xref: /third_party/jerryscript/jerry-libm/asin.c (revision 425bb815)
1/* Copyright JS Foundation and other contributors, http://js.foundation
2 *
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at
6 *
7 *     http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License.
14 *
15 * This file is based on work under the following copyright and permission
16 * notice:
17 *
18 *     Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
19 *
20 *     Developed at SunSoft, a Sun Microsystems, Inc. business.
21 *     Permission to use, copy, modify, and distribute this
22 *     software is freely granted, provided that this notice
23 *     is preserved.
24 *
25 *     @(#)e_asin.c 1.3 95/01/18
26 */
27
28#include "jerry-libm-internal.h"
29
30/* asin(x)
31 *
32 * Method:
33 *      Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
34 *      we approximate asin(x) on [0,0.5] by
35 *              asin(x) = x + x*x^2*R(x^2)
36 *      where
37 *              R(x^2) is a rational approximation of (asin(x)-x)/x^3
38 *      and its remez error is bounded by
39 *              |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
40 *
41 *      For x in [0.5,1]
42 *              asin(x) = pi/2-2*asin(sqrt((1-x)/2))
43 *      Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
44 *      then for x>0.98
45 *              asin(x) = pi/2 - 2*(s+s*z*R(z))
46 *                      = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
47 *      For x<=0.98, let pio4_hi = pio2_hi/2, then
48 *              f = hi part of s;
49 *              c = sqrt(z) - f = (z-f*f)/(s+f)         ...f+c=sqrt(z)
50 *      and
51 *              asin(x) = pi/2 - 2*(s+s*z*R(z))
52 *                      = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
53 *                      = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
54 *
55 * Special cases:
56 *      if x is NaN, return x itself;
57 *      if |x|>1, return NaN with invalid signal.
58 */
59
60#define one      1.00000000000000000000e+00 /* 0x3FF00000, 0x00000000 */
61#define huge     1.000e+300
62#define pio2_hi  1.57079632679489655800e+00 /* 0x3FF921FB, 0x54442D18 */
63#define pio2_lo  6.12323399573676603587e-17 /* 0x3C91A626, 0x33145C07 */
64#define pio4_hi  7.85398163397448278999e-01 /* 0x3FE921FB, 0x54442D18 */
65/* coefficient for R(x^2) */
66#define pS0      1.66666666666666657415e-01 /* 0x3FC55555, 0x55555555 */
67#define pS1     -3.25565818622400915405e-01 /* 0xBFD4D612, 0x03EB6F7D */
68#define pS2      2.01212532134862925881e-01 /* 0x3FC9C155, 0x0E884455 */
69#define pS3     -4.00555345006794114027e-02 /* 0xBFA48228, 0xB5688F3B */
70#define pS4      7.91534994289814532176e-04 /* 0x3F49EFE0, 0x7501B288 */
71#define pS5      3.47933107596021167570e-05 /* 0x3F023DE1, 0x0DFDF709 */
72#define qS1     -2.40339491173441421878e+00 /* 0xC0033A27, 0x1C8A2D4B */
73#define qS2      2.02094576023350569471e+00 /* 0x40002AE5, 0x9C598AC8 */
74#define qS3     -6.88283971605453293030e-01 /* 0xBFE6066C, 0x1B8D0159 */
75#define qS4      7.70381505559019352791e-02 /* 0x3FB3B8C5, 0xB12E9282 */
76
77double
78asin (double x)
79{
80  double t, p, q, c, r, s;
81  double_accessor w;
82  int hx, ix;
83
84  hx = __HI (x);
85  ix = hx & 0x7fffffff;
86  if (ix >= 0x3ff00000) /* |x| >= 1 */
87  {
88    if (((ix - 0x3ff00000) | __LO (x)) == 0) /* asin(1) = +-pi/2 with inexact */
89    {
90      return x * pio2_hi + x * pio2_lo;
91    }
92    return NAN; /* asin(|x|>1) is NaN */
93  }
94  else if (ix < 0x3fe00000) /* |x| < 0.5 */
95  {
96    if (ix < 0x3e400000) /* if |x| < 2**-27 */
97    {
98      if (huge + x > one) /* return x with inexact if x != 0 */
99      {
100        return x;
101      }
102    }
103    t = x * x;
104    p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
105    q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4)));
106    w.dbl = p / q;
107    return x + x * w.dbl;
108  }
109  /* 1 > |x| >= 0.5 */
110  w.dbl = one - fabs (x);
111  t = w.dbl * 0.5;
112  p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
113  q = one + t * (qS1 + t * (qS2 + t * (qS3 + t * qS4)));
114  s = sqrt (t);
115  if (ix >= 0x3FEF3333) /* if |x| > 0.975 */
116  {
117    w.dbl = p / q;
118    t = pio2_hi - (2.0 * (s + s * w.dbl) - pio2_lo);
119  }
120  else
121  {
122    w.dbl = s;
123    w.as_int.lo = 0;
124    c = (t - w.dbl * w.dbl) / (s + w.dbl);
125    r = p / q;
126    p = 2.0 * s * r - (pio2_lo - 2.0 * c);
127    q = pio4_hi - 2.0 * w.dbl;
128    t = pio4_hi - (p - q);
129  }
130  if (hx > 0)
131  {
132    return t;
133  }
134  else
135  {
136    return -t;
137  }
138} /* asin */
139
140#undef one
141#undef huge
142#undef pio2_hi
143#undef pio2_lo
144#undef pio4_hi
145#undef pS0
146#undef pS1
147#undef pS2
148#undef pS3
149#undef pS4
150#undef pS5
151#undef qS1
152#undef qS2
153#undef qS3
154#undef qS4
155