1/* Copyright JS Foundation and other contributors, http://js.foundation 2 * 3 * Licensed under the Apache License, Version 2.0 (the "License"); 4 * you may not use this file except in compliance with the License. 5 * You may obtain a copy of the License at 6 * 7 * http://www.apache.org/licenses/LICENSE-2.0 8 * 9 * Unless required by applicable law or agreed to in writing, software 10 * distributed under the License is distributed on an "AS IS" BASIS 11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 * See the License for the specific language governing permissions and 13 * limitations under the License. 14 * 15 * This file is based on work under the following copyright and permission 16 * notice: 17 * 18 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 19 * 20 * Permission to use, copy, modify, and distribute this 21 * software is freely granted, provided that this notice 22 * is preserved. 23 * 24 * @(#)s_expm1.c 5.1 93/09/24 25 */ 26 27#include "jerry-libm-internal.h" 28 29/* expm1(x) 30 * Returns exp(x)-1, the exponential of x minus 1. 31 * 32 * Method 33 * 1. Argument reduction: 34 * Given x, find r and integer k such that 35 * 36 * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 37 * 38 * Here a correction term c will be computed to compensate 39 * the error in r when rounded to a floating-point number. 40 * 41 * 2. Approximating expm1(r) by a special rational function on 42 * the interval [0,0.34658]: 43 * Since 44 * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... 45 * we define R1(r*r) by 46 * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) 47 * That is, 48 * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) 49 * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) 50 * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... 51 * We use a special Reme algorithm on [0,0.347] to generate 52 * a polynomial of degree 5 in r*r to approximate R1. The 53 * maximum error of this polynomial approximation is bounded 54 * by 2**-61. In other words, 55 * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 56 * where Q1 = -1.6666666666666567384E-2, 57 * Q2 = 3.9682539681370365873E-4, 58 * Q3 = -9.9206344733435987357E-6, 59 * Q4 = 2.5051361420808517002E-7, 60 * Q5 = -6.2843505682382617102E-9; 61 * z = r*r, 62 * with error bounded by 63 * | 5 | -61 64 * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2 65 * | | 66 * 67 * expm1(r) = exp(r)-1 is then computed by the following 68 * specific way which minimize the accumulation rounding error: 69 * 2 3 70 * r r [ 3 - (R1 + R1*r/2) ] 71 * expm1(r) = r + --- + --- * [--------------------] 72 * 2 2 [ 6 - r*(3 - R1*r/2) ] 73 * 74 * To compensate the error in the argument reduction, we use 75 * expm1(r+c) = expm1(r) + c + expm1(r)*c 76 * ~ expm1(r) + c + r*c 77 * Thus c+r*c will be added in as the correction terms for 78 * expm1(r+c). Now rearrange the term to avoid optimization 79 * screw up: 80 * ( 2 2 ) 81 * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) 82 * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) 83 * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 ) 84 * ( ) 85 * 86 * = r - E 87 * 3. Scale back to obtain expm1(x): 88 * From step 1, we have 89 * expm1(x) = either 2^k*[expm1(r)+1] - 1 90 * = or 2^k*[expm1(r) + (1-2^-k)] 91 * 4. Implementation notes: 92 * (A). To save one multiplication, we scale the coefficient Qi 93 * to Qi*2^i, and replace z by (x^2)/2. 94 * (B). To achieve maximum accuracy, we compute expm1(x) by 95 * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf) 96 * (ii) if k=0, return r-E 97 * (iii) if k=-1, return 0.5*(r-E)-0.5 98 * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E) 99 * else return 1.0+2.0*(r-E); 100 * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) 101 * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else 102 * (vii) return 2^k(1-((E+2^-k)-r)) 103 * 104 * Special cases: 105 * expm1(INF) is INF, expm1(NaN) is NaN; 106 * expm1(-INF) is -1, and 107 * for finite argument, only expm1(0)=0 is exact. 108 * 109 * Accuracy: 110 * according to an error analysis, the error is always less than 111 * 1 ulp (unit in the last place). 112 * 113 * Misc. info. 114 * For IEEE double 115 * if x > 7.09782712893383973096e+02 then expm1(x) overflow 116 * 117 * Constants: 118 * The hexadecimal values are the intended ones for the following 119 * constants. The decimal values may be used, provided that the 120 * compiler will convert from decimal to binary accurately enough 121 * to produce the hexadecimal values shown. 122 */ 123 124#define one 1.0 125#define huge 1.0e+300 126#define tiny 1.0e-300 127#define o_threshold 7.09782712893383973096e+02 /* 0x40862E42, 0xFEFA39EF */ 128#define ln2_hi 6.93147180369123816490e-01 /* 0x3fe62e42, 0xfee00000 */ 129#define ln2_lo 1.90821492927058770002e-10 /* 0x3dea39ef, 0x35793c76 */ 130#define invln2 1.44269504088896338700e+00 /* 0x3ff71547, 0x652b82fe */ 131 132/* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */ 133#define Q1 -3.33333333333331316428e-02 /* BFA11111 111110F4 */ 134#define Q2 1.58730158725481460165e-03 /* 3F5A01A0 19FE5585 */ 135#define Q3 -7.93650757867487942473e-05 /* BF14CE19 9EAADBB7 */ 136#define Q4 4.00821782732936239552e-06 /* 3ED0CFCA 86E65239 */ 137#define Q5 -2.01099218183624371326e-07 /* BE8AFDB7 6E09C32D */ 138 139double 140expm1 (double x) 141{ 142 double y, hi, lo, c, e, hxs, hfx, r1; 143 double_accessor t, twopk; 144 int k, xsb; 145 unsigned int hx; 146 147 hx = __HI (x); 148 xsb = hx & 0x80000000; /* sign bit of x */ 149 hx &= 0x7fffffff; /* high word of |x| */ 150 151 /* filter out huge and non-finite argument */ 152 if (hx >= 0x4043687A) 153 { 154 /* if |x|>=56*ln2 */ 155 if (hx >= 0x40862E42) 156 { 157 /* if |x|>=709.78... */ 158 if (hx >= 0x7ff00000) 159 { 160 unsigned int low; 161 low = __LO (x); 162 if (((hx & 0xfffff) | low) != 0) 163 { 164 /* NaN */ 165 return x + x; 166 } 167 else 168 { 169 /* exp(+-inf)-1={inf,-1} */ 170 return (xsb == 0) ? x : -1.0; 171 } 172 } 173 if (x > o_threshold) 174 { 175 /* overflow */ 176 return huge * huge; 177 } 178 } 179 if (xsb != 0) 180 { 181 /* x < -56*ln2, return -1.0 with inexact */ 182 if (x + tiny < 0.0) /* raise inexact */ 183 { 184 /* return -1 */ 185 return tiny - one; 186 } 187 } 188 } 189 190 /* argument reduction */ 191 if (hx > 0x3fd62e42) 192 { 193 /* if |x| > 0.5 ln2 */ 194 if (hx < 0x3FF0A2B2) 195 { 196 /* and |x| < 1.5 ln2 */ 197 if (xsb == 0) 198 { 199 hi = x - ln2_hi; 200 lo = ln2_lo; 201 k = 1; 202 } 203 else 204 { 205 hi = x + ln2_hi; 206 lo = -ln2_lo; 207 k = -1; 208 } 209 } 210 else 211 { 212 k = (int) (invln2 * x + ((xsb == 0) ? 0.5 : -0.5)); 213 t.dbl = k; 214 hi = x - t.dbl * ln2_hi; /* t*ln2_hi is exact here */ 215 lo = t.dbl * ln2_lo; 216 } 217 x = hi - lo; 218 c = (hi - x) - lo; 219 } 220 else if (hx < 0x3c900000) 221 { 222 /* when |x|<2**-54, return x */ 223 return x; 224 } 225 else 226 { 227 k = 0; 228 } 229 230 /* x is now in primary range */ 231 hfx = 0.5 * x; 232 hxs = x * hfx; 233 r1 = one + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5)))); 234 t.dbl = 3.0 - r1 * hfx; 235 e = hxs * ((r1 - t.dbl) / (6.0 - x * t.dbl)); 236 if (k == 0) 237 { 238 /* c is 0 */ 239 return x - (x * e - hxs); 240 } 241 else 242 { 243 twopk.as_int.hi = 0x3ff00000 + ((unsigned int) k << 20); /* 2^k */ 244 twopk.as_int.lo = 0; 245 e = (x * (e - c) - c); 246 e -= hxs; 247 if (k == -1) 248 { 249 return 0.5 * (x - e) - 0.5; 250 } 251 if (k == 1) 252 { 253 if (x < -0.25) 254 { 255 return -2.0 * (e - (x + 0.5)); 256 } 257 else 258 { 259 return one + 2.0 * (x - e); 260 } 261 } 262 if ((k <= -2) || (k > 56)) 263 { 264 /* suffice to return exp(x)-1 */ 265 y = one - (e - x); 266 if (k == 1024) 267 { 268 y = y * 2.0 * 0x1p1023; 269 } 270 else 271 { 272 y = y * twopk.dbl; 273 } 274 return y - one; 275 } 276 t.dbl = one; 277 if (k < 20) 278 { 279 t.as_int.hi = (0x3ff00000 - (0x200000 >> k)); /* t=1-2^-k */ 280 y = t.dbl - (e - x); 281 y = y * twopk.dbl; 282 } 283 else 284 { 285 t.as_int.hi = ((0x3ff - k) << 20); /* 2^-k */ 286 y = x - (e + t.dbl); 287 y += one; 288 y = y * twopk.dbl; 289 } 290 } 291 return y; 292} /* expm1 */ 293 294#undef one 295#undef huge 296#undef tiny 297#undef o_threshold 298#undef ln2_hi 299#undef ln2_lo 300#undef invln2 301#undef Q1 302#undef Q2 303#undef Q3 304#undef Q4 305#undef Q5 306