1425bb815Sopenharmony_ci/* Copyright JS Foundation and other contributors, http://js.foundation 2425bb815Sopenharmony_ci * 3425bb815Sopenharmony_ci * Licensed under the Apache License, Version 2.0 (the "License"); 4425bb815Sopenharmony_ci * you may not use this file except in compliance with the License. 5425bb815Sopenharmony_ci * You may obtain a copy of the License at 6425bb815Sopenharmony_ci * 7425bb815Sopenharmony_ci * http://www.apache.org/licenses/LICENSE-2.0 8425bb815Sopenharmony_ci * 9425bb815Sopenharmony_ci * Unless required by applicable law or agreed to in writing, software 10425bb815Sopenharmony_ci * distributed under the License is distributed on an "AS IS" BASIS 11425bb815Sopenharmony_ci * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12425bb815Sopenharmony_ci * See the License for the specific language governing permissions and 13425bb815Sopenharmony_ci * limitations under the License. 14425bb815Sopenharmony_ci * 15425bb815Sopenharmony_ci * This file is based on work under the following copyright and permission 16425bb815Sopenharmony_ci * notice: 17425bb815Sopenharmony_ci * 18425bb815Sopenharmony_ci * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 19425bb815Sopenharmony_ci * 20425bb815Sopenharmony_ci * Permission to use, copy, modify, and distribute this 21425bb815Sopenharmony_ci * software is freely granted, provided that this notice 22425bb815Sopenharmony_ci * is preserved. 23425bb815Sopenharmony_ci * 24425bb815Sopenharmony_ci * @(#)s_expm1.c 5.1 93/09/24 25425bb815Sopenharmony_ci */ 26425bb815Sopenharmony_ci 27425bb815Sopenharmony_ci#include "jerry-libm-internal.h" 28425bb815Sopenharmony_ci 29425bb815Sopenharmony_ci/* expm1(x) 30425bb815Sopenharmony_ci * Returns exp(x)-1, the exponential of x minus 1. 31425bb815Sopenharmony_ci * 32425bb815Sopenharmony_ci * Method 33425bb815Sopenharmony_ci * 1. Argument reduction: 34425bb815Sopenharmony_ci * Given x, find r and integer k such that 35425bb815Sopenharmony_ci * 36425bb815Sopenharmony_ci * x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658 37425bb815Sopenharmony_ci * 38425bb815Sopenharmony_ci * Here a correction term c will be computed to compensate 39425bb815Sopenharmony_ci * the error in r when rounded to a floating-point number. 40425bb815Sopenharmony_ci * 41425bb815Sopenharmony_ci * 2. Approximating expm1(r) by a special rational function on 42425bb815Sopenharmony_ci * the interval [0,0.34658]: 43425bb815Sopenharmony_ci * Since 44425bb815Sopenharmony_ci * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ... 45425bb815Sopenharmony_ci * we define R1(r*r) by 46425bb815Sopenharmony_ci * r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r) 47425bb815Sopenharmony_ci * That is, 48425bb815Sopenharmony_ci * R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r) 49425bb815Sopenharmony_ci * = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r)) 50425bb815Sopenharmony_ci * = 1 - r^2/60 + r^4/2520 - r^6/100800 + ... 51425bb815Sopenharmony_ci * We use a special Reme algorithm on [0,0.347] to generate 52425bb815Sopenharmony_ci * a polynomial of degree 5 in r*r to approximate R1. The 53425bb815Sopenharmony_ci * maximum error of this polynomial approximation is bounded 54425bb815Sopenharmony_ci * by 2**-61. In other words, 55425bb815Sopenharmony_ci * R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5 56425bb815Sopenharmony_ci * where Q1 = -1.6666666666666567384E-2, 57425bb815Sopenharmony_ci * Q2 = 3.9682539681370365873E-4, 58425bb815Sopenharmony_ci * Q3 = -9.9206344733435987357E-6, 59425bb815Sopenharmony_ci * Q4 = 2.5051361420808517002E-7, 60425bb815Sopenharmony_ci * Q5 = -6.2843505682382617102E-9; 61425bb815Sopenharmony_ci * z = r*r, 62425bb815Sopenharmony_ci * with error bounded by 63425bb815Sopenharmony_ci * | 5 | -61 64425bb815Sopenharmony_ci * | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2 65425bb815Sopenharmony_ci * | | 66425bb815Sopenharmony_ci * 67425bb815Sopenharmony_ci * expm1(r) = exp(r)-1 is then computed by the following 68425bb815Sopenharmony_ci * specific way which minimize the accumulation rounding error: 69425bb815Sopenharmony_ci * 2 3 70425bb815Sopenharmony_ci * r r [ 3 - (R1 + R1*r/2) ] 71425bb815Sopenharmony_ci * expm1(r) = r + --- + --- * [--------------------] 72425bb815Sopenharmony_ci * 2 2 [ 6 - r*(3 - R1*r/2) ] 73425bb815Sopenharmony_ci * 74425bb815Sopenharmony_ci * To compensate the error in the argument reduction, we use 75425bb815Sopenharmony_ci * expm1(r+c) = expm1(r) + c + expm1(r)*c 76425bb815Sopenharmony_ci * ~ expm1(r) + c + r*c 77425bb815Sopenharmony_ci * Thus c+r*c will be added in as the correction terms for 78425bb815Sopenharmony_ci * expm1(r+c). Now rearrange the term to avoid optimization 79425bb815Sopenharmony_ci * screw up: 80425bb815Sopenharmony_ci * ( 2 2 ) 81425bb815Sopenharmony_ci * ({ ( r [ R1 - (3 - R1*r/2) ] ) } r ) 82425bb815Sopenharmony_ci * expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- ) 83425bb815Sopenharmony_ci * ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 ) 84425bb815Sopenharmony_ci * ( ) 85425bb815Sopenharmony_ci * 86425bb815Sopenharmony_ci * = r - E 87425bb815Sopenharmony_ci * 3. Scale back to obtain expm1(x): 88425bb815Sopenharmony_ci * From step 1, we have 89425bb815Sopenharmony_ci * expm1(x) = either 2^k*[expm1(r)+1] - 1 90425bb815Sopenharmony_ci * = or 2^k*[expm1(r) + (1-2^-k)] 91425bb815Sopenharmony_ci * 4. Implementation notes: 92425bb815Sopenharmony_ci * (A). To save one multiplication, we scale the coefficient Qi 93425bb815Sopenharmony_ci * to Qi*2^i, and replace z by (x^2)/2. 94425bb815Sopenharmony_ci * (B). To achieve maximum accuracy, we compute expm1(x) by 95425bb815Sopenharmony_ci * (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf) 96425bb815Sopenharmony_ci * (ii) if k=0, return r-E 97425bb815Sopenharmony_ci * (iii) if k=-1, return 0.5*(r-E)-0.5 98425bb815Sopenharmony_ci * (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E) 99425bb815Sopenharmony_ci * else return 1.0+2.0*(r-E); 100425bb815Sopenharmony_ci * (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1) 101425bb815Sopenharmony_ci * (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else 102425bb815Sopenharmony_ci * (vii) return 2^k(1-((E+2^-k)-r)) 103425bb815Sopenharmony_ci * 104425bb815Sopenharmony_ci * Special cases: 105425bb815Sopenharmony_ci * expm1(INF) is INF, expm1(NaN) is NaN; 106425bb815Sopenharmony_ci * expm1(-INF) is -1, and 107425bb815Sopenharmony_ci * for finite argument, only expm1(0)=0 is exact. 108425bb815Sopenharmony_ci * 109425bb815Sopenharmony_ci * Accuracy: 110425bb815Sopenharmony_ci * according to an error analysis, the error is always less than 111425bb815Sopenharmony_ci * 1 ulp (unit in the last place). 112425bb815Sopenharmony_ci * 113425bb815Sopenharmony_ci * Misc. info. 114425bb815Sopenharmony_ci * For IEEE double 115425bb815Sopenharmony_ci * if x > 7.09782712893383973096e+02 then expm1(x) overflow 116425bb815Sopenharmony_ci * 117425bb815Sopenharmony_ci * Constants: 118425bb815Sopenharmony_ci * The hexadecimal values are the intended ones for the following 119425bb815Sopenharmony_ci * constants. The decimal values may be used, provided that the 120425bb815Sopenharmony_ci * compiler will convert from decimal to binary accurately enough 121425bb815Sopenharmony_ci * to produce the hexadecimal values shown. 122425bb815Sopenharmony_ci */ 123425bb815Sopenharmony_ci 124425bb815Sopenharmony_ci#define one 1.0 125425bb815Sopenharmony_ci#define huge 1.0e+300 126425bb815Sopenharmony_ci#define tiny 1.0e-300 127425bb815Sopenharmony_ci#define o_threshold 7.09782712893383973096e+02 /* 0x40862E42, 0xFEFA39EF */ 128425bb815Sopenharmony_ci#define ln2_hi 6.93147180369123816490e-01 /* 0x3fe62e42, 0xfee00000 */ 129425bb815Sopenharmony_ci#define ln2_lo 1.90821492927058770002e-10 /* 0x3dea39ef, 0x35793c76 */ 130425bb815Sopenharmony_ci#define invln2 1.44269504088896338700e+00 /* 0x3ff71547, 0x652b82fe */ 131425bb815Sopenharmony_ci 132425bb815Sopenharmony_ci/* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */ 133425bb815Sopenharmony_ci#define Q1 -3.33333333333331316428e-02 /* BFA11111 111110F4 */ 134425bb815Sopenharmony_ci#define Q2 1.58730158725481460165e-03 /* 3F5A01A0 19FE5585 */ 135425bb815Sopenharmony_ci#define Q3 -7.93650757867487942473e-05 /* BF14CE19 9EAADBB7 */ 136425bb815Sopenharmony_ci#define Q4 4.00821782732936239552e-06 /* 3ED0CFCA 86E65239 */ 137425bb815Sopenharmony_ci#define Q5 -2.01099218183624371326e-07 /* BE8AFDB7 6E09C32D */ 138425bb815Sopenharmony_ci 139425bb815Sopenharmony_cidouble 140425bb815Sopenharmony_ciexpm1 (double x) 141425bb815Sopenharmony_ci{ 142425bb815Sopenharmony_ci double y, hi, lo, c, e, hxs, hfx, r1; 143425bb815Sopenharmony_ci double_accessor t, twopk; 144425bb815Sopenharmony_ci int k, xsb; 145425bb815Sopenharmony_ci unsigned int hx; 146425bb815Sopenharmony_ci 147425bb815Sopenharmony_ci hx = __HI (x); 148425bb815Sopenharmony_ci xsb = hx & 0x80000000; /* sign bit of x */ 149425bb815Sopenharmony_ci hx &= 0x7fffffff; /* high word of |x| */ 150425bb815Sopenharmony_ci 151425bb815Sopenharmony_ci /* filter out huge and non-finite argument */ 152425bb815Sopenharmony_ci if (hx >= 0x4043687A) 153425bb815Sopenharmony_ci { 154425bb815Sopenharmony_ci /* if |x|>=56*ln2 */ 155425bb815Sopenharmony_ci if (hx >= 0x40862E42) 156425bb815Sopenharmony_ci { 157425bb815Sopenharmony_ci /* if |x|>=709.78... */ 158425bb815Sopenharmony_ci if (hx >= 0x7ff00000) 159425bb815Sopenharmony_ci { 160425bb815Sopenharmony_ci unsigned int low; 161425bb815Sopenharmony_ci low = __LO (x); 162425bb815Sopenharmony_ci if (((hx & 0xfffff) | low) != 0) 163425bb815Sopenharmony_ci { 164425bb815Sopenharmony_ci /* NaN */ 165425bb815Sopenharmony_ci return x + x; 166425bb815Sopenharmony_ci } 167425bb815Sopenharmony_ci else 168425bb815Sopenharmony_ci { 169425bb815Sopenharmony_ci /* exp(+-inf)-1={inf,-1} */ 170425bb815Sopenharmony_ci return (xsb == 0) ? x : -1.0; 171425bb815Sopenharmony_ci } 172425bb815Sopenharmony_ci } 173425bb815Sopenharmony_ci if (x > o_threshold) 174425bb815Sopenharmony_ci { 175425bb815Sopenharmony_ci /* overflow */ 176425bb815Sopenharmony_ci return huge * huge; 177425bb815Sopenharmony_ci } 178425bb815Sopenharmony_ci } 179425bb815Sopenharmony_ci if (xsb != 0) 180425bb815Sopenharmony_ci { 181425bb815Sopenharmony_ci /* x < -56*ln2, return -1.0 with inexact */ 182425bb815Sopenharmony_ci if (x + tiny < 0.0) /* raise inexact */ 183425bb815Sopenharmony_ci { 184425bb815Sopenharmony_ci /* return -1 */ 185425bb815Sopenharmony_ci return tiny - one; 186425bb815Sopenharmony_ci } 187425bb815Sopenharmony_ci } 188425bb815Sopenharmony_ci } 189425bb815Sopenharmony_ci 190425bb815Sopenharmony_ci /* argument reduction */ 191425bb815Sopenharmony_ci if (hx > 0x3fd62e42) 192425bb815Sopenharmony_ci { 193425bb815Sopenharmony_ci /* if |x| > 0.5 ln2 */ 194425bb815Sopenharmony_ci if (hx < 0x3FF0A2B2) 195425bb815Sopenharmony_ci { 196425bb815Sopenharmony_ci /* and |x| < 1.5 ln2 */ 197425bb815Sopenharmony_ci if (xsb == 0) 198425bb815Sopenharmony_ci { 199425bb815Sopenharmony_ci hi = x - ln2_hi; 200425bb815Sopenharmony_ci lo = ln2_lo; 201425bb815Sopenharmony_ci k = 1; 202425bb815Sopenharmony_ci } 203425bb815Sopenharmony_ci else 204425bb815Sopenharmony_ci { 205425bb815Sopenharmony_ci hi = x + ln2_hi; 206425bb815Sopenharmony_ci lo = -ln2_lo; 207425bb815Sopenharmony_ci k = -1; 208425bb815Sopenharmony_ci } 209425bb815Sopenharmony_ci } 210425bb815Sopenharmony_ci else 211425bb815Sopenharmony_ci { 212425bb815Sopenharmony_ci k = (int) (invln2 * x + ((xsb == 0) ? 0.5 : -0.5)); 213425bb815Sopenharmony_ci t.dbl = k; 214425bb815Sopenharmony_ci hi = x - t.dbl * ln2_hi; /* t*ln2_hi is exact here */ 215425bb815Sopenharmony_ci lo = t.dbl * ln2_lo; 216425bb815Sopenharmony_ci } 217425bb815Sopenharmony_ci x = hi - lo; 218425bb815Sopenharmony_ci c = (hi - x) - lo; 219425bb815Sopenharmony_ci } 220425bb815Sopenharmony_ci else if (hx < 0x3c900000) 221425bb815Sopenharmony_ci { 222425bb815Sopenharmony_ci /* when |x|<2**-54, return x */ 223425bb815Sopenharmony_ci return x; 224425bb815Sopenharmony_ci } 225425bb815Sopenharmony_ci else 226425bb815Sopenharmony_ci { 227425bb815Sopenharmony_ci k = 0; 228425bb815Sopenharmony_ci } 229425bb815Sopenharmony_ci 230425bb815Sopenharmony_ci /* x is now in primary range */ 231425bb815Sopenharmony_ci hfx = 0.5 * x; 232425bb815Sopenharmony_ci hxs = x * hfx; 233425bb815Sopenharmony_ci r1 = one + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5)))); 234425bb815Sopenharmony_ci t.dbl = 3.0 - r1 * hfx; 235425bb815Sopenharmony_ci e = hxs * ((r1 - t.dbl) / (6.0 - x * t.dbl)); 236425bb815Sopenharmony_ci if (k == 0) 237425bb815Sopenharmony_ci { 238425bb815Sopenharmony_ci /* c is 0 */ 239425bb815Sopenharmony_ci return x - (x * e - hxs); 240425bb815Sopenharmony_ci } 241425bb815Sopenharmony_ci else 242425bb815Sopenharmony_ci { 243425bb815Sopenharmony_ci twopk.as_int.hi = 0x3ff00000 + ((unsigned int) k << 20); /* 2^k */ 244425bb815Sopenharmony_ci twopk.as_int.lo = 0; 245425bb815Sopenharmony_ci e = (x * (e - c) - c); 246425bb815Sopenharmony_ci e -= hxs; 247425bb815Sopenharmony_ci if (k == -1) 248425bb815Sopenharmony_ci { 249425bb815Sopenharmony_ci return 0.5 * (x - e) - 0.5; 250425bb815Sopenharmony_ci } 251425bb815Sopenharmony_ci if (k == 1) 252425bb815Sopenharmony_ci { 253425bb815Sopenharmony_ci if (x < -0.25) 254425bb815Sopenharmony_ci { 255425bb815Sopenharmony_ci return -2.0 * (e - (x + 0.5)); 256425bb815Sopenharmony_ci } 257425bb815Sopenharmony_ci else 258425bb815Sopenharmony_ci { 259425bb815Sopenharmony_ci return one + 2.0 * (x - e); 260425bb815Sopenharmony_ci } 261425bb815Sopenharmony_ci } 262425bb815Sopenharmony_ci if ((k <= -2) || (k > 56)) 263425bb815Sopenharmony_ci { 264425bb815Sopenharmony_ci /* suffice to return exp(x)-1 */ 265425bb815Sopenharmony_ci y = one - (e - x); 266425bb815Sopenharmony_ci if (k == 1024) 267425bb815Sopenharmony_ci { 268425bb815Sopenharmony_ci y = y * 2.0 * 0x1p1023; 269425bb815Sopenharmony_ci } 270425bb815Sopenharmony_ci else 271425bb815Sopenharmony_ci { 272425bb815Sopenharmony_ci y = y * twopk.dbl; 273425bb815Sopenharmony_ci } 274425bb815Sopenharmony_ci return y - one; 275425bb815Sopenharmony_ci } 276425bb815Sopenharmony_ci t.dbl = one; 277425bb815Sopenharmony_ci if (k < 20) 278425bb815Sopenharmony_ci { 279425bb815Sopenharmony_ci t.as_int.hi = (0x3ff00000 - (0x200000 >> k)); /* t=1-2^-k */ 280425bb815Sopenharmony_ci y = t.dbl - (e - x); 281425bb815Sopenharmony_ci y = y * twopk.dbl; 282425bb815Sopenharmony_ci } 283425bb815Sopenharmony_ci else 284425bb815Sopenharmony_ci { 285425bb815Sopenharmony_ci t.as_int.hi = ((0x3ff - k) << 20); /* 2^-k */ 286425bb815Sopenharmony_ci y = x - (e + t.dbl); 287425bb815Sopenharmony_ci y += one; 288425bb815Sopenharmony_ci y = y * twopk.dbl; 289425bb815Sopenharmony_ci } 290425bb815Sopenharmony_ci } 291425bb815Sopenharmony_ci return y; 292425bb815Sopenharmony_ci} /* expm1 */ 293425bb815Sopenharmony_ci 294425bb815Sopenharmony_ci#undef one 295425bb815Sopenharmony_ci#undef huge 296425bb815Sopenharmony_ci#undef tiny 297425bb815Sopenharmony_ci#undef o_threshold 298425bb815Sopenharmony_ci#undef ln2_hi 299425bb815Sopenharmony_ci#undef ln2_lo 300425bb815Sopenharmony_ci#undef invln2 301425bb815Sopenharmony_ci#undef Q1 302425bb815Sopenharmony_ci#undef Q2 303425bb815Sopenharmony_ci#undef Q3 304425bb815Sopenharmony_ci#undef Q4 305425bb815Sopenharmony_ci#undef Q5 306