1425bb815Sopenharmony_ci/* Copyright JS Foundation and other contributors, http://js.foundation 2425bb815Sopenharmony_ci * 3425bb815Sopenharmony_ci * Licensed under the Apache License, Version 2.0 (the "License"); 4425bb815Sopenharmony_ci * you may not use this file except in compliance with the License. 5425bb815Sopenharmony_ci * You may obtain a copy of the License at 6425bb815Sopenharmony_ci * 7425bb815Sopenharmony_ci * http://www.apache.org/licenses/LICENSE-2.0 8425bb815Sopenharmony_ci * 9425bb815Sopenharmony_ci * Unless required by applicable law or agreed to in writing, software 10425bb815Sopenharmony_ci * distributed under the License is distributed on an "AS IS" BASIS 11425bb815Sopenharmony_ci * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12425bb815Sopenharmony_ci * See the License for the specific language governing permissions and 13425bb815Sopenharmony_ci * limitations under the License. 14425bb815Sopenharmony_ci * 15425bb815Sopenharmony_ci * This file is based on work under the following copyright and permission 16425bb815Sopenharmony_ci * notice: 17425bb815Sopenharmony_ci * 18425bb815Sopenharmony_ci * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 19425bb815Sopenharmony_ci * 20425bb815Sopenharmony_ci * Developed at SunSoft, a Sun Microsystems, Inc. business. 21425bb815Sopenharmony_ci * Permission to use, copy, modify, and distribute this 22425bb815Sopenharmony_ci * software is freely granted, provided that this notice 23425bb815Sopenharmony_ci * is preserved. 24425bb815Sopenharmony_ci * 25425bb815Sopenharmony_ci * @(#)e_sqrt.c 1.3 95/01/18 26425bb815Sopenharmony_ci */ 27425bb815Sopenharmony_ci 28425bb815Sopenharmony_ci#include "jerry-libm-internal.h" 29425bb815Sopenharmony_ci 30425bb815Sopenharmony_ci/* sqrt(x) 31425bb815Sopenharmony_ci * Return correctly rounded sqrt. 32425bb815Sopenharmony_ci * 33425bb815Sopenharmony_ci * ------------------------------------------ 34425bb815Sopenharmony_ci * | Use the hardware sqrt if you have one | 35425bb815Sopenharmony_ci * ------------------------------------------ 36425bb815Sopenharmony_ci * 37425bb815Sopenharmony_ci * Method: 38425bb815Sopenharmony_ci * Bit by bit method using integer arithmetic. (Slow, but portable) 39425bb815Sopenharmony_ci * 1. Normalization 40425bb815Sopenharmony_ci * Scale x to y in [1,4) with even powers of 2: 41425bb815Sopenharmony_ci * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then 42425bb815Sopenharmony_ci * sqrt(x) = 2^k * sqrt(y) 43425bb815Sopenharmony_ci * 2. Bit by bit computation 44425bb815Sopenharmony_ci * Let q = sqrt(y) truncated to i bit after binary point (q = 1), 45425bb815Sopenharmony_ci * i 0 46425bb815Sopenharmony_ci * i+1 2 47425bb815Sopenharmony_ci * s = 2*q , and y = 2 * ( y - q ). (1) 48425bb815Sopenharmony_ci * i i i i 49425bb815Sopenharmony_ci * 50425bb815Sopenharmony_ci * To compute q from q , one checks whether 51425bb815Sopenharmony_ci * i+1 i 52425bb815Sopenharmony_ci * 53425bb815Sopenharmony_ci * -(i+1) 2 54425bb815Sopenharmony_ci * (q + 2 ) <= y. (2) 55425bb815Sopenharmony_ci * i 56425bb815Sopenharmony_ci * -(i+1) 57425bb815Sopenharmony_ci * If (2) is false, then q = q ; otherwise q = q + 2 . 58425bb815Sopenharmony_ci * i+1 i i+1 i 59425bb815Sopenharmony_ci * 60425bb815Sopenharmony_ci * With some algebric manipulation, it is not difficult to see 61425bb815Sopenharmony_ci * that (2) is equivalent to 62425bb815Sopenharmony_ci * -(i+1) 63425bb815Sopenharmony_ci * s + 2 <= y (3) 64425bb815Sopenharmony_ci * i i 65425bb815Sopenharmony_ci * 66425bb815Sopenharmony_ci * The advantage of (3) is that s and y can be computed by 67425bb815Sopenharmony_ci * i i 68425bb815Sopenharmony_ci * the following recurrence formula: 69425bb815Sopenharmony_ci * if (3) is false 70425bb815Sopenharmony_ci * 71425bb815Sopenharmony_ci * s = s , y = y ; (4) 72425bb815Sopenharmony_ci * i+1 i i+1 i 73425bb815Sopenharmony_ci * 74425bb815Sopenharmony_ci * otherwise, 75425bb815Sopenharmony_ci * -i -(i+1) 76425bb815Sopenharmony_ci * s = s + 2 , y = y - s - 2 (5) 77425bb815Sopenharmony_ci * i+1 i i+1 i i 78425bb815Sopenharmony_ci * 79425bb815Sopenharmony_ci * One may easily use induction to prove (4) and (5). 80425bb815Sopenharmony_ci * Note. Since the left hand side of (3) contain only i+2 bits, 81425bb815Sopenharmony_ci * it does not necessary to do a full (53-bit) comparison 82425bb815Sopenharmony_ci * in (3). 83425bb815Sopenharmony_ci * 3. Final rounding 84425bb815Sopenharmony_ci * After generating the 53 bits result, we compute one more bit. 85425bb815Sopenharmony_ci * Together with the remainder, we can decide whether the 86425bb815Sopenharmony_ci * result is exact, bigger than 1/2ulp, or less than 1/2ulp 87425bb815Sopenharmony_ci * (it will never equal to 1/2ulp). 88425bb815Sopenharmony_ci * The rounding mode can be detected by checking whether 89425bb815Sopenharmony_ci * huge + tiny is equal to huge, and whether huge - tiny is 90425bb815Sopenharmony_ci * equal to huge for some floating point number "huge" and "tiny". 91425bb815Sopenharmony_ci * 92425bb815Sopenharmony_ci * Special cases: 93425bb815Sopenharmony_ci * sqrt(+-0) = +-0 ... exact 94425bb815Sopenharmony_ci * sqrt(inf) = inf 95425bb815Sopenharmony_ci * sqrt(-ve) = NaN ... with invalid signal 96425bb815Sopenharmony_ci * sqrt(NaN) = NaN ... with invalid signal for signaling NaN 97425bb815Sopenharmony_ci * 98425bb815Sopenharmony_ci * Other methods: see the appended file at the end of the program below. 99425bb815Sopenharmony_ci */ 100425bb815Sopenharmony_ci 101425bb815Sopenharmony_ci#define one 1.0 102425bb815Sopenharmony_ci#define tiny 1.0e-300 103425bb815Sopenharmony_ci 104425bb815Sopenharmony_cidouble 105425bb815Sopenharmony_cisqrt (double x) 106425bb815Sopenharmony_ci{ 107425bb815Sopenharmony_ci int sign = (int) 0x80000000; 108425bb815Sopenharmony_ci unsigned r, t1, s1, ix1, q1; 109425bb815Sopenharmony_ci int ix0, s0, q, m, t, i; 110425bb815Sopenharmony_ci 111425bb815Sopenharmony_ci ix0 = __HI (x); /* high word of x */ 112425bb815Sopenharmony_ci ix1 = __LO (x); /* low word of x */ 113425bb815Sopenharmony_ci 114425bb815Sopenharmony_ci /* take care of Inf and NaN */ 115425bb815Sopenharmony_ci if ((ix0 & 0x7ff00000) == 0x7ff00000) 116425bb815Sopenharmony_ci { 117425bb815Sopenharmony_ci return x * x + x; /* sqrt(NaN) = NaN, sqrt(+inf) = +inf, sqrt(-inf) = sNaN */ 118425bb815Sopenharmony_ci } 119425bb815Sopenharmony_ci /* take care of zero */ 120425bb815Sopenharmony_ci if (ix0 <= 0) 121425bb815Sopenharmony_ci { 122425bb815Sopenharmony_ci if (((ix0 & (~sign)) | ix1) == 0) /* sqrt(+-0) = +-0 */ 123425bb815Sopenharmony_ci { 124425bb815Sopenharmony_ci return x; 125425bb815Sopenharmony_ci } 126425bb815Sopenharmony_ci else if (ix0 < 0) /* sqrt(-ve) = sNaN */ 127425bb815Sopenharmony_ci { 128425bb815Sopenharmony_ci return NAN; 129425bb815Sopenharmony_ci } 130425bb815Sopenharmony_ci } 131425bb815Sopenharmony_ci /* normalize x */ 132425bb815Sopenharmony_ci m = (ix0 >> 20); 133425bb815Sopenharmony_ci if (m == 0) /* subnormal x */ 134425bb815Sopenharmony_ci { 135425bb815Sopenharmony_ci while (ix0 == 0) 136425bb815Sopenharmony_ci { 137425bb815Sopenharmony_ci m -= 21; 138425bb815Sopenharmony_ci ix0 |= (ix1 >> 11); 139425bb815Sopenharmony_ci ix1 <<= 21; 140425bb815Sopenharmony_ci } 141425bb815Sopenharmony_ci for (i = 0; (ix0 & 0x00100000) == 0; i++) 142425bb815Sopenharmony_ci { 143425bb815Sopenharmony_ci ix0 <<= 1; 144425bb815Sopenharmony_ci } 145425bb815Sopenharmony_ci m -= i - 1; 146425bb815Sopenharmony_ci ix0 |= (ix1 >> (32 - i)); 147425bb815Sopenharmony_ci ix1 <<= i; 148425bb815Sopenharmony_ci } 149425bb815Sopenharmony_ci m -= 1023; /* unbias exponent */ 150425bb815Sopenharmony_ci ix0 = (ix0 & 0x000fffff) | 0x00100000; 151425bb815Sopenharmony_ci if (m & 1) /* odd m, double x to make it even */ 152425bb815Sopenharmony_ci { 153425bb815Sopenharmony_ci ix0 += ix0 + ((ix1 & sign) >> 31); 154425bb815Sopenharmony_ci ix1 += ix1; 155425bb815Sopenharmony_ci } 156425bb815Sopenharmony_ci m >>= 1; /* m = [m / 2] */ 157425bb815Sopenharmony_ci 158425bb815Sopenharmony_ci /* generate sqrt(x) bit by bit */ 159425bb815Sopenharmony_ci ix0 += ix0 + ((ix1 & sign) >> 31); 160425bb815Sopenharmony_ci ix1 += ix1; 161425bb815Sopenharmony_ci q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */ 162425bb815Sopenharmony_ci r = 0x00200000; /* r = moving bit from right to left */ 163425bb815Sopenharmony_ci 164425bb815Sopenharmony_ci while (r != 0) 165425bb815Sopenharmony_ci { 166425bb815Sopenharmony_ci t = s0 + r; 167425bb815Sopenharmony_ci if (t <= ix0) 168425bb815Sopenharmony_ci { 169425bb815Sopenharmony_ci s0 = t + r; 170425bb815Sopenharmony_ci ix0 -= t; 171425bb815Sopenharmony_ci q += r; 172425bb815Sopenharmony_ci } 173425bb815Sopenharmony_ci ix0 += ix0 + ((ix1 & sign) >> 31); 174425bb815Sopenharmony_ci ix1 += ix1; 175425bb815Sopenharmony_ci r >>= 1; 176425bb815Sopenharmony_ci } 177425bb815Sopenharmony_ci 178425bb815Sopenharmony_ci r = sign; 179425bb815Sopenharmony_ci while (r != 0) 180425bb815Sopenharmony_ci { 181425bb815Sopenharmony_ci t1 = s1 + r; 182425bb815Sopenharmony_ci t = s0; 183425bb815Sopenharmony_ci if ((t < ix0) || ((t == ix0) && (t1 <= ix1))) 184425bb815Sopenharmony_ci { 185425bb815Sopenharmony_ci s1 = t1 + r; 186425bb815Sopenharmony_ci if (((t1 & sign) == sign) && (s1 & sign) == 0) 187425bb815Sopenharmony_ci { 188425bb815Sopenharmony_ci s0 += 1; 189425bb815Sopenharmony_ci } 190425bb815Sopenharmony_ci ix0 -= t; 191425bb815Sopenharmony_ci if (ix1 < t1) 192425bb815Sopenharmony_ci { 193425bb815Sopenharmony_ci ix0 -= 1; 194425bb815Sopenharmony_ci } 195425bb815Sopenharmony_ci ix1 -= t1; 196425bb815Sopenharmony_ci q1 += r; 197425bb815Sopenharmony_ci } 198425bb815Sopenharmony_ci ix0 += ix0 + ((ix1 & sign) >> 31); 199425bb815Sopenharmony_ci ix1 += ix1; 200425bb815Sopenharmony_ci r >>= 1; 201425bb815Sopenharmony_ci } 202425bb815Sopenharmony_ci 203425bb815Sopenharmony_ci double_accessor ret; 204425bb815Sopenharmony_ci 205425bb815Sopenharmony_ci /* use floating add to find out rounding direction */ 206425bb815Sopenharmony_ci if ((ix0 | ix1) != 0) 207425bb815Sopenharmony_ci { 208425bb815Sopenharmony_ci ret.dbl = one - tiny; /* trigger inexact flag */ 209425bb815Sopenharmony_ci if (ret.dbl >= one) 210425bb815Sopenharmony_ci { 211425bb815Sopenharmony_ci ret.dbl = one + tiny; 212425bb815Sopenharmony_ci if (q1 == (unsigned) 0xffffffff) 213425bb815Sopenharmony_ci { 214425bb815Sopenharmony_ci q1 = 0; 215425bb815Sopenharmony_ci q += 1; 216425bb815Sopenharmony_ci } 217425bb815Sopenharmony_ci else if (ret.dbl > one) 218425bb815Sopenharmony_ci { 219425bb815Sopenharmony_ci if (q1 == (unsigned) 0xfffffffe) 220425bb815Sopenharmony_ci { 221425bb815Sopenharmony_ci q += 1; 222425bb815Sopenharmony_ci } 223425bb815Sopenharmony_ci q1 += 2; 224425bb815Sopenharmony_ci } 225425bb815Sopenharmony_ci else 226425bb815Sopenharmony_ci { 227425bb815Sopenharmony_ci q1 += (q1 & 1); 228425bb815Sopenharmony_ci } 229425bb815Sopenharmony_ci } 230425bb815Sopenharmony_ci } 231425bb815Sopenharmony_ci ix0 = (q >> 1) + 0x3fe00000; 232425bb815Sopenharmony_ci ix1 = q1 >> 1; 233425bb815Sopenharmony_ci if ((q & 1) == 1) 234425bb815Sopenharmony_ci { 235425bb815Sopenharmony_ci ix1 |= sign; 236425bb815Sopenharmony_ci } 237425bb815Sopenharmony_ci ix0 += (m << 20); 238425bb815Sopenharmony_ci ret.as_int.hi = ix0; 239425bb815Sopenharmony_ci ret.as_int.lo = ix1; 240425bb815Sopenharmony_ci return ret.dbl; 241425bb815Sopenharmony_ci} /* sqrt */ 242425bb815Sopenharmony_ci 243425bb815Sopenharmony_ci#undef one 244425bb815Sopenharmony_ci#undef tiny 245425bb815Sopenharmony_ci 246425bb815Sopenharmony_ci/* 247425bb815Sopenharmony_ciOther methods (use floating-point arithmetic) 248425bb815Sopenharmony_ci------------- 249425bb815Sopenharmony_ci(This is a copy of a drafted paper by Prof W. Kahan 250425bb815Sopenharmony_ciand K.C. Ng, written in May, 1986) 251425bb815Sopenharmony_ci 252425bb815Sopenharmony_ci Two algorithms are given here to implement sqrt(x) 253425bb815Sopenharmony_ci (IEEE double precision arithmetic) in software. 254425bb815Sopenharmony_ci Both supply sqrt(x) correctly rounded. The first algorithm (in 255425bb815Sopenharmony_ci Section A) uses newton iterations and involves four divisions. 256425bb815Sopenharmony_ci The second one uses reciproot iterations to avoid division, but 257425bb815Sopenharmony_ci requires more multiplications. Both algorithms need the ability 258425bb815Sopenharmony_ci to chop results of arithmetic operations instead of round them, 259425bb815Sopenharmony_ci and the INEXACT flag to indicate when an arithmetic operation 260425bb815Sopenharmony_ci is executed exactly with no roundoff error, all part of the 261425bb815Sopenharmony_ci standard (IEEE 754-1985). The ability to perform shift, add, 262425bb815Sopenharmony_ci subtract and logical AND operations upon 32-bit words is needed 263425bb815Sopenharmony_ci too, though not part of the standard. 264425bb815Sopenharmony_ci 265425bb815Sopenharmony_ciA. sqrt(x) by Newton Iteration 266425bb815Sopenharmony_ci 267425bb815Sopenharmony_ci (1) Initial approximation 268425bb815Sopenharmony_ci 269425bb815Sopenharmony_ci Let x0 and x1 be the leading and the trailing 32-bit words of 270425bb815Sopenharmony_ci a floating point number x (in IEEE double format) respectively 271425bb815Sopenharmony_ci 272425bb815Sopenharmony_ci 1 11 52 ...widths 273425bb815Sopenharmony_ci ------------------------------------------------------ 274425bb815Sopenharmony_ci x: |s| e | f | 275425bb815Sopenharmony_ci ------------------------------------------------------ 276425bb815Sopenharmony_ci msb lsb msb lsb ...order 277425bb815Sopenharmony_ci 278425bb815Sopenharmony_ci ------------------------ ------------------------ 279425bb815Sopenharmony_ci x0: |s| e | f1 | x1: | f2 | 280425bb815Sopenharmony_ci ------------------------ ------------------------ 281425bb815Sopenharmony_ci 282425bb815Sopenharmony_ci By performing shifts and subtracts on x0 and x1 (both regarded 283425bb815Sopenharmony_ci as integers), we obtain an 8-bit approximation of sqrt(x) as 284425bb815Sopenharmony_ci follows. 285425bb815Sopenharmony_ci 286425bb815Sopenharmony_ci k := (x0>>1) + 0x1ff80000; 287425bb815Sopenharmony_ci y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits 288425bb815Sopenharmony_ci Here k is a 32-bit integer and T1[] is an integer array containing 289425bb815Sopenharmony_ci correction terms. Now magically the floating value of y (y's 290425bb815Sopenharmony_ci leading 32-bit word is y0, the value of its trailing word is 0) 291425bb815Sopenharmony_ci approximates sqrt(x) to almost 8-bit. 292425bb815Sopenharmony_ci 293425bb815Sopenharmony_ci Value of T1: 294425bb815Sopenharmony_ci static int T1[32]= { 295425bb815Sopenharmony_ci 0, 1024, 3062, 5746, 9193, 13348, 18162, 23592, 296425bb815Sopenharmony_ci 29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215, 297425bb815Sopenharmony_ci 83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581, 298425bb815Sopenharmony_ci 16499, 12183, 8588, 5674, 3403, 1742, 661, 130,}; 299425bb815Sopenharmony_ci 300425bb815Sopenharmony_ci (2) Iterative refinement 301425bb815Sopenharmony_ci 302425bb815Sopenharmony_ci Apply Heron's rule three times to y, we have y approximates 303425bb815Sopenharmony_ci sqrt(x) to within 1 ulp (Unit in the Last Place): 304425bb815Sopenharmony_ci 305425bb815Sopenharmony_ci y := (y+x/y)/2 ... almost 17 sig. bits 306425bb815Sopenharmony_ci y := (y+x/y)/2 ... almost 35 sig. bits 307425bb815Sopenharmony_ci y := y-(y-x/y)/2 ... within 1 ulp 308425bb815Sopenharmony_ci 309425bb815Sopenharmony_ci Remark 1. 310425bb815Sopenharmony_ci Another way to improve y to within 1 ulp is: 311425bb815Sopenharmony_ci 312425bb815Sopenharmony_ci y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x) 313425bb815Sopenharmony_ci y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x) 314425bb815Sopenharmony_ci 315425bb815Sopenharmony_ci 2 316425bb815Sopenharmony_ci (x-y )*y 317425bb815Sopenharmony_ci y := y + 2* ---------- ...within 1 ulp 318425bb815Sopenharmony_ci 2 319425bb815Sopenharmony_ci 3y + x 320425bb815Sopenharmony_ci 321425bb815Sopenharmony_ci This formula has one division fewer than the one above; however, 322425bb815Sopenharmony_ci it requires more multiplications and additions. Also x must be 323425bb815Sopenharmony_ci scaled in advance to avoid spurious overflow in evaluating the 324425bb815Sopenharmony_ci expression 3y*y+x. Hence it is not recommended uless division 325425bb815Sopenharmony_ci is slow. If division is very slow, then one should use the 326425bb815Sopenharmony_ci reciproot algorithm given in section B. 327425bb815Sopenharmony_ci 328425bb815Sopenharmony_ci (3) Final adjustment 329425bb815Sopenharmony_ci 330425bb815Sopenharmony_ci By twiddling y's last bit it is possible to force y to be 331425bb815Sopenharmony_ci correctly rounded according to the prevailing rounding mode 332425bb815Sopenharmony_ci as follows. Let r and i be copies of the rounding mode and 333425bb815Sopenharmony_ci inexact flag before entering the square root program. Also we 334425bb815Sopenharmony_ci use the expression y+-ulp for the next representable floating 335425bb815Sopenharmony_ci numbers (up and down) of y. Note that y+-ulp = either fixed 336425bb815Sopenharmony_ci point y+-1, or multiply y by nextafter(1,+-inf) in chopped 337425bb815Sopenharmony_ci mode. 338425bb815Sopenharmony_ci 339425bb815Sopenharmony_ci I := FALSE; ... reset INEXACT flag I 340425bb815Sopenharmony_ci R := RZ; ... set rounding mode to round-toward-zero 341425bb815Sopenharmony_ci z := x/y; ... chopped quotient, possibly inexact 342425bb815Sopenharmony_ci If(not I) then { ... if the quotient is exact 343425bb815Sopenharmony_ci if(z=y) { 344425bb815Sopenharmony_ci I := i; ... restore inexact flag 345425bb815Sopenharmony_ci R := r; ... restore rounded mode 346425bb815Sopenharmony_ci return sqrt(x):=y. 347425bb815Sopenharmony_ci } else { 348425bb815Sopenharmony_ci z := z - ulp; ... special rounding 349425bb815Sopenharmony_ci } 350425bb815Sopenharmony_ci } 351425bb815Sopenharmony_ci i := TRUE; ... sqrt(x) is inexact 352425bb815Sopenharmony_ci If (r=RN) then z=z+ulp ... rounded-to-nearest 353425bb815Sopenharmony_ci If (r=RP) then { ... round-toward-+inf 354425bb815Sopenharmony_ci y = y+ulp; z=z+ulp; 355425bb815Sopenharmony_ci } 356425bb815Sopenharmony_ci y := y+z; ... chopped sum 357425bb815Sopenharmony_ci y0:=y0-0x00100000; ... y := y/2 is correctly rounded. 358425bb815Sopenharmony_ci I := i; ... restore inexact flag 359425bb815Sopenharmony_ci R := r; ... restore rounded mode 360425bb815Sopenharmony_ci return sqrt(x):=y. 361425bb815Sopenharmony_ci 362425bb815Sopenharmony_ci (4) Special cases 363425bb815Sopenharmony_ci 364425bb815Sopenharmony_ci Square root of +inf, +-0, or NaN is itself; 365425bb815Sopenharmony_ci Square root of a negative number is NaN with invalid signal. 366425bb815Sopenharmony_ci 367425bb815Sopenharmony_ciB. sqrt(x) by Reciproot Iteration 368425bb815Sopenharmony_ci 369425bb815Sopenharmony_ci (1) Initial approximation 370425bb815Sopenharmony_ci 371425bb815Sopenharmony_ci Let x0 and x1 be the leading and the trailing 32-bit words of 372425bb815Sopenharmony_ci a floating point number x (in IEEE double format) respectively 373425bb815Sopenharmony_ci (see section A). By performing shifs and subtracts on x0 and y0, 374425bb815Sopenharmony_ci we obtain a 7.8-bit approximation of 1/sqrt(x) as follows. 375425bb815Sopenharmony_ci 376425bb815Sopenharmony_ci k := 0x5fe80000 - (x0>>1); 377425bb815Sopenharmony_ci y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits 378425bb815Sopenharmony_ci 379425bb815Sopenharmony_ci Here k is a 32-bit integer and T2[] is an integer array 380425bb815Sopenharmony_ci containing correction terms. Now magically the floating 381425bb815Sopenharmony_ci value of y (y's leading 32-bit word is y0, the value of 382425bb815Sopenharmony_ci its trailing word y1 is set to zero) approximates 1/sqrt(x) 383425bb815Sopenharmony_ci to almost 7.8-bit. 384425bb815Sopenharmony_ci 385425bb815Sopenharmony_ci Value of T2: 386425bb815Sopenharmony_ci static int T2[64]= { 387425bb815Sopenharmony_ci 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866, 388425bb815Sopenharmony_ci 0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f, 389425bb815Sopenharmony_ci 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d, 390425bb815Sopenharmony_ci 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0, 391425bb815Sopenharmony_ci 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989, 392425bb815Sopenharmony_ci 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd, 393425bb815Sopenharmony_ci 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e, 394425bb815Sopenharmony_ci 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,}; 395425bb815Sopenharmony_ci 396425bb815Sopenharmony_ci (2) Iterative refinement 397425bb815Sopenharmony_ci 398425bb815Sopenharmony_ci Apply Reciproot iteration three times to y and multiply the 399425bb815Sopenharmony_ci result by x to get an approximation z that matches sqrt(x) 400425bb815Sopenharmony_ci to about 1 ulp. To be exact, we will have 401425bb815Sopenharmony_ci -1ulp < sqrt(x)-z<1.0625ulp. 402425bb815Sopenharmony_ci 403425bb815Sopenharmony_ci ... set rounding mode to Round-to-nearest 404425bb815Sopenharmony_ci y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x) 405425bb815Sopenharmony_ci y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x) 406425bb815Sopenharmony_ci ... special arrangement for better accuracy 407425bb815Sopenharmony_ci z := x*y ... 29 bits to sqrt(x), with z*y<1 408425bb815Sopenharmony_ci z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x) 409425bb815Sopenharmony_ci 410425bb815Sopenharmony_ci Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that 411425bb815Sopenharmony_ci (a) the term z*y in the final iteration is always less than 1; 412425bb815Sopenharmony_ci (b) the error in the final result is biased upward so that 413425bb815Sopenharmony_ci -1 ulp < sqrt(x) - z < 1.0625 ulp 414425bb815Sopenharmony_ci instead of |sqrt(x)-z|<1.03125ulp. 415425bb815Sopenharmony_ci 416425bb815Sopenharmony_ci (3) Final adjustment 417425bb815Sopenharmony_ci 418425bb815Sopenharmony_ci By twiddling y's last bit it is possible to force y to be 419425bb815Sopenharmony_ci correctly rounded according to the prevailing rounding mode 420425bb815Sopenharmony_ci as follows. Let r and i be copies of the rounding mode and 421425bb815Sopenharmony_ci inexact flag before entering the square root program. Also we 422425bb815Sopenharmony_ci use the expression y+-ulp for the next representable floating 423425bb815Sopenharmony_ci numbers (up and down) of y. Note that y+-ulp = either fixed 424425bb815Sopenharmony_ci point y+-1, or multiply y by nextafter(1,+-inf) in chopped 425425bb815Sopenharmony_ci mode. 426425bb815Sopenharmony_ci 427425bb815Sopenharmony_ci R := RZ; ... set rounding mode to round-toward-zero 428425bb815Sopenharmony_ci switch(r) { 429425bb815Sopenharmony_ci case RN: ... round-to-nearest 430425bb815Sopenharmony_ci if(x<= z*(z-ulp)...chopped) z = z - ulp; else 431425bb815Sopenharmony_ci if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp; 432425bb815Sopenharmony_ci break; 433425bb815Sopenharmony_ci case RZ:case RM: ... round-to-zero or round-to--inf 434425bb815Sopenharmony_ci R:=RP; ... reset rounding mod to round-to-+inf 435425bb815Sopenharmony_ci if(x<z*z ... rounded up) z = z - ulp; else 436425bb815Sopenharmony_ci if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp; 437425bb815Sopenharmony_ci break; 438425bb815Sopenharmony_ci case RP: ... round-to-+inf 439425bb815Sopenharmony_ci if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else 440425bb815Sopenharmony_ci if(x>z*z ...chopped) z = z+ulp; 441425bb815Sopenharmony_ci break; 442425bb815Sopenharmony_ci } 443425bb815Sopenharmony_ci 444425bb815Sopenharmony_ci Remark 3. The above comparisons can be done in fixed point. For 445425bb815Sopenharmony_ci example, to compare x and w=z*z chopped, it suffices to compare 446425bb815Sopenharmony_ci x1 and w1 (the trailing parts of x and w), regarding them as 447425bb815Sopenharmony_ci two's complement integers. 448425bb815Sopenharmony_ci 449425bb815Sopenharmony_ci ...Is z an exact square root? 450425bb815Sopenharmony_ci To determine whether z is an exact square root of x, let z1 be the 451425bb815Sopenharmony_ci trailing part of z, and also let x0 and x1 be the leading and 452425bb815Sopenharmony_ci trailing parts of x. 453425bb815Sopenharmony_ci 454425bb815Sopenharmony_ci If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0 455425bb815Sopenharmony_ci I := 1; ... Raise Inexact flag: z is not exact 456425bb815Sopenharmony_ci else { 457425bb815Sopenharmony_ci j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2 458425bb815Sopenharmony_ci k := z1 >> 26; ... get z's 25-th and 26-th 459425bb815Sopenharmony_ci fraction bits 460425bb815Sopenharmony_ci I := i or (k&j) or ((k&(j+j+1))!=(x1&3)); 461425bb815Sopenharmony_ci } 462425bb815Sopenharmony_ci R:= r ... restore rounded mode 463425bb815Sopenharmony_ci return sqrt(x):=z. 464425bb815Sopenharmony_ci 465425bb815Sopenharmony_ci If multiplication is cheaper then the foregoing red tape, the 466425bb815Sopenharmony_ci Inexact flag can be evaluated by 467425bb815Sopenharmony_ci 468425bb815Sopenharmony_ci I := i; 469425bb815Sopenharmony_ci I := (z*z!=x) or I. 470425bb815Sopenharmony_ci 471425bb815Sopenharmony_ci Note that z*z can overwrite I; this value must be sensed if it is 472425bb815Sopenharmony_ci True. 473425bb815Sopenharmony_ci 474425bb815Sopenharmony_ci Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be 475425bb815Sopenharmony_ci zero. 476425bb815Sopenharmony_ci 477425bb815Sopenharmony_ci -------------------- 478425bb815Sopenharmony_ci z1: | f2 | 479425bb815Sopenharmony_ci -------------------- 480425bb815Sopenharmony_ci bit 31 bit 0 481425bb815Sopenharmony_ci 482425bb815Sopenharmony_ci Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd 483425bb815Sopenharmony_ci or even of logb(x) have the following relations: 484425bb815Sopenharmony_ci 485425bb815Sopenharmony_ci ------------------------------------------------- 486425bb815Sopenharmony_ci bit 27,26 of z1 bit 1,0 of x1 logb(x) 487425bb815Sopenharmony_ci ------------------------------------------------- 488425bb815Sopenharmony_ci 00 00 odd and even 489425bb815Sopenharmony_ci 01 01 even 490425bb815Sopenharmony_ci 10 10 odd 491425bb815Sopenharmony_ci 10 00 even 492425bb815Sopenharmony_ci 11 01 even 493425bb815Sopenharmony_ci ------------------------------------------------- 494425bb815Sopenharmony_ci 495425bb815Sopenharmony_ci (4) Special cases (see (4) of Section A). 496425bb815Sopenharmony_ci */ 497