1// Copyright 2007, Google Inc. 2// All rights reserved. 3// 4// Redistribution and use in source and binary forms, with or without 5// modification, are permitted provided that the following conditions are 6// met: 7// 8// * Redistributions of source code must retain the above copyright 9// notice, this list of conditions and the following disclaimer. 10// * Redistributions in binary form must reproduce the above 11// copyright notice, this list of conditions and the following disclaimer 12// in the documentation and/or other materials provided with the 13// distribution. 14// * Neither the name of Google Inc. nor the names of its 15// contributors may be used to endorse or promote products derived from 16// this software without specific prior written permission. 17// 18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 30// Google Mock - a framework for writing C++ mock classes. 31// 32// This file implements Matcher<const string&>, Matcher<string>, and 33// utilities for defining matchers. 34 35#include "gmock/gmock-matchers.h" 36 37#include <string.h> 38 39#include <iostream> 40#include <sstream> 41#include <string> 42#include <vector> 43 44namespace testing { 45namespace internal { 46 47// Returns the description for a matcher defined using the MATCHER*() 48// macro where the user-supplied description string is "", if 49// 'negation' is false; otherwise returns the description of the 50// negation of the matcher. 'param_values' contains a list of strings 51// that are the print-out of the matcher's parameters. 52GTEST_API_ std::string FormatMatcherDescription( 53 bool negation, const char* matcher_name, 54 const std::vector<const char*>& param_names, const Strings& param_values) { 55 std::string result = ConvertIdentifierNameToWords(matcher_name); 56 if (param_values.size() >= 1) { 57 result += " " + JoinAsKeyValueTuple(param_names, param_values); 58 } 59 return negation ? "not (" + result + ")" : result; 60} 61 62// FindMaxBipartiteMatching and its helper class. 63// 64// Uses the well-known Ford-Fulkerson max flow method to find a maximum 65// bipartite matching. Flow is considered to be from left to right. 66// There is an implicit source node that is connected to all of the left 67// nodes, and an implicit sink node that is connected to all of the 68// right nodes. All edges have unit capacity. 69// 70// Neither the flow graph nor the residual flow graph are represented 71// explicitly. Instead, they are implied by the information in 'graph' and 72// a vector<int> called 'left_' whose elements are initialized to the 73// value kUnused. This represents the initial state of the algorithm, 74// where the flow graph is empty, and the residual flow graph has the 75// following edges: 76// - An edge from source to each left_ node 77// - An edge from each right_ node to sink 78// - An edge from each left_ node to each right_ node, if the 79// corresponding edge exists in 'graph'. 80// 81// When the TryAugment() method adds a flow, it sets left_[l] = r for some 82// nodes l and r. This induces the following changes: 83// - The edges (source, l), (l, r), and (r, sink) are added to the 84// flow graph. 85// - The same three edges are removed from the residual flow graph. 86// - The reverse edges (l, source), (r, l), and (sink, r) are added 87// to the residual flow graph, which is a directional graph 88// representing unused flow capacity. 89// 90// When the method augments a flow (moving left_[l] from some r1 to some 91// other r2), this can be thought of as "undoing" the above steps with 92// respect to r1 and "redoing" them with respect to r2. 93// 94// It bears repeating that the flow graph and residual flow graph are 95// never represented explicitly, but can be derived by looking at the 96// information in 'graph' and in left_. 97// 98// As an optimization, there is a second vector<int> called right_ which 99// does not provide any new information. Instead, it enables more 100// efficient queries about edges entering or leaving the right-side nodes 101// of the flow or residual flow graphs. The following invariants are 102// maintained: 103// 104// left[l] == kUnused or right[left[l]] == l 105// right[r] == kUnused or left[right[r]] == r 106// 107// . [ source ] . 108// . ||| . 109// . ||| . 110// . ||\--> left[0]=1 ---\ right[0]=-1 ----\ . 111// . || | | . 112// . |\---> left[1]=-1 \--> right[1]=0 ---\| . 113// . | || . 114// . \----> left[2]=2 ------> right[2]=2 --\|| . 115// . ||| . 116// . elements matchers vvv . 117// . [ sink ] . 118// 119// See Also: 120// [1] Cormen, et al (2001). "Section 26.2: The Ford-Fulkerson method". 121// "Introduction to Algorithms (Second ed.)", pp. 651-664. 122// [2] "Ford-Fulkerson algorithm", Wikipedia, 123// 'http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm' 124class MaxBipartiteMatchState { 125 public: 126 explicit MaxBipartiteMatchState(const MatchMatrix& graph) 127 : graph_(&graph), 128 left_(graph_->LhsSize(), kUnused), 129 right_(graph_->RhsSize(), kUnused) {} 130 131 // Returns the edges of a maximal match, each in the form {left, right}. 132 ElementMatcherPairs Compute() { 133 // 'seen' is used for path finding { 0: unseen, 1: seen }. 134 ::std::vector<char> seen; 135 // Searches the residual flow graph for a path from each left node to 136 // the sink in the residual flow graph, and if one is found, add flow 137 // to the graph. It's okay to search through the left nodes once. The 138 // edge from the implicit source node to each previously-visited left 139 // node will have flow if that left node has any path to the sink 140 // whatsoever. Subsequent augmentations can only add flow to the 141 // network, and cannot take away that previous flow unit from the source. 142 // Since the source-to-left edge can only carry one flow unit (or, 143 // each element can be matched to only one matcher), there is no need 144 // to visit the left nodes more than once looking for augmented paths. 145 // The flow is known to be possible or impossible by looking at the 146 // node once. 147 for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) { 148 // Reset the path-marking vector and try to find a path from 149 // source to sink starting at the left_[ilhs] node. 150 GTEST_CHECK_(left_[ilhs] == kUnused) 151 << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs]; 152 // 'seen' initialized to 'graph_->RhsSize()' copies of 0. 153 seen.assign(graph_->RhsSize(), 0); 154 TryAugment(ilhs, &seen); 155 } 156 ElementMatcherPairs result; 157 for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) { 158 size_t irhs = left_[ilhs]; 159 if (irhs == kUnused) continue; 160 result.push_back(ElementMatcherPair(ilhs, irhs)); 161 } 162 return result; 163 } 164 165 private: 166 static const size_t kUnused = static_cast<size_t>(-1); 167 168 // Perform a depth-first search from left node ilhs to the sink. If a 169 // path is found, flow is added to the network by linking the left and 170 // right vector elements corresponding each segment of the path. 171 // Returns true if a path to sink was found, which means that a unit of 172 // flow was added to the network. The 'seen' vector elements correspond 173 // to right nodes and are marked to eliminate cycles from the search. 174 // 175 // Left nodes will only be explored at most once because they 176 // are accessible from at most one right node in the residual flow 177 // graph. 178 // 179 // Note that left_[ilhs] is the only element of left_ that TryAugment will 180 // potentially transition from kUnused to another value. Any other 181 // left_ element holding kUnused before TryAugment will be holding it 182 // when TryAugment returns. 183 // 184 bool TryAugment(size_t ilhs, ::std::vector<char>* seen) { 185 for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) { 186 if ((*seen)[irhs]) continue; 187 if (!graph_->HasEdge(ilhs, irhs)) continue; 188 // There's an available edge from ilhs to irhs. 189 (*seen)[irhs] = 1; 190 // Next a search is performed to determine whether 191 // this edge is a dead end or leads to the sink. 192 // 193 // right_[irhs] == kUnused means that there is residual flow from 194 // right node irhs to the sink, so we can use that to finish this 195 // flow path and return success. 196 // 197 // Otherwise there is residual flow to some ilhs. We push flow 198 // along that path and call ourselves recursively to see if this 199 // ultimately leads to sink. 200 if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) { 201 // Add flow from left_[ilhs] to right_[irhs]. 202 left_[ilhs] = irhs; 203 right_[irhs] = ilhs; 204 return true; 205 } 206 } 207 return false; 208 } 209 210 const MatchMatrix* graph_; // not owned 211 // Each element of the left_ vector represents a left hand side node 212 // (i.e. an element) and each element of right_ is a right hand side 213 // node (i.e. a matcher). The values in the left_ vector indicate 214 // outflow from that node to a node on the right_ side. The values 215 // in the right_ indicate inflow, and specify which left_ node is 216 // feeding that right_ node, if any. For example, left_[3] == 1 means 217 // there's a flow from element #3 to matcher #1. Such a flow would also 218 // be redundantly represented in the right_ vector as right_[1] == 3. 219 // Elements of left_ and right_ are either kUnused or mutually 220 // referent. Mutually referent means that left_[right_[i]] = i and 221 // right_[left_[i]] = i. 222 ::std::vector<size_t> left_; 223 ::std::vector<size_t> right_; 224}; 225 226const size_t MaxBipartiteMatchState::kUnused; 227 228GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g) { 229 return MaxBipartiteMatchState(g).Compute(); 230} 231 232static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs, 233 ::std::ostream* stream) { 234 typedef ElementMatcherPairs::const_iterator Iter; 235 ::std::ostream& os = *stream; 236 os << "{"; 237 const char* sep = ""; 238 for (Iter it = pairs.begin(); it != pairs.end(); ++it) { 239 os << sep << "\n (" 240 << "element #" << it->first << ", " 241 << "matcher #" << it->second << ")"; 242 sep = ","; 243 } 244 os << "\n}"; 245} 246 247bool MatchMatrix::NextGraph() { 248 for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) { 249 for (size_t irhs = 0; irhs < RhsSize(); ++irhs) { 250 char& b = matched_[SpaceIndex(ilhs, irhs)]; 251 if (!b) { 252 b = 1; 253 return true; 254 } 255 b = 0; 256 } 257 } 258 return false; 259} 260 261void MatchMatrix::Randomize() { 262 for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) { 263 for (size_t irhs = 0; irhs < RhsSize(); ++irhs) { 264 char& b = matched_[SpaceIndex(ilhs, irhs)]; 265 b = static_cast<char>(rand() & 1); // NOLINT 266 } 267 } 268} 269 270std::string MatchMatrix::DebugString() const { 271 ::std::stringstream ss; 272 const char* sep = ""; 273 for (size_t i = 0; i < LhsSize(); ++i) { 274 ss << sep; 275 for (size_t j = 0; j < RhsSize(); ++j) { 276 ss << HasEdge(i, j); 277 } 278 sep = ";"; 279 } 280 return ss.str(); 281} 282 283void UnorderedElementsAreMatcherImplBase::DescribeToImpl( 284 ::std::ostream* os) const { 285 switch (match_flags()) { 286 case UnorderedMatcherRequire::ExactMatch: 287 if (matcher_describers_.empty()) { 288 *os << "is empty"; 289 return; 290 } 291 if (matcher_describers_.size() == 1) { 292 *os << "has " << Elements(1) << " and that element "; 293 matcher_describers_[0]->DescribeTo(os); 294 return; 295 } 296 *os << "has " << Elements(matcher_describers_.size()) 297 << " and there exists some permutation of elements such that:\n"; 298 break; 299 case UnorderedMatcherRequire::Superset: 300 *os << "a surjection from elements to requirements exists such that:\n"; 301 break; 302 case UnorderedMatcherRequire::Subset: 303 *os << "an injection from elements to requirements exists such that:\n"; 304 break; 305 } 306 307 const char* sep = ""; 308 for (size_t i = 0; i != matcher_describers_.size(); ++i) { 309 *os << sep; 310 if (match_flags() == UnorderedMatcherRequire::ExactMatch) { 311 *os << " - element #" << i << " "; 312 } else { 313 *os << " - an element "; 314 } 315 matcher_describers_[i]->DescribeTo(os); 316 if (match_flags() == UnorderedMatcherRequire::ExactMatch) { 317 sep = ", and\n"; 318 } else { 319 sep = "\n"; 320 } 321 } 322} 323 324void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl( 325 ::std::ostream* os) const { 326 switch (match_flags()) { 327 case UnorderedMatcherRequire::ExactMatch: 328 if (matcher_describers_.empty()) { 329 *os << "isn't empty"; 330 return; 331 } 332 if (matcher_describers_.size() == 1) { 333 *os << "doesn't have " << Elements(1) << ", or has " << Elements(1) 334 << " that "; 335 matcher_describers_[0]->DescribeNegationTo(os); 336 return; 337 } 338 *os << "doesn't have " << Elements(matcher_describers_.size()) 339 << ", or there exists no permutation of elements such that:\n"; 340 break; 341 case UnorderedMatcherRequire::Superset: 342 *os << "no surjection from elements to requirements exists such that:\n"; 343 break; 344 case UnorderedMatcherRequire::Subset: 345 *os << "no injection from elements to requirements exists such that:\n"; 346 break; 347 } 348 const char* sep = ""; 349 for (size_t i = 0; i != matcher_describers_.size(); ++i) { 350 *os << sep; 351 if (match_flags() == UnorderedMatcherRequire::ExactMatch) { 352 *os << " - element #" << i << " "; 353 } else { 354 *os << " - an element "; 355 } 356 matcher_describers_[i]->DescribeTo(os); 357 if (match_flags() == UnorderedMatcherRequire::ExactMatch) { 358 sep = ", and\n"; 359 } else { 360 sep = "\n"; 361 } 362 } 363} 364 365// Checks that all matchers match at least one element, and that all 366// elements match at least one matcher. This enables faster matching 367// and better error reporting. 368// Returns false, writing an explanation to 'listener', if and only 369// if the success criteria are not met. 370bool UnorderedElementsAreMatcherImplBase::VerifyMatchMatrix( 371 const ::std::vector<std::string>& element_printouts, 372 const MatchMatrix& matrix, MatchResultListener* listener) const { 373 if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) { 374 return true; 375 } 376 377 if (match_flags() == UnorderedMatcherRequire::ExactMatch) { 378 if (matrix.LhsSize() != matrix.RhsSize()) { 379 // The element count doesn't match. If the container is empty, 380 // there's no need to explain anything as Google Mock already 381 // prints the empty container. Otherwise we just need to show 382 // how many elements there actually are. 383 if (matrix.LhsSize() != 0 && listener->IsInterested()) { 384 *listener << "which has " << Elements(matrix.LhsSize()); 385 } 386 return false; 387 } 388 } 389 390 bool result = true; 391 ::std::vector<char> element_matched(matrix.LhsSize(), 0); 392 ::std::vector<char> matcher_matched(matrix.RhsSize(), 0); 393 394 for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) { 395 for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) { 396 char matched = matrix.HasEdge(ilhs, irhs); 397 element_matched[ilhs] |= matched; 398 matcher_matched[irhs] |= matched; 399 } 400 } 401 402 if (match_flags() & UnorderedMatcherRequire::Superset) { 403 const char* sep = 404 "where the following matchers don't match any elements:\n"; 405 for (size_t mi = 0; mi < matcher_matched.size(); ++mi) { 406 if (matcher_matched[mi]) continue; 407 result = false; 408 if (listener->IsInterested()) { 409 *listener << sep << "matcher #" << mi << ": "; 410 matcher_describers_[mi]->DescribeTo(listener->stream()); 411 sep = ",\n"; 412 } 413 } 414 } 415 416 if (match_flags() & UnorderedMatcherRequire::Subset) { 417 const char* sep = 418 "where the following elements don't match any matchers:\n"; 419 const char* outer_sep = ""; 420 if (!result) { 421 outer_sep = "\nand "; 422 } 423 for (size_t ei = 0; ei < element_matched.size(); ++ei) { 424 if (element_matched[ei]) continue; 425 result = false; 426 if (listener->IsInterested()) { 427 *listener << outer_sep << sep << "element #" << ei << ": " 428 << element_printouts[ei]; 429 sep = ",\n"; 430 outer_sep = ""; 431 } 432 } 433 } 434 return result; 435} 436 437bool UnorderedElementsAreMatcherImplBase::FindPairing( 438 const MatchMatrix& matrix, MatchResultListener* listener) const { 439 ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix); 440 441 size_t max_flow = matches.size(); 442 if ((match_flags() & UnorderedMatcherRequire::Superset) && 443 max_flow < matrix.RhsSize()) { 444 if (listener->IsInterested()) { 445 *listener << "where no permutation of the elements can satisfy all " 446 "matchers, and the closest match is " 447 << max_flow << " of " << matrix.RhsSize() 448 << " matchers with the pairings:\n"; 449 LogElementMatcherPairVec(matches, listener->stream()); 450 } 451 return false; 452 } 453 if ((match_flags() & UnorderedMatcherRequire::Subset) && 454 max_flow < matrix.LhsSize()) { 455 if (listener->IsInterested()) { 456 *listener 457 << "where not all elements can be matched, and the closest match is " 458 << max_flow << " of " << matrix.RhsSize() 459 << " matchers with the pairings:\n"; 460 LogElementMatcherPairVec(matches, listener->stream()); 461 } 462 return false; 463 } 464 465 if (matches.size() > 1) { 466 if (listener->IsInterested()) { 467 const char* sep = "where:\n"; 468 for (size_t mi = 0; mi < matches.size(); ++mi) { 469 *listener << sep << " - element #" << matches[mi].first 470 << " is matched by matcher #" << matches[mi].second; 471 sep = ",\n"; 472 } 473 } 474 } 475 return true; 476} 477 478} // namespace internal 479} // namespace testing 480