1/* Copyright JS Foundation and other contributors, http://js.foundation 2 * 3 * Licensed under the Apache License, Version 2.0 (the "License"); 4 * you may not use this file except in compliance with the License. 5 * You may obtain a copy of the License at 6 * 7 * http://www.apache.org/licenses/LICENSE-2.0 8 * 9 * Unless required by applicable law or agreed to in writing, software 10 * distributed under the License is distributed on an "AS IS" BASIS 11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 * See the License for the specific language governing permissions and 13 * limitations under the License. 14 * 15 * This file is based on work under the following copyright and permission 16 * notice: 17 * 18 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 19 * 20 * Developed at SunSoft, a Sun Microsystems, Inc. business. 21 * Permission to use, copy, modify, and distribute this 22 * software is freely granted, provided that this notice 23 * is preserved. 24 * 25 * @(#)e_log.c 1.3 95/01/18 26 */ 27 28#include "jerry-libm-internal.h" 29 30/* log(x) 31 * Return the logrithm of x 32 * 33 * Method : 34 * 1. Argument Reduction: find k and f such that 35 * x = 2^k * (1+f), 36 * where sqrt(2)/2 < 1+f < sqrt(2) . 37 * 38 * 2. Approximation of log(1+f). 39 * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) 40 * = 2s + 2/3 s**3 + 2/5 s**5 + ....., 41 * = 2s + s*R 42 * We use a special Reme algorithm on [0,0.1716] to generate 43 * a polynomial of degree 14 to approximate R The maximum error 44 * of this polynomial approximation is bounded by 2**-58.45. In 45 * other words, 46 * 2 4 6 8 10 12 14 47 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s 48 * (the values of Lg1 to Lg7 are listed in the program) 49 * and 50 * | 2 14 | -58.45 51 * | Lg1*s +...+Lg7*s - R(z) | <= 2 52 * | | 53 * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. 54 * In order to guarantee error in log below 1ulp, we compute log 55 * by 56 * log(1+f) = f - s*(f - R) (if f is not too large) 57 * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) 58 * 59 * 3. Finally, log(x) = k*ln2 + log(1+f). 60 * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) 61 * Here ln2 is split into two floating point number: 62 * ln2_hi + ln2_lo, 63 * where n*ln2_hi is always exact for |n| < 2000. 64 * 65 * Special cases: 66 * log(x) is NaN with signal if x < 0 (including -INF) ; 67 * log(+INF) is +INF; log(0) is -INF with signal; 68 * log(NaN) is that NaN with no signal. 69 * 70 * Accuracy: 71 * according to an error analysis, the error is always less than 72 * 1 ulp (unit in the last place). 73 * 74 * Constants: 75 * The hexadecimal values are the intended ones for the following 76 * constants. The decimal values may be used, provided that the 77 * compiler will convert from decimal to binary accurately enough 78 * to produce the hexadecimal values shown. 79 */ 80 81#define zero 0.0 82#define ln2_hi 6.93147180369123816490e-01 /* 3fe62e42 fee00000 */ 83#define ln2_lo 1.90821492927058770002e-10 /* 3dea39ef 35793c76 */ 84#define two54 1.80143985094819840000e+16 /* 43500000 00000000 */ 85#define Lg1 6.666666666666735130e-01 /* 3FE55555 55555593 */ 86#define Lg2 3.999999999940941908e-01 /* 3FD99999 9997FA04 */ 87#define Lg3 2.857142874366239149e-01 /* 3FD24924 94229359 */ 88#define Lg4 2.222219843214978396e-01 /* 3FCC71C5 1D8E78AF */ 89#define Lg5 1.818357216161805012e-01 /* 3FC74664 96CB03DE */ 90#define Lg6 1.531383769920937332e-01 /* 3FC39A09 D078C69F */ 91#define Lg7 1.479819860511658591e-01 /* 3FC2F112 DF3E5244 */ 92 93double 94log (double x) 95{ 96 double hfsq, f, s, z, R, w, t1, t2, dk; 97 int k, hx, i, j; 98 unsigned lx; 99 100 hx = __HI (x); /* high word of x */ 101 lx = __LO (x); /* low word of x */ 102 103 k = 0; 104 if (hx < 0x00100000) /* x < 2**-1022 */ 105 { 106 if (((hx & 0x7fffffff) | lx) == 0) /* log(+-0) = -inf */ 107 { 108 return -two54 / zero; 109 } 110 if (hx < 0) /* log(-#) = NaN */ 111 { 112 return (x - x) / zero; 113 } 114 k -= 54; 115 x *= two54; /* subnormal number, scale up x */ 116 hx = __HI (x); /* high word of x */ 117 } 118 if (hx >= 0x7ff00000) 119 { 120 return x + x; 121 } 122 k += (hx >> 20) - 1023; 123 hx &= 0x000fffff; 124 i = (hx + 0x95f64) & 0x100000; 125 126 double_accessor temp; 127 temp.dbl = x; 128 temp.as_int.hi = hx | (i ^ 0x3ff00000); /* normalize x or x / 2 */ 129 k += (i >> 20); 130 f = temp.dbl - 1.0; 131 132 if ((0x000fffff & (2 + hx)) < 3) /* |f| < 2**-20 */ 133 { 134 if (f == zero) 135 { 136 if (k == 0) 137 { 138 return zero; 139 } 140 else 141 { 142 dk = (double) k; 143 return dk * ln2_hi + dk * ln2_lo; 144 } 145 } 146 R = f * f * (0.5 - 0.33333333333333333 * f); 147 if (k == 0) 148 { 149 return f - R; 150 } 151 else 152 { 153 dk = (double) k; 154 return dk * ln2_hi - ((R - dk * ln2_lo) - f); 155 } 156 } 157 s = f / (2.0 + f); 158 dk = (double) k; 159 z = s * s; 160 i = hx - 0x6147a; 161 w = z * z; 162 j = 0x6b851 - hx; 163 t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); 164 t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); 165 i |= j; 166 R = t2 + t1; 167 if (i > 0) 168 { 169 hfsq = 0.5 * f * f; 170 if (k == 0) 171 { 172 return f - (hfsq - s * (hfsq + R)); 173 } 174 else 175 { 176 return dk * ln2_hi - ((hfsq - (s * (hfsq + R) + dk * ln2_lo)) - f); 177 } 178 } 179 else 180 { 181 if (k == 0) 182 { 183 return f - s * (f - R); 184 } 185 else 186 { 187 return dk * ln2_hi - ((s * (f - R) - dk * ln2_lo) - f); 188 } 189 } 190} /* log */ 191 192#undef zero 193#undef ln2_hi 194#undef ln2_lo 195#undef two54 196#undef Lg1 197#undef Lg2 198#undef Lg3 199#undef Lg4 200#undef Lg5 201#undef Lg6 202#undef Lg7 203