1425bb815Sopenharmony_ci/* Copyright JS Foundation and other contributors, http://js.foundation
2425bb815Sopenharmony_ci *
3425bb815Sopenharmony_ci * Licensed under the Apache License, Version 2.0 (the "License");
4425bb815Sopenharmony_ci * you may not use this file except in compliance with the License.
5425bb815Sopenharmony_ci * You may obtain a copy of the License at
6425bb815Sopenharmony_ci *
7425bb815Sopenharmony_ci *     http://www.apache.org/licenses/LICENSE-2.0
8425bb815Sopenharmony_ci *
9425bb815Sopenharmony_ci * Unless required by applicable law or agreed to in writing, software
10425bb815Sopenharmony_ci * distributed under the License is distributed on an "AS IS" BASIS
11425bb815Sopenharmony_ci * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12425bb815Sopenharmony_ci * See the License for the specific language governing permissions and
13425bb815Sopenharmony_ci * limitations under the License.
14425bb815Sopenharmony_ci *
15425bb815Sopenharmony_ci * This file is based on work under the following copyright and permission
16425bb815Sopenharmony_ci * notice:
17425bb815Sopenharmony_ci *
18425bb815Sopenharmony_ci *     Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
19425bb815Sopenharmony_ci *
20425bb815Sopenharmony_ci *     Developed at SunSoft, a Sun Microsystems, Inc. business.
21425bb815Sopenharmony_ci *     Permission to use, copy, modify, and distribute this
22425bb815Sopenharmony_ci *     software is freely granted, provided that this notice
23425bb815Sopenharmony_ci *     is preserved.
24425bb815Sopenharmony_ci *
25425bb815Sopenharmony_ci *     @(#)e_sqrt.c 1.3 95/01/18
26425bb815Sopenharmony_ci */
27425bb815Sopenharmony_ci
28425bb815Sopenharmony_ci#include "jerry-libm-internal.h"
29425bb815Sopenharmony_ci
30425bb815Sopenharmony_ci/* sqrt(x)
31425bb815Sopenharmony_ci * Return correctly rounded sqrt.
32425bb815Sopenharmony_ci *
33425bb815Sopenharmony_ci *           ------------------------------------------
34425bb815Sopenharmony_ci *           |  Use the hardware sqrt if you have one |
35425bb815Sopenharmony_ci *           ------------------------------------------
36425bb815Sopenharmony_ci *
37425bb815Sopenharmony_ci * Method:
38425bb815Sopenharmony_ci *   Bit by bit method using integer arithmetic. (Slow, but portable)
39425bb815Sopenharmony_ci *   1. Normalization
40425bb815Sopenharmony_ci *      Scale x to y in [1,4) with even powers of 2:
41425bb815Sopenharmony_ci *      find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
42425bb815Sopenharmony_ci *              sqrt(x) = 2^k * sqrt(y)
43425bb815Sopenharmony_ci *   2. Bit by bit computation
44425bb815Sopenharmony_ci *      Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
45425bb815Sopenharmony_ci *           i                                                   0
46425bb815Sopenharmony_ci *                                     i+1         2
47425bb815Sopenharmony_ci *          s  = 2*q , and      y  =  2   * ( y - q  ).         (1)
48425bb815Sopenharmony_ci *           i      i            i                 i
49425bb815Sopenharmony_ci *
50425bb815Sopenharmony_ci *      To compute q    from q , one checks whether
51425bb815Sopenharmony_ci *                  i+1       i
52425bb815Sopenharmony_ci *
53425bb815Sopenharmony_ci *                            -(i+1) 2
54425bb815Sopenharmony_ci *                      (q + 2      ) <= y.                     (2)
55425bb815Sopenharmony_ci *                        i
56425bb815Sopenharmony_ci *                                                            -(i+1)
57425bb815Sopenharmony_ci *      If (2) is false, then q   = q ; otherwise q   = q  + 2      .
58425bb815Sopenharmony_ci *                             i+1   i             i+1   i
59425bb815Sopenharmony_ci *
60425bb815Sopenharmony_ci *      With some algebric manipulation, it is not difficult to see
61425bb815Sopenharmony_ci *      that (2) is equivalent to
62425bb815Sopenharmony_ci *                             -(i+1)
63425bb815Sopenharmony_ci *                      s  +  2       <= y                      (3)
64425bb815Sopenharmony_ci *                       i                i
65425bb815Sopenharmony_ci *
66425bb815Sopenharmony_ci *      The advantage of (3) is that s  and y  can be computed by
67425bb815Sopenharmony_ci *                                    i      i
68425bb815Sopenharmony_ci *      the following recurrence formula:
69425bb815Sopenharmony_ci *          if (3) is false
70425bb815Sopenharmony_ci *
71425bb815Sopenharmony_ci *          s     =  s  ,       y    = y   ;                    (4)
72425bb815Sopenharmony_ci *           i+1      i          i+1    i
73425bb815Sopenharmony_ci *
74425bb815Sopenharmony_ci *          otherwise,
75425bb815Sopenharmony_ci *                         -i                     -(i+1)
76425bb815Sopenharmony_ci *          s     =  s  + 2  ,  y    = y  -  s  - 2             (5)
77425bb815Sopenharmony_ci *           i+1      i          i+1    i     i
78425bb815Sopenharmony_ci *
79425bb815Sopenharmony_ci *      One may easily use induction to prove (4) and (5).
80425bb815Sopenharmony_ci *      Note. Since the left hand side of (3) contain only i+2 bits,
81425bb815Sopenharmony_ci *            it does not necessary to do a full (53-bit) comparison
82425bb815Sopenharmony_ci *            in (3).
83425bb815Sopenharmony_ci *   3. Final rounding
84425bb815Sopenharmony_ci *      After generating the 53 bits result, we compute one more bit.
85425bb815Sopenharmony_ci *      Together with the remainder, we can decide whether the
86425bb815Sopenharmony_ci *      result is exact, bigger than 1/2ulp, or less than 1/2ulp
87425bb815Sopenharmony_ci *      (it will never equal to 1/2ulp).
88425bb815Sopenharmony_ci *      The rounding mode can be detected by checking whether
89425bb815Sopenharmony_ci *      huge + tiny is equal to huge, and whether huge - tiny is
90425bb815Sopenharmony_ci *      equal to huge for some floating point number "huge" and "tiny".
91425bb815Sopenharmony_ci *
92425bb815Sopenharmony_ci * Special cases:
93425bb815Sopenharmony_ci *      sqrt(+-0) = +-0         ... exact
94425bb815Sopenharmony_ci *      sqrt(inf) = inf
95425bb815Sopenharmony_ci *      sqrt(-ve) = NaN         ... with invalid signal
96425bb815Sopenharmony_ci *      sqrt(NaN) = NaN         ... with invalid signal for signaling NaN
97425bb815Sopenharmony_ci *
98425bb815Sopenharmony_ci * Other methods: see the appended file at the end of the program below.
99425bb815Sopenharmony_ci */
100425bb815Sopenharmony_ci
101425bb815Sopenharmony_ci#define one  1.0
102425bb815Sopenharmony_ci#define tiny 1.0e-300
103425bb815Sopenharmony_ci
104425bb815Sopenharmony_cidouble
105425bb815Sopenharmony_cisqrt (double x)
106425bb815Sopenharmony_ci{
107425bb815Sopenharmony_ci  int sign = (int) 0x80000000;
108425bb815Sopenharmony_ci  unsigned r, t1, s1, ix1, q1;
109425bb815Sopenharmony_ci  int ix0, s0, q, m, t, i;
110425bb815Sopenharmony_ci
111425bb815Sopenharmony_ci  ix0 = __HI (x); /* high word of x */
112425bb815Sopenharmony_ci  ix1 = __LO (x); /* low word of x */
113425bb815Sopenharmony_ci
114425bb815Sopenharmony_ci  /* take care of Inf and NaN */
115425bb815Sopenharmony_ci  if ((ix0 & 0x7ff00000) == 0x7ff00000)
116425bb815Sopenharmony_ci  {
117425bb815Sopenharmony_ci    return x * x + x; /* sqrt(NaN) = NaN, sqrt(+inf) = +inf, sqrt(-inf) = sNaN */
118425bb815Sopenharmony_ci  }
119425bb815Sopenharmony_ci  /* take care of zero */
120425bb815Sopenharmony_ci  if (ix0 <= 0)
121425bb815Sopenharmony_ci  {
122425bb815Sopenharmony_ci    if (((ix0 & (~sign)) | ix1) == 0) /* sqrt(+-0) = +-0 */
123425bb815Sopenharmony_ci    {
124425bb815Sopenharmony_ci      return x;
125425bb815Sopenharmony_ci    }
126425bb815Sopenharmony_ci    else if (ix0 < 0) /* sqrt(-ve) = sNaN */
127425bb815Sopenharmony_ci    {
128425bb815Sopenharmony_ci      return NAN;
129425bb815Sopenharmony_ci    }
130425bb815Sopenharmony_ci  }
131425bb815Sopenharmony_ci  /* normalize x */
132425bb815Sopenharmony_ci  m = (ix0 >> 20);
133425bb815Sopenharmony_ci  if (m == 0) /* subnormal x */
134425bb815Sopenharmony_ci  {
135425bb815Sopenharmony_ci    while (ix0 == 0)
136425bb815Sopenharmony_ci    {
137425bb815Sopenharmony_ci      m -= 21;
138425bb815Sopenharmony_ci      ix0 |= (ix1 >> 11);
139425bb815Sopenharmony_ci      ix1 <<= 21;
140425bb815Sopenharmony_ci    }
141425bb815Sopenharmony_ci    for (i = 0; (ix0 & 0x00100000) == 0; i++)
142425bb815Sopenharmony_ci    {
143425bb815Sopenharmony_ci      ix0 <<= 1;
144425bb815Sopenharmony_ci    }
145425bb815Sopenharmony_ci    m -= i - 1;
146425bb815Sopenharmony_ci    ix0 |= (ix1 >> (32 - i));
147425bb815Sopenharmony_ci    ix1 <<= i;
148425bb815Sopenharmony_ci  }
149425bb815Sopenharmony_ci  m -= 1023; /* unbias exponent */
150425bb815Sopenharmony_ci  ix0 = (ix0 & 0x000fffff) | 0x00100000;
151425bb815Sopenharmony_ci  if (m & 1) /* odd m, double x to make it even */
152425bb815Sopenharmony_ci  {
153425bb815Sopenharmony_ci    ix0 += ix0 + ((ix1 & sign) >> 31);
154425bb815Sopenharmony_ci    ix1 += ix1;
155425bb815Sopenharmony_ci  }
156425bb815Sopenharmony_ci  m >>= 1; /* m = [m / 2] */
157425bb815Sopenharmony_ci
158425bb815Sopenharmony_ci  /* generate sqrt(x) bit by bit */
159425bb815Sopenharmony_ci  ix0 += ix0 + ((ix1 & sign) >> 31);
160425bb815Sopenharmony_ci  ix1 += ix1;
161425bb815Sopenharmony_ci  q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
162425bb815Sopenharmony_ci  r = 0x00200000; /* r = moving bit from right to left */
163425bb815Sopenharmony_ci
164425bb815Sopenharmony_ci  while (r != 0)
165425bb815Sopenharmony_ci  {
166425bb815Sopenharmony_ci    t = s0 + r;
167425bb815Sopenharmony_ci    if (t <= ix0)
168425bb815Sopenharmony_ci    {
169425bb815Sopenharmony_ci      s0 = t + r;
170425bb815Sopenharmony_ci      ix0 -= t;
171425bb815Sopenharmony_ci      q += r;
172425bb815Sopenharmony_ci    }
173425bb815Sopenharmony_ci    ix0 += ix0 + ((ix1 & sign) >> 31);
174425bb815Sopenharmony_ci    ix1 += ix1;
175425bb815Sopenharmony_ci    r >>= 1;
176425bb815Sopenharmony_ci  }
177425bb815Sopenharmony_ci
178425bb815Sopenharmony_ci  r = sign;
179425bb815Sopenharmony_ci  while (r != 0)
180425bb815Sopenharmony_ci  {
181425bb815Sopenharmony_ci    t1 = s1 + r;
182425bb815Sopenharmony_ci    t = s0;
183425bb815Sopenharmony_ci    if ((t < ix0) || ((t == ix0) && (t1 <= ix1)))
184425bb815Sopenharmony_ci    {
185425bb815Sopenharmony_ci      s1 = t1 + r;
186425bb815Sopenharmony_ci      if (((t1 & sign) == sign) && (s1 & sign) == 0)
187425bb815Sopenharmony_ci      {
188425bb815Sopenharmony_ci        s0 += 1;
189425bb815Sopenharmony_ci      }
190425bb815Sopenharmony_ci      ix0 -= t;
191425bb815Sopenharmony_ci      if (ix1 < t1)
192425bb815Sopenharmony_ci      {
193425bb815Sopenharmony_ci        ix0 -= 1;
194425bb815Sopenharmony_ci      }
195425bb815Sopenharmony_ci      ix1 -= t1;
196425bb815Sopenharmony_ci      q1 += r;
197425bb815Sopenharmony_ci    }
198425bb815Sopenharmony_ci    ix0 += ix0 + ((ix1 & sign) >> 31);
199425bb815Sopenharmony_ci    ix1 += ix1;
200425bb815Sopenharmony_ci    r >>= 1;
201425bb815Sopenharmony_ci  }
202425bb815Sopenharmony_ci
203425bb815Sopenharmony_ci  double_accessor ret;
204425bb815Sopenharmony_ci
205425bb815Sopenharmony_ci  /* use floating add to find out rounding direction */
206425bb815Sopenharmony_ci  if ((ix0 | ix1) != 0)
207425bb815Sopenharmony_ci  {
208425bb815Sopenharmony_ci    ret.dbl = one - tiny; /* trigger inexact flag */
209425bb815Sopenharmony_ci    if (ret.dbl >= one)
210425bb815Sopenharmony_ci    {
211425bb815Sopenharmony_ci      ret.dbl = one + tiny;
212425bb815Sopenharmony_ci      if (q1 == (unsigned) 0xffffffff)
213425bb815Sopenharmony_ci      {
214425bb815Sopenharmony_ci        q1 = 0;
215425bb815Sopenharmony_ci        q += 1;
216425bb815Sopenharmony_ci      }
217425bb815Sopenharmony_ci      else if (ret.dbl > one)
218425bb815Sopenharmony_ci      {
219425bb815Sopenharmony_ci        if (q1 == (unsigned) 0xfffffffe)
220425bb815Sopenharmony_ci        {
221425bb815Sopenharmony_ci          q += 1;
222425bb815Sopenharmony_ci        }
223425bb815Sopenharmony_ci        q1 += 2;
224425bb815Sopenharmony_ci      }
225425bb815Sopenharmony_ci      else
226425bb815Sopenharmony_ci      {
227425bb815Sopenharmony_ci        q1 += (q1 & 1);
228425bb815Sopenharmony_ci      }
229425bb815Sopenharmony_ci    }
230425bb815Sopenharmony_ci  }
231425bb815Sopenharmony_ci  ix0 = (q >> 1) + 0x3fe00000;
232425bb815Sopenharmony_ci  ix1 = q1 >> 1;
233425bb815Sopenharmony_ci  if ((q & 1) == 1)
234425bb815Sopenharmony_ci  {
235425bb815Sopenharmony_ci    ix1 |= sign;
236425bb815Sopenharmony_ci  }
237425bb815Sopenharmony_ci  ix0 += (m << 20);
238425bb815Sopenharmony_ci  ret.as_int.hi = ix0;
239425bb815Sopenharmony_ci  ret.as_int.lo = ix1;
240425bb815Sopenharmony_ci  return ret.dbl;
241425bb815Sopenharmony_ci} /* sqrt */
242425bb815Sopenharmony_ci
243425bb815Sopenharmony_ci#undef one
244425bb815Sopenharmony_ci#undef tiny
245425bb815Sopenharmony_ci
246425bb815Sopenharmony_ci/*
247425bb815Sopenharmony_ciOther methods  (use floating-point arithmetic)
248425bb815Sopenharmony_ci-------------
249425bb815Sopenharmony_ci(This is a copy of a drafted paper by Prof W. Kahan
250425bb815Sopenharmony_ciand K.C. Ng, written in May, 1986)
251425bb815Sopenharmony_ci
252425bb815Sopenharmony_ci        Two algorithms are given here to implement sqrt(x)
253425bb815Sopenharmony_ci        (IEEE double precision arithmetic) in software.
254425bb815Sopenharmony_ci        Both supply sqrt(x) correctly rounded. The first algorithm (in
255425bb815Sopenharmony_ci        Section A) uses newton iterations and involves four divisions.
256425bb815Sopenharmony_ci        The second one uses reciproot iterations to avoid division, but
257425bb815Sopenharmony_ci        requires more multiplications. Both algorithms need the ability
258425bb815Sopenharmony_ci        to chop results of arithmetic operations instead of round them,
259425bb815Sopenharmony_ci        and the INEXACT flag to indicate when an arithmetic operation
260425bb815Sopenharmony_ci        is executed exactly with no roundoff error, all part of the
261425bb815Sopenharmony_ci        standard (IEEE 754-1985). The ability to perform shift, add,
262425bb815Sopenharmony_ci        subtract and logical AND operations upon 32-bit words is needed
263425bb815Sopenharmony_ci        too, though not part of the standard.
264425bb815Sopenharmony_ci
265425bb815Sopenharmony_ciA.  sqrt(x) by Newton Iteration
266425bb815Sopenharmony_ci
267425bb815Sopenharmony_ci   (1)  Initial approximation
268425bb815Sopenharmony_ci
269425bb815Sopenharmony_ci        Let x0 and x1 be the leading and the trailing 32-bit words of
270425bb815Sopenharmony_ci        a floating point number x (in IEEE double format) respectively
271425bb815Sopenharmony_ci
272425bb815Sopenharmony_ci            1    11                  52                           ...widths
273425bb815Sopenharmony_ci           ------------------------------------------------------
274425bb815Sopenharmony_ci        x: |s|    e     |             f                         |
275425bb815Sopenharmony_ci           ------------------------------------------------------
276425bb815Sopenharmony_ci              msb    lsb  msb                                 lsb ...order
277425bb815Sopenharmony_ci
278425bb815Sopenharmony_ci             ------------------------        ------------------------
279425bb815Sopenharmony_ci        x0:  |s|   e    |    f1     |    x1: |          f2           |
280425bb815Sopenharmony_ci             ------------------------        ------------------------
281425bb815Sopenharmony_ci
282425bb815Sopenharmony_ci        By performing shifts and subtracts on x0 and x1 (both regarded
283425bb815Sopenharmony_ci        as integers), we obtain an 8-bit approximation of sqrt(x) as
284425bb815Sopenharmony_ci        follows.
285425bb815Sopenharmony_ci
286425bb815Sopenharmony_ci                k  := (x0>>1) + 0x1ff80000;
287425bb815Sopenharmony_ci                y0 := k - T1[31&(k>>15)].       ... y ~ sqrt(x) to 8 bits
288425bb815Sopenharmony_ci        Here k is a 32-bit integer and T1[] is an integer array containing
289425bb815Sopenharmony_ci        correction terms. Now magically the floating value of y (y's
290425bb815Sopenharmony_ci        leading 32-bit word is y0, the value of its trailing word is 0)
291425bb815Sopenharmony_ci        approximates sqrt(x) to almost 8-bit.
292425bb815Sopenharmony_ci
293425bb815Sopenharmony_ci        Value of T1:
294425bb815Sopenharmony_ci        static int T1[32]= {
295425bb815Sopenharmony_ci        0,      1024,   3062,   5746,   9193,   13348,  18162,  23592,
296425bb815Sopenharmony_ci        29598,  36145,  43202,  50740,  58733,  67158,  75992,  85215,
297425bb815Sopenharmony_ci        83599,  71378,  60428,  50647,  41945,  34246,  27478,  21581,
298425bb815Sopenharmony_ci        16499,  12183,  8588,   5674,   3403,   1742,   661,    130,};
299425bb815Sopenharmony_ci
300425bb815Sopenharmony_ci    (2) Iterative refinement
301425bb815Sopenharmony_ci
302425bb815Sopenharmony_ci        Apply Heron's rule three times to y, we have y approximates
303425bb815Sopenharmony_ci        sqrt(x) to within 1 ulp (Unit in the Last Place):
304425bb815Sopenharmony_ci
305425bb815Sopenharmony_ci                y := (y+x/y)/2          ... almost 17 sig. bits
306425bb815Sopenharmony_ci                y := (y+x/y)/2          ... almost 35 sig. bits
307425bb815Sopenharmony_ci                y := y-(y-x/y)/2        ... within 1 ulp
308425bb815Sopenharmony_ci
309425bb815Sopenharmony_ci        Remark 1.
310425bb815Sopenharmony_ci            Another way to improve y to within 1 ulp is:
311425bb815Sopenharmony_ci
312425bb815Sopenharmony_ci                y := (y+x/y)            ... almost 17 sig. bits to 2*sqrt(x)
313425bb815Sopenharmony_ci                y := y - 0x00100006     ... almost 18 sig. bits to sqrt(x)
314425bb815Sopenharmony_ci
315425bb815Sopenharmony_ci                                2
316425bb815Sopenharmony_ci                            (x-y )*y
317425bb815Sopenharmony_ci                y := y + 2* ----------  ...within 1 ulp
318425bb815Sopenharmony_ci                               2
319425bb815Sopenharmony_ci                             3y  + x
320425bb815Sopenharmony_ci
321425bb815Sopenharmony_ci        This formula has one division fewer than the one above; however,
322425bb815Sopenharmony_ci        it requires more multiplications and additions. Also x must be
323425bb815Sopenharmony_ci        scaled in advance to avoid spurious overflow in evaluating the
324425bb815Sopenharmony_ci        expression 3y*y+x. Hence it is not recommended uless division
325425bb815Sopenharmony_ci        is slow. If division is very slow, then one should use the
326425bb815Sopenharmony_ci        reciproot algorithm given in section B.
327425bb815Sopenharmony_ci
328425bb815Sopenharmony_ci    (3) Final adjustment
329425bb815Sopenharmony_ci
330425bb815Sopenharmony_ci        By twiddling y's last bit it is possible to force y to be
331425bb815Sopenharmony_ci        correctly rounded according to the prevailing rounding mode
332425bb815Sopenharmony_ci        as follows. Let r and i be copies of the rounding mode and
333425bb815Sopenharmony_ci        inexact flag before entering the square root program. Also we
334425bb815Sopenharmony_ci        use the expression y+-ulp for the next representable floating
335425bb815Sopenharmony_ci        numbers (up and down) of y. Note that y+-ulp = either fixed
336425bb815Sopenharmony_ci        point y+-1, or multiply y by nextafter(1,+-inf) in chopped
337425bb815Sopenharmony_ci        mode.
338425bb815Sopenharmony_ci
339425bb815Sopenharmony_ci        I := FALSE;     ... reset INEXACT flag I
340425bb815Sopenharmony_ci        R := RZ;        ... set rounding mode to round-toward-zero
341425bb815Sopenharmony_ci                z := x/y;       ... chopped quotient, possibly inexact
342425bb815Sopenharmony_ci                If(not I) then {        ... if the quotient is exact
343425bb815Sopenharmony_ci                    if(z=y) {
344425bb815Sopenharmony_ci                        I := i;  ... restore inexact flag
345425bb815Sopenharmony_ci                        R := r;  ... restore rounded mode
346425bb815Sopenharmony_ci                        return sqrt(x):=y.
347425bb815Sopenharmony_ci                    } else {
348425bb815Sopenharmony_ci                        z := z - ulp;   ... special rounding
349425bb815Sopenharmony_ci                    }
350425bb815Sopenharmony_ci                }
351425bb815Sopenharmony_ci                i := TRUE;              ... sqrt(x) is inexact
352425bb815Sopenharmony_ci                If (r=RN) then z=z+ulp  ... rounded-to-nearest
353425bb815Sopenharmony_ci                If (r=RP) then {        ... round-toward-+inf
354425bb815Sopenharmony_ci                    y = y+ulp; z=z+ulp;
355425bb815Sopenharmony_ci                }
356425bb815Sopenharmony_ci                y := y+z;               ... chopped sum
357425bb815Sopenharmony_ci                y0:=y0-0x00100000;      ... y := y/2 is correctly rounded.
358425bb815Sopenharmony_ci                I := i;                 ... restore inexact flag
359425bb815Sopenharmony_ci                R := r;                 ... restore rounded mode
360425bb815Sopenharmony_ci                return sqrt(x):=y.
361425bb815Sopenharmony_ci
362425bb815Sopenharmony_ci    (4) Special cases
363425bb815Sopenharmony_ci
364425bb815Sopenharmony_ci        Square root of +inf, +-0, or NaN is itself;
365425bb815Sopenharmony_ci        Square root of a negative number is NaN with invalid signal.
366425bb815Sopenharmony_ci
367425bb815Sopenharmony_ciB.  sqrt(x) by Reciproot Iteration
368425bb815Sopenharmony_ci
369425bb815Sopenharmony_ci   (1)  Initial approximation
370425bb815Sopenharmony_ci
371425bb815Sopenharmony_ci        Let x0 and x1 be the leading and the trailing 32-bit words of
372425bb815Sopenharmony_ci        a floating point number x (in IEEE double format) respectively
373425bb815Sopenharmony_ci        (see section A). By performing shifs and subtracts on x0 and y0,
374425bb815Sopenharmony_ci        we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
375425bb815Sopenharmony_ci
376425bb815Sopenharmony_ci            k := 0x5fe80000 - (x0>>1);
377425bb815Sopenharmony_ci            y0:= k - T2[63&(k>>14)].    ... y ~ 1/sqrt(x) to 7.8 bits
378425bb815Sopenharmony_ci
379425bb815Sopenharmony_ci        Here k is a 32-bit integer and T2[] is an integer array
380425bb815Sopenharmony_ci        containing correction terms. Now magically the floating
381425bb815Sopenharmony_ci        value of y (y's leading 32-bit word is y0, the value of
382425bb815Sopenharmony_ci        its trailing word y1 is set to zero) approximates 1/sqrt(x)
383425bb815Sopenharmony_ci        to almost 7.8-bit.
384425bb815Sopenharmony_ci
385425bb815Sopenharmony_ci        Value of T2:
386425bb815Sopenharmony_ci        static int T2[64]= {
387425bb815Sopenharmony_ci        0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
388425bb815Sopenharmony_ci        0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
389425bb815Sopenharmony_ci        0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
390425bb815Sopenharmony_ci        0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
391425bb815Sopenharmony_ci        0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
392425bb815Sopenharmony_ci        0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
393425bb815Sopenharmony_ci        0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
394425bb815Sopenharmony_ci        0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
395425bb815Sopenharmony_ci
396425bb815Sopenharmony_ci    (2) Iterative refinement
397425bb815Sopenharmony_ci
398425bb815Sopenharmony_ci        Apply Reciproot iteration three times to y and multiply the
399425bb815Sopenharmony_ci        result by x to get an approximation z that matches sqrt(x)
400425bb815Sopenharmony_ci        to about 1 ulp. To be exact, we will have
401425bb815Sopenharmony_ci                -1ulp < sqrt(x)-z<1.0625ulp.
402425bb815Sopenharmony_ci
403425bb815Sopenharmony_ci        ... set rounding mode to Round-to-nearest
404425bb815Sopenharmony_ci           y := y*(1.5-0.5*x*y*y)       ... almost 15 sig. bits to 1/sqrt(x)
405425bb815Sopenharmony_ci           y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
406425bb815Sopenharmony_ci        ... special arrangement for better accuracy
407425bb815Sopenharmony_ci           z := x*y                     ... 29 bits to sqrt(x), with z*y<1
408425bb815Sopenharmony_ci           z := z + 0.5*z*(1-z*y)       ... about 1 ulp to sqrt(x)
409425bb815Sopenharmony_ci
410425bb815Sopenharmony_ci        Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
411425bb815Sopenharmony_ci        (a) the term z*y in the final iteration is always less than 1;
412425bb815Sopenharmony_ci        (b) the error in the final result is biased upward so that
413425bb815Sopenharmony_ci                -1 ulp < sqrt(x) - z < 1.0625 ulp
414425bb815Sopenharmony_ci            instead of |sqrt(x)-z|<1.03125ulp.
415425bb815Sopenharmony_ci
416425bb815Sopenharmony_ci    (3) Final adjustment
417425bb815Sopenharmony_ci
418425bb815Sopenharmony_ci        By twiddling y's last bit it is possible to force y to be
419425bb815Sopenharmony_ci        correctly rounded according to the prevailing rounding mode
420425bb815Sopenharmony_ci        as follows. Let r and i be copies of the rounding mode and
421425bb815Sopenharmony_ci        inexact flag before entering the square root program. Also we
422425bb815Sopenharmony_ci        use the expression y+-ulp for the next representable floating
423425bb815Sopenharmony_ci        numbers (up and down) of y. Note that y+-ulp = either fixed
424425bb815Sopenharmony_ci        point y+-1, or multiply y by nextafter(1,+-inf) in chopped
425425bb815Sopenharmony_ci        mode.
426425bb815Sopenharmony_ci
427425bb815Sopenharmony_ci        R := RZ;                ... set rounding mode to round-toward-zero
428425bb815Sopenharmony_ci        switch(r) {
429425bb815Sopenharmony_ci            case RN:            ... round-to-nearest
430425bb815Sopenharmony_ci               if(x<= z*(z-ulp)...chopped) z = z - ulp; else
431425bb815Sopenharmony_ci               if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
432425bb815Sopenharmony_ci               break;
433425bb815Sopenharmony_ci            case RZ:case RM:    ... round-to-zero or round-to--inf
434425bb815Sopenharmony_ci               R:=RP;           ... reset rounding mod to round-to-+inf
435425bb815Sopenharmony_ci               if(x<z*z ... rounded up) z = z - ulp; else
436425bb815Sopenharmony_ci               if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
437425bb815Sopenharmony_ci               break;
438425bb815Sopenharmony_ci            case RP:            ... round-to-+inf
439425bb815Sopenharmony_ci               if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
440425bb815Sopenharmony_ci               if(x>z*z ...chopped) z = z+ulp;
441425bb815Sopenharmony_ci               break;
442425bb815Sopenharmony_ci        }
443425bb815Sopenharmony_ci
444425bb815Sopenharmony_ci        Remark 3. The above comparisons can be done in fixed point. For
445425bb815Sopenharmony_ci        example, to compare x and w=z*z chopped, it suffices to compare
446425bb815Sopenharmony_ci        x1 and w1 (the trailing parts of x and w), regarding them as
447425bb815Sopenharmony_ci        two's complement integers.
448425bb815Sopenharmony_ci
449425bb815Sopenharmony_ci        ...Is z an exact square root?
450425bb815Sopenharmony_ci        To determine whether z is an exact square root of x, let z1 be the
451425bb815Sopenharmony_ci        trailing part of z, and also let x0 and x1 be the leading and
452425bb815Sopenharmony_ci        trailing parts of x.
453425bb815Sopenharmony_ci
454425bb815Sopenharmony_ci        If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
455425bb815Sopenharmony_ci            I := 1;             ... Raise Inexact flag: z is not exact
456425bb815Sopenharmony_ci        else {
457425bb815Sopenharmony_ci            j := 1 - [(x0>>20)&1]       ... j = logb(x) mod 2
458425bb815Sopenharmony_ci            k := z1 >> 26;              ... get z's 25-th and 26-th
459425bb815Sopenharmony_ci                                            fraction bits
460425bb815Sopenharmony_ci            I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
461425bb815Sopenharmony_ci        }
462425bb815Sopenharmony_ci        R:= r           ... restore rounded mode
463425bb815Sopenharmony_ci        return sqrt(x):=z.
464425bb815Sopenharmony_ci
465425bb815Sopenharmony_ci        If multiplication is cheaper then the foregoing red tape, the
466425bb815Sopenharmony_ci        Inexact flag can be evaluated by
467425bb815Sopenharmony_ci
468425bb815Sopenharmony_ci            I := i;
469425bb815Sopenharmony_ci            I := (z*z!=x) or I.
470425bb815Sopenharmony_ci
471425bb815Sopenharmony_ci        Note that z*z can overwrite I; this value must be sensed if it is
472425bb815Sopenharmony_ci        True.
473425bb815Sopenharmony_ci
474425bb815Sopenharmony_ci        Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
475425bb815Sopenharmony_ci        zero.
476425bb815Sopenharmony_ci
477425bb815Sopenharmony_ci                    --------------------
478425bb815Sopenharmony_ci                z1: |        f2        |
479425bb815Sopenharmony_ci                    --------------------
480425bb815Sopenharmony_ci                bit 31             bit 0
481425bb815Sopenharmony_ci
482425bb815Sopenharmony_ci        Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
483425bb815Sopenharmony_ci        or even of logb(x) have the following relations:
484425bb815Sopenharmony_ci
485425bb815Sopenharmony_ci        -------------------------------------------------
486425bb815Sopenharmony_ci        bit 27,26 of z1         bit 1,0 of x1   logb(x)
487425bb815Sopenharmony_ci        -------------------------------------------------
488425bb815Sopenharmony_ci        00                      00              odd and even
489425bb815Sopenharmony_ci        01                      01              even
490425bb815Sopenharmony_ci        10                      10              odd
491425bb815Sopenharmony_ci        10                      00              even
492425bb815Sopenharmony_ci        11                      01              even
493425bb815Sopenharmony_ci        -------------------------------------------------
494425bb815Sopenharmony_ci
495425bb815Sopenharmony_ci    (4) Special cases (see (4) of Section A).
496425bb815Sopenharmony_ci */
497