1425bb815Sopenharmony_ci/* Copyright JS Foundation and other contributors, http://js.foundation
2425bb815Sopenharmony_ci *
3425bb815Sopenharmony_ci * Licensed under the Apache License, Version 2.0 (the "License");
4425bb815Sopenharmony_ci * you may not use this file except in compliance with the License.
5425bb815Sopenharmony_ci * You may obtain a copy of the License at
6425bb815Sopenharmony_ci *
7425bb815Sopenharmony_ci *     http://www.apache.org/licenses/LICENSE-2.0
8425bb815Sopenharmony_ci *
9425bb815Sopenharmony_ci * Unless required by applicable law or agreed to in writing, software
10425bb815Sopenharmony_ci * distributed under the License is distributed on an "AS IS" BASIS
11425bb815Sopenharmony_ci * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12425bb815Sopenharmony_ci * See the License for the specific language governing permissions and
13425bb815Sopenharmony_ci * limitations under the License.
14425bb815Sopenharmony_ci *
15425bb815Sopenharmony_ci * This file is based on work under the following copyright and permission
16425bb815Sopenharmony_ci * notice:
17425bb815Sopenharmony_ci *
18425bb815Sopenharmony_ci *     Copyright (C) 1993, 2004 by Sun Microsystems, Inc. All rights reserved.
19425bb815Sopenharmony_ci *
20425bb815Sopenharmony_ci *     Developed at SunSoft, a Sun Microsystems, Inc. business.
21425bb815Sopenharmony_ci *     Permission to use, copy, modify, and distribute this
22425bb815Sopenharmony_ci *     software is freely granted, provided that this notice
23425bb815Sopenharmony_ci *     is preserved.
24425bb815Sopenharmony_ci *
25425bb815Sopenharmony_ci *     @(#)k_rem_pio2.c 1.3 95/01/18
26425bb815Sopenharmony_ci *     @(#)e_rem_pio2.c 1.4 95/01/18
27425bb815Sopenharmony_ci *     @(#)k_sin.c 1.3 95/01/18
28425bb815Sopenharmony_ci *     @(#)k_cos.c 1.3 95/01/18
29425bb815Sopenharmony_ci *     @(#)k_tan.c 1.5 04/04/22
30425bb815Sopenharmony_ci *     @(#)s_sin.c 1.3 95/01/18
31425bb815Sopenharmony_ci *     @(#)s_cos.c 1.3 95/01/18
32425bb815Sopenharmony_ci *     @(#)s_tan.c 1.3 95/01/18
33425bb815Sopenharmony_ci */
34425bb815Sopenharmony_ci
35425bb815Sopenharmony_ci#include "jerry-libm-internal.h"
36425bb815Sopenharmony_ci
37425bb815Sopenharmony_ci#define zero    0.00000000000000000000e+00 /* 0x00000000, 0x00000000 */
38425bb815Sopenharmony_ci#define half    5.00000000000000000000e-01 /* 0x3FE00000, 0x00000000 */
39425bb815Sopenharmony_ci#define one     1.00000000000000000000e+00 /* 0x3FF00000, 0x00000000 */
40425bb815Sopenharmony_ci#define two24   1.67772160000000000000e+07 /* 0x41700000, 0x00000000 */
41425bb815Sopenharmony_ci#define twon24  5.96046447753906250000e-08 /* 0x3E700000, 0x00000000 */
42425bb815Sopenharmony_ci
43425bb815Sopenharmony_ci/* __kernel_rem_pio2(x,y,e0,nx,prec)
44425bb815Sopenharmony_ci * double x[],y[]; int e0,nx,prec;
45425bb815Sopenharmony_ci *
46425bb815Sopenharmony_ci * __kernel_rem_pio2 return the last three digits of N with
47425bb815Sopenharmony_ci *              y = x - N*pi/2
48425bb815Sopenharmony_ci * so that |y| < pi/2.
49425bb815Sopenharmony_ci *
50425bb815Sopenharmony_ci * The method is to compute the integer (mod 8) and fraction parts of
51425bb815Sopenharmony_ci * (2/pi)*x without doing the full multiplication. In general we
52425bb815Sopenharmony_ci * skip the part of the product that are known to be a huge integer (
53425bb815Sopenharmony_ci * more accurately, = 0 mod 8 ). Thus the number of operations are
54425bb815Sopenharmony_ci * independent of the exponent of the input.
55425bb815Sopenharmony_ci *
56425bb815Sopenharmony_ci * (2/pi) is represented by an array of 24-bit integers in ipio2[].
57425bb815Sopenharmony_ci *
58425bb815Sopenharmony_ci * Input parameters:
59425bb815Sopenharmony_ci *      x[]     The input value (must be positive) is broken into nx
60425bb815Sopenharmony_ci *              pieces of 24-bit integers in double precision format.
61425bb815Sopenharmony_ci *              x[i] will be the i-th 24 bit of x. The scaled exponent
62425bb815Sopenharmony_ci *              of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
63425bb815Sopenharmony_ci *              match x's up to 24 bits.
64425bb815Sopenharmony_ci *
65425bb815Sopenharmony_ci *              Example of breaking a double positive z into x[0]+x[1]+x[2]:
66425bb815Sopenharmony_ci *                      e0 = ilogb(z)-23
67425bb815Sopenharmony_ci *                      z  = scalbn(z,-e0)
68425bb815Sopenharmony_ci *              for i = 0,1,2
69425bb815Sopenharmony_ci *                      x[i] = floor(z)
70425bb815Sopenharmony_ci *                      z    = (z-x[i])*2**24
71425bb815Sopenharmony_ci *
72425bb815Sopenharmony_ci *      y[]     ouput result in an array of double precision numbers.
73425bb815Sopenharmony_ci *              The dimension of y[] is:
74425bb815Sopenharmony_ci *                      24-bit  precision       1
75425bb815Sopenharmony_ci *                      53-bit  precision       2
76425bb815Sopenharmony_ci *                      64-bit  precision       2
77425bb815Sopenharmony_ci *                      113-bit precision       3
78425bb815Sopenharmony_ci *              The actual value is the sum of them. Thus for 113-bit
79425bb815Sopenharmony_ci *              precison, one may have to do something like:
80425bb815Sopenharmony_ci *
81425bb815Sopenharmony_ci *              long double t,w,r_head, r_tail;
82425bb815Sopenharmony_ci *              t = (long double)y[2] + (long double)y[1];
83425bb815Sopenharmony_ci *              w = (long double)y[0];
84425bb815Sopenharmony_ci *              r_head = t+w;
85425bb815Sopenharmony_ci *              r_tail = w - (r_head - t);
86425bb815Sopenharmony_ci *
87425bb815Sopenharmony_ci *      e0      The exponent of x[0]
88425bb815Sopenharmony_ci *
89425bb815Sopenharmony_ci *      nx      dimension of x[]
90425bb815Sopenharmony_ci *
91425bb815Sopenharmony_ci *      prec    an integer indicating the precision:
92425bb815Sopenharmony_ci *                      0       24  bits (single)
93425bb815Sopenharmony_ci *                      1       53  bits (double)
94425bb815Sopenharmony_ci *                      2       64  bits (extended)
95425bb815Sopenharmony_ci *                      3       113 bits (quad)
96425bb815Sopenharmony_ci *
97425bb815Sopenharmony_ci * External function:
98425bb815Sopenharmony_ci *      double scalbn(), floor();
99425bb815Sopenharmony_ci *
100425bb815Sopenharmony_ci * Here is the description of some local variables:
101425bb815Sopenharmony_ci *
102425bb815Sopenharmony_ci *      ipio2[] integer array, contains the (24*i)-th to (24*i+23)-th
103425bb815Sopenharmony_ci *              bit of 2/pi after binary point. The corresponding
104425bb815Sopenharmony_ci *              floating value is
105425bb815Sopenharmony_ci *
106425bb815Sopenharmony_ci *                      ipio2[i] * 2^(-24(i+1)).
107425bb815Sopenharmony_ci *
108425bb815Sopenharmony_ci *      jk      jk+1 is the initial number of terms of ipio2[] needed
109425bb815Sopenharmony_ci *              in the computation. The recommended value is 2,3,4,
110425bb815Sopenharmony_ci *              6 for single, double, extended,and quad.
111425bb815Sopenharmony_ci *
112425bb815Sopenharmony_ci *      jz      local integer variable indicating the number of
113425bb815Sopenharmony_ci *              terms of ipio2[] used.
114425bb815Sopenharmony_ci *
115425bb815Sopenharmony_ci *      jx      nx - 1
116425bb815Sopenharmony_ci *
117425bb815Sopenharmony_ci *      jv      index for pointing to the suitable ipio2[] for the
118425bb815Sopenharmony_ci *              computation. In general, we want
119425bb815Sopenharmony_ci *                      ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
120425bb815Sopenharmony_ci *              is an integer. Thus
121425bb815Sopenharmony_ci *                      e0-3-24*jv >= 0 or (e0-3)/24 >= jv
122425bb815Sopenharmony_ci *              Hence jv = max(0,(e0-3)/24).
123425bb815Sopenharmony_ci *
124425bb815Sopenharmony_ci *      jp      jp+1 is the number of terms in PIo2[] needed, jp = jk.
125425bb815Sopenharmony_ci *
126425bb815Sopenharmony_ci *      q[]     double array with integral value, representing the
127425bb815Sopenharmony_ci *              24-bits chunk of the product of x and 2/pi.
128425bb815Sopenharmony_ci *
129425bb815Sopenharmony_ci *      q0      the corresponding exponent of q[0]. Note that the
130425bb815Sopenharmony_ci *              exponent for q[i] would be q0-24*i.
131425bb815Sopenharmony_ci *
132425bb815Sopenharmony_ci *      PIo2[]  double precision array, obtained by cutting pi/2
133425bb815Sopenharmony_ci *              into 24 bits chunks.
134425bb815Sopenharmony_ci *
135425bb815Sopenharmony_ci *      f[]     ipio2[] in floating point
136425bb815Sopenharmony_ci *
137425bb815Sopenharmony_ci *      iq[]    integer array by breaking up q[] in 24-bits chunk.
138425bb815Sopenharmony_ci *
139425bb815Sopenharmony_ci *      fq[]    final product of x*(2/pi) in fq[0],..,fq[jk]
140425bb815Sopenharmony_ci *
141425bb815Sopenharmony_ci *      ih      integer. If >0 it indicates q[] is >= 0.5, hence
142425bb815Sopenharmony_ci *              it also indicates the *sign* of the result.
143425bb815Sopenharmony_ci */
144425bb815Sopenharmony_ci
145425bb815Sopenharmony_ci/*
146425bb815Sopenharmony_ci * Constants:
147425bb815Sopenharmony_ci * The hexadecimal values are the intended ones for the following
148425bb815Sopenharmony_ci * constants. The decimal values may be used, provided that the
149425bb815Sopenharmony_ci * compiler will convert from decimal to binary accurately enough
150425bb815Sopenharmony_ci * to produce the hexadecimal values shown.
151425bb815Sopenharmony_ci */
152425bb815Sopenharmony_ci
153425bb815Sopenharmony_ci/* initial value for jk */
154425bb815Sopenharmony_cistatic const int init_jk[] =
155425bb815Sopenharmony_ci{
156425bb815Sopenharmony_ci  2, 3, 4, 6
157425bb815Sopenharmony_ci};
158425bb815Sopenharmony_ci
159425bb815Sopenharmony_cistatic const double PIo2[] =
160425bb815Sopenharmony_ci{
161425bb815Sopenharmony_ci  1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
162425bb815Sopenharmony_ci  7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
163425bb815Sopenharmony_ci  5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
164425bb815Sopenharmony_ci  3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
165425bb815Sopenharmony_ci  1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
166425bb815Sopenharmony_ci  1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
167425bb815Sopenharmony_ci  2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
168425bb815Sopenharmony_ci  2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
169425bb815Sopenharmony_ci};
170425bb815Sopenharmony_ci
171425bb815Sopenharmony_ci/*
172425bb815Sopenharmony_ci * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
173425bb815Sopenharmony_ci */
174425bb815Sopenharmony_cistatic const int ipio2[] =
175425bb815Sopenharmony_ci{
176425bb815Sopenharmony_ci  0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
177425bb815Sopenharmony_ci  0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
178425bb815Sopenharmony_ci  0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
179425bb815Sopenharmony_ci  0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
180425bb815Sopenharmony_ci  0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
181425bb815Sopenharmony_ci  0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
182425bb815Sopenharmony_ci  0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
183425bb815Sopenharmony_ci  0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
184425bb815Sopenharmony_ci  0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
185425bb815Sopenharmony_ci  0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
186425bb815Sopenharmony_ci  0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
187425bb815Sopenharmony_ci};
188425bb815Sopenharmony_ci
189425bb815Sopenharmony_cistatic int
190425bb815Sopenharmony_ci__kernel_rem_pio2 (double *x, double *y, int e0, int nx, int prec)
191425bb815Sopenharmony_ci{
192425bb815Sopenharmony_ci  int jz, jx, jv, jp, jk, carry, n, iq[20], i, j, k, m, q0, ih;
193425bb815Sopenharmony_ci  double z, fw, f[20], fq[20], q[20];
194425bb815Sopenharmony_ci
195425bb815Sopenharmony_ci  /* initialize jk */
196425bb815Sopenharmony_ci  jk = init_jk[prec];
197425bb815Sopenharmony_ci  jp = jk;
198425bb815Sopenharmony_ci
199425bb815Sopenharmony_ci  /* determine jx, jv, q0, note that 3 > q0 */
200425bb815Sopenharmony_ci  jx = nx - 1;
201425bb815Sopenharmony_ci  jv = (e0 - 3) / 24;
202425bb815Sopenharmony_ci  if (jv < 0)
203425bb815Sopenharmony_ci  {
204425bb815Sopenharmony_ci    jv = 0;
205425bb815Sopenharmony_ci  }
206425bb815Sopenharmony_ci  q0 = e0 - 24 * (jv + 1);
207425bb815Sopenharmony_ci
208425bb815Sopenharmony_ci  /* set up f[0] to f[jx + jk] where f[jx + jk] = ipio2[jv + jk] */
209425bb815Sopenharmony_ci  j = jv - jx;
210425bb815Sopenharmony_ci  m = jx + jk;
211425bb815Sopenharmony_ci  for (i = 0; i <= m; i++, j++)
212425bb815Sopenharmony_ci  {
213425bb815Sopenharmony_ci    f[i] = (j < 0) ? zero : (double) ipio2[j];
214425bb815Sopenharmony_ci  }
215425bb815Sopenharmony_ci
216425bb815Sopenharmony_ci  /* compute q[0], q[1], ... q[jk] */
217425bb815Sopenharmony_ci  for (i = 0; i <= jk; i++)
218425bb815Sopenharmony_ci  {
219425bb815Sopenharmony_ci    for (j = 0, fw = 0.0; j <= jx; j++)
220425bb815Sopenharmony_ci    {
221425bb815Sopenharmony_ci      fw += x[j] * f[jx + i - j];
222425bb815Sopenharmony_ci    }
223425bb815Sopenharmony_ci    q[i] = fw;
224425bb815Sopenharmony_ci  }
225425bb815Sopenharmony_ci
226425bb815Sopenharmony_ci  jz = jk;
227425bb815Sopenharmony_cirecompute:
228425bb815Sopenharmony_ci  /* distill q[] into iq[] reversingly */
229425bb815Sopenharmony_ci  for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--)
230425bb815Sopenharmony_ci  {
231425bb815Sopenharmony_ci    fw = (double) ((int) (twon24 * z));
232425bb815Sopenharmony_ci    iq[i] = (int) (z - two24 * fw);
233425bb815Sopenharmony_ci    z = q[j - 1] + fw;
234425bb815Sopenharmony_ci  }
235425bb815Sopenharmony_ci
236425bb815Sopenharmony_ci  /* compute n */
237425bb815Sopenharmony_ci  z = scalbn (z, q0); /* actual value of z */
238425bb815Sopenharmony_ci  z -= 8.0 * floor (z * 0.125); /* trim off integer >= 8 */
239425bb815Sopenharmony_ci  n = (int) z;
240425bb815Sopenharmony_ci  z -= (double) n;
241425bb815Sopenharmony_ci  ih = 0;
242425bb815Sopenharmony_ci  if (q0 > 0) /* need iq[jz - 1] to determine n */
243425bb815Sopenharmony_ci  {
244425bb815Sopenharmony_ci    i = (iq[jz - 1] >> (24 - q0));
245425bb815Sopenharmony_ci    n += i;
246425bb815Sopenharmony_ci    iq[jz - 1] -= i << (24 - q0);
247425bb815Sopenharmony_ci    ih = iq[jz - 1] >> (23 - q0);
248425bb815Sopenharmony_ci  }
249425bb815Sopenharmony_ci  else if (q0 == 0)
250425bb815Sopenharmony_ci  {
251425bb815Sopenharmony_ci    ih = iq[jz - 1] >> 23;
252425bb815Sopenharmony_ci  }
253425bb815Sopenharmony_ci  else if (z >= 0.5)
254425bb815Sopenharmony_ci  {
255425bb815Sopenharmony_ci    ih = 2;
256425bb815Sopenharmony_ci  }
257425bb815Sopenharmony_ci
258425bb815Sopenharmony_ci  if (ih > 0) /* q > 0.5 */
259425bb815Sopenharmony_ci  {
260425bb815Sopenharmony_ci    n += 1;
261425bb815Sopenharmony_ci    carry = 0;
262425bb815Sopenharmony_ci    for (i = 0; i < jz; i++) /* compute 1 - q */
263425bb815Sopenharmony_ci    {
264425bb815Sopenharmony_ci      j = iq[i];
265425bb815Sopenharmony_ci      if (carry == 0)
266425bb815Sopenharmony_ci      {
267425bb815Sopenharmony_ci        if (j != 0)
268425bb815Sopenharmony_ci        {
269425bb815Sopenharmony_ci          carry = 1;
270425bb815Sopenharmony_ci          iq[i] = 0x1000000 - j;
271425bb815Sopenharmony_ci        }
272425bb815Sopenharmony_ci      }
273425bb815Sopenharmony_ci      else
274425bb815Sopenharmony_ci      {
275425bb815Sopenharmony_ci        iq[i] = 0xffffff - j;
276425bb815Sopenharmony_ci      }
277425bb815Sopenharmony_ci    }
278425bb815Sopenharmony_ci    if (q0 > 0) /* rare case: chance is 1 in 12 */
279425bb815Sopenharmony_ci    {
280425bb815Sopenharmony_ci      switch (q0)
281425bb815Sopenharmony_ci      {
282425bb815Sopenharmony_ci        case 1:
283425bb815Sopenharmony_ci        {
284425bb815Sopenharmony_ci          iq[jz - 1] &= 0x7fffff;
285425bb815Sopenharmony_ci          break;
286425bb815Sopenharmony_ci        }
287425bb815Sopenharmony_ci        case 2:
288425bb815Sopenharmony_ci        {
289425bb815Sopenharmony_ci          iq[jz - 1] &= 0x3fffff;
290425bb815Sopenharmony_ci          break;
291425bb815Sopenharmony_ci        }
292425bb815Sopenharmony_ci      }
293425bb815Sopenharmony_ci    }
294425bb815Sopenharmony_ci    if (ih == 2)
295425bb815Sopenharmony_ci    {
296425bb815Sopenharmony_ci      z = one - z;
297425bb815Sopenharmony_ci      if (carry != 0)
298425bb815Sopenharmony_ci      {
299425bb815Sopenharmony_ci        z -= scalbn (one, q0);
300425bb815Sopenharmony_ci      }
301425bb815Sopenharmony_ci    }
302425bb815Sopenharmony_ci  }
303425bb815Sopenharmony_ci
304425bb815Sopenharmony_ci  /* check if recomputation is needed */
305425bb815Sopenharmony_ci  if (z == zero)
306425bb815Sopenharmony_ci  {
307425bb815Sopenharmony_ci    j = 0;
308425bb815Sopenharmony_ci    for (i = jz - 1; i >= jk; i--)
309425bb815Sopenharmony_ci    {
310425bb815Sopenharmony_ci      j |= iq[i];
311425bb815Sopenharmony_ci    }
312425bb815Sopenharmony_ci    if (j == 0) /* need recomputation */
313425bb815Sopenharmony_ci    {
314425bb815Sopenharmony_ci      for (k = 1; iq[jk - k] == 0; k++) /* k = no. of terms needed */
315425bb815Sopenharmony_ci      {
316425bb815Sopenharmony_ci      }
317425bb815Sopenharmony_ci
318425bb815Sopenharmony_ci      for (i = jz + 1; i <= jz + k; i++) /* add q[jz + 1] to q[jz + k] */
319425bb815Sopenharmony_ci      {
320425bb815Sopenharmony_ci        f[jx + i] = (double) ipio2[jv + i];
321425bb815Sopenharmony_ci        for (j = 0, fw = 0.0; j <= jx; j++)
322425bb815Sopenharmony_ci        {
323425bb815Sopenharmony_ci          fw += x[j] * f[jx + i - j];
324425bb815Sopenharmony_ci        }
325425bb815Sopenharmony_ci        q[i] = fw;
326425bb815Sopenharmony_ci      }
327425bb815Sopenharmony_ci      jz += k;
328425bb815Sopenharmony_ci      goto recompute;
329425bb815Sopenharmony_ci    }
330425bb815Sopenharmony_ci  }
331425bb815Sopenharmony_ci
332425bb815Sopenharmony_ci  /* chop off zero terms */
333425bb815Sopenharmony_ci  if (z == 0.0)
334425bb815Sopenharmony_ci  {
335425bb815Sopenharmony_ci    jz -= 1;
336425bb815Sopenharmony_ci    q0 -= 24;
337425bb815Sopenharmony_ci    while (iq[jz] == 0)
338425bb815Sopenharmony_ci    {
339425bb815Sopenharmony_ci      jz--;
340425bb815Sopenharmony_ci      q0 -= 24;
341425bb815Sopenharmony_ci    }
342425bb815Sopenharmony_ci  }
343425bb815Sopenharmony_ci  else
344425bb815Sopenharmony_ci  { /* break z into 24-bit if necessary */
345425bb815Sopenharmony_ci    z = scalbn (z, -q0);
346425bb815Sopenharmony_ci    if (z >= two24)
347425bb815Sopenharmony_ci    {
348425bb815Sopenharmony_ci      fw = (double) ((int) (twon24 * z));
349425bb815Sopenharmony_ci      iq[jz] = (int) (z - two24 * fw);
350425bb815Sopenharmony_ci      jz += 1;
351425bb815Sopenharmony_ci      q0 += 24;
352425bb815Sopenharmony_ci      iq[jz] = (int) fw;
353425bb815Sopenharmony_ci    }
354425bb815Sopenharmony_ci    else
355425bb815Sopenharmony_ci    {
356425bb815Sopenharmony_ci      iq[jz] = (int) z;
357425bb815Sopenharmony_ci    }
358425bb815Sopenharmony_ci  }
359425bb815Sopenharmony_ci
360425bb815Sopenharmony_ci  /* convert integer "bit" chunk to floating-point value */
361425bb815Sopenharmony_ci  fw = scalbn (one, q0);
362425bb815Sopenharmony_ci  for (i = jz; i >= 0; i--)
363425bb815Sopenharmony_ci  {
364425bb815Sopenharmony_ci    q[i] = fw * (double) iq[i];
365425bb815Sopenharmony_ci    fw *= twon24;
366425bb815Sopenharmony_ci  }
367425bb815Sopenharmony_ci
368425bb815Sopenharmony_ci  /* compute PIo2[0, ..., jp] * q[jz, ..., 0] */
369425bb815Sopenharmony_ci  for (i = jz; i >= 0; i--)
370425bb815Sopenharmony_ci  {
371425bb815Sopenharmony_ci    for (fw = 0.0, k = 0; k <= jp && k <= jz - i; k++)
372425bb815Sopenharmony_ci    {
373425bb815Sopenharmony_ci      fw += PIo2[k] * q[i + k];
374425bb815Sopenharmony_ci    }
375425bb815Sopenharmony_ci    fq[jz - i] = fw;
376425bb815Sopenharmony_ci  }
377425bb815Sopenharmony_ci
378425bb815Sopenharmony_ci  /* compress fq[] into y[] */
379425bb815Sopenharmony_ci  switch (prec)
380425bb815Sopenharmony_ci  {
381425bb815Sopenharmony_ci    case 0:
382425bb815Sopenharmony_ci    {
383425bb815Sopenharmony_ci      fw = 0.0;
384425bb815Sopenharmony_ci      for (i = jz; i >= 0; i--)
385425bb815Sopenharmony_ci      {
386425bb815Sopenharmony_ci        fw += fq[i];
387425bb815Sopenharmony_ci      }
388425bb815Sopenharmony_ci      y[0] = (ih == 0) ? fw : -fw;
389425bb815Sopenharmony_ci      break;
390425bb815Sopenharmony_ci    }
391425bb815Sopenharmony_ci    case 1:
392425bb815Sopenharmony_ci    case 2:
393425bb815Sopenharmony_ci    {
394425bb815Sopenharmony_ci      fw = 0.0;
395425bb815Sopenharmony_ci      for (i = jz; i >= 0; i--)
396425bb815Sopenharmony_ci      {
397425bb815Sopenharmony_ci        fw += fq[i];
398425bb815Sopenharmony_ci      }
399425bb815Sopenharmony_ci      y[0] = (ih == 0) ? fw : -fw;
400425bb815Sopenharmony_ci      fw = fq[0] - fw;
401425bb815Sopenharmony_ci      for (i = 1; i <= jz; i++)
402425bb815Sopenharmony_ci      {
403425bb815Sopenharmony_ci        fw += fq[i];
404425bb815Sopenharmony_ci      }
405425bb815Sopenharmony_ci      y[1] = (ih == 0) ? fw : -fw;
406425bb815Sopenharmony_ci      break;
407425bb815Sopenharmony_ci    }
408425bb815Sopenharmony_ci    case 3: /* painful */
409425bb815Sopenharmony_ci    {
410425bb815Sopenharmony_ci      for (i = jz; i > 0; i--)
411425bb815Sopenharmony_ci      {
412425bb815Sopenharmony_ci        fw = fq[i - 1] + fq[i];
413425bb815Sopenharmony_ci        fq[i] += fq[i - 1] - fw;
414425bb815Sopenharmony_ci        fq[i - 1] = fw;
415425bb815Sopenharmony_ci      }
416425bb815Sopenharmony_ci      for (i = jz; i > 1; i--)
417425bb815Sopenharmony_ci      {
418425bb815Sopenharmony_ci        fw = fq[i - 1] + fq[i];
419425bb815Sopenharmony_ci        fq[i] += fq[i - 1] - fw;
420425bb815Sopenharmony_ci        fq[i - 1] = fw;
421425bb815Sopenharmony_ci      }
422425bb815Sopenharmony_ci      for (fw = 0.0, i = jz; i >= 2; i--)
423425bb815Sopenharmony_ci      {
424425bb815Sopenharmony_ci        fw += fq[i];
425425bb815Sopenharmony_ci      }
426425bb815Sopenharmony_ci      if (ih == 0)
427425bb815Sopenharmony_ci      {
428425bb815Sopenharmony_ci        y[0] = fq[0];
429425bb815Sopenharmony_ci        y[1] = fq[1];
430425bb815Sopenharmony_ci        y[2] = fw;
431425bb815Sopenharmony_ci      }
432425bb815Sopenharmony_ci      else
433425bb815Sopenharmony_ci      {
434425bb815Sopenharmony_ci        y[0] = -fq[0];
435425bb815Sopenharmony_ci        y[1] = -fq[1];
436425bb815Sopenharmony_ci        y[2] = -fw;
437425bb815Sopenharmony_ci      }
438425bb815Sopenharmony_ci    }
439425bb815Sopenharmony_ci  }
440425bb815Sopenharmony_ci  return n & 7;
441425bb815Sopenharmony_ci} /* __kernel_rem_pio2 */
442425bb815Sopenharmony_ci
443425bb815Sopenharmony_ci/* __ieee754_rem_pio2(x,y)
444425bb815Sopenharmony_ci * return the remainder of x rem pi/2 in y[0]+y[1]
445425bb815Sopenharmony_ci * use __kernel_rem_pio2()
446425bb815Sopenharmony_ci */
447425bb815Sopenharmony_ci
448425bb815Sopenharmony_cistatic const int npio2_hw[] =
449425bb815Sopenharmony_ci{
450425bb815Sopenharmony_ci  0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C,
451425bb815Sopenharmony_ci  0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C,
452425bb815Sopenharmony_ci  0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A,
453425bb815Sopenharmony_ci  0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C,
454425bb815Sopenharmony_ci  0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB,
455425bb815Sopenharmony_ci  0x404858EB, 0x404921FB,
456425bb815Sopenharmony_ci};
457425bb815Sopenharmony_ci
458425bb815Sopenharmony_ci/*
459425bb815Sopenharmony_ci * invpio2:  53 bits of 2/pi
460425bb815Sopenharmony_ci * pio2_1:   first  33 bit of pi/2
461425bb815Sopenharmony_ci * pio2_1t:  pi/2 - pio2_1
462425bb815Sopenharmony_ci * pio2_2:   second 33 bit of pi/2
463425bb815Sopenharmony_ci * pio2_2t:  pi/2 - (pio2_1 + pio2_2)
464425bb815Sopenharmony_ci * pio2_3:   third  33 bit of pi/2
465425bb815Sopenharmony_ci * pio2_3t:  pi/2 - (pio2_1 + pio2_2 + pio2_3)
466425bb815Sopenharmony_ci */
467425bb815Sopenharmony_ci#define invpio2 6.36619772367581382433e-01 /* 0x3FE45F30, 0x6DC9C883 */
468425bb815Sopenharmony_ci#define pio2_1  1.57079632673412561417e+00 /* 0x3FF921FB, 0x54400000 */
469425bb815Sopenharmony_ci#define pio2_1t 6.07710050650619224932e-11 /* 0x3DD0B461, 0x1A626331 */
470425bb815Sopenharmony_ci#define pio2_2  6.07710050630396597660e-11 /* 0x3DD0B461, 0x1A600000 */
471425bb815Sopenharmony_ci#define pio2_2t 2.02226624879595063154e-21 /* 0x3BA3198A, 0x2E037073 */
472425bb815Sopenharmony_ci#define pio2_3  2.02226624871116645580e-21 /* 0x3BA3198A, 0x2E000000 */
473425bb815Sopenharmony_ci#define pio2_3t 8.47842766036889956997e-32 /* 0x397B839A, 0x252049C1 */
474425bb815Sopenharmony_ci
475425bb815Sopenharmony_cistatic int
476425bb815Sopenharmony_ci__ieee754_rem_pio2 (double x, double *y)
477425bb815Sopenharmony_ci{
478425bb815Sopenharmony_ci  double_accessor z;
479425bb815Sopenharmony_ci  double w, t, r, fn;
480425bb815Sopenharmony_ci  double tx[3];
481425bb815Sopenharmony_ci  int e0, i, j, nx, n, ix, hx;
482425bb815Sopenharmony_ci
483425bb815Sopenharmony_ci  hx = __HI (x); /* high word of x */
484425bb815Sopenharmony_ci  ix = hx & 0x7fffffff;
485425bb815Sopenharmony_ci  if (ix <= 0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */
486425bb815Sopenharmony_ci  {
487425bb815Sopenharmony_ci    y[0] = x;
488425bb815Sopenharmony_ci    y[1] = 0;
489425bb815Sopenharmony_ci    return 0;
490425bb815Sopenharmony_ci  }
491425bb815Sopenharmony_ci  if (ix < 0x4002d97c) /* |x| < 3pi/4, special case with n = +-1 */
492425bb815Sopenharmony_ci  {
493425bb815Sopenharmony_ci    if (hx > 0)
494425bb815Sopenharmony_ci    {
495425bb815Sopenharmony_ci      z.dbl = x - pio2_1;
496425bb815Sopenharmony_ci      if (ix != 0x3ff921fb) /* 33 + 53 bit pi is good enough */
497425bb815Sopenharmony_ci      {
498425bb815Sopenharmony_ci        y[0] = z.dbl - pio2_1t;
499425bb815Sopenharmony_ci        y[1] = (z.dbl - y[0]) - pio2_1t;
500425bb815Sopenharmony_ci      }
501425bb815Sopenharmony_ci      else /* near pi/2, use 33 + 33 + 53 bit pi */
502425bb815Sopenharmony_ci      {
503425bb815Sopenharmony_ci        z.dbl -= pio2_2;
504425bb815Sopenharmony_ci        y[0] = z.dbl - pio2_2t;
505425bb815Sopenharmony_ci        y[1] = (z.dbl - y[0]) - pio2_2t;
506425bb815Sopenharmony_ci      }
507425bb815Sopenharmony_ci      return 1;
508425bb815Sopenharmony_ci    }
509425bb815Sopenharmony_ci    else /* negative x */
510425bb815Sopenharmony_ci    {
511425bb815Sopenharmony_ci      z.dbl = x + pio2_1;
512425bb815Sopenharmony_ci      if (ix != 0x3ff921fb) /* 33 + 53 bit pi is good enough */
513425bb815Sopenharmony_ci      {
514425bb815Sopenharmony_ci        y[0] = z.dbl + pio2_1t;
515425bb815Sopenharmony_ci        y[1] = (z.dbl - y[0]) + pio2_1t;
516425bb815Sopenharmony_ci      }
517425bb815Sopenharmony_ci      else /* near pi/2, use 33 + 33 + 53 bit pi */
518425bb815Sopenharmony_ci      {
519425bb815Sopenharmony_ci        z.dbl += pio2_2;
520425bb815Sopenharmony_ci        y[0] = z.dbl + pio2_2t;
521425bb815Sopenharmony_ci        y[1] = (z.dbl - y[0]) + pio2_2t;
522425bb815Sopenharmony_ci      }
523425bb815Sopenharmony_ci      return -1;
524425bb815Sopenharmony_ci    }
525425bb815Sopenharmony_ci  }
526425bb815Sopenharmony_ci  if (ix <= 0x413921fb) /* |x| ~<= 2^19 * (pi/2), medium size */
527425bb815Sopenharmony_ci  {
528425bb815Sopenharmony_ci    t = fabs (x);
529425bb815Sopenharmony_ci    n = (int) (t * invpio2 + half);
530425bb815Sopenharmony_ci    fn = (double) n;
531425bb815Sopenharmony_ci    r = t - fn * pio2_1;
532425bb815Sopenharmony_ci    w = fn * pio2_1t; /* 1st round good to 85 bit */
533425bb815Sopenharmony_ci    if (n < 32 && ix != npio2_hw[n - 1])
534425bb815Sopenharmony_ci    {
535425bb815Sopenharmony_ci      y[0] = r - w; /* quick check no cancellation */
536425bb815Sopenharmony_ci    }
537425bb815Sopenharmony_ci    else
538425bb815Sopenharmony_ci    {
539425bb815Sopenharmony_ci      j = ix >> 20;
540425bb815Sopenharmony_ci      y[0] = r - w;
541425bb815Sopenharmony_ci      i = j - (((__HI (y[0])) >> 20) & 0x7ff);
542425bb815Sopenharmony_ci      if (i > 16) /* 2nd iteration needed, good to 118 */
543425bb815Sopenharmony_ci      {
544425bb815Sopenharmony_ci        t = r;
545425bb815Sopenharmony_ci        w = fn * pio2_2;
546425bb815Sopenharmony_ci        r = t - w;
547425bb815Sopenharmony_ci        w = fn * pio2_2t - ((t - r) - w);
548425bb815Sopenharmony_ci        y[0] = r - w;
549425bb815Sopenharmony_ci        i = j - (((__HI (y[0])) >> 20) & 0x7ff);
550425bb815Sopenharmony_ci        if (i > 49) /* 3rd iteration need, 151 bits acc, will cover all possible cases */
551425bb815Sopenharmony_ci        {
552425bb815Sopenharmony_ci          t = r;
553425bb815Sopenharmony_ci          w = fn * pio2_3;
554425bb815Sopenharmony_ci          r = t - w;
555425bb815Sopenharmony_ci          w = fn * pio2_3t - ((t - r) - w);
556425bb815Sopenharmony_ci          y[0] = r - w;
557425bb815Sopenharmony_ci        }
558425bb815Sopenharmony_ci      }
559425bb815Sopenharmony_ci    }
560425bb815Sopenharmony_ci    y[1] = (r - y[0]) - w;
561425bb815Sopenharmony_ci    if (hx < 0)
562425bb815Sopenharmony_ci    {
563425bb815Sopenharmony_ci      y[0] = -y[0];
564425bb815Sopenharmony_ci      y[1] = -y[1];
565425bb815Sopenharmony_ci      return -n;
566425bb815Sopenharmony_ci    }
567425bb815Sopenharmony_ci    else
568425bb815Sopenharmony_ci    {
569425bb815Sopenharmony_ci      return n;
570425bb815Sopenharmony_ci    }
571425bb815Sopenharmony_ci  }
572425bb815Sopenharmony_ci  /*
573425bb815Sopenharmony_ci   * all other (large) arguments
574425bb815Sopenharmony_ci   */
575425bb815Sopenharmony_ci  if (ix >= 0x7ff00000) /* x is inf or NaN */
576425bb815Sopenharmony_ci  {
577425bb815Sopenharmony_ci    y[0] = y[1] = x - x;
578425bb815Sopenharmony_ci    return 0;
579425bb815Sopenharmony_ci  }
580425bb815Sopenharmony_ci  /* set z = scalbn(|x|, ilogb(x) - 23) */
581425bb815Sopenharmony_ci  z.as_int.lo = __LO (x);
582425bb815Sopenharmony_ci  e0 = (ix >> 20) - 1046; /* e0 = ilogb(z) - 23; */
583425bb815Sopenharmony_ci  z.as_int.hi = ix - (e0 << 20);
584425bb815Sopenharmony_ci  for (i = 0; i < 2; i++)
585425bb815Sopenharmony_ci  {
586425bb815Sopenharmony_ci    tx[i] = (double) ((int) (z.dbl));
587425bb815Sopenharmony_ci    z.dbl = (z.dbl - tx[i]) * two24;
588425bb815Sopenharmony_ci  }
589425bb815Sopenharmony_ci  tx[2] = z.dbl;
590425bb815Sopenharmony_ci  nx = 3;
591425bb815Sopenharmony_ci  while (tx[nx - 1] == zero) /* skip zero term */
592425bb815Sopenharmony_ci  {
593425bb815Sopenharmony_ci    nx--;
594425bb815Sopenharmony_ci  }
595425bb815Sopenharmony_ci  n = __kernel_rem_pio2 (tx, y, e0, nx, 2);
596425bb815Sopenharmony_ci  if (hx < 0)
597425bb815Sopenharmony_ci  {
598425bb815Sopenharmony_ci    y[0] = -y[0];
599425bb815Sopenharmony_ci    y[1] = -y[1];
600425bb815Sopenharmony_ci    return -n;
601425bb815Sopenharmony_ci  }
602425bb815Sopenharmony_ci  return n;
603425bb815Sopenharmony_ci} /* __ieee754_rem_pio2 */
604425bb815Sopenharmony_ci
605425bb815Sopenharmony_ci/* __kernel_sin( x, y, iy)
606425bb815Sopenharmony_ci * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
607425bb815Sopenharmony_ci * Input x is assumed to be bounded by ~pi/4 in magnitude.
608425bb815Sopenharmony_ci * Input y is the tail of x.
609425bb815Sopenharmony_ci * Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
610425bb815Sopenharmony_ci *
611425bb815Sopenharmony_ci * Algorithm
612425bb815Sopenharmony_ci *      1. Since sin(-x) = -sin(x), we need only to consider positive x.
613425bb815Sopenharmony_ci *      2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
614425bb815Sopenharmony_ci *      3. sin(x) is approximated by a polynomial of degree 13 on
615425bb815Sopenharmony_ci *         [0,pi/4]
616425bb815Sopenharmony_ci *                               3            13
617425bb815Sopenharmony_ci *              sin(x) ~ x + S1*x + ... + S6*x
618425bb815Sopenharmony_ci *         where
619425bb815Sopenharmony_ci *
620425bb815Sopenharmony_ci *      |sin(x)         2     4     6     8     10     12  |     -58
621425bb815Sopenharmony_ci *      |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x  +S6*x   )| <= 2
622425bb815Sopenharmony_ci *      |  x                                               |
623425bb815Sopenharmony_ci *
624425bb815Sopenharmony_ci *      4. sin(x+y) = sin(x) + sin'(x')*y
625425bb815Sopenharmony_ci *                  ~ sin(x) + (1-x*x/2)*y
626425bb815Sopenharmony_ci *         For better accuracy, let
627425bb815Sopenharmony_ci *                   3      2      2      2      2
628425bb815Sopenharmony_ci *              r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
629425bb815Sopenharmony_ci *         then                   3    2
630425bb815Sopenharmony_ci *              sin(x) = x + (S1*x + (x *(r-y/2)+y))
631425bb815Sopenharmony_ci */
632425bb815Sopenharmony_ci
633425bb815Sopenharmony_ci#define S1   -1.66666666666666324348e-01 /* 0xBFC55555, 0x55555549 */
634425bb815Sopenharmony_ci#define S2    8.33333333332248946124e-03 /* 0x3F811111, 0x1110F8A6 */
635425bb815Sopenharmony_ci#define S3   -1.98412698298579493134e-04 /* 0xBF2A01A0, 0x19C161D5 */
636425bb815Sopenharmony_ci#define S4    2.75573137070700676789e-06 /* 0x3EC71DE3, 0x57B1FE7D */
637425bb815Sopenharmony_ci#define S5   -2.50507602534068634195e-08 /* 0xBE5AE5E6, 0x8A2B9CEB */
638425bb815Sopenharmony_ci#define S6    1.58969099521155010221e-10 /* 0x3DE5D93A, 0x5ACFD57C */
639425bb815Sopenharmony_ci
640425bb815Sopenharmony_cistatic double
641425bb815Sopenharmony_ci__kernel_sin (double x, double y, int iy)
642425bb815Sopenharmony_ci{
643425bb815Sopenharmony_ci  double z, r, v;
644425bb815Sopenharmony_ci  int ix;
645425bb815Sopenharmony_ci
646425bb815Sopenharmony_ci  ix = __HI (x) & 0x7fffffff; /* high word of x */
647425bb815Sopenharmony_ci  if (ix < 0x3e400000) /* |x| < 2**-27 */
648425bb815Sopenharmony_ci  {
649425bb815Sopenharmony_ci    if ((int) x == 0)
650425bb815Sopenharmony_ci    {
651425bb815Sopenharmony_ci      return x; /* generate inexact */
652425bb815Sopenharmony_ci    }
653425bb815Sopenharmony_ci  }
654425bb815Sopenharmony_ci  z = x * x;
655425bb815Sopenharmony_ci  v = z * x;
656425bb815Sopenharmony_ci  r = S2 + z * (S3 + z * (S4 + z * (S5 + z * S6)));
657425bb815Sopenharmony_ci  if (iy == 0)
658425bb815Sopenharmony_ci  {
659425bb815Sopenharmony_ci    return x + v * (S1 + z * r);
660425bb815Sopenharmony_ci  }
661425bb815Sopenharmony_ci  else
662425bb815Sopenharmony_ci  {
663425bb815Sopenharmony_ci    return x - ((z * (half * y - v * r) - y) - v * S1);
664425bb815Sopenharmony_ci  }
665425bb815Sopenharmony_ci} /* __kernel_sin */
666425bb815Sopenharmony_ci
667425bb815Sopenharmony_ci/*
668425bb815Sopenharmony_ci * __kernel_cos( x,  y )
669425bb815Sopenharmony_ci * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
670425bb815Sopenharmony_ci * Input x is assumed to be bounded by ~pi/4 in magnitude.
671425bb815Sopenharmony_ci * Input y is the tail of x.
672425bb815Sopenharmony_ci *
673425bb815Sopenharmony_ci * Algorithm
674425bb815Sopenharmony_ci *      1. Since cos(-x) = cos(x), we need only to consider positive x.
675425bb815Sopenharmony_ci *      2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
676425bb815Sopenharmony_ci *      3. cos(x) is approximated by a polynomial of degree 14 on
677425bb815Sopenharmony_ci *         [0,pi/4]
678425bb815Sopenharmony_ci *                                       4            14
679425bb815Sopenharmony_ci *              cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
680425bb815Sopenharmony_ci *         where the remez error is
681425bb815Sopenharmony_ci *
682425bb815Sopenharmony_ci *      |              2     4     6     8     10    12     14 |     -58
683425bb815Sopenharmony_ci *      |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2
684425bb815Sopenharmony_ci *      |                                                      |
685425bb815Sopenharmony_ci *
686425bb815Sopenharmony_ci *                     4     6     8     10    12     14
687425bb815Sopenharmony_ci *      4. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then
688425bb815Sopenharmony_ci *             cos(x) = 1 - x*x/2 + r
689425bb815Sopenharmony_ci *         since cos(x+y) ~ cos(x) - sin(x)*y
690425bb815Sopenharmony_ci *                        ~ cos(x) - x*y,
691425bb815Sopenharmony_ci *         a correction term is necessary in cos(x) and hence
692425bb815Sopenharmony_ci *              cos(x+y) = 1 - (x*x/2 - (r - x*y))
693425bb815Sopenharmony_ci *         For better accuracy when x > 0.3, let qx = |x|/4 with
694425bb815Sopenharmony_ci *         the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
695425bb815Sopenharmony_ci *         Then
696425bb815Sopenharmony_ci *              cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
697425bb815Sopenharmony_ci *         Note that 1-qx and (x*x/2-qx) is EXACT here, and the
698425bb815Sopenharmony_ci *         magnitude of the latter is at least a quarter of x*x/2,
699425bb815Sopenharmony_ci *         thus, reducing the rounding error in the subtraction.
700425bb815Sopenharmony_ci */
701425bb815Sopenharmony_ci
702425bb815Sopenharmony_ci#define C1   4.16666666666666019037e-02 /* 0x3FA55555, 0x5555554C */
703425bb815Sopenharmony_ci#define C2  -1.38888888888741095749e-03 /* 0xBF56C16C, 0x16C15177 */
704425bb815Sopenharmony_ci#define C3   2.48015872894767294178e-05 /* 0x3EFA01A0, 0x19CB1590 */
705425bb815Sopenharmony_ci#define C4  -2.75573143513906633035e-07 /* 0xBE927E4F, 0x809C52AD */
706425bb815Sopenharmony_ci#define C5   2.08757232129817482790e-09 /* 0x3E21EE9E, 0xBDB4B1C4 */
707425bb815Sopenharmony_ci#define C6  -1.13596475577881948265e-11 /* 0xBDA8FAE9, 0xBE8838D4 */
708425bb815Sopenharmony_ci
709425bb815Sopenharmony_cistatic double
710425bb815Sopenharmony_ci__kernel_cos (double x, double y)
711425bb815Sopenharmony_ci{
712425bb815Sopenharmony_ci  double a, hz, z, r;
713425bb815Sopenharmony_ci  int ix;
714425bb815Sopenharmony_ci
715425bb815Sopenharmony_ci  ix = __HI (x) & 0x7fffffff; /* ix = |x|'s high word */
716425bb815Sopenharmony_ci  if (ix < 0x3e400000) /* if x < 2**27 */
717425bb815Sopenharmony_ci  {
718425bb815Sopenharmony_ci    if (((int) x) == 0)
719425bb815Sopenharmony_ci    {
720425bb815Sopenharmony_ci      return one; /* generate inexact */
721425bb815Sopenharmony_ci    }
722425bb815Sopenharmony_ci  }
723425bb815Sopenharmony_ci  z = x * x;
724425bb815Sopenharmony_ci  r = z * (C1 + z * (C2 + z * (C3 + z * (C4 + z * (C5 + z * C6)))));
725425bb815Sopenharmony_ci  if (ix < 0x3FD33333) /* if |x| < 0.3 */
726425bb815Sopenharmony_ci  {
727425bb815Sopenharmony_ci    return one - (0.5 * z - (z * r - x * y));
728425bb815Sopenharmony_ci  }
729425bb815Sopenharmony_ci  else
730425bb815Sopenharmony_ci  {
731425bb815Sopenharmony_ci    double_accessor qx;
732425bb815Sopenharmony_ci    if (ix > 0x3fe90000) /* x > 0.78125 */
733425bb815Sopenharmony_ci    {
734425bb815Sopenharmony_ci      qx.dbl = 0.28125;
735425bb815Sopenharmony_ci    }
736425bb815Sopenharmony_ci    else
737425bb815Sopenharmony_ci    {
738425bb815Sopenharmony_ci      qx.as_int.hi = ix - 0x00200000; /* x / 4 */
739425bb815Sopenharmony_ci      qx.as_int.lo = 0;
740425bb815Sopenharmony_ci    }
741425bb815Sopenharmony_ci    hz = 0.5 * z - qx.dbl;
742425bb815Sopenharmony_ci    a = one - qx.dbl;
743425bb815Sopenharmony_ci    return a - (hz - (z * r - x * y));
744425bb815Sopenharmony_ci  }
745425bb815Sopenharmony_ci} /* __kernel_cos */
746425bb815Sopenharmony_ci
747425bb815Sopenharmony_ci/* __kernel_tan( x, y, k )
748425bb815Sopenharmony_ci * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
749425bb815Sopenharmony_ci * Input x is assumed to be bounded by ~pi/4 in magnitude.
750425bb815Sopenharmony_ci * Input y is the tail of x.
751425bb815Sopenharmony_ci * Input k indicates whether tan (if k = 1) or -1/tan (if k = -1) is returned.
752425bb815Sopenharmony_ci *
753425bb815Sopenharmony_ci * Algorithm
754425bb815Sopenharmony_ci *      1. Since tan(-x) = -tan(x), we need only to consider positive x.
755425bb815Sopenharmony_ci *      2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
756425bb815Sopenharmony_ci *      3. tan(x) is approximated by a odd polynomial of degree 27 on
757425bb815Sopenharmony_ci *         [0,0.67434]
758425bb815Sopenharmony_ci *                               3             27
759425bb815Sopenharmony_ci *              tan(x) ~ x + T1*x + ... + T13*x
760425bb815Sopenharmony_ci *         where
761425bb815Sopenharmony_ci *
762425bb815Sopenharmony_ci *              |tan(x)         2     4            26   |     -59.2
763425bb815Sopenharmony_ci *              |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
764425bb815Sopenharmony_ci *              |  x                                    |
765425bb815Sopenharmony_ci *
766425bb815Sopenharmony_ci *         Note: tan(x+y) = tan(x) + tan'(x)*y
767425bb815Sopenharmony_ci *                        ~ tan(x) + (1+x*x)*y
768425bb815Sopenharmony_ci *         Therefore, for better accuracy in computing tan(x+y), let
769425bb815Sopenharmony_ci *                   3      2      2       2       2
770425bb815Sopenharmony_ci *              r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
771425bb815Sopenharmony_ci *         then
772425bb815Sopenharmony_ci *                                  3    2
773425bb815Sopenharmony_ci *              tan(x+y) = x + (T1*x + (x *(r+y)+y))
774425bb815Sopenharmony_ci *
775425bb815Sopenharmony_ci *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
776425bb815Sopenharmony_ci *              tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
777425bb815Sopenharmony_ci *                     = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
778425bb815Sopenharmony_ci */
779425bb815Sopenharmony_ci
780425bb815Sopenharmony_ci#define T0      3.33333333333334091986e-01 /* 3FD55555, 55555563 */
781425bb815Sopenharmony_ci#define T1      1.33333333333201242699e-01 /* 3FC11111, 1110FE7A */
782425bb815Sopenharmony_ci#define T2      5.39682539762260521377e-02 /* 3FABA1BA, 1BB341FE */
783425bb815Sopenharmony_ci#define T3      2.18694882948595424599e-02 /* 3F9664F4, 8406D637 */
784425bb815Sopenharmony_ci#define T4      8.86323982359930005737e-03 /* 3F8226E3, E96E8493 */
785425bb815Sopenharmony_ci#define T5      3.59207910759131235356e-03 /* 3F6D6D22, C9560328 */
786425bb815Sopenharmony_ci#define T6      1.45620945432529025516e-03 /* 3F57DBC8, FEE08315 */
787425bb815Sopenharmony_ci#define T7      5.88041240820264096874e-04 /* 3F4344D8, F2F26501 */
788425bb815Sopenharmony_ci#define T8      2.46463134818469906812e-04 /* 3F3026F7, 1A8D1068 */
789425bb815Sopenharmony_ci#define T9      7.81794442939557092300e-05 /* 3F147E88, A03792A6 */
790425bb815Sopenharmony_ci#define T10     7.14072491382608190305e-05 /* 3F12B80F, 32F0A7E9 */
791425bb815Sopenharmony_ci#define T11    -1.85586374855275456654e-05 /* BEF375CB, DB605373 */
792425bb815Sopenharmony_ci#define T12     2.59073051863633712884e-05 /* 3EFB2A70, 74BF7AD4 */
793425bb815Sopenharmony_ci#define pio4    7.85398163397448278999e-01 /* 3FE921FB, 54442D18 */
794425bb815Sopenharmony_ci#define pio4lo  3.06161699786838301793e-17 /* 3C81A626, 33145C07 */
795425bb815Sopenharmony_ci
796425bb815Sopenharmony_cistatic double
797425bb815Sopenharmony_ci__kernel_tan (double x, double y, int iy)
798425bb815Sopenharmony_ci{
799425bb815Sopenharmony_ci  double_accessor z;
800425bb815Sopenharmony_ci  double r, v, w, s;
801425bb815Sopenharmony_ci  int ix, hx;
802425bb815Sopenharmony_ci
803425bb815Sopenharmony_ci  hx = __HI (x); /* high word of x */
804425bb815Sopenharmony_ci  ix = hx & 0x7fffffff; /* high word of |x| */
805425bb815Sopenharmony_ci  if (ix < 0x3e300000) /* x < 2**-28 */
806425bb815Sopenharmony_ci  {
807425bb815Sopenharmony_ci    if ((int) x == 0) /* generate inexact */
808425bb815Sopenharmony_ci    {
809425bb815Sopenharmony_ci      if (((ix | __LO (x)) | (iy + 1)) == 0)
810425bb815Sopenharmony_ci      {
811425bb815Sopenharmony_ci        return one / fabs (x);
812425bb815Sopenharmony_ci      }
813425bb815Sopenharmony_ci      else
814425bb815Sopenharmony_ci      {
815425bb815Sopenharmony_ci        if (iy == 1)
816425bb815Sopenharmony_ci        {
817425bb815Sopenharmony_ci          return x;
818425bb815Sopenharmony_ci        }
819425bb815Sopenharmony_ci        else /* compute -1 / (x + y) carefully */
820425bb815Sopenharmony_ci        {
821425bb815Sopenharmony_ci          double a;
822425bb815Sopenharmony_ci          double_accessor t;
823425bb815Sopenharmony_ci
824425bb815Sopenharmony_ci          z.dbl = w = x + y;
825425bb815Sopenharmony_ci          z.as_int.lo = 0;
826425bb815Sopenharmony_ci          v = y - (z.dbl - x);
827425bb815Sopenharmony_ci          t.dbl = a = -one / w;
828425bb815Sopenharmony_ci          t.as_int.lo = 0;
829425bb815Sopenharmony_ci          s = one + t.dbl * z.dbl;
830425bb815Sopenharmony_ci          return t.dbl + a * (s + t.dbl * v);
831425bb815Sopenharmony_ci        }
832425bb815Sopenharmony_ci      }
833425bb815Sopenharmony_ci    }
834425bb815Sopenharmony_ci  }
835425bb815Sopenharmony_ci  if (ix >= 0x3FE59428) /* |x| >= 0.6744 */
836425bb815Sopenharmony_ci  {
837425bb815Sopenharmony_ci    if (hx < 0)
838425bb815Sopenharmony_ci    {
839425bb815Sopenharmony_ci      x = -x;
840425bb815Sopenharmony_ci      y = -y;
841425bb815Sopenharmony_ci    }
842425bb815Sopenharmony_ci    z.dbl = pio4 - x;
843425bb815Sopenharmony_ci    w = pio4lo - y;
844425bb815Sopenharmony_ci    x = z.dbl + w;
845425bb815Sopenharmony_ci    y = 0.0;
846425bb815Sopenharmony_ci  }
847425bb815Sopenharmony_ci  z.dbl = x * x;
848425bb815Sopenharmony_ci  w = z.dbl * z.dbl;
849425bb815Sopenharmony_ci  /*
850425bb815Sopenharmony_ci   * Break x^5 * (T[1] + x^2 * T[2] + ...) into
851425bb815Sopenharmony_ci   * x^5 (T[1] + x^4 * T[3] + ... + x^20 * T[11]) +
852425bb815Sopenharmony_ci   * x^5 (x^2 * (T[2] + x^4 * T[4] + ... + x^22 * [T12]))
853425bb815Sopenharmony_ci   */
854425bb815Sopenharmony_ci  r = T1 + w * (T3 + w * (T5 + w * (T7 + w * (T9 + w * T11))));
855425bb815Sopenharmony_ci  v = z.dbl * (T2 + w * (T4 + w * (T6 + w * (T8 + w * (T10 + w * T12)))));
856425bb815Sopenharmony_ci  s = z.dbl * x;
857425bb815Sopenharmony_ci  r = y + z.dbl * (s * (r + v) + y);
858425bb815Sopenharmony_ci  r += T0 * s;
859425bb815Sopenharmony_ci  w = x + r;
860425bb815Sopenharmony_ci  if (ix >= 0x3FE59428)
861425bb815Sopenharmony_ci  {
862425bb815Sopenharmony_ci    v = (double) iy;
863425bb815Sopenharmony_ci    return (double) (1 - ((hx >> 30) & 2)) * (v - 2.0 * (x - (w * w / (w + v) - r)));
864425bb815Sopenharmony_ci  }
865425bb815Sopenharmony_ci  if (iy == 1)
866425bb815Sopenharmony_ci  {
867425bb815Sopenharmony_ci    return w;
868425bb815Sopenharmony_ci  }
869425bb815Sopenharmony_ci  else
870425bb815Sopenharmony_ci  {
871425bb815Sopenharmony_ci    /*
872425bb815Sopenharmony_ci     * if allow error up to 2 ulp, simply return
873425bb815Sopenharmony_ci     * -1.0 / (x + r) here
874425bb815Sopenharmony_ci     */
875425bb815Sopenharmony_ci    /* compute -1.0 / (x + r) accurately */
876425bb815Sopenharmony_ci    double a;
877425bb815Sopenharmony_ci    double_accessor t;
878425bb815Sopenharmony_ci
879425bb815Sopenharmony_ci    z.dbl = w;
880425bb815Sopenharmony_ci    z.as_int.lo = 0;
881425bb815Sopenharmony_ci    v = r - (z.dbl - x); /* z + v = r + x */
882425bb815Sopenharmony_ci    t.dbl = a = -1.0 / w; /* a = -1.0 / w */
883425bb815Sopenharmony_ci    t.as_int.lo = 0;
884425bb815Sopenharmony_ci    s = 1.0 + t.dbl * z.dbl;
885425bb815Sopenharmony_ci    return t.dbl + a * (s + t.dbl * v);
886425bb815Sopenharmony_ci  }
887425bb815Sopenharmony_ci} /* __kernel_tan */
888425bb815Sopenharmony_ci
889425bb815Sopenharmony_ci/* Method:
890425bb815Sopenharmony_ci *      Let S,C and T denote the sin, cos and tan respectively on
891425bb815Sopenharmony_ci *      [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
892425bb815Sopenharmony_ci *      in [-pi/4 , +pi/4], and let n = k mod 4.
893425bb815Sopenharmony_ci *      We have
894425bb815Sopenharmony_ci *
895425bb815Sopenharmony_ci *          n        sin(x)      cos(x)        tan(x)
896425bb815Sopenharmony_ci *     ----------------------------------------------------------
897425bb815Sopenharmony_ci *          0          S           C             T
898425bb815Sopenharmony_ci *          1          C          -S            -1/T
899425bb815Sopenharmony_ci *          2         -S          -C             T
900425bb815Sopenharmony_ci *          3         -C           S            -1/T
901425bb815Sopenharmony_ci *     ----------------------------------------------------------
902425bb815Sopenharmony_ci *
903425bb815Sopenharmony_ci * Special cases:
904425bb815Sopenharmony_ci *      Let trig be any of sin, cos, or tan.
905425bb815Sopenharmony_ci *      trig(+-INF)  is NaN, with signals;
906425bb815Sopenharmony_ci *      trig(NaN)    is that NaN;
907425bb815Sopenharmony_ci *
908425bb815Sopenharmony_ci * Accuracy:
909425bb815Sopenharmony_ci *      TRIG(x) returns trig(x) nearly rounded
910425bb815Sopenharmony_ci */
911425bb815Sopenharmony_ci
912425bb815Sopenharmony_ci/* sin(x)
913425bb815Sopenharmony_ci * Return sine function of x.
914425bb815Sopenharmony_ci *
915425bb815Sopenharmony_ci * kernel function:
916425bb815Sopenharmony_ci *      __kernel_sin            ... sine function on [-pi/4,pi/4]
917425bb815Sopenharmony_ci *      __kernel_cos            ... cose function on [-pi/4,pi/4]
918425bb815Sopenharmony_ci *      __ieee754_rem_pio2      ... argument reduction routine
919425bb815Sopenharmony_ci */
920425bb815Sopenharmony_cidouble
921425bb815Sopenharmony_cisin (double x)
922425bb815Sopenharmony_ci{
923425bb815Sopenharmony_ci  double y[2], z = 0.0;
924425bb815Sopenharmony_ci  int n, ix;
925425bb815Sopenharmony_ci
926425bb815Sopenharmony_ci  /* High word of x. */
927425bb815Sopenharmony_ci  ix = __HI (x);
928425bb815Sopenharmony_ci
929425bb815Sopenharmony_ci  /* |x| ~< pi/4 */
930425bb815Sopenharmony_ci  ix &= 0x7fffffff;
931425bb815Sopenharmony_ci  if (ix <= 0x3fe921fb)
932425bb815Sopenharmony_ci  {
933425bb815Sopenharmony_ci    return __kernel_sin (x, z, 0);
934425bb815Sopenharmony_ci  }
935425bb815Sopenharmony_ci
936425bb815Sopenharmony_ci  /* sin(Inf or NaN) is NaN */
937425bb815Sopenharmony_ci  else if (ix >= 0x7ff00000)
938425bb815Sopenharmony_ci  {
939425bb815Sopenharmony_ci    return x - x;
940425bb815Sopenharmony_ci  }
941425bb815Sopenharmony_ci
942425bb815Sopenharmony_ci  /* argument reduction needed */
943425bb815Sopenharmony_ci  else
944425bb815Sopenharmony_ci  {
945425bb815Sopenharmony_ci    n = __ieee754_rem_pio2 (x, y);
946425bb815Sopenharmony_ci    switch (n & 3)
947425bb815Sopenharmony_ci    {
948425bb815Sopenharmony_ci      case 0:
949425bb815Sopenharmony_ci      {
950425bb815Sopenharmony_ci        return __kernel_sin (y[0], y[1], 1);
951425bb815Sopenharmony_ci      }
952425bb815Sopenharmony_ci      case 1:
953425bb815Sopenharmony_ci      {
954425bb815Sopenharmony_ci        return __kernel_cos (y[0], y[1]);
955425bb815Sopenharmony_ci      }
956425bb815Sopenharmony_ci      case 2:
957425bb815Sopenharmony_ci      {
958425bb815Sopenharmony_ci        return -__kernel_sin (y[0], y[1], 1);
959425bb815Sopenharmony_ci      }
960425bb815Sopenharmony_ci      default:
961425bb815Sopenharmony_ci      {
962425bb815Sopenharmony_ci        return -__kernel_cos (y[0], y[1]);
963425bb815Sopenharmony_ci      }
964425bb815Sopenharmony_ci    }
965425bb815Sopenharmony_ci  }
966425bb815Sopenharmony_ci} /* sin */
967425bb815Sopenharmony_ci
968425bb815Sopenharmony_ci/* cos(x)
969425bb815Sopenharmony_ci * Return cosine function of x.
970425bb815Sopenharmony_ci *
971425bb815Sopenharmony_ci * kernel function:
972425bb815Sopenharmony_ci *      __kernel_sin            ... sine function on [-pi/4,pi/4]
973425bb815Sopenharmony_ci *      __kernel_cos            ... cosine function on [-pi/4,pi/4]
974425bb815Sopenharmony_ci *      __ieee754_rem_pio2      ... argument reduction routine
975425bb815Sopenharmony_ci */
976425bb815Sopenharmony_ci
977425bb815Sopenharmony_cidouble
978425bb815Sopenharmony_cicos (double x)
979425bb815Sopenharmony_ci{
980425bb815Sopenharmony_ci  double y[2], z = 0.0;
981425bb815Sopenharmony_ci  int n, ix;
982425bb815Sopenharmony_ci
983425bb815Sopenharmony_ci  /* High word of x. */
984425bb815Sopenharmony_ci  ix = __HI (x);
985425bb815Sopenharmony_ci
986425bb815Sopenharmony_ci  /* |x| ~< pi/4 */
987425bb815Sopenharmony_ci  ix &= 0x7fffffff;
988425bb815Sopenharmony_ci  if (ix <= 0x3fe921fb)
989425bb815Sopenharmony_ci  {
990425bb815Sopenharmony_ci    return __kernel_cos (x, z);
991425bb815Sopenharmony_ci  }
992425bb815Sopenharmony_ci
993425bb815Sopenharmony_ci  /* cos(Inf or NaN) is NaN */
994425bb815Sopenharmony_ci  else if (ix >= 0x7ff00000)
995425bb815Sopenharmony_ci  {
996425bb815Sopenharmony_ci    return x - x;
997425bb815Sopenharmony_ci  }
998425bb815Sopenharmony_ci
999425bb815Sopenharmony_ci  /* argument reduction needed */
1000425bb815Sopenharmony_ci  else
1001425bb815Sopenharmony_ci  {
1002425bb815Sopenharmony_ci    n = __ieee754_rem_pio2 (x, y);
1003425bb815Sopenharmony_ci    switch (n & 3)
1004425bb815Sopenharmony_ci    {
1005425bb815Sopenharmony_ci      case 0:
1006425bb815Sopenharmony_ci      {
1007425bb815Sopenharmony_ci        return __kernel_cos (y[0], y[1]);
1008425bb815Sopenharmony_ci      }
1009425bb815Sopenharmony_ci      case 1:
1010425bb815Sopenharmony_ci      {
1011425bb815Sopenharmony_ci        return -__kernel_sin (y[0], y[1], 1);
1012425bb815Sopenharmony_ci      }
1013425bb815Sopenharmony_ci      case 2:
1014425bb815Sopenharmony_ci      {
1015425bb815Sopenharmony_ci        return -__kernel_cos (y[0], y[1]);
1016425bb815Sopenharmony_ci      }
1017425bb815Sopenharmony_ci      default:
1018425bb815Sopenharmony_ci      {
1019425bb815Sopenharmony_ci        return __kernel_sin (y[0], y[1], 1);
1020425bb815Sopenharmony_ci      }
1021425bb815Sopenharmony_ci    }
1022425bb815Sopenharmony_ci  }
1023425bb815Sopenharmony_ci} /* cos */
1024425bb815Sopenharmony_ci
1025425bb815Sopenharmony_ci/* tan(x)
1026425bb815Sopenharmony_ci * Return tangent function of x.
1027425bb815Sopenharmony_ci *
1028425bb815Sopenharmony_ci * kernel function:
1029425bb815Sopenharmony_ci *      __kernel_tan            ... tangent function on [-pi/4,pi/4]
1030425bb815Sopenharmony_ci *      __ieee754_rem_pio2      ... argument reduction routine
1031425bb815Sopenharmony_ci */
1032425bb815Sopenharmony_ci
1033425bb815Sopenharmony_cidouble
1034425bb815Sopenharmony_citan (double x)
1035425bb815Sopenharmony_ci{
1036425bb815Sopenharmony_ci  double y[2], z = 0.0;
1037425bb815Sopenharmony_ci  int n, ix;
1038425bb815Sopenharmony_ci
1039425bb815Sopenharmony_ci  /* High word of x. */
1040425bb815Sopenharmony_ci  ix = __HI (x);
1041425bb815Sopenharmony_ci
1042425bb815Sopenharmony_ci  /* |x| ~< pi/4 */
1043425bb815Sopenharmony_ci  ix &= 0x7fffffff;
1044425bb815Sopenharmony_ci  if (ix <= 0x3fe921fb)
1045425bb815Sopenharmony_ci  {
1046425bb815Sopenharmony_ci    return __kernel_tan (x, z, 1);
1047425bb815Sopenharmony_ci  }
1048425bb815Sopenharmony_ci
1049425bb815Sopenharmony_ci  /* tan(Inf or NaN) is NaN */
1050425bb815Sopenharmony_ci  else if (ix >= 0x7ff00000)
1051425bb815Sopenharmony_ci  {
1052425bb815Sopenharmony_ci    return x - x; /* NaN */
1053425bb815Sopenharmony_ci  }
1054425bb815Sopenharmony_ci
1055425bb815Sopenharmony_ci  /* argument reduction needed */
1056425bb815Sopenharmony_ci  else
1057425bb815Sopenharmony_ci  {
1058425bb815Sopenharmony_ci    n = __ieee754_rem_pio2 (x, y);
1059425bb815Sopenharmony_ci    return __kernel_tan (y[0], y[1], 1 - ((n & 1) << 1)); /*   1 -- n even, -1 -- n odd */
1060425bb815Sopenharmony_ci  }
1061425bb815Sopenharmony_ci} /* tan */
1062425bb815Sopenharmony_ci
1063425bb815Sopenharmony_ci#undef zero
1064425bb815Sopenharmony_ci#undef half
1065425bb815Sopenharmony_ci#undef one
1066425bb815Sopenharmony_ci#undef two24
1067425bb815Sopenharmony_ci#undef twon24
1068425bb815Sopenharmony_ci#undef invpio2
1069425bb815Sopenharmony_ci#undef pio2_1
1070425bb815Sopenharmony_ci#undef pio2_1t
1071425bb815Sopenharmony_ci#undef pio2_2
1072425bb815Sopenharmony_ci#undef pio2_2t
1073425bb815Sopenharmony_ci#undef pio2_3
1074425bb815Sopenharmony_ci#undef pio2_3t
1075425bb815Sopenharmony_ci#undef S1
1076425bb815Sopenharmony_ci#undef S2
1077425bb815Sopenharmony_ci#undef S3
1078425bb815Sopenharmony_ci#undef S4
1079425bb815Sopenharmony_ci#undef S5
1080425bb815Sopenharmony_ci#undef S6
1081425bb815Sopenharmony_ci#undef C1
1082425bb815Sopenharmony_ci#undef C2
1083425bb815Sopenharmony_ci#undef C3
1084425bb815Sopenharmony_ci#undef C4
1085425bb815Sopenharmony_ci#undef C5
1086425bb815Sopenharmony_ci#undef C6
1087425bb815Sopenharmony_ci#undef T0
1088425bb815Sopenharmony_ci#undef T1
1089425bb815Sopenharmony_ci#undef T2
1090425bb815Sopenharmony_ci#undef T3
1091425bb815Sopenharmony_ci#undef T4
1092425bb815Sopenharmony_ci#undef T5
1093425bb815Sopenharmony_ci#undef T6
1094425bb815Sopenharmony_ci#undef T7
1095425bb815Sopenharmony_ci#undef T8
1096425bb815Sopenharmony_ci#undef T9
1097425bb815Sopenharmony_ci#undef T10
1098425bb815Sopenharmony_ci#undef T11
1099425bb815Sopenharmony_ci#undef T12
1100425bb815Sopenharmony_ci#undef pio4
1101425bb815Sopenharmony_ci#undef pio4lo
1102