1// © 2016 and later: Unicode, Inc. and others.
2// License & terms of use: http://www.unicode.org/copyright.html
3/*
4*******************************************************************************
5*
6*   Copyright (C) 2008-2011, International Business Machines
7*   Corporation, Google and others.  All Rights Reserved.
8*
9*******************************************************************************
10*/
11// Author : eldawy@google.com (Mohamed Eldawy)
12// ucnvsel.cpp
13//
14// Purpose: To generate a list of encodings capable of handling
15// a given Unicode text
16//
17// Started 09-April-2008
18
19/**
20 * \file
21 *
22 * This is an implementation of an encoding selector.
23 * The goal is, given a unicode string, find the encodings
24 * this string can be mapped to. To make processing faster
25 * a trie is built when you call ucnvsel_open() that
26 * stores all encodings a codepoint can map to
27 */
28
29#include "unicode/ucnvsel.h"
30
31#if !UCONFIG_NO_CONVERSION
32
33#include <string.h>
34
35#include "unicode/uchar.h"
36#include "unicode/uniset.h"
37#include "unicode/ucnv.h"
38#include "unicode/ustring.h"
39#include "unicode/uchriter.h"
40#include "utrie2.h"
41#include "propsvec.h"
42#include "uassert.h"
43#include "ucmndata.h"
44#include "udataswp.h"
45#include "uenumimp.h"
46#include "cmemory.h"
47#include "cstring.h"
48
49U_NAMESPACE_USE
50
51struct UConverterSelector {
52  UTrie2 *trie;              // 16 bit trie containing offsets into pv
53  uint32_t* pv;              // table of bits!
54  int32_t pvCount;
55  char** encodings;          // which encodings did user ask to use?
56  int32_t encodingsCount;
57  int32_t encodingStrLength;
58  uint8_t* swapped;
59  UBool ownPv, ownEncodingStrings;
60};
61
62static void generateSelectorData(UConverterSelector* result,
63                                 UPropsVectors *upvec,
64                                 const USet* excludedCodePoints,
65                                 const UConverterUnicodeSet whichSet,
66                                 UErrorCode* status) {
67  if (U_FAILURE(*status)) {
68    return;
69  }
70
71  int32_t columns = (result->encodingsCount+31)/32;
72
73  // set errorValue to all-ones
74  for (int32_t col = 0; col < columns; col++) {
75    upvec_setValue(upvec, UPVEC_ERROR_VALUE_CP, UPVEC_ERROR_VALUE_CP,
76                   col, static_cast<uint32_t>(~0), static_cast<uint32_t>(~0), status);
77  }
78
79  for (int32_t i = 0; i < result->encodingsCount; ++i) {
80    uint32_t mask;
81    uint32_t column;
82    int32_t item_count;
83    int32_t j;
84    UConverter* test_converter = ucnv_open(result->encodings[i], status);
85    if (U_FAILURE(*status)) {
86      return;
87    }
88    USet* unicode_point_set;
89    unicode_point_set = uset_open(1, 0);  // empty set
90
91    ucnv_getUnicodeSet(test_converter, unicode_point_set,
92                       whichSet, status);
93    if (U_FAILURE(*status)) {
94      ucnv_close(test_converter);
95      return;
96    }
97
98    column = i / 32;
99    mask = 1 << (i%32);
100    // now iterate over intervals on set i!
101    item_count = uset_getItemCount(unicode_point_set);
102
103    for (j = 0; j < item_count; ++j) {
104      UChar32 start_char;
105      UChar32 end_char;
106      UErrorCode smallStatus = U_ZERO_ERROR;
107      uset_getItem(unicode_point_set, j, &start_char, &end_char, NULL, 0,
108                   &smallStatus);
109      if (U_FAILURE(smallStatus)) {
110        // this will be reached for the converters that fill the set with
111        // strings. Those should be ignored by our system
112      } else {
113        upvec_setValue(upvec, start_char, end_char, column, static_cast<uint32_t>(~0), mask,
114                       status);
115      }
116    }
117    ucnv_close(test_converter);
118    uset_close(unicode_point_set);
119    if (U_FAILURE(*status)) {
120      return;
121    }
122  }
123
124  // handle excluded encodings! Simply set their values to all 1's in the upvec
125  if (excludedCodePoints) {
126    int32_t item_count = uset_getItemCount(excludedCodePoints);
127    for (int32_t j = 0; j < item_count; ++j) {
128      UChar32 start_char;
129      UChar32 end_char;
130
131      uset_getItem(excludedCodePoints, j, &start_char, &end_char, NULL, 0,
132                   status);
133      for (int32_t col = 0; col < columns; col++) {
134        upvec_setValue(upvec, start_char, end_char, col, static_cast<uint32_t>(~0), static_cast<uint32_t>(~0),
135                      status);
136      }
137    }
138  }
139
140  // alright. Now, let's put things in the same exact form you'd get when you
141  // unserialize things.
142  result->trie = upvec_compactToUTrie2WithRowIndexes(upvec, status);
143  result->pv = upvec_cloneArray(upvec, &result->pvCount, NULL, status);
144  result->pvCount *= columns;  // number of uint32_t = rows * columns
145  result->ownPv = true;
146}
147
148/* open a selector. If converterListSize is 0, build for all converters.
149   If excludedCodePoints is NULL, don't exclude any codepoints */
150U_CAPI UConverterSelector* U_EXPORT2
151ucnvsel_open(const char* const*  converterList, int32_t converterListSize,
152             const USet* excludedCodePoints,
153             const UConverterUnicodeSet whichSet, UErrorCode* status) {
154  // check if already failed
155  if (U_FAILURE(*status)) {
156    return NULL;
157  }
158  // ensure args make sense!
159  if (converterListSize < 0 || (converterList == NULL && converterListSize != 0)) {
160    *status = U_ILLEGAL_ARGUMENT_ERROR;
161    return NULL;
162  }
163
164  // allocate a new converter
165  LocalUConverterSelectorPointer newSelector(
166    (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector)));
167  if (newSelector.isNull()) {
168    *status = U_MEMORY_ALLOCATION_ERROR;
169    return NULL;
170  }
171  uprv_memset(newSelector.getAlias(), 0, sizeof(UConverterSelector));
172
173  if (converterListSize == 0) {
174    converterList = NULL;
175    converterListSize = ucnv_countAvailable();
176  }
177  newSelector->encodings =
178    (char**)uprv_malloc(converterListSize * sizeof(char*));
179  if (!newSelector->encodings) {
180    *status = U_MEMORY_ALLOCATION_ERROR;
181    return NULL;
182  }
183  newSelector->encodings[0] = NULL;  // now we can call ucnvsel_close()
184
185  // make a backup copy of the list of converters
186  int32_t totalSize = 0;
187  int32_t i;
188  for (i = 0; i < converterListSize; i++) {
189    totalSize +=
190      (int32_t)uprv_strlen(converterList != NULL ? converterList[i] : ucnv_getAvailableName(i)) + 1;
191  }
192  // 4-align the totalSize to 4-align the size of the serialized form
193  int32_t encodingStrPadding = totalSize & 3;
194  if (encodingStrPadding != 0) {
195    encodingStrPadding = 4 - encodingStrPadding;
196  }
197  newSelector->encodingStrLength = totalSize += encodingStrPadding;
198  char* allStrings = (char*) uprv_malloc(totalSize);
199  if (!allStrings) {
200    *status = U_MEMORY_ALLOCATION_ERROR;
201    return NULL;
202  }
203
204  for (i = 0; i < converterListSize; i++) {
205    newSelector->encodings[i] = allStrings;
206    uprv_strcpy(newSelector->encodings[i],
207                converterList != NULL ? converterList[i] : ucnv_getAvailableName(i));
208    allStrings += uprv_strlen(newSelector->encodings[i]) + 1;
209  }
210  while (encodingStrPadding > 0) {
211    *allStrings++ = 0;
212    --encodingStrPadding;
213  }
214
215  newSelector->ownEncodingStrings = true;
216  newSelector->encodingsCount = converterListSize;
217  UPropsVectors *upvec = upvec_open((converterListSize+31)/32, status);
218  generateSelectorData(newSelector.getAlias(), upvec, excludedCodePoints, whichSet, status);
219  upvec_close(upvec);
220
221  if (U_FAILURE(*status)) {
222    return NULL;
223  }
224
225  return newSelector.orphan();
226}
227
228/* close opened selector */
229U_CAPI void U_EXPORT2
230ucnvsel_close(UConverterSelector *sel) {
231  if (!sel) {
232    return;
233  }
234  if (sel->ownEncodingStrings) {
235    uprv_free(sel->encodings[0]);
236  }
237  uprv_free(sel->encodings);
238  if (sel->ownPv) {
239    uprv_free(sel->pv);
240  }
241  utrie2_close(sel->trie);
242  uprv_free(sel->swapped);
243  uprv_free(sel);
244}
245
246static const UDataInfo dataInfo = {
247  sizeof(UDataInfo),
248  0,
249
250  U_IS_BIG_ENDIAN,
251  U_CHARSET_FAMILY,
252  U_SIZEOF_UCHAR,
253  0,
254
255  { 0x43, 0x53, 0x65, 0x6c },   /* dataFormat="CSel" */
256  { 1, 0, 0, 0 },               /* formatVersion */
257  { 0, 0, 0, 0 }                /* dataVersion */
258};
259
260enum {
261  UCNVSEL_INDEX_TRIE_SIZE,      // trie size in bytes
262  UCNVSEL_INDEX_PV_COUNT,       // number of uint32_t in the bit vectors
263  UCNVSEL_INDEX_NAMES_COUNT,    // number of encoding names
264  UCNVSEL_INDEX_NAMES_LENGTH,   // number of encoding name bytes including padding
265  UCNVSEL_INDEX_SIZE = 15,      // bytes following the DataHeader
266  UCNVSEL_INDEX_COUNT = 16
267};
268
269/*
270 * Serialized form of a UConverterSelector, formatVersion 1:
271 *
272 * The serialized form begins with a standard ICU DataHeader with a UDataInfo
273 * as the template above.
274 * This is followed by:
275 *   int32_t indexes[UCNVSEL_INDEX_COUNT];          // see index entry constants above
276 *   serialized UTrie2;                             // indexes[UCNVSEL_INDEX_TRIE_SIZE] bytes
277 *   uint32_t pv[indexes[UCNVSEL_INDEX_PV_COUNT]];  // bit vectors
278 *   char* encodingNames[indexes[UCNVSEL_INDEX_NAMES_LENGTH]];  // NUL-terminated strings + padding
279 */
280
281/* serialize a selector */
282U_CAPI int32_t U_EXPORT2
283ucnvsel_serialize(const UConverterSelector* sel,
284                  void* buffer, int32_t bufferCapacity, UErrorCode* status) {
285  // check if already failed
286  if (U_FAILURE(*status)) {
287    return 0;
288  }
289  // ensure args make sense!
290  uint8_t *p = (uint8_t *)buffer;
291  if (bufferCapacity < 0 ||
292      (bufferCapacity > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0)))
293  ) {
294    *status = U_ILLEGAL_ARGUMENT_ERROR;
295    return 0;
296  }
297  // add up the size of the serialized form
298  int32_t serializedTrieSize = utrie2_serialize(sel->trie, NULL, 0, status);
299  if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) {
300    return 0;
301  }
302  *status = U_ZERO_ERROR;
303
304  DataHeader header;
305  uprv_memset(&header, 0, sizeof(header));
306  header.dataHeader.headerSize = (uint16_t)((sizeof(header) + 15) & ~15);
307  header.dataHeader.magic1 = 0xda;
308  header.dataHeader.magic2 = 0x27;
309  uprv_memcpy(&header.info, &dataInfo, sizeof(dataInfo));
310
311  int32_t indexes[UCNVSEL_INDEX_COUNT] = {
312    serializedTrieSize,
313    sel->pvCount,
314    sel->encodingsCount,
315    sel->encodingStrLength
316  };
317
318  int32_t totalSize =
319    header.dataHeader.headerSize +
320    (int32_t)sizeof(indexes) +
321    serializedTrieSize +
322    sel->pvCount * 4 +
323    sel->encodingStrLength;
324  indexes[UCNVSEL_INDEX_SIZE] = totalSize - header.dataHeader.headerSize;
325  if (totalSize > bufferCapacity) {
326    *status = U_BUFFER_OVERFLOW_ERROR;
327    return totalSize;
328  }
329  // ok, save!
330  int32_t length = header.dataHeader.headerSize;
331  uprv_memcpy(p, &header, sizeof(header));
332  uprv_memset(p + sizeof(header), 0, length - sizeof(header));
333  p += length;
334
335  length = (int32_t)sizeof(indexes);
336  uprv_memcpy(p, indexes, length);
337  p += length;
338
339  utrie2_serialize(sel->trie, p, serializedTrieSize, status);
340  p += serializedTrieSize;
341
342  length = sel->pvCount * 4;
343  uprv_memcpy(p, sel->pv, length);
344  p += length;
345
346  uprv_memcpy(p, sel->encodings[0], sel->encodingStrLength);
347  p += sel->encodingStrLength;
348
349  return totalSize;
350}
351
352/**
353 * swap a selector into the desired Endianness and Asciiness of
354 * the system. Just as FYI, selectors are always saved in the format
355 * of the system that created them. They are only converted if used
356 * on another system. In other words, selectors created on different
357 * system can be different even if the params are identical (endianness
358 * and Asciiness differences only)
359 *
360 * @param ds pointer to data swapper containing swapping info
361 * @param inData pointer to incoming data
362 * @param length length of inData in bytes
363 * @param outData pointer to output data. Capacity should
364 *                be at least equal to capacity of inData
365 * @param status an in/out ICU UErrorCode
366 * @return 0 on failure, number of bytes swapped on success
367 *         number of bytes swapped can be smaller than length
368 */
369static int32_t
370ucnvsel_swap(const UDataSwapper *ds,
371             const void *inData, int32_t length,
372             void *outData, UErrorCode *status) {
373  /* udata_swapDataHeader checks the arguments */
374  int32_t headerSize = udata_swapDataHeader(ds, inData, length, outData, status);
375  if(U_FAILURE(*status)) {
376    return 0;
377  }
378
379  /* check data format and format version */
380  const UDataInfo *pInfo = (const UDataInfo *)((const char *)inData + 4);
381  if(!(
382    pInfo->dataFormat[0] == 0x43 &&  /* dataFormat="CSel" */
383    pInfo->dataFormat[1] == 0x53 &&
384    pInfo->dataFormat[2] == 0x65 &&
385    pInfo->dataFormat[3] == 0x6c
386  )) {
387    udata_printError(ds, "ucnvsel_swap(): data format %02x.%02x.%02x.%02x is not recognized as UConverterSelector data\n",
388                     pInfo->dataFormat[0], pInfo->dataFormat[1],
389                     pInfo->dataFormat[2], pInfo->dataFormat[3]);
390    *status = U_INVALID_FORMAT_ERROR;
391    return 0;
392  }
393  if(pInfo->formatVersion[0] != 1) {
394    udata_printError(ds, "ucnvsel_swap(): format version %02x is not supported\n",
395                     pInfo->formatVersion[0]);
396    *status = U_UNSUPPORTED_ERROR;
397    return 0;
398  }
399
400  if(length >= 0) {
401    length -= headerSize;
402    if(length < 16*4) {
403      udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for UConverterSelector data\n",
404                       length);
405      *status = U_INDEX_OUTOFBOUNDS_ERROR;
406      return 0;
407    }
408  }
409
410  const uint8_t *inBytes = (const uint8_t *)inData + headerSize;
411  uint8_t *outBytes = (uint8_t *)outData + headerSize;
412
413  /* read the indexes */
414  const int32_t *inIndexes = (const int32_t *)inBytes;
415  int32_t indexes[16];
416  int32_t i;
417  for(i = 0; i < 16; ++i) {
418    indexes[i] = udata_readInt32(ds, inIndexes[i]);
419  }
420
421  /* get the total length of the data */
422  int32_t size = indexes[UCNVSEL_INDEX_SIZE];
423  if(length >= 0) {
424    if(length < size) {
425      udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for all of UConverterSelector data\n",
426                       length);
427      *status = U_INDEX_OUTOFBOUNDS_ERROR;
428      return 0;
429    }
430
431    /* copy the data for inaccessible bytes */
432    if(inBytes != outBytes) {
433      uprv_memcpy(outBytes, inBytes, size);
434    }
435
436    int32_t offset = 0, count;
437
438    /* swap the int32_t indexes[] */
439    count = UCNVSEL_INDEX_COUNT*4;
440    ds->swapArray32(ds, inBytes, count, outBytes, status);
441    offset += count;
442
443    /* swap the UTrie2 */
444    count = indexes[UCNVSEL_INDEX_TRIE_SIZE];
445    utrie2_swap(ds, inBytes + offset, count, outBytes + offset, status);
446    offset += count;
447
448    /* swap the uint32_t pv[] */
449    count = indexes[UCNVSEL_INDEX_PV_COUNT]*4;
450    ds->swapArray32(ds, inBytes + offset, count, outBytes + offset, status);
451    offset += count;
452
453    /* swap the encoding names */
454    count = indexes[UCNVSEL_INDEX_NAMES_LENGTH];
455    ds->swapInvChars(ds, inBytes + offset, count, outBytes + offset, status);
456    offset += count;
457
458    U_ASSERT(offset == size);
459  }
460
461  return headerSize + size;
462}
463
464/* unserialize a selector */
465U_CAPI UConverterSelector* U_EXPORT2
466ucnvsel_openFromSerialized(const void* buffer, int32_t length, UErrorCode* status) {
467  // check if already failed
468  if (U_FAILURE(*status)) {
469    return NULL;
470  }
471  // ensure args make sense!
472  const uint8_t *p = (const uint8_t *)buffer;
473  if (length <= 0 ||
474      (length > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0)))
475  ) {
476    *status = U_ILLEGAL_ARGUMENT_ERROR;
477    return NULL;
478  }
479  // header
480  if (length < 32) {
481    // not even enough space for a minimal header
482    *status = U_INDEX_OUTOFBOUNDS_ERROR;
483    return NULL;
484  }
485  const DataHeader *pHeader = (const DataHeader *)p;
486  if (!(
487    pHeader->dataHeader.magic1==0xda &&
488    pHeader->dataHeader.magic2==0x27 &&
489    pHeader->info.dataFormat[0] == 0x43 &&
490    pHeader->info.dataFormat[1] == 0x53 &&
491    pHeader->info.dataFormat[2] == 0x65 &&
492    pHeader->info.dataFormat[3] == 0x6c
493  )) {
494    /* header not valid or dataFormat not recognized */
495    *status = U_INVALID_FORMAT_ERROR;
496    return NULL;
497  }
498  if (pHeader->info.formatVersion[0] != 1) {
499    *status = U_UNSUPPORTED_ERROR;
500    return NULL;
501  }
502  uint8_t* swapped = NULL;
503  if (pHeader->info.isBigEndian != U_IS_BIG_ENDIAN ||
504      pHeader->info.charsetFamily != U_CHARSET_FAMILY
505  ) {
506    // swap the data
507    UDataSwapper *ds =
508      udata_openSwapperForInputData(p, length, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, status);
509    int32_t totalSize = ucnvsel_swap(ds, p, -1, NULL, status);
510    if (U_FAILURE(*status)) {
511      udata_closeSwapper(ds);
512      return NULL;
513    }
514    if (length < totalSize) {
515      udata_closeSwapper(ds);
516      *status = U_INDEX_OUTOFBOUNDS_ERROR;
517      return NULL;
518    }
519    swapped = (uint8_t*)uprv_malloc(totalSize);
520    if (swapped == NULL) {
521      udata_closeSwapper(ds);
522      *status = U_MEMORY_ALLOCATION_ERROR;
523      return NULL;
524    }
525    ucnvsel_swap(ds, p, length, swapped, status);
526    udata_closeSwapper(ds);
527    if (U_FAILURE(*status)) {
528      uprv_free(swapped);
529      return NULL;
530    }
531    p = swapped;
532    pHeader = (const DataHeader *)p;
533  }
534  if (length < (pHeader->dataHeader.headerSize + 16 * 4)) {
535    // not even enough space for the header and the indexes
536    uprv_free(swapped);
537    *status = U_INDEX_OUTOFBOUNDS_ERROR;
538    return NULL;
539  }
540  p += pHeader->dataHeader.headerSize;
541  length -= pHeader->dataHeader.headerSize;
542  // indexes
543  const int32_t *indexes = (const int32_t *)p;
544  if (length < indexes[UCNVSEL_INDEX_SIZE]) {
545    uprv_free(swapped);
546    *status = U_INDEX_OUTOFBOUNDS_ERROR;
547    return NULL;
548  }
549  p += UCNVSEL_INDEX_COUNT * 4;
550  // create and populate the selector object
551  UConverterSelector* sel = (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector));
552  char **encodings =
553    (char **)uprv_malloc(
554      indexes[UCNVSEL_INDEX_NAMES_COUNT] * sizeof(char *));
555  if (sel == NULL || encodings == NULL) {
556    uprv_free(swapped);
557    uprv_free(sel);
558    uprv_free(encodings);
559    *status = U_MEMORY_ALLOCATION_ERROR;
560    return NULL;
561  }
562  uprv_memset(sel, 0, sizeof(UConverterSelector));
563  sel->pvCount = indexes[UCNVSEL_INDEX_PV_COUNT];
564  sel->encodings = encodings;
565  sel->encodingsCount = indexes[UCNVSEL_INDEX_NAMES_COUNT];
566  sel->encodingStrLength = indexes[UCNVSEL_INDEX_NAMES_LENGTH];
567  sel->swapped = swapped;
568  // trie
569  sel->trie = utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS,
570                                        p, indexes[UCNVSEL_INDEX_TRIE_SIZE], NULL,
571                                        status);
572  p += indexes[UCNVSEL_INDEX_TRIE_SIZE];
573  if (U_FAILURE(*status)) {
574    ucnvsel_close(sel);
575    return NULL;
576  }
577  // bit vectors
578  sel->pv = (uint32_t *)p;
579  p += sel->pvCount * 4;
580  // encoding names
581  char* s = (char*)p;
582  for (int32_t i = 0; i < sel->encodingsCount; ++i) {
583    sel->encodings[i] = s;
584    s += uprv_strlen(s) + 1;
585  }
586  p += sel->encodingStrLength;
587
588  return sel;
589}
590
591// a bunch of functions for the enumeration thingie! Nothing fancy here. Just
592// iterate over the selected encodings
593struct Enumerator {
594  int16_t* index;
595  int16_t length;
596  int16_t cur;
597  const UConverterSelector* sel;
598};
599
600U_CDECL_BEGIN
601
602static void U_CALLCONV
603ucnvsel_close_selector_iterator(UEnumeration *enumerator) {
604  uprv_free(((Enumerator*)(enumerator->context))->index);
605  uprv_free(enumerator->context);
606  uprv_free(enumerator);
607}
608
609
610static int32_t U_CALLCONV
611ucnvsel_count_encodings(UEnumeration *enumerator, UErrorCode *status) {
612  // check if already failed
613  if (U_FAILURE(*status)) {
614    return 0;
615  }
616  return ((Enumerator*)(enumerator->context))->length;
617}
618
619
620static const char* U_CALLCONV ucnvsel_next_encoding(UEnumeration* enumerator,
621                                                 int32_t* resultLength,
622                                                 UErrorCode* status) {
623  // check if already failed
624  if (U_FAILURE(*status)) {
625    return NULL;
626  }
627
628  int16_t cur = ((Enumerator*)(enumerator->context))->cur;
629  const UConverterSelector* sel;
630  const char* result;
631  if (cur >= ((Enumerator*)(enumerator->context))->length) {
632    return NULL;
633  }
634  sel = ((Enumerator*)(enumerator->context))->sel;
635  result = sel->encodings[((Enumerator*)(enumerator->context))->index[cur] ];
636  ((Enumerator*)(enumerator->context))->cur++;
637  if (resultLength) {
638    *resultLength = (int32_t)uprv_strlen(result);
639  }
640  return result;
641}
642
643static void U_CALLCONV ucnvsel_reset_iterator(UEnumeration* enumerator,
644                                           UErrorCode* status) {
645  // check if already failed
646  if (U_FAILURE(*status)) {
647    return ;
648  }
649  ((Enumerator*)(enumerator->context))->cur = 0;
650}
651
652U_CDECL_END
653
654
655static const UEnumeration defaultEncodings = {
656  NULL,
657    NULL,
658    ucnvsel_close_selector_iterator,
659    ucnvsel_count_encodings,
660    uenum_unextDefault,
661    ucnvsel_next_encoding,
662    ucnvsel_reset_iterator
663};
664
665
666// internal fn to intersect two sets of masks
667// returns whether the mask has reduced to all zeros
668static UBool intersectMasks(uint32_t* dest, const uint32_t* source1, int32_t len) {
669  int32_t i;
670  uint32_t oredDest = 0;
671  for (i = 0 ; i < len ; ++i) {
672    oredDest |= (dest[i] &= source1[i]);
673  }
674  return oredDest == 0;
675}
676
677// internal fn to count how many 1's are there in a mask
678// algorithm taken from  http://graphics.stanford.edu/~seander/bithacks.html
679static int16_t countOnes(uint32_t* mask, int32_t len) {
680  int32_t i, totalOnes = 0;
681  for (i = 0 ; i < len ; ++i) {
682    uint32_t ent = mask[i];
683    for (; ent; totalOnes++)
684    {
685      ent &= ent - 1; // clear the least significant bit set
686    }
687  }
688  return static_cast<int16_t>(totalOnes);
689}
690
691
692/* internal function! */
693static UEnumeration *selectForMask(const UConverterSelector* sel,
694                                   uint32_t *theMask, UErrorCode *status) {
695  LocalMemory<uint32_t> mask(theMask);
696  // this is the context we will use. Store a table of indices to which
697  // encodings are legit.
698  LocalMemory<Enumerator> result(static_cast<Enumerator *>(uprv_malloc(sizeof(Enumerator))));
699  if (result.isNull()) {
700    *status = U_MEMORY_ALLOCATION_ERROR;
701    return nullptr;
702  }
703  result->index = nullptr;  // this will be allocated later!
704  result->length = result->cur = 0;
705  result->sel = sel;
706
707  LocalMemory<UEnumeration> en(static_cast<UEnumeration *>(uprv_malloc(sizeof(UEnumeration))));
708  if (en.isNull()) {
709    // TODO(markus): Combine Enumerator and UEnumeration into one struct.
710    *status = U_MEMORY_ALLOCATION_ERROR;
711    return nullptr;
712  }
713  memcpy(en.getAlias(), &defaultEncodings, sizeof(UEnumeration));
714
715  int32_t columns = (sel->encodingsCount+31)/32;
716  int16_t numOnes = countOnes(mask.getAlias(), columns);
717  // now, we know the exact space we need for index
718  if (numOnes > 0) {
719    result->index = static_cast<int16_t*>(uprv_malloc(numOnes * sizeof(int16_t)));
720    if (result->index == nullptr) {
721      *status = U_MEMORY_ALLOCATION_ERROR;
722      return nullptr;
723    }
724    int32_t i, j;
725    int16_t k = 0;
726    for (j = 0 ; j < columns; j++) {
727      uint32_t v = mask[j];
728      for (i = 0 ; i < 32 && k < sel->encodingsCount; i++, k++) {
729        if ((v & 1) != 0) {
730          result->index[result->length++] = k;
731        }
732        v >>= 1;
733      }
734    }
735  } //otherwise, index will remain NULL (and will never be touched by
736    //the enumerator code anyway)
737  en->context = result.orphan();
738  return en.orphan();
739}
740
741/* check a string against the selector - UTF16 version */
742U_CAPI UEnumeration * U_EXPORT2
743ucnvsel_selectForString(const UConverterSelector* sel,
744                        const UChar *s, int32_t length, UErrorCode *status) {
745  // check if already failed
746  if (U_FAILURE(*status)) {
747    return NULL;
748  }
749  // ensure args make sense!
750  if (sel == NULL || (s == NULL && length != 0)) {
751    *status = U_ILLEGAL_ARGUMENT_ERROR;
752    return NULL;
753  }
754
755  int32_t columns = (sel->encodingsCount+31)/32;
756  uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4);
757  if (mask == NULL) {
758    *status = U_MEMORY_ALLOCATION_ERROR;
759    return NULL;
760  }
761  uprv_memset(mask, ~0, columns *4);
762
763  if(s!=NULL) {
764    const UChar *limit;
765    if (length >= 0) {
766      limit = s + length;
767    } else {
768      limit = NULL;
769    }
770
771    while (limit == NULL ? *s != 0 : s != limit) {
772      UChar32 c;
773      uint16_t pvIndex;
774      UTRIE2_U16_NEXT16(sel->trie, s, limit, c, pvIndex);
775      if (intersectMasks(mask, sel->pv+pvIndex, columns)) {
776        break;
777      }
778    }
779  }
780  return selectForMask(sel, mask, status);
781}
782
783/* check a string against the selector - UTF8 version */
784U_CAPI UEnumeration * U_EXPORT2
785ucnvsel_selectForUTF8(const UConverterSelector* sel,
786                      const char *s, int32_t length, UErrorCode *status) {
787  // check if already failed
788  if (U_FAILURE(*status)) {
789    return NULL;
790  }
791  // ensure args make sense!
792  if (sel == NULL || (s == NULL && length != 0)) {
793    *status = U_ILLEGAL_ARGUMENT_ERROR;
794    return NULL;
795  }
796
797  int32_t columns = (sel->encodingsCount+31)/32;
798  uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4);
799  if (mask == NULL) {
800    *status = U_MEMORY_ALLOCATION_ERROR;
801    return NULL;
802  }
803  uprv_memset(mask, ~0, columns *4);
804
805  if (length < 0) {
806    length = (int32_t)uprv_strlen(s);
807  }
808
809  if(s!=NULL) {
810    const char *limit = s + length;
811
812    while (s != limit) {
813      uint16_t pvIndex;
814      UTRIE2_U8_NEXT16(sel->trie, s, limit, pvIndex);
815      if (intersectMasks(mask, sel->pv+pvIndex, columns)) {
816        break;
817      }
818    }
819  }
820  return selectForMask(sel, mask, status);
821}
822
823#endif  // !UCONFIG_NO_CONVERSION
824