xref: /third_party/jerryscript/jerry-libm/acos.c (revision 425bb815)
1/* Copyright JS Foundation and other contributors, http://js.foundation
2 *
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at
6 *
7 *     http://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License.
14 *
15 * This file is based on work under the following copyright and permission
16 * notice:
17 *
18 *     Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
19 *
20 *     Developed at SunSoft, a Sun Microsystems, Inc. business.
21 *     Permission to use, copy, modify, and distribute this
22 *     software is freely granted, provided that this notice
23 *     is preserved.
24 *
25 *     @(#)e_acos.c 1.3 95/01/18
26 */
27
28#include "jerry-libm-internal.h"
29
30/* acos(x)
31 *
32 * Method:
33 *      acos(x)  = pi/2 - asin(x)
34 *      acos(-x) = pi/2 + asin(x)
35 * For |x|<=0.5
36 *      acos(x) = pi/2 - (x + x*x^2*R(x^2))     (see asin.c)
37 * For x>0.5
38 *      acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
39 *              = 2asin(sqrt((1-x)/2))
40 *              = 2s + 2s*z*R(z)        ...z=(1-x)/2, s=sqrt(z)
41 *              = 2f + (2c + 2s*z*R(z))
42 *     where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
43 *     for f so that f+c ~ sqrt(z).
44 * For x<-0.5
45 *      acos(x) = pi - 2asin(sqrt((1-|x|)/2))
46 *              = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
47 *
48 * Special cases:
49 *      if x is NaN, return x itself;
50 *      if |x|>1, return NaN with invalid signal.
51 *
52 * Function needed: sqrt
53 */
54
55#define one      1.00000000000000000000e+00 /* 0x3FF00000, 0x00000000 */
56#define pi       3.14159265358979311600e+00 /* 0x400921FB, 0x54442D18 */
57#define pio2_hi  1.57079632679489655800e+00 /* 0x3FF921FB, 0x54442D18 */
58#define pio2_lo  6.12323399573676603587e-17 /* 0x3C91A626, 0x33145C07 */
59#define pS0      1.66666666666666657415e-01 /* 0x3FC55555, 0x55555555 */
60#define pS1     -3.25565818622400915405e-01 /* 0xBFD4D612, 0x03EB6F7D */
61#define pS2      2.01212532134862925881e-01 /* 0x3FC9C155, 0x0E884455 */
62#define pS3     -4.00555345006794114027e-02 /* 0xBFA48228, 0xB5688F3B */
63#define pS4      7.91534994289814532176e-04 /* 0x3F49EFE0, 0x7501B288 */
64#define pS5      3.47933107596021167570e-05 /* 0x3F023DE1, 0x0DFDF709 */
65#define qS1     -2.40339491173441421878e+00 /* 0xC0033A27, 0x1C8A2D4B */
66#define qS2      2.02094576023350569471e+00 /* 0x40002AE5, 0x9C598AC8 */
67#define qS3     -6.88283971605453293030e-01 /* 0xBFE6066C, 0x1B8D0159 */
68#define qS4      7.70381505559019352791e-02 /* 0x3FB3B8C5, 0xB12E9282 */
69
70double
71acos (double x)
72{
73  double z, p, q, r, w, s, c;
74  int hx, ix;
75
76  hx = __HI (x);
77  ix = hx & 0x7fffffff;
78  if (ix >= 0x3ff00000) /* |x| >= 1 */
79  {
80    if (((ix - 0x3ff00000) | __LO (x)) == 0) /* |x| == 1 */
81    {
82      if (hx > 0) /* acos(1) = 0  */
83      {
84        return 0.0;
85      }
86      else /* acos(-1) = pi */
87      {
88        return pi + 2.0 * pio2_lo;
89      }
90    }
91    return NAN; /* acos(|x|>1) is NaN */
92  }
93  if (ix < 0x3fe00000) /* |x| < 0.5 */
94  {
95    if (ix <= 0x3c600000) /* if |x| < 2**-57 */
96    {
97      return pio2_hi + pio2_lo;
98    }
99    z = x * x;
100    p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5)))));
101    q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
102    r = p / q;
103    return pio2_hi - (x - (pio2_lo - x * r));
104  }
105  else if (hx < 0) /* x < -0.5 */
106  {
107    z = (one + x) * 0.5;
108    p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5)))));
109    q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
110    s = sqrt (z);
111    r = p / q;
112    w = r * s - pio2_lo;
113    return pi - 2.0 * (s + w);
114  }
115  else /* x > 0.5 */
116  {
117    double_accessor df;
118    z = (one - x) * 0.5;
119    s = sqrt (z);
120    df.dbl = s;
121    df.as_int.lo = 0;
122    c = (z - df.dbl * df.dbl) / (s + df.dbl);
123    p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5)))));
124    q = one + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
125    r = p / q;
126    w = r * s + c;
127    return 2.0 * (df.dbl + w);
128  }
129} /* acos */
130
131#undef one
132#undef pi
133#undef pio2_hi
134#undef pio2_lo
135#undef pS0
136#undef pS1
137#undef pS2
138#undef pS3
139#undef pS4
140#undef pS5
141#undef qS1
142#undef qS2
143#undef qS3
144#undef qS4
145