *		old value. *ptr* can be NULL, otherwise it must be a referenced
5411 *		pointer which will be released when this helper is called.
5412 *	Return
5413 *		The old value of kptr (which can be NULL). The returned pointer
5414 *		if not NULL, is a reference which must be released using its
5415 *		corresponding release function, or moved into a BPF map before
5416 *		program exit.
5417 *
5418 * void *bpf_map_lookup_percpu_elem(struct bpf_map *map, const void *key, u32 cpu)
5419 * 	Description
5420 * 		Perform a lookup in *percpu map* for an entry associated to
5421 * 		*key* on *cpu*.
5422 * 	Return
5423 * 		Map value associated to *key* on *cpu*, or **NULL** if no entry
5424 * 		was found or *cpu* is invalid.
5425 *
5426 * struct mptcp_sock *bpf_skc_to_mptcp_sock(void *sk)
5427 *	Description
5428 *		Dynamically cast a *sk* pointer to a *mptcp_sock* pointer.
5429 *	Return
5430 *		*sk* if casting is valid, or **NULL** otherwise.
5431 *
5432 * long bpf_dynptr_from_mem(void *data, u32 size, u64 flags, struct bpf_dynptr *ptr)
5433 *	Description
5434 *		Get a dynptr to local memory *data*.
5435 *
5436 *		*data* must be a ptr to a map value.
5437 *		The maximum *size* supported is DYNPTR_MAX_SIZE.
5438 *		*flags* is currently unused.
5439 *	Return
5440 *		0 on success, -E2BIG if the size exceeds DYNPTR_MAX_SIZE,
5441 *		-EINVAL if flags is not 0.
5442 *
5443 * long bpf_ringbuf_reserve_dynptr(void *ringbuf, u32 size, u64 flags, struct bpf_dynptr *ptr)
5444 *	Description
5445 *		Reserve *size* bytes of payload in a ring buffer *ringbuf*
5446 *		through the dynptr interface. *flags* must be 0.
5447 *
5448 *		Please note that a corresponding bpf_ringbuf_submit_dynptr or
5449 *		bpf_ringbuf_discard_dynptr must be called on *ptr*, even if the
5450 *		reservation fails. This is enforced by the verifier.
5451 *	Return
5452 *		0 on success, or a negative error in case of failure.
5453 *
5454 * void bpf_ringbuf_submit_dynptr(struct bpf_dynptr *ptr, u64 flags)
5455 *	Description
5456 *		Submit reserved ring buffer sample, pointed to by *data*,
5457 *		through the dynptr interface. This is a no-op if the dynptr is
5458 *		invalid/null.
5459 *
5460 *		For more information on *flags*, please see
5461 *		'bpf_ringbuf_submit'.
5462 *	Return
5463 *		Nothing. Always succeeds.
5464 *
5465 * void bpf_ringbuf_discard_dynptr(struct bpf_dynptr *ptr, u64 flags)
5466 *	Description
5467 *		Discard reserved ring buffer sample through the dynptr
5468 *		interface. This is a no-op if the dynptr is invalid/null.
5469 *
5470 *		For more information on *flags*, please see
5471 *		'bpf_ringbuf_discard'.
5472 *	Return
5473 *		Nothing. Always succeeds.
5474 *
5475 * long bpf_dynptr_read(void *dst, u32 len, const struct bpf_dynptr *src, u32 offset, u64 flags)
5476 *	Description
5477 *		Read *len* bytes from *src* into *dst*, starting from *offset*
5478 *		into *src*.
5479 *		*flags* is currently unused.
5480 *	Return
5481 *		0 on success, -E2BIG if *offset* + *len* exceeds the length
5482 *		of *src*'s data, -EINVAL if *src* is an invalid dynptr or if
5483 *		*flags* is not 0.
5484 *
5485 * long bpf_dynptr_write(const struct bpf_dynptr *dst, u32 offset, void *src, u32 len, u64 flags)
5486 *	Description
5487 *		Write *len* bytes from *src* into *dst*, starting from *offset*
5488 *		into *dst*.
5489 *
5490 *		*flags* must be 0 except for skb-type dynptrs.
5491 *
5492 *		For skb-type dynptrs:
5493 *		    *  All data slices of the dynptr are automatically
5494 *		       invalidated after **bpf_dynptr_write**\ (). This is
5495 *		       because writing may pull the skb and change the
5496 *		       underlying packet buffer.
5497 *
5498 *		    *  For *flags*, please see the flags accepted by
5499 *		       **bpf_skb_store_bytes**\ ().
5500 *	Return
5501 *		0 on success, -E2BIG if *offset* + *len* exceeds the length
5502 *		of *dst*'s data, -EINVAL if *dst* is an invalid dynptr or if *dst*
5503 *		is a read-only dynptr or if *flags* is not correct. For skb-type dynptrs,
5504 *		other errors correspond to errors returned by **bpf_skb_store_bytes**\ ().
5505 *
5506 * void *bpf_dynptr_data(const struct bpf_dynptr *ptr, u32 offset, u32 len)
5507 *	Description
5508 *		Get a pointer to the underlying dynptr data.
5509 *
5510 *		*len* must be a statically known value. The returned data slice
5511 *		is invalidated whenever the dynptr is invalidated.
5512 *
5513 *		skb and xdp type dynptrs may not use bpf_dynptr_data. They should
5514 *		instead use bpf_dynptr_slice and bpf_dynptr_slice_rdwr.
5515 *	Return
5516 *		Pointer to the underlying dynptr data, NULL if the dynptr is
5517 *		read-only, if the dynptr is invalid, or if the offset and length
5518 *		is out of bounds.
5519 *
5520 * s64 bpf_tcp_raw_gen_syncookie_ipv4(struct iphdr *iph, struct tcphdr *th, u32 th_len)
5521 *	Description
5522 *		Try to issue a SYN cookie for the packet with corresponding
5523 *		IPv4/TCP headers, *iph* and *th*, without depending on a
5524 *		listening socket.
5525 *
5526 *		*iph* points to the IPv4 header.
5527 *
5528 *		*th* points to the start of the TCP header, while *th_len*
5529 *		contains the length of the TCP header (at least
5530 *		**sizeof**\ (**struct tcphdr**)).
5531 *	Return
5532 *		On success, lower 32 bits hold the generated SYN cookie in
5533 *		followed by 16 bits which hold the MSS value for that cookie,
5534 *		and the top 16 bits are unused.
5535 *
5536 *		On failure, the returned value is one of the following:
5537 *
5538 *		**-EINVAL** if *th_len* is invalid.
5539 *
5540 * s64 bpf_tcp_raw_gen_syncookie_ipv6(struct ipv6hdr *iph, struct tcphdr *th, u32 th_len)
5541 *	Description
5542 *		Try to issue a SYN cookie for the packet with corresponding
5543 *		IPv6/TCP headers, *iph* and *th*, without depending on a
5544 *		listening socket.
5545 *
5546 *		*iph* points to the IPv6 header.
5547 *
5548 *		*th* points to the start of the TCP header, while *th_len*
5549 *		contains the length of the TCP header (at least
5550 *		**sizeof**\ (**struct tcphdr**)).
5551 *	Return
5552 *		On success, lower 32 bits hold the generated SYN cookie in
5553 *		followed by 16 bits which hold the MSS value for that cookie,
5554 *		and the top 16 bits are unused.
5555 *
5556 *		On failure, the returned value is one of the following:
5557 *
5558 *		**-EINVAL** if *th_len* is invalid.
5559 *
5560 *		**-EPROTONOSUPPORT** if CONFIG_IPV6 is not builtin.
5561 *
5562 * long bpf_tcp_raw_check_syncookie_ipv4(struct iphdr *iph, struct tcphdr *th)
5563 *	Description
5564 *		Check whether *iph* and *th* contain a valid SYN cookie ACK
5565 *		without depending on a listening socket.
5566 *
5567 *		*iph* points to the IPv4 header.
5568 *
5569 *		*th* points to the TCP header.
5570 *	Return
5571 *		0 if *iph* and *th* are a valid SYN cookie ACK.
5572 *
5573 *		On failure, the returned value is one of the following:
5574 *
5575 *		**-EACCES** if the SYN cookie is not valid.
5576 *
5577 * long bpf_tcp_raw_check_syncookie_ipv6(struct ipv6hdr *iph, struct tcphdr *th)
5578 *	Description
5579 *		Check whether *iph* and *th* contain a valid SYN cookie ACK
5580 *		without depending on a listening socket.
5581 *
5582 *		*iph* points to the IPv6 header.
5583 *
5584 *		*th* points to the TCP header.
5585 *	Return
5586 *		0 if *iph* and *th* are a valid SYN cookie ACK.
5587 *
5588 *		On failure, the returned value is one of the following:
5589 *
5590 *		**-EACCES** if the SYN cookie is not valid.
5591 *
5592 *		**-EPROTONOSUPPORT** if CONFIG_IPV6 is not builtin.
5593 *
5594 * u64 bpf_ktime_get_tai_ns(void)
5595 *	Description
5596 *		A nonsettable system-wide clock derived from wall-clock time but
5597 *		ignoring leap seconds.  This clock does not experience
5598 *		discontinuities and backwards jumps caused by NTP inserting leap
5599 *		seconds as CLOCK_REALTIME does.
5600 *
5601 *		See: **clock_gettime**\ (**CLOCK_TAI**)
5602 *	Return
5603 *		Current *ktime*.
5604 *
5605 * long bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void *ctx, u64 flags)
5606 *	Description
5607 *		Drain samples from the specified user ring buffer, and invoke
5608 *		the provided callback for each such sample:
5609 *
5610 *		long (\*callback_fn)(const struct bpf_dynptr \*dynptr, void \*ctx);
5611 *
5612 *		If **callback_fn** returns 0, the helper will continue to try
5613 *		and drain the next sample, up to a maximum of
5614 *		BPF_MAX_USER_RINGBUF_SAMPLES samples. If the return value is 1,
5615 *		the helper will skip the rest of the samples and return. Other
5616 *		return values are not used now, and will be rejected by the
5617 *		verifier.
5618 *	Return
5619 *		The number of drained samples if no error was encountered while
5620 *		draining samples, or 0 if no samples were present in the ring
5621 *		buffer. If a user-space producer was epoll-waiting on this map,
5622 *		and at least one sample was drained, they will receive an event
5623 *		notification notifying them of available space in the ring
5624 *		buffer. If the BPF_RB_NO_WAKEUP flag is passed to this
5625 *		function, no wakeup notification will be sent. If the
5626 *		BPF_RB_FORCE_WAKEUP flag is passed, a wakeup notification will
5627 *		be sent even if no sample was drained.
5628 *
5629 *		On failure, the returned value is one of the following:
5630 *
5631 *		**-EBUSY** if the ring buffer is contended, and another calling
5632 *		context was concurrently draining the ring buffer.
5633 *
5634 *		**-EINVAL** if user-space is not properly tracking the ring
5635 *		buffer due to the producer position not being aligned to 8
5636 *		bytes, a sample not being aligned to 8 bytes, or the producer
5637 *		position not matching the advertised length of a sample.
5638 *
5639 *		**-E2BIG** if user-space has tried to publish a sample which is
5640 *		larger than the size of the ring buffer, or which cannot fit
5641 *		within a struct bpf_dynptr.
5642 *
5643 * void *bpf_cgrp_storage_get(struct bpf_map *map, struct cgroup *cgroup, void *value, u64 flags)
5644 *	Description
5645 *		Get a bpf_local_storage from the *cgroup*.
5646 *
5647 *		Logically, it could be thought of as getting the value from
5648 *		a *map* with *cgroup* as the **key**.  From this
5649 *		perspective,  the usage is not much different from
5650 *		**bpf_map_lookup_elem**\ (*map*, **&**\ *cgroup*) except this
5651 *		helper enforces the key must be a cgroup struct and the map must also
5652 *		be a **BPF_MAP_TYPE_CGRP_STORAGE**.
5653 *
5654 *		In reality, the local-storage value is embedded directly inside of the
5655 *		*cgroup* object itself, rather than being located in the
5656 *		**BPF_MAP_TYPE_CGRP_STORAGE** map. When the local-storage value is
5657 *		queried for some *map* on a *cgroup* object, the kernel will perform an
5658 *		O(n) iteration over all of the live local-storage values for that
5659 *		*cgroup* object until the local-storage value for the *map* is found.
5660 *
5661 *		An optional *flags* (**BPF_LOCAL_STORAGE_GET_F_CREATE**) can be
5662 *		used such that a new bpf_local_storage will be
5663 *		created if one does not exist.  *value* can be used
5664 *		together with **BPF_LOCAL_STORAGE_GET_F_CREATE** to specify
5665 *		the initial value of a bpf_local_storage.  If *value* is
5666 *		**NULL**, the new bpf_local_storage will be zero initialized.
5667 *	Return
5668 *		A bpf_local_storage pointer is returned on success.
5669 *
5670 *		**NULL** if not found or there was an error in adding
5671 *		a new bpf_local_storage.
5672 *
5673 * long bpf_cgrp_storage_delete(struct bpf_map *map, struct cgroup *cgroup)
5674 *	Description
5675 *		Delete a bpf_local_storage from a *cgroup*.
5676 *	Return
5677 *		0 on success.
5678 *
5679 *		**-ENOENT** if the bpf_local_storage cannot be found.
5680 */
5681#define ___BPF_FUNC_MAPPER(FN, ctx...)			\
5682	FN(unspec, 0, ##ctx)				\
5683	FN(map_lookup_elem, 1, ##ctx)			\
5684	FN(map_update_elem, 2, ##ctx)			\
5685	FN(map_delete_elem, 3, ##ctx)			\
5686	FN(probe_read, 4, ##ctx)			\
5687	FN(ktime_get_ns, 5, ##ctx)			\
5688	FN(trace_printk, 6, ##ctx)			\
5689	FN(get_prandom_u32, 7, ##ctx)			\
5690	FN(get_smp_processor_id, 8, ##ctx)		\
5691	FN(skb_store_bytes, 9, ##ctx)			\
5692	FN(l3_csum_replace, 10, ##ctx)			\
5693	FN(l4_csum_replace, 11, ##ctx)			\
5694	FN(tail_call, 12, ##ctx)			\
5695	FN(clone_redirect, 13, ##ctx)			\
5696	FN(get_current_pid_tgid, 14, ##ctx)		\
5697	FN(get_current_uid_gid, 15, ##ctx)		\
5698	FN(get_current_comm, 16, ##ctx)			\
5699	FN(get_cgroup_classid, 17, ##ctx)		\
5700	FN(skb_vlan_push, 18, ##ctx)			\
5701	FN(skb_vlan_pop, 19, ##ctx)			\
5702	FN(skb_get_tunnel_key, 20, ##ctx)		\
5703	FN(skb_set_tunnel_key, 21, ##ctx)		\
5704	FN(perf_event_read, 22, ##ctx)			\
5705	FN(redirect, 23, ##ctx)				\
5706	FN(get_route_realm, 24, ##ctx)			\
5707	FN(perf_event_output, 25, ##ctx)		\
5708	FN(skb_load_bytes, 26, ##ctx)			\
5709	FN(get_stackid, 27, ##ctx)			\
5710	FN(csum_diff, 28, ##ctx)			\
5711	FN(skb_get_tunnel_opt, 29, ##ctx)		\
5712	FN(skb_set_tunnel_opt, 30, ##ctx)		\
5713	FN(skb_change_proto, 31, ##ctx)			\
5714	FN(skb_change_type, 32, ##ctx)			\
5715	FN(skb_under_cgroup, 33, ##ctx)			\
5716	FN(get_hash_recalc, 34, ##ctx)			\
5717	FN(get_current_task, 35, ##ctx)			\
5718	FN(probe_write_user, 36, ##ctx)			\
5719	FN(current_task_under_cgroup, 37, ##ctx)	\
5720	FN(skb_change_tail, 38, ##ctx)			\
5721	FN(skb_pull_data, 39, ##ctx)			\
5722	FN(csum_update, 40, ##ctx)			\
5723	FN(set_hash_invalid, 41, ##ctx)			\
5724	FN(get_numa_node_id, 42, ##ctx)			\
5725	FN(skb_change_head, 43, ##ctx)			\
5726	FN(xdp_adjust_head, 44, ##ctx)			\
5727	FN(probe_read_str, 45, ##ctx)			\
5728	FN(get_socket_cookie, 46, ##ctx)		\
5729	FN(get_socket_uid, 47, ##ctx)			\
5730	FN(set_hash, 48, ##ctx)				\
5731	FN(setsockopt, 49, ##ctx)			\
5732	FN(skb_adjust_room, 50, ##ctx)			\
5733	FN(redirect_map, 51, ##ctx)			\
5734	FN(sk_redirect_map, 52, ##ctx)			\
5735	FN(sock_map_update, 53, ##ctx)			\
5736	FN(xdp_adjust_meta, 54, ##ctx)			\
5737	FN(perf_event_read_value, 55, ##ctx)		\
5738	FN(perf_prog_read_value, 56, ##ctx)		\
5739	FN(getsockopt, 57, ##ctx)			\
5740	FN(override_return, 58, ##ctx)			\
5741	FN(sock_ops_cb_flags_set, 59, ##ctx)		\
5742	FN(msg_redirect_map, 60, ##ctx)			\
5743	FN(msg_apply_bytes, 61, ##ctx)			\
5744	FN(msg_cork_bytes, 62, ##ctx)			\
5745	FN(msg_pull_data, 63, ##ctx)			\
5746	FN(bind, 64, ##ctx)				\
5747	FN(xdp_adjust_tail, 65, ##ctx)			\
5748	FN(skb_get_xfrm_state, 66, ##ctx)		\
5749	FN(get_stack, 67, ##ctx)			\
5750	FN(skb_load_bytes_relative, 68, ##ctx)		\
5751	FN(fib_lookup, 69, ##ctx)			\
5752	FN(sock_hash_update, 70, ##ctx)			\
5753	FN(msg_redirect_hash, 71, ##ctx)		\
5754	FN(sk_redirect_hash, 72, ##ctx)			\
5755	FN(lwt_push_encap, 73, ##ctx)			\
5756	FN(lwt_seg6_store_bytes, 74, ##ctx)		\
5757	FN(lwt_seg6_adjust_srh, 75, ##ctx)		\
5758	FN(lwt_seg6_action, 76, ##ctx)			\
5759	FN(rc_repeat, 77, ##ctx)			\
5760	FN(rc_keydown, 78, ##ctx)			\
5761	FN(skb_cgroup_id, 79, ##ctx)			\
5762	FN(get_current_cgroup_id, 80, ##ctx)		\
5763	FN(get_local_storage, 81, ##ctx)		\
5764	FN(sk_select_reuseport, 82, ##ctx)		\
5765	FN(skb_ancestor_cgroup_id, 83, ##ctx)		\
5766	FN(sk_lookup_tcp, 84, ##ctx)			\
5767	FN(sk_lookup_udp, 85, ##ctx)			\
5768	FN(sk_release, 86, ##ctx)			\
5769	FN(map_push_elem, 87, ##ctx)			\
5770	FN(map_pop_elem, 88, ##ctx)			\
5771	FN(map_peek_elem, 89, ##ctx)			\
5772	FN(msg_push_data, 90, ##ctx)			\
5773	FN(msg_pop_data, 91, ##ctx)			\
5774	FN(rc_pointer_rel, 92, ##ctx)			\
5775	FN(spin_lock, 93, ##ctx)			\
5776	FN(spin_unlock, 94, ##ctx)			\
5777	FN(sk_fullsock, 95, ##ctx)			\
5778	FN(tcp_sock, 96, ##ctx)				\
5779	FN(skb_ecn_set_ce, 97, ##ctx)			\
5780	FN(get_listener_sock, 98, ##ctx)		\
5781	FN(skc_lookup_tcp, 99, ##ctx)			\
5782	FN(tcp_check_syncookie, 100, ##ctx)		\
5783	FN(sysctl_get_name, 101, ##ctx)			\
5784	FN(sysctl_get_current_value, 102, ##ctx)	\
5785	FN(sysctl_get_new_value, 103, ##ctx)		\
5786	FN(sysctl_set_new_value, 104, ##ctx)		\
5787	FN(strtol, 105, ##ctx)				\
5788	FN(strtoul, 106, ##ctx)				\
5789	FN(sk_storage_get, 107, ##ctx)			\
5790	FN(sk_storage_delete, 108, ##ctx)		\
5791	FN(send_signal, 109, ##ctx)			\
5792	FN(tcp_gen_syncookie, 110, ##ctx)		\
5793	FN(skb_output, 111, ##ctx)			\
5794	FN(probe_read_user, 112, ##ctx)			\
5795	FN(probe_read_kernel, 113, ##ctx)		\
5796	FN(probe_read_user_str, 114, ##ctx)		\
5797	FN(probe_read_kernel_str, 115, ##ctx)		\
5798	FN(tcp_send_ack, 116, ##ctx)			\
5799	FN(send_signal_thread, 117, ##ctx)		\
5800	FN(jiffies64, 118, ##ctx)			\
5801	FN(read_branch_records, 119, ##ctx)		\
5802	FN(get_ns_current_pid_tgid, 120, ##ctx)		\
5803	FN(xdp_output, 121, ##ctx)			\
5804	FN(get_netns_cookie, 122, ##ctx)		\
5805	FN(get_current_ancestor_cgroup_id, 123, ##ctx)	\
5806	FN(sk_assign, 124, ##ctx)			\
5807	FN(ktime_get_boot_ns, 125, ##ctx)		\
5808	FN(seq_printf, 126, ##ctx)			\
5809	FN(seq_write, 127, ##ctx)			\
5810	FN(sk_cgroup_id, 128, ##ctx)			\
5811	FN(sk_ancestor_cgroup_id, 129, ##ctx)		\
5812	FN(ringbuf_output, 130, ##ctx)			\
5813	FN(ringbuf_reserve, 131, ##ctx)			\
5814	FN(ringbuf_submit, 132, ##ctx)			\
5815	FN(ringbuf_discard, 133, ##ctx)			\
5816	FN(ringbuf_query, 134, ##ctx)			\
5817	FN(csum_level, 135, ##ctx)			\
5818	FN(skc_to_tcp6_sock, 136, ##ctx)		\
5819	FN(skc_to_tcp_sock, 137, ##ctx)			\
5820	FN(skc_to_tcp_timewait_sock, 138, ##ctx)	\
5821	FN(skc_to_tcp_request_sock, 139, ##ctx)		\
5822	FN(skc_to_udp6_sock, 140, ##ctx)		\
5823	FN(get_task_stack, 141, ##ctx)			\
5824	FN(load_hdr_opt, 142, ##ctx)			\
5825	FN(store_hdr_opt, 143, ##ctx)			\
5826	FN(reserve_hdr_opt, 144, ##ctx)			\
5827	FN(inode_storage_get, 145, ##ctx)		\
5828	FN(inode_storage_delete, 146, ##ctx)		\
5829	FN(d_path, 147, ##ctx)				\
5830	FN(copy_from_user, 148, ##ctx)			\
5831	FN(snprintf_btf, 149, ##ctx)			\
5832	FN(seq_printf_btf, 150, ##ctx)			\
5833	FN(skb_cgroup_classid, 151, ##ctx)		\
5834	FN(redirect_neigh, 152, ##ctx)			\
5835	FN(per_cpu_ptr, 153, ##ctx)			\
5836	FN(this_cpu_ptr, 154, ##ctx)			\
5837	FN(redirect_peer, 155, ##ctx)			\
5838	FN(task_storage_get, 156, ##ctx)		\
5839	FN(task_storage_delete, 157, ##ctx)		\
5840	FN(get_current_task_btf, 158, ##ctx)		\
5841	FN(bprm_opts_set, 159, ##ctx)			\
5842	FN(ktime_get_coarse_ns, 160, ##ctx)		\
5843	FN(ima_inode_hash, 161, ##ctx)			\
5844	FN(sock_from_file, 162, ##ctx)			\
5845	FN(check_mtu, 163, ##ctx)			\
5846	FN(for_each_map_elem, 164, ##ctx)		\
5847	FN(snprintf, 165, ##ctx)			\
5848	FN(sys_bpf, 166, ##ctx)				\
5849	FN(btf_find_by_name_kind, 167, ##ctx)		\
5850	FN(sys_close, 168, ##ctx)			\
5851	FN(timer_init, 169, ##ctx)			\
5852	FN(timer_set_callback, 170, ##ctx)		\
5853	FN(timer_start, 171, ##ctx)			\
5854	FN(timer_cancel, 172, ##ctx)			\
5855	FN(get_func_ip, 173, ##ctx)			\
5856	FN(get_attach_cookie, 174, ##ctx)		\
5857	FN(task_pt_regs, 175, ##ctx)			\
5858	FN(get_branch_snapshot, 176, ##ctx)		\
5859	FN(trace_vprintk, 177, ##ctx)			\
5860	FN(skc_to_unix_sock, 178, ##ctx)		\
5861	FN(kallsyms_lookup_name, 179, ##ctx)		\
5862	FN(find_vma, 180, ##ctx)			\
5863	FN(loop, 181, ##ctx)				\
5864	FN(strncmp, 182, ##ctx)				\
5865	FN(get_func_arg, 183, ##ctx)			\
5866	FN(get_func_ret, 184, ##ctx)			\
5867	FN(get_func_arg_cnt, 185, ##ctx)		\
5868	FN(get_retval, 186, ##ctx)			\
5869	FN(set_retval, 187, ##ctx)			\
5870	FN(xdp_get_buff_len, 188, ##ctx)		\
5871	FN(xdp_load_bytes, 189, ##ctx)			\
5872	FN(xdp_store_bytes, 190, ##ctx)			\
5873	FN(copy_from_user_task, 191, ##ctx)		\
5874	FN(skb_set_tstamp, 192, ##ctx)			\
5875	FN(ima_file_hash, 193, ##ctx)			\
5876	FN(kptr_xchg, 194, ##ctx)			\
5877	FN(map_lookup_percpu_elem, 195, ##ctx)		\
5878	FN(skc_to_mptcp_sock, 196, ##ctx)		\
5879	FN(dynptr_from_mem, 197, ##ctx)			\
5880	FN(ringbuf_reserve_dynptr, 198, ##ctx)		\
5881	FN(ringbuf_submit_dynptr, 199, ##ctx)		\
5882	FN(ringbuf_discard_dynptr, 200, ##ctx)		\
5883	FN(dynptr_read, 201, ##ctx)			\
5884	FN(dynptr_write, 202, ##ctx)			\
5885	FN(dynptr_data, 203, ##ctx)			\
5886	FN(tcp_raw_gen_syncookie_ipv4, 204, ##ctx)	\
5887	FN(tcp_raw_gen_syncookie_ipv6, 205, ##ctx)	\
5888	FN(tcp_raw_check_syncookie_ipv4, 206, ##ctx)	\
5889	FN(tcp_raw_check_syncookie_ipv6, 207, ##ctx)	\
5890	FN(ktime_get_tai_ns, 208, ##ctx)		\
5891	FN(user_ringbuf_drain, 209, ##ctx)		\
5892	FN(cgrp_storage_get, 210, ##ctx)		\
5893	FN(cgrp_storage_delete, 211, ##ctx)		\
5894	/* */
5895
5896/* backwards-compatibility macros for users of __BPF_FUNC_MAPPER that don't
5897 * know or care about integer value that is now passed as second argument
5898 */
5899#define __BPF_FUNC_MAPPER_APPLY(name, value, FN) FN(name),
5900#define __BPF_FUNC_MAPPER(FN) ___BPF_FUNC_MAPPER(__BPF_FUNC_MAPPER_APPLY, FN)
5901
5902/* integer value in 'imm' field of BPF_CALL instruction selects which helper
5903 * function eBPF program intends to call
5904 */
5905#define __BPF_ENUM_FN(x, y) BPF_FUNC_ ## x = y,
5906enum bpf_func_id {
5907	___BPF_FUNC_MAPPER(__BPF_ENUM_FN)
5908	__BPF_FUNC_MAX_ID,
5909};
5910#undef __BPF_ENUM_FN
5911
5912/* All flags used by eBPF helper functions, placed here. */
5913
5914/* BPF_FUNC_skb_store_bytes flags. */
5915enum {
5916	BPF_F_RECOMPUTE_CSUM		= (1ULL << 0),
5917	BPF_F_INVALIDATE_HASH		= (1ULL << 1),
5918};
5919
5920/* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags.
5921 * First 4 bits are for passing the header field size.
5922 */
5923enum {
5924	BPF_F_HDR_FIELD_MASK		= 0xfULL,
5925};
5926
5927/* BPF_FUNC_l4_csum_replace flags. */
5928enum {
5929	BPF_F_PSEUDO_HDR		= (1ULL << 4),
5930	BPF_F_MARK_MANGLED_0		= (1ULL << 5),
5931	BPF_F_MARK_ENFORCE		= (1ULL << 6),
5932};
5933
5934/* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */
5935enum {
5936	BPF_F_INGRESS			= (1ULL << 0),
5937};
5938
5939/* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */
5940enum {
5941	BPF_F_TUNINFO_IPV6		= (1ULL << 0),
5942};
5943
5944/* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */
5945enum {
5946	BPF_F_SKIP_FIELD_MASK		= 0xffULL,
5947	BPF_F_USER_STACK		= (1ULL << 8),
5948/* flags used by BPF_FUNC_get_stackid only. */
5949	BPF_F_FAST_STACK_CMP		= (1ULL << 9),
5950	BPF_F_REUSE_STACKID		= (1ULL << 10),
5951/* flags used by BPF_FUNC_get_stack only. */
5952	BPF_F_USER_BUILD_ID		= (1ULL << 11),
5953};
5954
5955/* BPF_FUNC_skb_set_tunnel_key flags. */
5956enum {
5957	BPF_F_ZERO_CSUM_TX		= (1ULL << 1),
5958	BPF_F_DONT_FRAGMENT		= (1ULL << 2),
5959	BPF_F_SEQ_NUMBER		= (1ULL << 3),
5960	BPF_F_NO_TUNNEL_KEY		= (1ULL << 4),
5961};
5962
5963/* BPF_FUNC_skb_get_tunnel_key flags. */
5964enum {
5965	BPF_F_TUNINFO_FLAGS		= (1ULL << 4),
5966};
5967
5968/* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and
5969 * BPF_FUNC_perf_event_read_value flags.
5970 */
5971enum {
5972	BPF_F_INDEX_MASK		= 0xffffffffULL,
5973	BPF_F_CURRENT_CPU		= BPF_F_INDEX_MASK,
5974/* BPF_FUNC_perf_event_output for sk_buff input context. */
5975	BPF_F_CTXLEN_MASK		= (0xfffffULL << 32),
5976};
5977
5978/* Current network namespace */
5979enum {
5980	BPF_F_CURRENT_NETNS		= (-1L),
5981};
5982
5983/* BPF_FUNC_csum_level level values. */
5984enum {
5985	BPF_CSUM_LEVEL_QUERY,
5986	BPF_CSUM_LEVEL_INC,
5987	BPF_CSUM_LEVEL_DEC,
5988	BPF_CSUM_LEVEL_RESET,
5989};
5990
5991/* BPF_FUNC_skb_adjust_room flags. */
5992enum {
5993	BPF_F_ADJ_ROOM_FIXED_GSO	= (1ULL << 0),
5994	BPF_F_ADJ_ROOM_ENCAP_L3_IPV4	= (1ULL << 1),
5995	BPF_F_ADJ_ROOM_ENCAP_L3_IPV6	= (1ULL << 2),
5996	BPF_F_ADJ_ROOM_ENCAP_L4_GRE	= (1ULL << 3),
5997	BPF_F_ADJ_ROOM_ENCAP_L4_UDP	= (1ULL << 4),
5998	BPF_F_ADJ_ROOM_NO_CSUM_RESET	= (1ULL << 5),
5999	BPF_F_ADJ_ROOM_ENCAP_L2_ETH	= (1ULL << 6),
6000	BPF_F_ADJ_ROOM_DECAP_L3_IPV4	= (1ULL << 7),
6001	BPF_F_ADJ_ROOM_DECAP_L3_IPV6	= (1ULL << 8),
6002};
6003
6004enum {
6005	BPF_ADJ_ROOM_ENCAP_L2_MASK	= 0xff,
6006	BPF_ADJ_ROOM_ENCAP_L2_SHIFT	= 56,
6007};
6008
6009#define BPF_F_ADJ_ROOM_ENCAP_L2(len)	(((__u64)len & \
6010					  BPF_ADJ_ROOM_ENCAP_L2_MASK) \
6011					 << BPF_ADJ_ROOM_ENCAP_L2_SHIFT)
6012
6013/* BPF_FUNC_sysctl_get_name flags. */
6014enum {
6015	BPF_F_SYSCTL_BASE_NAME		= (1ULL << 0),
6016};
6017
6018/* BPF_FUNC_<kernel_obj>_storage_get flags */
6019enum {
6020	BPF_LOCAL_STORAGE_GET_F_CREATE	= (1ULL << 0),
6021	/* BPF_SK_STORAGE_GET_F_CREATE is only kept for backward compatibility
6022	 * and BPF_LOCAL_STORAGE_GET_F_CREATE must be used instead.
6023	 */
6024	BPF_SK_STORAGE_GET_F_CREATE  = BPF_LOCAL_STORAGE_GET_F_CREATE,
6025};
6026
6027/* BPF_FUNC_read_branch_records flags. */
6028enum {
6029	BPF_F_GET_BRANCH_RECORDS_SIZE	= (1ULL << 0),
6030};
6031
6032/* BPF_FUNC_bpf_ringbuf_commit, BPF_FUNC_bpf_ringbuf_discard, and
6033 * BPF_FUNC_bpf_ringbuf_output flags.
6034 */
6035enum {
6036	BPF_RB_NO_WAKEUP		= (1ULL << 0),
6037	BPF_RB_FORCE_WAKEUP		= (1ULL << 1),
6038};
6039
6040/* BPF_FUNC_bpf_ringbuf_query flags */
6041enum {
6042	BPF_RB_AVAIL_DATA = 0,
6043	BPF_RB_RING_SIZE = 1,
6044	BPF_RB_CONS_POS = 2,
6045	BPF_RB_PROD_POS = 3,
6046};
6047
6048/* BPF ring buffer constants */
6049enum {
6050	BPF_RINGBUF_BUSY_BIT		= (1U << 31),
6051	BPF_RINGBUF_DISCARD_BIT		= (1U << 30),
6052	BPF_RINGBUF_HDR_SZ		= 8,
6053};
6054
6055/* BPF_FUNC_sk_assign flags in bpf_sk_lookup context. */
6056enum {
6057	BPF_SK_LOOKUP_F_REPLACE		= (1ULL << 0),
6058	BPF_SK_LOOKUP_F_NO_REUSEPORT	= (1ULL << 1),
6059};
6060
6061/* Mode for BPF_FUNC_skb_adjust_room helper. */
6062enum bpf_adj_room_mode {
6063	BPF_ADJ_ROOM_NET,
6064	BPF_ADJ_ROOM_MAC,
6065};
6066
6067/* Mode for BPF_FUNC_skb_load_bytes_relative helper. */
6068enum bpf_hdr_start_off {
6069	BPF_HDR_START_MAC,
6070	BPF_HDR_START_NET,
6071};
6072
6073/* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */
6074enum bpf_lwt_encap_mode {
6075	BPF_LWT_ENCAP_SEG6,
6076	BPF_LWT_ENCAP_SEG6_INLINE,
6077	BPF_LWT_ENCAP_IP,
6078};
6079
6080/* Flags for bpf_bprm_opts_set helper */
6081enum {
6082	BPF_F_BPRM_SECUREEXEC	= (1ULL << 0),
6083};
6084
6085/* Flags for bpf_redirect_map helper */
6086enum {
6087	BPF_F_BROADCAST		= (1ULL << 3),
6088	BPF_F_EXCLUDE_INGRESS	= (1ULL << 4),
6089};
6090
6091#define __bpf_md_ptr(type, name)	\
6092union {					\
6093	type name;			\
6094	__u64 :64;			\
6095} __attribute__((aligned(8)))
6096
6097enum {
6098	BPF_SKB_TSTAMP_UNSPEC,
6099	BPF_SKB_TSTAMP_DELIVERY_MONO,	/* tstamp has mono delivery time */
6100	/* For any BPF_SKB_TSTAMP_* that the bpf prog cannot handle,
6101	 * the bpf prog should handle it like BPF_SKB_TSTAMP_UNSPEC
6102	 * and try to deduce it by ingress, egress or skb->sk->sk_clockid.
6103	 */
6104};
6105
6106/* user accessible mirror of in-kernel sk_buff.
6107 * new fields can only be added to the end of this structure
6108 */
6109struct __sk_buff {
6110	__u32 len;
6111	__u32 pkt_type;
6112	__u32 mark;
6113	__u32 queue_mapping;
6114	__u32 protocol;
6115	__u32 vlan_present;
6116	__u32 vlan_tci;
6117	__u32 vlan_proto;
6118	__u32 priority;
6119	__u32 ingress_ifindex;
6120	__u32 ifindex;
6121	__u32 tc_index;
6122	__u32 cb[5];
6123	__u32 hash;
6124	__u32 tc_classid;
6125	__u32 data;
6126	__u32 data_end;
6127	__u32 napi_id;
6128
6129	/* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */
6130	__u32 family;
6131	__u32 remote_ip4;	/* Stored in network byte order */
6132	__u32 local_ip4;	/* Stored in network byte order */
6133	__u32 remote_ip6[4];	/* Stored in network byte order */
6134	__u32 local_ip6[4];	/* Stored in network byte order */
6135	__u32 remote_port;	/* Stored in network byte order */
6136	__u32 local_port;	/* stored in host byte order */
6137	/* ... here. */
6138
6139	__u32 data_meta;
6140	__bpf_md_ptr(struct bpf_flow_keys *, flow_keys);
6141	__u64 tstamp;
6142	__u32 wire_len;
6143	__u32 gso_segs;
6144	__bpf_md_ptr(struct bpf_sock *, sk);
6145	__u32 gso_size;
6146	__u8  tstamp_type;
6147	__u32 :24;		/* Padding, future use. */
6148	__u64 hwtstamp;
6149};
6150
6151struct bpf_tunnel_key {
6152	__u32 tunnel_id;
6153	union {
6154		__u32 remote_ipv4;
6155		__u32 remote_ipv6[4];
6156	};
6157	__u8 tunnel_tos;
6158	__u8 tunnel_ttl;
6159	union {
6160		__u16 tunnel_ext;	/* compat */
6161		__be16 tunnel_flags;
6162	};
6163	__u32 tunnel_label;
6164	union {
6165		__u32 local_ipv4;
6166		__u32 local_ipv6[4];
6167	};
6168};
6169
6170/* user accessible mirror of in-kernel xfrm_state.
6171 * new fields can only be added to the end of this structure
6172 */
6173struct bpf_xfrm_state {
6174	__u32 reqid;
6175	__u32 spi;	/* Stored in network byte order */
6176	__u16 family;
6177	__u16 ext;	/* Padding, future use. */
6178	union {
6179		__u32 remote_ipv4;	/* Stored in network byte order */
6180		__u32 remote_ipv6[4];	/* Stored in network byte order */
6181	};
6182};
6183
6184/* Generic BPF return codes which all BPF program types may support.
6185 * The values are binary compatible with their TC_ACT_* counter-part to
6186 * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT
6187 * programs.
6188 *
6189 * XDP is handled seprately, see XDP_*.
6190 */
6191enum bpf_ret_code {
6192	BPF_OK = 0,
6193	/* 1 reserved */
6194	BPF_DROP = 2,
6195	/* 3-6 reserved */
6196	BPF_REDIRECT = 7,
6197	/* >127 are reserved for prog type specific return codes.
6198	 *
6199	 * BPF_LWT_REROUTE: used by BPF_PROG_TYPE_LWT_IN and
6200	 *    BPF_PROG_TYPE_LWT_XMIT to indicate that skb had been
6201	 *    changed and should be routed based on its new L3 header.
6202	 *    (This is an L3 redirect, as opposed to L2 redirect
6203	 *    represented by BPF_REDIRECT above).
6204	 */
6205	BPF_LWT_REROUTE = 128,
6206	/* BPF_FLOW_DISSECTOR_CONTINUE: used by BPF_PROG_TYPE_FLOW_DISSECTOR
6207	 *   to indicate that no custom dissection was performed, and
6208	 *   fallback to standard dissector is requested.
6209	 */
6210	BPF_FLOW_DISSECTOR_CONTINUE = 129,
6211};
6212
6213struct bpf_sock {
6214	__u32 bound_dev_if;
6215	__u32 family;
6216	__u32 type;
6217	__u32 protocol;
6218	__u32 mark;
6219	__u32 priority;
6220	/* IP address also allows 1 and 2 bytes access */
6221	__u32 src_ip4;
6222	__u32 src_ip6[4];
6223	__u32 src_port;		/* host byte order */
6224	__be16 dst_port;	/* network byte order */
6225	__u16 :16;		/* zero padding */
6226	__u32 dst_ip4;
6227	__u32 dst_ip6[4];
6228	__u32 state;
6229	__s32 rx_queue_mapping;
6230};
6231
6232struct bpf_tcp_sock {
6233	__u32 snd_cwnd;		/* Sending congestion window		*/
6234	__u32 srtt_us;		/* smoothed round trip time << 3 in usecs */
6235	__u32 rtt_min;
6236	__u32 snd_ssthresh;	/* Slow start size threshold		*/
6237	__u32 rcv_nxt;		/* What we want to receive next		*/
6238	__u32 snd_nxt;		/* Next sequence we send		*/
6239	__u32 snd_una;		/* First byte we want an ack for	*/
6240	__u32 mss_cache;	/* Cached effective mss, not including SACKS */
6241	__u32 ecn_flags;	/* ECN status bits.			*/
6242	__u32 rate_delivered;	/* saved rate sample: packets delivered */
6243	__u32 rate_interval_us;	/* saved rate sample: time elapsed */
6244	__u32 packets_out;	/* Packets which are "in flight"	*/
6245	__u32 retrans_out;	/* Retransmitted packets out		*/
6246	__u32 total_retrans;	/* Total retransmits for entire connection */
6247	__u32 segs_in;		/* RFC4898 tcpEStatsPerfSegsIn
6248				 * total number of segments in.
6249				 */
6250	__u32 data_segs_in;	/* RFC4898 tcpEStatsPerfDataSegsIn
6251				 * total number of data segments in.
6252				 */
6253	__u32 segs_out;		/* RFC4898 tcpEStatsPerfSegsOut
6254				 * The total number of segments sent.
6255				 */
6256	__u32 data_segs_out;	/* RFC4898 tcpEStatsPerfDataSegsOut
6257				 * total number of data segments sent.
6258				 */
6259	__u32 lost_out;		/* Lost packets			*/
6260	__u32 sacked_out;	/* SACK'd packets			*/
6261	__u64 bytes_received;	/* RFC4898 tcpEStatsAppHCThruOctetsReceived
6262				 * sum(delta(rcv_nxt)), or how many bytes
6263				 * were acked.
6264				 */
6265	__u64 bytes_acked;	/* RFC4898 tcpEStatsAppHCThruOctetsAcked
6266				 * sum(delta(snd_una)), or how many bytes
6267				 * were acked.
6268				 */
6269	__u32 dsack_dups;	/* RFC4898 tcpEStatsStackDSACKDups
6270				 * total number of DSACK blocks received
6271				 */
6272	__u32 delivered;	/* Total data packets delivered incl. rexmits */
6273	__u32 delivered_ce;	/* Like the above but only ECE marked packets */
6274	__u32 icsk_retransmits;	/* Number of unrecovered [RTO] timeouts */
6275};
6276
6277struct bpf_sock_tuple {
6278	union {
6279		struct {
6280			__be32 saddr;
6281			__be32 daddr;
6282			__be16 sport;
6283			__be16 dport;
6284		} ipv4;
6285		struct {
6286			__be32 saddr[4];
6287			__be32 daddr[4];
6288			__be16 sport;
6289			__be16 dport;
6290		} ipv6;
6291	};
6292};
6293
6294/* (Simplified) user return codes for tcx prog type.
6295 * A valid tcx program must return one of these defined values. All other
6296 * return codes are reserved for future use. Must remain compatible with
6297 * their TC_ACT_* counter-parts. For compatibility in behavior, unknown
6298 * return codes are mapped to TCX_NEXT.
6299 */
6300enum tcx_action_base {
6301	TCX_NEXT	= -1,
6302	TCX_PASS	= 0,
6303	TCX_DROP	= 2,
6304	TCX_REDIRECT	= 7,
6305};
6306
6307struct bpf_xdp_sock {
6308	__u32 queue_id;
6309};
6310
6311#define XDP_PACKET_HEADROOM 256
6312
6313/* User return codes for XDP prog type.
6314 * A valid XDP program must return one of these defined values. All other
6315 * return codes are reserved for future use. Unknown return codes will
6316 * result in packet drops and a warning via bpf_warn_invalid_xdp_action().
6317 */
6318enum xdp_action {
6319	XDP_ABORTED = 0,
6320	XDP_DROP,
6321	XDP_PASS,
6322	XDP_TX,
6323	XDP_REDIRECT,
6324};
6325
6326/* user accessible metadata for XDP packet hook
6327 * new fields must be added to the end of this structure
6328 */
6329struct xdp_md {
6330	__u32 data;
6331	__u32 data_end;
6332	__u32 data_meta;
6333	/* Below access go through struct xdp_rxq_info */
6334	__u32 ingress_ifindex; /* rxq->dev->ifindex */
6335	__u32 rx_queue_index;  /* rxq->queue_index  */
6336
6337	__u32 egress_ifindex;  /* txq->dev->ifindex */
6338};
6339
6340/* DEVMAP map-value layout
6341 *
6342 * The struct data-layout of map-value is a configuration interface.
6343 * New members can only be added to the end of this structure.
6344 */
6345struct bpf_devmap_val {
6346	__u32 ifindex;   /* device index */
6347	union {
6348		int   fd;  /* prog fd on map write */
6349		__u32 id;  /* prog id on map read */
6350	} bpf_prog;
6351};
6352
6353/* CPUMAP map-value layout
6354 *
6355 * The struct data-layout of map-value is a configuration interface.
6356 * New members can only be added to the end of this structure.
6357 */
6358struct bpf_cpumap_val {
6359	__u32 qsize;	/* queue size to remote target CPU */
6360	union {
6361		int   fd;	/* prog fd on map write */
6362		__u32 id;	/* prog id on map read */
6363	} bpf_prog;
6364};
6365
6366enum sk_action {
6367	SK_DROP = 0,
6368	SK_PASS,
6369};
6370
6371/* user accessible metadata for SK_MSG packet hook, new fields must
6372 * be added to the end of this structure
6373 */
6374struct sk_msg_md {
6375	__bpf_md_ptr(void *, data);
6376	__bpf_md_ptr(void *, data_end);
6377
6378	__u32 family;
6379	__u32 remote_ip4;	/* Stored in network byte order */
6380	__u32 local_ip4;	/* Stored in network byte order */
6381	__u32 remote_ip6[4];	/* Stored in network byte order */
6382	__u32 local_ip6[4];	/* Stored in network byte order */
6383	__u32 remote_port;	/* Stored in network byte order */
6384	__u32 local_port;	/* stored in host byte order */
6385	__u32 size;		/* Total size of sk_msg */
6386
6387	__bpf_md_ptr(struct bpf_sock *, sk); /* current socket */
6388};
6389
6390struct sk_reuseport_md {
6391	/*
6392	 * Start of directly accessible data. It begins from
6393	 * the tcp/udp header.
6394	 */
6395	__bpf_md_ptr(void *, data);
6396	/* End of directly accessible data */
6397	__bpf_md_ptr(void *, data_end);
6398	/*
6399	 * Total length of packet (starting from the tcp/udp header).
6400	 * Note that the directly accessible bytes (data_end - data)
6401	 * could be less than this "len".  Those bytes could be
6402	 * indirectly read by a helper "bpf_skb_load_bytes()".
6403	 */
6404	__u32 len;
6405	/*
6406	 * Eth protocol in the mac header (network byte order). e.g.
6407	 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD)
6408	 */
6409	__u32 eth_protocol;
6410	__u32 ip_protocol;	/* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */
6411	__u32 bind_inany;	/* Is sock bound to an INANY address? */
6412	__u32 hash;		/* A hash of the packet 4 tuples */
6413	/* When reuse->migrating_sk is NULL, it is selecting a sk for the
6414	 * new incoming connection request (e.g. selecting a listen sk for
6415	 * the received SYN in the TCP case).  reuse->sk is one of the sk
6416	 * in the reuseport group. The bpf prog can use reuse->sk to learn
6417	 * the local listening ip/port without looking into the skb.
6418	 *
6419	 * When reuse->migrating_sk is not NULL, reuse->sk is closed and
6420	 * reuse->migrating_sk is the socket that needs to be migrated
6421	 * to another listening socket.  migrating_sk could be a fullsock
6422	 * sk that is fully established or a reqsk that is in-the-middle
6423	 * of 3-way handshake.
6424	 */
6425	__bpf_md_ptr(struct bpf_sock *, sk);
6426	__bpf_md_ptr(struct bpf_sock *, migrating_sk);
6427};
6428
6429#define BPF_TAG_SIZE	8
6430
6431struct bpf_prog_info {
6432	__u32 type;
6433	__u32 id;
6434	__u8  tag[BPF_TAG_SIZE];
6435	__u32 jited_prog_len;
6436	__u32 xlated_prog_len;
6437	__aligned_u64 jited_prog_insns;
6438	__aligned_u64 xlated_prog_insns;
6439	__u64 load_time;	/* ns since boottime */
6440	__u32 created_by_uid;
6441	__u32 nr_map_ids;
6442	__aligned_u64 map_ids;
6443	char name[BPF_OBJ_NAME_LEN];
6444	__u32 ifindex;
6445	__u32 gpl_compatible:1;
6446	__u32 :31; /* alignment pad */
6447	__u64 netns_dev;
6448	__u64 netns_ino;
6449	__u32 nr_jited_ksyms;
6450	__u32 nr_jited_func_lens;
6451	__aligned_u64 jited_ksyms;
6452	__aligned_u64 jited_func_lens;
6453	__u32 btf_id;
6454	__u32 func_info_rec_size;
6455	__aligned_u64 func_info;
6456	__u32 nr_func_info;
6457	__u32 nr_line_info;
6458	__aligned_u64 line_info;
6459	__aligned_u64 jited_line_info;
6460	__u32 nr_jited_line_info;
6461	__u32 line_info_rec_size;
6462	__u32 jited_line_info_rec_size;
6463	__u32 nr_prog_tags;
6464	__aligned_u64 prog_tags;
6465	__u64 run_time_ns;
6466	__u64 run_cnt;
6467	__u64 recursion_misses;
6468	__u32 verified_insns;
6469	__u32 attach_btf_obj_id;
6470	__u32 attach_btf_id;
6471} __attribute__((aligned(8)));
6472
6473struct bpf_map_info {
6474	__u32 type;
6475	__u32 id;
6476	__u32 key_size;
6477	__u32 value_size;
6478	__u32 max_entries;
6479	__u32 map_flags;
6480	char  name[BPF_OBJ_NAME_LEN];
6481	__u32 ifindex;
6482	__u32 btf_vmlinux_value_type_id;
6483	__u64 netns_dev;
6484	__u64 netns_ino;
6485	__u32 btf_id;
6486	__u32 btf_key_type_id;
6487	__u32 btf_value_type_id;
6488	__u32 :32;	/* alignment pad */
6489	__u64 map_extra;
6490} __attribute__((aligned(8)));
6491
6492struct bpf_btf_info {
6493	__aligned_u64 btf;
6494	__u32 btf_size;
6495	__u32 id;
6496	__aligned_u64 name;
6497	__u32 name_len;
6498	__u32 kernel_btf;
6499} __attribute__((aligned(8)));
6500
6501struct bpf_link_info {
6502	__u32 type;
6503	__u32 id;
6504	__u32 prog_id;
6505	union {
6506		struct {
6507			__aligned_u64 tp_name; /* in/out: tp_name buffer ptr */
6508			__u32 tp_name_len;     /* in/out: tp_name buffer len */
6509		} raw_tracepoint;
6510		struct {
6511			__u32 attach_type;
6512			__u32 target_obj_id; /* prog_id for PROG_EXT, otherwise btf object id */
6513			__u32 target_btf_id; /* BTF type id inside the object */
6514		} tracing;
6515		struct {
6516			__u64 cgroup_id;
6517			__u32 attach_type;
6518		} cgroup;
6519		struct {
6520			__aligned_u64 target_name; /* in/out: target_name buffer ptr */
6521			__u32 target_name_len;	   /* in/out: target_name buffer len */
6522
6523			/* If the iter specific field is 32 bits, it can be put
6524			 * in the first or second union. Otherwise it should be
6525			 * put in the second union.
6526			 */
6527			union {
6528				struct {
6529					__u32 map_id;
6530				} map;
6531			};
6532			union {
6533				struct {
6534					__u64 cgroup_id;
6535					__u32 order;
6536				} cgroup;
6537				struct {
6538					__u32 tid;
6539					__u32 pid;
6540				} task;
6541			};
6542		} iter;
6543		struct  {
6544			__u32 netns_ino;
6545			__u32 attach_type;
6546		} netns;
6547		struct {
6548			__u32 ifindex;
6549		} xdp;
6550		struct {
6551			__u32 map_id;
6552		} struct_ops;
6553		struct {
6554			__u32 pf;
6555			__u32 hooknum;
6556			__s32 priority;
6557			__u32 flags;
6558		} netfilter;
6559		struct {
6560			__aligned_u64 addrs;
6561			__u32 count; /* in/out: kprobe_multi function count */
6562			__u32 flags;
6563			__u64 missed;
6564		} kprobe_multi;
6565		struct {
6566			__u32 type; /* enum bpf_perf_event_type */
6567			__u32 :32;
6568			union {
6569				struct {
6570					__aligned_u64 file_name; /* in/out */
6571					__u32 name_len;
6572					__u32 offset; /* offset from file_name */
6573				} uprobe; /* BPF_PERF_EVENT_UPROBE, BPF_PERF_EVENT_URETPROBE */
6574				struct {
6575					__aligned_u64 func_name; /* in/out */
6576					__u32 name_len;
6577					__u32 offset; /* offset from func_name */
6578					__u64 addr;
6579					__u64 missed;
6580				} kprobe; /* BPF_PERF_EVENT_KPROBE, BPF_PERF_EVENT_KRETPROBE */
6581				struct {
6582					__aligned_u64 tp_name;   /* in/out */
6583					__u32 name_len;
6584				} tracepoint; /* BPF_PERF_EVENT_TRACEPOINT */
6585				struct {
6586					__u64 config;
6587					__u32 type;
6588				} event; /* BPF_PERF_EVENT_EVENT */
6589			};
6590		} perf_event;
6591		struct {
6592			__u32 ifindex;
6593			__u32 attach_type;
6594		} tcx;
6595		struct {
6596			__u32 ifindex;
6597			__u32 attach_type;
6598		} netkit;
6599	};
6600} __attribute__((aligned(8)));
6601
6602/* User bpf_sock_addr struct to access socket fields and sockaddr struct passed
6603 * by user and intended to be used by socket (e.g. to bind to, depends on
6604 * attach type).
6605 */
6606struct bpf_sock_addr {
6607	__u32 user_family;	/* Allows 4-byte read, but no write. */
6608	__u32 user_ip4;		/* Allows 1,2,4-byte read and 4-byte write.
6609				 * Stored in network byte order.
6610				 */
6611	__u32 user_ip6[4];	/* Allows 1,2,4,8-byte read and 4,8-byte write.
6612				 * Stored in network byte order.
6613				 */
6614	__u32 user_port;	/* Allows 1,2,4-byte read and 4-byte write.
6615				 * Stored in network byte order
6616				 */
6617	__u32 family;		/* Allows 4-byte read, but no write */
6618	__u32 type;		/* Allows 4-byte read, but no write */
6619	__u32 protocol;		/* Allows 4-byte read, but no write */
6620	__u32 msg_src_ip4;	/* Allows 1,2,4-byte read and 4-byte write.
6621				 * Stored in network byte order.
6622				 */
6623	__u32 msg_src_ip6[4];	/* Allows 1,2,4,8-byte read and 4,8-byte write.
6624				 * Stored in network byte order.
6625				 */
6626	__bpf_md_ptr(struct bpf_sock *, sk);
6627};
6628
6629/* User bpf_sock_ops struct to access socket values and specify request ops
6630 * and their replies.
6631 * Some of this fields are in network (bigendian) byte order and may need
6632 * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h).
6633 * New fields can only be added at the end of this structure
6634 */
6635struct bpf_sock_ops {
6636	__u32 op;
6637	union {
6638		__u32 args[4];		/* Optionally passed to bpf program */
6639		__u32 reply;		/* Returned by bpf program	    */
6640		__u32 replylong[4];	/* Optionally returned by bpf prog  */
6641	};
6642	__u32 family;
6643	__u32 remote_ip4;	/* Stored in network byte order */
6644	__u32 local_ip4;	/* Stored in network byte order */
6645	__u32 remote_ip6[4];	/* Stored in network byte order */
6646	__u32 local_ip6[4];	/* Stored in network byte order */
6647	__u32 remote_port;	/* Stored in network byte order */
6648	__u32 local_port;	/* stored in host byte order */
6649	__u32 is_fullsock;	/* Some TCP fields are only valid if
6650				 * there is a full socket. If not, the
6651				 * fields read as zero.
6652				 */
6653	__u32 snd_cwnd;
6654	__u32 srtt_us;		/* Averaged RTT << 3 in usecs */
6655	__u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */
6656	__u32 state;
6657	__u32 rtt_min;
6658	__u32 snd_ssthresh;
6659	__u32 rcv_nxt;
6660	__u32 snd_nxt;
6661	__u32 snd_una;
6662	__u32 mss_cache;
6663	__u32 ecn_flags;
6664	__u32 rate_delivered;
6665	__u32 rate_interval_us;
6666	__u32 packets_out;
6667	__u32 retrans_out;
6668	__u32 total_retrans;
6669	__u32 segs_in;
6670	__u32 data_segs_in;
6671	__u32 segs_out;
6672	__u32 data_segs_out;
6673	__u32 lost_out;
6674	__u32 sacked_out;
6675	__u32 sk_txhash;
6676	__u64 bytes_received;
6677	__u64 bytes_acked;
6678	__bpf_md_ptr(struct bpf_sock *, sk);
6679	/* [skb_data, skb_data_end) covers the whole TCP header.
6680	 *
6681	 * BPF_SOCK_OPS_PARSE_HDR_OPT_CB: The packet received
6682	 * BPF_SOCK_OPS_HDR_OPT_LEN_CB:   Not useful because the
6683	 *                                header has not been written.
6684	 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB: The header and options have
6685	 *				  been written so far.
6686	 * BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB:  The SYNACK that concludes
6687	 *					the 3WHS.
6688	 * BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB: The ACK that concludes
6689	 *					the 3WHS.
6690	 *
6691	 * bpf_load_hdr_opt() can also be used to read a particular option.
6692	 */
6693	__bpf_md_ptr(void *, skb_data);
6694	__bpf_md_ptr(void *, skb_data_end);
6695	__u32 skb_len;		/* The total length of a packet.
6696				 * It includes the header, options,
6697				 * and payload.
6698				 */
6699	__u32 skb_tcp_flags;	/* tcp_flags of the header.  It provides
6700				 * an easy way to check for tcp_flags
6701				 * without parsing skb_data.
6702				 *
6703				 * In particular, the skb_tcp_flags
6704				 * will still be available in
6705				 * BPF_SOCK_OPS_HDR_OPT_LEN even though
6706				 * the outgoing header has not
6707				 * been written yet.
6708				 */
6709	__u64 skb_hwtstamp;
6710};
6711
6712/* Definitions for bpf_sock_ops_cb_flags */
6713enum {
6714	BPF_SOCK_OPS_RTO_CB_FLAG	= (1<<0),
6715	BPF_SOCK_OPS_RETRANS_CB_FLAG	= (1<<1),
6716	BPF_SOCK_OPS_STATE_CB_FLAG	= (1<<2),
6717	BPF_SOCK_OPS_RTT_CB_FLAG	= (1<<3),
6718	/* Call bpf for all received TCP headers.  The bpf prog will be
6719	 * called under sock_ops->op == BPF_SOCK_OPS_PARSE_HDR_OPT_CB
6720	 *
6721	 * Please refer to the comment in BPF_SOCK_OPS_PARSE_HDR_OPT_CB
6722	 * for the header option related helpers that will be useful
6723	 * to the bpf programs.
6724	 *
6725	 * It could be used at the client/active side (i.e. connect() side)
6726	 * when the server told it that the server was in syncookie
6727	 * mode and required the active side to resend the bpf-written
6728	 * options.  The active side can keep writing the bpf-options until
6729	 * it received a valid packet from the server side to confirm
6730	 * the earlier packet (and options) has been received.  The later
6731	 * example patch is using it like this at the active side when the
6732	 * server is in syncookie mode.
6733	 *
6734	 * The bpf prog will usually turn this off in the common cases.
6735	 */
6736	BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG	= (1<<4),
6737	/* Call bpf when kernel has received a header option that
6738	 * the kernel cannot handle.  The bpf prog will be called under
6739	 * sock_ops->op == BPF_SOCK_OPS_PARSE_HDR_OPT_CB.
6740	 *
6741	 * Please refer to the comment in BPF_SOCK_OPS_PARSE_HDR_OPT_CB
6742	 * for the header option related helpers that will be useful
6743	 * to the bpf programs.
6744	 */
6745	BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG = (1<<5),
6746	/* Call bpf when the kernel is writing header options for the
6747	 * outgoing packet.  The bpf prog will first be called
6748	 * to reserve space in a skb under
6749	 * sock_ops->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB.  Then
6750	 * the bpf prog will be called to write the header option(s)
6751	 * under sock_ops->op == BPF_SOCK_OPS_WRITE_HDR_OPT_CB.
6752	 *
6753	 * Please refer to the comment in BPF_SOCK_OPS_HDR_OPT_LEN_CB
6754	 * and BPF_SOCK_OPS_WRITE_HDR_OPT_CB for the header option
6755	 * related helpers that will be useful to the bpf programs.
6756	 *
6757	 * The kernel gets its chance to reserve space and write
6758	 * options first before the BPF program does.
6759	 */
6760	BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG = (1<<6),
6761/* Mask of all currently supported cb flags */
6762	BPF_SOCK_OPS_ALL_CB_FLAGS       = 0x7F,
6763};
6764
6765/* List of known BPF sock_ops operators.
6766 * New entries can only be added at the end
6767 */
6768enum {
6769	BPF_SOCK_OPS_VOID,
6770	BPF_SOCK_OPS_TIMEOUT_INIT,	/* Should return SYN-RTO value to use or
6771					 * -1 if default value should be used
6772					 */
6773	BPF_SOCK_OPS_RWND_INIT,		/* Should return initial advertized
6774					 * window (in packets) or -1 if default
6775					 * value should be used
6776					 */
6777	BPF_SOCK_OPS_TCP_CONNECT_CB,	/* Calls BPF program right before an
6778					 * active connection is initialized
6779					 */
6780	BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB,	/* Calls BPF program when an
6781						 * active connection is
6782						 * established
6783						 */
6784	BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,	/* Calls BPF program when a
6785						 * passive connection is
6786						 * established
6787						 */
6788	BPF_SOCK_OPS_NEEDS_ECN,		/* If connection's congestion control
6789					 * needs ECN
6790					 */
6791	BPF_SOCK_OPS_BASE_RTT,		/* Get base RTT. The correct value is
6792					 * based on the path and may be
6793					 * dependent on the congestion control
6794					 * algorithm. In general it indicates
6795					 * a congestion threshold. RTTs above
6796					 * this indicate congestion
6797					 */
6798	BPF_SOCK_OPS_RTO_CB,		/* Called when an RTO has triggered.
6799					 * Arg1: value of icsk_retransmits
6800					 * Arg2: value of icsk_rto
6801					 * Arg3: whether RTO has expired
6802					 */
6803	BPF_SOCK_OPS_RETRANS_CB,	/* Called when skb is retransmitted.
6804					 * Arg1: sequence number of 1st byte
6805					 * Arg2: # segments
6806					 * Arg3: return value of
6807					 *       tcp_transmit_skb (0 => success)
6808					 */
6809	BPF_SOCK_OPS_STATE_CB,		/* Called when TCP changes state.
6810					 * Arg1: old_state
6811					 * Arg2: new_state
6812					 */
6813	BPF_SOCK_OPS_TCP_LISTEN_CB,	/* Called on listen(2), right after
6814					 * socket transition to LISTEN state.
6815					 */
6816	BPF_SOCK_OPS_RTT_CB,		/* Called on every RTT.
6817					 */
6818	BPF_SOCK_OPS_PARSE_HDR_OPT_CB,	/* Parse the header option.
6819					 * It will be called to handle
6820					 * the packets received at
6821					 * an already established
6822					 * connection.
6823					 *
6824					 * sock_ops->skb_data:
6825					 * Referring to the received skb.
6826					 * It covers the TCP header only.
6827					 *
6828					 * bpf_load_hdr_opt() can also
6829					 * be used to search for a
6830					 * particular option.
6831					 */
6832	BPF_SOCK_OPS_HDR_OPT_LEN_CB,	/* Reserve space for writing the
6833					 * header option later in
6834					 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB.
6835					 * Arg1: bool want_cookie. (in
6836					 *       writing SYNACK only)
6837					 *
6838					 * sock_ops->skb_data:
6839					 * Not available because no header has
6840					 * been	written yet.
6841					 *
6842					 * sock_ops->skb_tcp_flags:
6843					 * The tcp_flags of the
6844					 * outgoing skb. (e.g. SYN, ACK, FIN).
6845					 *
6846					 * bpf_reserve_hdr_opt() should
6847					 * be used to reserve space.
6848					 */
6849	BPF_SOCK_OPS_WRITE_HDR_OPT_CB,	/* Write the header options
6850					 * Arg1: bool want_cookie. (in
6851					 *       writing SYNACK only)
6852					 *
6853					 * sock_ops->skb_data:
6854					 * Referring to the outgoing skb.
6855					 * It covers the TCP header
6856					 * that has already been written
6857					 * by the kernel and the
6858					 * earlier bpf-progs.
6859					 *
6860					 * sock_ops->skb_tcp_flags:
6861					 * The tcp_flags of the outgoing
6862					 * skb. (e.g. SYN, ACK, FIN).
6863					 *
6864					 * bpf_store_hdr_opt() should
6865					 * be used to write the
6866					 * option.
6867					 *
6868					 * bpf_load_hdr_opt() can also
6869					 * be used to search for a
6870					 * particular option that
6871					 * has already been written
6872					 * by the kernel or the
6873					 * earlier bpf-progs.
6874					 */
6875};
6876
6877/* List of TCP states. There is a build check in net/ipv4/tcp.c to detect
6878 * changes between the TCP and BPF versions. Ideally this should never happen.
6879 * If it does, we need to add code to convert them before calling
6880 * the BPF sock_ops function.
6881 */
6882enum {
6883	BPF_TCP_ESTABLISHED = 1,
6884	BPF_TCP_SYN_SENT,
6885	BPF_TCP_SYN_RECV,
6886	BPF_TCP_FIN_WAIT1,
6887	BPF_TCP_FIN_WAIT2,
6888	BPF_TCP_TIME_WAIT,
6889	BPF_TCP_CLOSE,
6890	BPF_TCP_CLOSE_WAIT,
6891	BPF_TCP_LAST_ACK,
6892	BPF_TCP_LISTEN,
6893	BPF_TCP_CLOSING,	/* Now a valid state */
6894	BPF_TCP_NEW_SYN_RECV,
6895
6896	BPF_TCP_MAX_STATES	/* Leave at the end! */
6897};
6898
6899enum {
6900	TCP_BPF_IW		= 1001,	/* Set TCP initial congestion window */
6901	TCP_BPF_SNDCWND_CLAMP	= 1002,	/* Set sndcwnd_clamp */
6902	TCP_BPF_DELACK_MAX	= 1003, /* Max delay ack in usecs */
6903	TCP_BPF_RTO_MIN		= 1004, /* Min delay ack in usecs */
6904	/* Copy the SYN pkt to optval
6905	 *
6906	 * BPF_PROG_TYPE_SOCK_OPS only.  It is similar to the
6907	 * bpf_getsockopt(TCP_SAVED_SYN) but it does not limit
6908	 * to only getting from the saved_syn.  It can either get the
6909	 * syn packet from:
6910	 *
6911	 * 1. the just-received SYN packet (only available when writing the
6912	 *    SYNACK).  It will be useful when it is not necessary to
6913	 *    save the SYN packet for latter use.  It is also the only way
6914	 *    to get the SYN during syncookie mode because the syn
6915	 *    packet cannot be saved during syncookie.
6916	 *
6917	 * OR
6918	 *
6919	 * 2. the earlier saved syn which was done by
6920	 *    bpf_setsockopt(TCP_SAVE_SYN).
6921	 *
6922	 * The bpf_getsockopt(TCP_BPF_SYN*) option will hide where the
6923	 * SYN packet is obtained.
6924	 *
6925	 * If the bpf-prog does not need the IP[46] header,  the
6926	 * bpf-prog can avoid parsing the IP header by using
6927	 * TCP_BPF_SYN.  Otherwise, the bpf-prog can get both
6928	 * IP[46] and TCP header by using TCP_BPF_SYN_IP.
6929	 *
6930	 *      >0: Total number of bytes copied
6931	 * -ENOSPC: Not enough space in optval. Only optlen number of
6932	 *          bytes is copied.
6933	 * -ENOENT: The SYN skb is not available now and the earlier SYN pkt
6934	 *	    is not saved by setsockopt(TCP_SAVE_SYN).
6935	 */
6936	TCP_BPF_SYN		= 1005, /* Copy the TCP header */
6937	TCP_BPF_SYN_IP		= 1006, /* Copy the IP[46] and TCP header */
6938	TCP_BPF_SYN_MAC         = 1007, /* Copy the MAC, IP[46], and TCP header */
6939};
6940
6941enum {
6942	BPF_LOAD_HDR_OPT_TCP_SYN = (1ULL << 0),
6943};
6944
6945/* args[0] value during BPF_SOCK_OPS_HDR_OPT_LEN_CB and
6946 * BPF_SOCK_OPS_WRITE_HDR_OPT_CB.
6947 */
6948enum {
6949	BPF_WRITE_HDR_TCP_CURRENT_MSS = 1,	/* Kernel is finding the
6950						 * total option spaces
6951						 * required for an established
6952						 * sk in order to calculate the
6953						 * MSS.  No skb is actually
6954						 * sent.
6955						 */
6956	BPF_WRITE_HDR_TCP_SYNACK_COOKIE = 2,	/* Kernel is in syncookie mode
6957						 * when sending a SYN.
6958						 */
6959};
6960
6961struct bpf_perf_event_value {
6962	__u64 counter;
6963	__u64 enabled;
6964	__u64 running;
6965};
6966
6967enum {
6968	BPF_DEVCG_ACC_MKNOD	= (1ULL << 0),
6969	BPF_DEVCG_ACC_READ	= (1ULL << 1),
6970	BPF_DEVCG_ACC_WRITE	= (1ULL << 2),
6971};
6972
6973enum {
6974	BPF_DEVCG_DEV_BLOCK	= (1ULL << 0),
6975	BPF_DEVCG_DEV_CHAR	= (1ULL << 1),
6976};
6977
6978struct bpf_cgroup_dev_ctx {
6979	/* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */
6980	__u32 access_type;
6981	__u32 major;
6982	__u32 minor;
6983};
6984
6985struct bpf_raw_tracepoint_args {
6986	__u64 args[0];
6987};
6988
6989/* DIRECT:  Skip the FIB rules and go to FIB table associated with device
6990 * OUTPUT:  Do lookup from egress perspective; default is ingress
6991 */
6992enum {
6993	BPF_FIB_LOOKUP_DIRECT  = (1U << 0),
6994	BPF_FIB_LOOKUP_OUTPUT  = (1U << 1),
6995	BPF_FIB_LOOKUP_SKIP_NEIGH = (1U << 2),
6996	BPF_FIB_LOOKUP_TBID    = (1U << 3),
6997	BPF_FIB_LOOKUP_SRC     = (1U << 4),
6998};
6999
7000enum {
7001	BPF_FIB_LKUP_RET_SUCCESS,      /* lookup successful */
7002	BPF_FIB_LKUP_RET_BLACKHOLE,    /* dest is blackholed; can be dropped */
7003	BPF_FIB_LKUP_RET_UNREACHABLE,  /* dest is unreachable; can be dropped */
7004	BPF_FIB_LKUP_RET_PROHIBIT,     /* dest not allowed; can be dropped */
7005	BPF_FIB_LKUP_RET_NOT_FWDED,    /* packet is not forwarded */
7006	BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */
7007	BPF_FIB_LKUP_RET_UNSUPP_LWT,   /* fwd requires encapsulation */
7008	BPF_FIB_LKUP_RET_NO_NEIGH,     /* no neighbor entry for nh */
7009	BPF_FIB_LKUP_RET_FRAG_NEEDED,  /* fragmentation required to fwd */
7010	BPF_FIB_LKUP_RET_NO_SRC_ADDR,  /* failed to derive IP src addr */
7011};
7012
7013struct bpf_fib_lookup {
7014	/* input:  network family for lookup (AF_INET, AF_INET6)
7015	 * output: network family of egress nexthop
7016	 */
7017	__u8	family;
7018
7019	/* set if lookup is to consider L4 data - e.g., FIB rules */
7020	__u8	l4_protocol;
7021	__be16	sport;
7022	__be16	dport;
7023
7024	union {	/* used for MTU check */
7025		/* input to lookup */
7026		__u16	tot_len; /* L3 length from network hdr (iph->tot_len) */
7027
7028		/* output: MTU value */
7029		__u16	mtu_result;
7030	};
7031	/* input: L3 device index for lookup
7032	 * output: device index from FIB lookup
7033	 */
7034	__u32	ifindex;
7035
7036	union {
7037		/* inputs to lookup */
7038		__u8	tos;		/* AF_INET  */
7039		__be32	flowinfo;	/* AF_INET6, flow_label + priority */
7040
7041		/* output: metric of fib result (IPv4/IPv6 only) */
7042		__u32	rt_metric;
7043	};
7044
7045	/* input: source address to consider for lookup
7046	 * output: source address result from lookup
7047	 */
7048	union {
7049		__be32		ipv4_src;
7050		__u32		ipv6_src[4];  /* in6_addr; network order */
7051	};
7052
7053	/* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in
7054	 * network header. output: bpf_fib_lookup sets to gateway address
7055	 * if FIB lookup returns gateway route
7056	 */
7057	union {
7058		__be32		ipv4_dst;
7059		__u32		ipv6_dst[4];  /* in6_addr; network order */
7060	};
7061
7062	union {
7063		struct {
7064			/* output */
7065			__be16	h_vlan_proto;
7066			__be16	h_vlan_TCI;
7067		};
7068		/* input: when accompanied with the
7069		 * 'BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_TBID` flags, a
7070		 * specific routing table to use for the fib lookup.
7071		 */
7072		__u32	tbid;
7073	};
7074
7075	__u8	smac[6];     /* ETH_ALEN */
7076	__u8	dmac[6];     /* ETH_ALEN */
7077};
7078
7079struct bpf_redir_neigh {
7080	/* network family for lookup (AF_INET, AF_INET6) */
7081	__u32 nh_family;
7082	/* network address of nexthop; skips fib lookup to find gateway */
7083	union {
7084		__be32		ipv4_nh;
7085		__u32		ipv6_nh[4];  /* in6_addr; network order */
7086	};
7087};
7088
7089/* bpf_check_mtu flags*/
7090enum  bpf_check_mtu_flags {
7091	BPF_MTU_CHK_SEGS  = (1U << 0),
7092};
7093
7094enum bpf_check_mtu_ret {
7095	BPF_MTU_CHK_RET_SUCCESS,      /* check and lookup successful */
7096	BPF_MTU_CHK_RET_FRAG_NEEDED,  /* fragmentation required to fwd */
7097	BPF_MTU_CHK_RET_SEGS_TOOBIG,  /* GSO re-segmentation needed to fwd */
7098};
7099
7100enum bpf_task_fd_type {
7101	BPF_FD_TYPE_RAW_TRACEPOINT,	/* tp name */
7102	BPF_FD_TYPE_TRACEPOINT,		/* tp name */
7103	BPF_FD_TYPE_KPROBE,		/* (symbol + offset) or addr */
7104	BPF_FD_TYPE_KRETPROBE,		/* (symbol + offset) or addr */
7105	BPF_FD_TYPE_UPROBE,		/* filename + offset */
7106	BPF_FD_TYPE_URETPROBE,		/* filename + offset */
7107};
7108
7109enum {
7110	BPF_FLOW_DISSECTOR_F_PARSE_1ST_FRAG		= (1U << 0),
7111	BPF_FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL		= (1U << 1),
7112	BPF_FLOW_DISSECTOR_F_STOP_AT_ENCAP		= (1U << 2),
7113};
7114
7115struct bpf_flow_keys {
7116	__u16	nhoff;
7117	__u16	thoff;
7118	__u16	addr_proto;			/* ETH_P_* of valid addrs */
7119	__u8	is_frag;
7120	__u8	is_first_frag;
7121	__u8	is_encap;
7122	__u8	ip_proto;
7123	__be16	n_proto;
7124	__be16	sport;
7125	__be16	dport;
7126	union {
7127		struct {
7128			__be32	ipv4_src;
7129			__be32	ipv4_dst;
7130		};
7131		struct {
7132			__u32	ipv6_src[4];	/* in6_addr; network order */
7133			__u32	ipv6_dst[4];	/* in6_addr; network order */
7134		};
7135	};
7136	__u32	flags;
7137	__be32	flow_label;
7138};
7139
7140struct bpf_func_info {
7141	__u32	insn_off;
7142	__u32	type_id;
7143};
7144
7145#define BPF_LINE_INFO_LINE_NUM(line_col)	((line_col) >> 10)
7146#define BPF_LINE_INFO_LINE_COL(line_col)	((line_col) & 0x3ff)
7147
7148struct bpf_line_info {
7149	__u32	insn_off;
7150	__u32	file_name_off;
7151	__u32	line_off;
7152	__u32	line_col;
7153};
7154
7155struct bpf_spin_lock {
7156	__u32	val;
7157};
7158
7159struct bpf_timer {
7160	__u64 __opaque[2];
7161} __attribute__((aligned(8)));
7162
7163struct bpf_dynptr {
7164	__u64 __opaque[2];
7165} __attribute__((aligned(8)));
7166
7167struct bpf_list_head {
7168	__u64 __opaque[2];
7169} __attribute__((aligned(8)));
7170
7171struct bpf_list_node {
7172	__u64 __opaque[3];
7173} __attribute__((aligned(8)));
7174
7175struct bpf_rb_root {
7176	__u64 __opaque[2];
7177} __attribute__((aligned(8)));
7178
7179struct bpf_rb_node {
7180	__u64 __opaque[4];
7181} __attribute__((aligned(8)));
7182
7183struct bpf_refcount {
7184	__u32 __opaque[1];
7185} __attribute__((aligned(4)));
7186
7187struct bpf_sysctl {
7188	__u32	write;		/* Sysctl is being read (= 0) or written (= 1).
7189				 * Allows 1,2,4-byte read, but no write.
7190				 */
7191	__u32	file_pos;	/* Sysctl file position to read from, write to.
7192				 * Allows 1,2,4-byte read an 4-byte write.
7193				 */
7194};
7195
7196struct bpf_sockopt {
7197	__bpf_md_ptr(struct bpf_sock *, sk);
7198	__bpf_md_ptr(void *, optval);
7199	__bpf_md_ptr(void *, optval_end);
7200
7201	__s32	level;
7202	__s32	optname;
7203	__s32	optlen;
7204	__s32	retval;
7205};
7206
7207struct bpf_pidns_info {
7208	__u32 pid;
7209	__u32 tgid;
7210};
7211
7212/* User accessible data for SK_LOOKUP programs. Add new fields at the end. */
7213struct bpf_sk_lookup {
7214	union {
7215		__bpf_md_ptr(struct bpf_sock *, sk); /* Selected socket */
7216		__u64 cookie; /* Non-zero if socket was selected in PROG_TEST_RUN */
7217	};
7218
7219	__u32 family;		/* Protocol family (AF_INET, AF_INET6) */
7220	__u32 protocol;		/* IP protocol (IPPROTO_TCP, IPPROTO_UDP) */
7221	__u32 remote_ip4;	/* Network byte order */
7222	__u32 remote_ip6[4];	/* Network byte order */
7223	__be16 remote_port;	/* Network byte order */
7224	__u16 :16;		/* Zero padding */
7225	__u32 local_ip4;	/* Network byte order */
7226	__u32 local_ip6[4];	/* Network byte order */
7227	__u32 local_port;	/* Host byte order */
7228	__u32 ingress_ifindex;		/* The arriving interface. Determined by inet_iif. */
7229};
7230
7231/*
7232 * struct btf_ptr is used for typed pointer representation; the
7233 * type id is used to render the pointer data as the appropriate type
7234 * via the bpf_snprintf_btf() helper described above.  A flags field -
7235 * potentially to specify additional details about the BTF pointer
7236 * (rather than its mode of display) - is included for future use.
7237 * Display flags - BTF_F_* - are passed to bpf_snprintf_btf separately.
7238 */
7239struct btf_ptr {
7240	void *ptr;
7241	__u32 type_id;
7242	__u32 flags;		/* BTF ptr flags; unused at present. */
7243};
7244
7245/*
7246 * Flags to control bpf_snprintf_btf() behaviour.
7247 *     - BTF_F_COMPACT: no formatting around type information
7248 *     - BTF_F_NONAME: no struct/union member names/types
7249 *     - BTF_F_PTR_RAW: show raw (unobfuscated) pointer values;
7250 *       equivalent to %px.
7251 *     - BTF_F_ZERO: show zero-valued struct/union members; they
7252 *       are not displayed by default
7253 */
7254enum {
7255	BTF_F_COMPACT	=	(1ULL << 0),
7256	BTF_F_NONAME	=	(1ULL << 1),
7257	BTF_F_PTR_RAW	=	(1ULL << 2),
7258	BTF_F_ZERO	=	(1ULL << 3),
7259};
7260
7261/* bpf_core_relo_kind encodes which aspect of captured field/type/enum value
7262 * has to be adjusted by relocations. It is emitted by llvm and passed to
7263 * libbpf and later to the kernel.
7264 */
7265enum bpf_core_relo_kind {
7266	BPF_CORE_FIELD_BYTE_OFFSET = 0,      /* field byte offset */
7267	BPF_CORE_FIELD_BYTE_SIZE = 1,        /* field size in bytes */
7268	BPF_CORE_FIELD_EXISTS = 2,           /* field existence in target kernel */
7269	BPF_CORE_FIELD_SIGNED = 3,           /* field signedness (0 - unsigned, 1 - signed) */
7270	BPF_CORE_FIELD_LSHIFT_U64 = 4,       /* bitfield-specific left bitshift */
7271	BPF_CORE_FIELD_RSHIFT_U64 = 5,       /* bitfield-specific right bitshift */
7272	BPF_CORE_TYPE_ID_LOCAL = 6,          /* type ID in local BPF object */
7273	BPF_CORE_TYPE_ID_TARGET = 7,         /* type ID in target kernel */
7274	BPF_CORE_TYPE_EXISTS = 8,            /* type existence in target kernel */
7275	BPF_CORE_TYPE_SIZE = 9,              /* type size in bytes */
7276	BPF_CORE_ENUMVAL_EXISTS = 10,        /* enum value existence in target kernel */
7277	BPF_CORE_ENUMVAL_VALUE = 11,         /* enum value integer value */
7278	BPF_CORE_TYPE_MATCHES = 12,          /* type match in target kernel */
7279};
7280
7281/*
7282 * "struct bpf_core_relo" is used to pass relocation data form LLVM to libbpf
7283 * and from libbpf to the kernel.
7284 *
7285 * CO-RE relocation captures the following data:
7286 * - insn_off - instruction offset (in bytes) within a BPF program that needs
7287 *   its insn->imm field to be relocated with actual field info;
7288 * - type_id - BTF type ID of the "root" (containing) entity of a relocatable
7289 *   type or field;
7290 * - access_str_off - offset into corresponding .BTF string section. String
7291 *   interpretation depends on specific relocation kind:
7292 *     - for field-based relocations, string encodes an accessed field using
7293 *       a sequence of field and array indices, separated by colon (:). It's
7294 *       conceptually very close to LLVM's getelementptr ([0]) instruction's
7295 *       arguments for identifying offset to a field.
7296 *     - for type-based relocations, strings is expected to be just "0";
7297 *     - for enum value-based relocations, string contains an index of enum
7298 *       value within its enum type;
7299 * - kind - one of enum bpf_core_relo_kind;
7300 *
7301 * Example:
7302 *   struct sample {
7303 *       int a;
7304 *       struct {
7305 *           int b[10];
7306 *       };
7307 *   };
7308 *
7309 *   struct sample *s = ...;
7310 *   int *x = &s->a;     // encoded as "0:0" (a is field #0)
7311 *   int *y = &s->b[5];  // encoded as "0:1:0:5" (anon struct is field #1,
7312 *                       // b is field #0 inside anon struct, accessing elem #5)
7313 *   int *z = &s[10]->b; // encoded as "10:1" (ptr is used as an array)
7314 *
7315 * type_id for all relocs in this example will capture BTF type id of
7316 * `struct sample`.
7317 *
7318 * Such relocation is emitted when using __builtin_preserve_access_index()
7319 * Clang built-in, passing expression that captures field address, e.g.:
7320 *
7321 * bpf_probe_read(&dst, sizeof(dst),
7322 *		  __builtin_preserve_access_index(&src->a.b.c));
7323 *
7324 * In this case Clang will emit field relocation recording necessary data to
7325 * be able to find offset of embedded `a.b.c` field within `src` struct.
7326 *
7327 * [0] https://llvm.org/docs/LangRef.html#getelementptr-instruction
7328 */
7329struct bpf_core_relo {
7330	__u32 insn_off;
7331	__u32 type_id;
7332	__u32 access_str_off;
7333	enum bpf_core_relo_kind kind;
7334};
7335
7336/*
7337 * Flags to control bpf_timer_start() behaviour.
7338 *     - BPF_F_TIMER_ABS: Timeout passed is absolute time, by default it is
7339 *       relative to current time.
7340 *     - BPF_F_TIMER_CPU_PIN: Timer will be pinned to the CPU of the caller.
7341 */
7342enum {
7343	BPF_F_TIMER_ABS = (1ULL << 0),
7344	BPF_F_TIMER_CPU_PIN = (1ULL << 1),
7345};
7346
7347/* BPF numbers iterator state */
7348struct bpf_iter_num {
7349	/* opaque iterator state; having __u64 here allows to preserve correct
7350	 * alignment requirements in vmlinux.h, generated from BTF
7351	 */
7352	__u64 __opaque[1];
7353} __attribute__((aligned(8)));
7354
7355#endif /* _UAPI__LINUX_BPF_H__ */
7356