1/* Copyright JS Foundation and other contributors, http://js.foundation 2 * 3 * Licensed under the Apache License, Version 2.0 (the "License"); 4 * you may not use this file except in compliance with the License. 5 * You may obtain a copy of the License at 6 * 7 * http://www.apache.org/licenses/LICENSE-2.0 8 * 9 * Unless required by applicable law or agreed to in writing, software 10 * distributed under the License is distributed on an "AS IS" BASIS 11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 * See the License for the specific language governing permissions and 13 * limitations under the License. 14 * 15 * This file is based on work under the following copyright and permission 16 * notice: 17 * 18 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 19 * 20 * Developed at SunSoft, a Sun Microsystems, Inc. business. 21 * Permission to use, copy, modify, and distribute this 22 * software is freely granted, provided that this notice 23 * is preserved. 24 * 25 * @(#)s_tanh.c 1.3 95/01/18 26 */ 27 28#include "jerry-libm-internal.h" 29 30/* tanh(x) 31 * Return the Hyperbolic Tangent of x 32 * 33 * Method: 34 * x -x 35 * e - e 36 * 0. tanh(x) is defined to be ----------- 37 * x -x 38 * e + e 39 * 40 * 1. reduce x to non-negative by tanh(-x) = -tanh(x). 41 * 2. 0 <= x <= 2**-55 : tanh(x) := x * (one + x) 42 * 43 * -t 44 * 2**-55 < x <= 1 : tanh(x) := -----; t = expm1(-2x) 45 * t + 2 46 * 47 * 2 48 * 1 <= x <= 22.0 : tanh(x) := 1- ----- ; t = expm1(2x) 49 * t + 2 50 * 51 * 22.0 < x <= INF : tanh(x) := 1. 52 * 53 * Special cases: 54 * tanh(NaN) is NaN; 55 * only tanh(0) = 0 is exact for finite x. 56 */ 57#define one 1.0 58#define two 2.0 59#define tiny 1.0e-300 60 61double 62tanh (double x) 63{ 64 double t, z; 65 int jx, ix; 66 67 /* High word of |x|. */ 68 jx = __HI (x); 69 ix = jx & 0x7fffffff; 70 71 /* x is INF or NaN */ 72 if (ix >= 0x7ff00000) 73 { 74 if (jx >= 0) 75 { 76 /* tanh(+-inf) = +-1 */ 77 return one / x + one; 78 } 79 else 80 { 81 /* tanh(NaN) = NaN */ 82 return one / x - one; 83 } 84 } 85 86 /* |x| < 22 */ 87 if (ix < 0x40360000) 88 { 89 /* |x| < 2**-55 */ 90 if (ix < 0x3c800000) 91 { 92 /* tanh(small) = small */ 93 return x * (one + x); 94 } 95 if (ix >= 0x3ff00000) 96 { 97 /* |x| >= 1 */ 98 t = expm1 (two * fabs (x)); 99 z = one - two / (t + two); 100 } 101 else 102 { 103 t = expm1 (-two * fabs (x)); 104 z = -t / (t + two); 105 } 106 } 107 else 108 { 109 /* |x| > 22, return +-1 */ 110 z = one - tiny; /* raised inexact flag */ 111 } 112 return (jx >= 0) ? z : -z; 113} /* tanh */ 114 115#undef one 116#undef two 117#undef tiny 118