1425bb815Sopenharmony_ci/* Copyright JS Foundation and other contributors, http://js.foundation
2425bb815Sopenharmony_ci *
3425bb815Sopenharmony_ci * Licensed under the Apache License, Version 2.0 (the "License");
4425bb815Sopenharmony_ci * you may not use this file except in compliance with the License.
5425bb815Sopenharmony_ci * You may obtain a copy of the License at
6425bb815Sopenharmony_ci *
7425bb815Sopenharmony_ci *     http://www.apache.org/licenses/LICENSE-2.0
8425bb815Sopenharmony_ci *
9425bb815Sopenharmony_ci * Unless required by applicable law or agreed to in writing, software
10425bb815Sopenharmony_ci * distributed under the License is distributed on an "AS IS" BASIS
11425bb815Sopenharmony_ci * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12425bb815Sopenharmony_ci * See the License for the specific language governing permissions and
13425bb815Sopenharmony_ci * limitations under the License.
14425bb815Sopenharmony_ci *
15425bb815Sopenharmony_ci * This file is based on work under the following copyright and permission
16425bb815Sopenharmony_ci * notice:
17425bb815Sopenharmony_ci *
18425bb815Sopenharmony_ci *     Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
19425bb815Sopenharmony_ci *
20425bb815Sopenharmony_ci *     Permission to use, copy, modify, and distribute this
21425bb815Sopenharmony_ci *     software is freely granted, provided that this notice
22425bb815Sopenharmony_ci *     is preserved.
23425bb815Sopenharmony_ci *
24425bb815Sopenharmony_ci *     @(#)s_log1p.c 5.1 93/09/24
25425bb815Sopenharmony_ci */
26425bb815Sopenharmony_ci
27425bb815Sopenharmony_ci#include "jerry-libm-internal.h"
28425bb815Sopenharmony_ci
29425bb815Sopenharmony_ci/* log1p(x)
30425bb815Sopenharmony_ci * Method :
31425bb815Sopenharmony_ci *   1. Argument Reduction: find k and f such that
32425bb815Sopenharmony_ci *      1+x = 2^k * (1+f),
33425bb815Sopenharmony_ci *     where  sqrt(2)/2 < 1+f < sqrt(2) .
34425bb815Sopenharmony_ci *
35425bb815Sopenharmony_ci *      Note. If k=0, then f=x is exact. However, if k!=0, then f
36425bb815Sopenharmony_ci *  may not be representable exactly. In that case, a correction
37425bb815Sopenharmony_ci *  term is need. Let u=1+x rounded. Let c = (1+x)-u, then
38425bb815Sopenharmony_ci *  log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
39425bb815Sopenharmony_ci *  and add back the correction term c/u.
40425bb815Sopenharmony_ci *  (Note: when x > 2**53, one can simply return log(x))
41425bb815Sopenharmony_ci *
42425bb815Sopenharmony_ci *   2. Approximation of log1p(f).
43425bb815Sopenharmony_ci *  Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
44425bb815Sopenharmony_ci *     = 2s + 2/3 s**3 + 2/5 s**5 + .....,
45425bb815Sopenharmony_ci *          = 2s + s*R
46425bb815Sopenharmony_ci *      We use a special Reme algorithm on [0,0.1716] to generate
47425bb815Sopenharmony_ci *   a polynomial of degree 14 to approximate R The maximum error
48425bb815Sopenharmony_ci *  of this polynomial approximation is bounded by 2**-58.45. In
49425bb815Sopenharmony_ci *  other words,
50425bb815Sopenharmony_ci *            2      4      6      8      10      12      14
51425bb815Sopenharmony_ci *      R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
52425bb815Sopenharmony_ci *    (the values of Lp1 to Lp7 are listed in the program)
53425bb815Sopenharmony_ci *  and
54425bb815Sopenharmony_ci *      |      2          14          |     -58.45
55425bb815Sopenharmony_ci *      | Lp1*s +...+Lp7*s    -  R(z) | <= 2
56425bb815Sopenharmony_ci *      |                             |
57425bb815Sopenharmony_ci *  Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
58425bb815Sopenharmony_ci *  In order to guarantee error in log below 1ulp, we compute log
59425bb815Sopenharmony_ci *  by
60425bb815Sopenharmony_ci *    log1p(f) = f - (hfsq - s*(hfsq+R)).
61425bb815Sopenharmony_ci *
62425bb815Sopenharmony_ci *  3. Finally, log1p(x) = k*ln2 + log1p(f).
63425bb815Sopenharmony_ci *            = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
64425bb815Sopenharmony_ci *     Here ln2 is split into two floating point number:
65425bb815Sopenharmony_ci *      ln2_hi + ln2_lo,
66425bb815Sopenharmony_ci *     where n*ln2_hi is always exact for |n| < 2000.
67425bb815Sopenharmony_ci *
68425bb815Sopenharmony_ci * Special cases:
69425bb815Sopenharmony_ci *  log1p(x) is NaN with signal if x < -1 (including -INF) ;
70425bb815Sopenharmony_ci *  log1p(+INF) is +INF; log1p(-1) is -INF with signal;
71425bb815Sopenharmony_ci *  log1p(NaN) is that NaN with no signal.
72425bb815Sopenharmony_ci *
73425bb815Sopenharmony_ci * Accuracy:
74425bb815Sopenharmony_ci *  according to an error analysis, the error is always less than
75425bb815Sopenharmony_ci *  1 ulp (unit in the last place).
76425bb815Sopenharmony_ci *
77425bb815Sopenharmony_ci * Constants:
78425bb815Sopenharmony_ci * The hexadecimal values are the intended ones for the following
79425bb815Sopenharmony_ci * constants. The decimal values may be used, provided that the
80425bb815Sopenharmony_ci * compiler will convert from decimal to binary accurately enough
81425bb815Sopenharmony_ci * to produce the hexadecimal values shown.
82425bb815Sopenharmony_ci *
83425bb815Sopenharmony_ci * Note: Assuming log() return accurate answer, the following
84425bb815Sopenharmony_ci *    algorithm can be used to compute log1p(x) to within a few ULP:
85425bb815Sopenharmony_ci *
86425bb815Sopenharmony_ci *    u = 1+x;
87425bb815Sopenharmony_ci *    if(u==1.0) return x ; else
88425bb815Sopenharmony_ci *         return log(u)*(x/(u-1.0));
89425bb815Sopenharmony_ci *
90425bb815Sopenharmony_ci *   See HP-15C Advanced Functions Handbook, p.193.
91425bb815Sopenharmony_ci */
92425bb815Sopenharmony_ci
93425bb815Sopenharmony_ci#define zero 0.0
94425bb815Sopenharmony_ci#define ln2_hi 6.93147180369123816490e-01 /* 3fe62e42 fee00000 */
95425bb815Sopenharmony_ci#define ln2_lo 1.90821492927058770002e-10 /* 3dea39ef 35793c76 */
96425bb815Sopenharmony_ci#define two54 1.80143985094819840000e+16  /* 43500000 00000000 */
97425bb815Sopenharmony_ci#define Lp1 6.666666666666735130e-01      /* 3FE55555 55555593 */
98425bb815Sopenharmony_ci#define Lp2 3.999999999940941908e-01      /* 3FD99999 9997FA04 */
99425bb815Sopenharmony_ci#define Lp3 2.857142874366239149e-01      /* 3FD24924 94229359 */
100425bb815Sopenharmony_ci#define Lp4 2.222219843214978396e-01      /* 3FCC71C5 1D8E78AF */
101425bb815Sopenharmony_ci#define Lp5 1.818357216161805012e-01      /* 3FC74664 96CB03DE */
102425bb815Sopenharmony_ci#define Lp6 1.531383769920937332e-01      /* 3FC39A09 D078C69F */
103425bb815Sopenharmony_ci#define Lp7 1.479819860511658591e-01      /* 3FC2F112 DF3E5244 */
104425bb815Sopenharmony_ci
105425bb815Sopenharmony_cidouble
106425bb815Sopenharmony_cilog1p (double x)
107425bb815Sopenharmony_ci{
108425bb815Sopenharmony_ci  double hfsq, f, c, s, z, R;
109425bb815Sopenharmony_ci  double_accessor u;
110425bb815Sopenharmony_ci  int k, hx, hu, ax;
111425bb815Sopenharmony_ci
112425bb815Sopenharmony_ci  hx = __HI (x);
113425bb815Sopenharmony_ci  ax = hx & 0x7fffffff;
114425bb815Sopenharmony_ci  c = 0;
115425bb815Sopenharmony_ci  k = 1;
116425bb815Sopenharmony_ci  if (hx < 0x3FDA827A)
117425bb815Sopenharmony_ci  {
118425bb815Sopenharmony_ci    /* 1+x < sqrt(2)+ */
119425bb815Sopenharmony_ci    if (ax >= 0x3ff00000)
120425bb815Sopenharmony_ci    {
121425bb815Sopenharmony_ci      /* x <= -1.0 */
122425bb815Sopenharmony_ci      if (x == -1.0)
123425bb815Sopenharmony_ci      {
124425bb815Sopenharmony_ci        /* log1p(-1) = +inf */
125425bb815Sopenharmony_ci        return -two54 / zero;
126425bb815Sopenharmony_ci      }
127425bb815Sopenharmony_ci      else
128425bb815Sopenharmony_ci      {
129425bb815Sopenharmony_ci        /* log1p(x<-1) = NaN */
130425bb815Sopenharmony_ci        return NAN;
131425bb815Sopenharmony_ci      }
132425bb815Sopenharmony_ci    }
133425bb815Sopenharmony_ci    if (ax < 0x3e200000)
134425bb815Sopenharmony_ci    {                         /* |x| < 2**-29 */
135425bb815Sopenharmony_ci      if ((two54 + x > zero)    /* raise inexact */
136425bb815Sopenharmony_ci          && (ax < 0x3c900000)) /* |x| < 2**-54 */
137425bb815Sopenharmony_ci      {
138425bb815Sopenharmony_ci        return x;
139425bb815Sopenharmony_ci      }
140425bb815Sopenharmony_ci      else
141425bb815Sopenharmony_ci      {
142425bb815Sopenharmony_ci        return x - x * x * 0.5;
143425bb815Sopenharmony_ci      }
144425bb815Sopenharmony_ci    }
145425bb815Sopenharmony_ci    if ((hx > 0) || hx <= ((int) 0xbfd2bec4))
146425bb815Sopenharmony_ci    {
147425bb815Sopenharmony_ci      /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
148425bb815Sopenharmony_ci      k = 0;
149425bb815Sopenharmony_ci      f = x;
150425bb815Sopenharmony_ci      hu = 1;
151425bb815Sopenharmony_ci    }
152425bb815Sopenharmony_ci  }
153425bb815Sopenharmony_ci  if (hx >= 0x7ff00000)
154425bb815Sopenharmony_ci  {
155425bb815Sopenharmony_ci    return x + x;
156425bb815Sopenharmony_ci  }
157425bb815Sopenharmony_ci  if (k != 0)
158425bb815Sopenharmony_ci  {
159425bb815Sopenharmony_ci    if (hx < 0x43400000)
160425bb815Sopenharmony_ci    {
161425bb815Sopenharmony_ci      u.dbl = 1.0 + x;
162425bb815Sopenharmony_ci      hu = u.as_int.hi;
163425bb815Sopenharmony_ci      k = (hu >> 20) - 1023;
164425bb815Sopenharmony_ci      c = (k > 0) ? 1.0 - (u.dbl - x) : x - (u.dbl - 1.0); /* correction term */
165425bb815Sopenharmony_ci      c /= u.dbl;
166425bb815Sopenharmony_ci    }
167425bb815Sopenharmony_ci    else
168425bb815Sopenharmony_ci    {
169425bb815Sopenharmony_ci      u.dbl = x;
170425bb815Sopenharmony_ci      hu = u.as_int.hi;
171425bb815Sopenharmony_ci      k = (hu >> 20) - 1023;
172425bb815Sopenharmony_ci      c = 0;
173425bb815Sopenharmony_ci    }
174425bb815Sopenharmony_ci    hu &= 0x000fffff;
175425bb815Sopenharmony_ci    /*
176425bb815Sopenharmony_ci     * The approximation to sqrt(2) used in thresholds is not
177425bb815Sopenharmony_ci     * critical.  However, the ones used above must give less
178425bb815Sopenharmony_ci     * strict bounds than the one here so that the k==0 case is
179425bb815Sopenharmony_ci     * never reached from here, since here we have committed to
180425bb815Sopenharmony_ci     * using the correction term but don't use it if k==0.
181425bb815Sopenharmony_ci     */
182425bb815Sopenharmony_ci    if (hu < 0x6a09e)
183425bb815Sopenharmony_ci    {
184425bb815Sopenharmony_ci      /* u ~< sqrt(2) */
185425bb815Sopenharmony_ci      u.as_int.hi = hu | 0x3ff00000; /* normalize u */
186425bb815Sopenharmony_ci    }
187425bb815Sopenharmony_ci    else
188425bb815Sopenharmony_ci    {
189425bb815Sopenharmony_ci      k += 1;
190425bb815Sopenharmony_ci      u.as_int.hi = hu | 0x3fe00000; /* normalize u/2 */
191425bb815Sopenharmony_ci      hu = (0x00100000 - hu) >> 2;
192425bb815Sopenharmony_ci    }
193425bb815Sopenharmony_ci    f = u.dbl - 1.0;
194425bb815Sopenharmony_ci  }
195425bb815Sopenharmony_ci  hfsq = 0.5 * f * f;
196425bb815Sopenharmony_ci  if (hu == 0)
197425bb815Sopenharmony_ci  {
198425bb815Sopenharmony_ci    /* |f| < 2**-20 */
199425bb815Sopenharmony_ci    if (f == zero)
200425bb815Sopenharmony_ci    {
201425bb815Sopenharmony_ci      if (k == 0)
202425bb815Sopenharmony_ci      {
203425bb815Sopenharmony_ci        return zero;
204425bb815Sopenharmony_ci      }
205425bb815Sopenharmony_ci      else
206425bb815Sopenharmony_ci      {
207425bb815Sopenharmony_ci        c += k * ln2_lo;
208425bb815Sopenharmony_ci        return k * ln2_hi + c;
209425bb815Sopenharmony_ci      }
210425bb815Sopenharmony_ci    }
211425bb815Sopenharmony_ci    R = hfsq * (1.0 - 0.66666666666666666 * f);
212425bb815Sopenharmony_ci    if (k == 0)
213425bb815Sopenharmony_ci    {
214425bb815Sopenharmony_ci      return f - R;
215425bb815Sopenharmony_ci    }
216425bb815Sopenharmony_ci    else
217425bb815Sopenharmony_ci    {
218425bb815Sopenharmony_ci      return k * ln2_hi - ((R - (k * ln2_lo + c)) - f);
219425bb815Sopenharmony_ci    }
220425bb815Sopenharmony_ci  }
221425bb815Sopenharmony_ci  s = f / (2.0 + f);
222425bb815Sopenharmony_ci  z = s * s;
223425bb815Sopenharmony_ci  R = z * (Lp1 +
224425bb815Sopenharmony_ci           z * (Lp2 + z * (Lp3 + z * (Lp4 + z * (Lp5 + z * (Lp6 + z * Lp7))))));
225425bb815Sopenharmony_ci  if (k == 0)
226425bb815Sopenharmony_ci  {
227425bb815Sopenharmony_ci    return f - (hfsq - s * (hfsq + R));
228425bb815Sopenharmony_ci  }
229425bb815Sopenharmony_ci  else
230425bb815Sopenharmony_ci  {
231425bb815Sopenharmony_ci    return k * ln2_hi - ((hfsq - (s * (hfsq + R) + (k * ln2_lo + c))) - f);
232425bb815Sopenharmony_ci  }
233425bb815Sopenharmony_ci} /* log1p */
234425bb815Sopenharmony_ci
235425bb815Sopenharmony_ci#undef zero
236425bb815Sopenharmony_ci#undef ln2_hi
237425bb815Sopenharmony_ci#undef ln2_lo
238425bb815Sopenharmony_ci#undef two54
239425bb815Sopenharmony_ci#undef Lp1
240425bb815Sopenharmony_ci#undef Lp2
241425bb815Sopenharmony_ci#undef Lp3
242425bb815Sopenharmony_ci#undef Lp4
243425bb815Sopenharmony_ci#undef Lp5
244425bb815Sopenharmony_ci#undef Lp6
245425bb815Sopenharmony_ci#undef Lp7
246