1// Copyright 2007, Google Inc.
2// All rights reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8//     * Redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer.
10//     * Redistributions in binary form must reproduce the above
11// copyright notice, this list of conditions and the following disclaimer
12// in the documentation and/or other materials provided with the
13// distribution.
14//     * Neither the name of Google Inc. nor the names of its
15// contributors may be used to endorse or promote products derived from
16// this software without specific prior written permission.
17//
18// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
30// Google Mock - a framework for writing C++ mock classes.
31//
32// This file implements Matcher<const string&>, Matcher<string>, and
33// utilities for defining matchers.
34
35#include "gmock/gmock-matchers.h"
36
37#include <string.h>
38
39#include <iostream>
40#include <sstream>
41#include <string>
42#include <vector>
43
44namespace testing {
45namespace internal {
46
47// Returns the description for a matcher defined using the MATCHER*()
48// macro where the user-supplied description string is "", if
49// 'negation' is false; otherwise returns the description of the
50// negation of the matcher.  'param_values' contains a list of strings
51// that are the print-out of the matcher's parameters.
52GTEST_API_ std::string FormatMatcherDescription(
53    bool negation, const char* matcher_name,
54    const std::vector<const char*>& param_names, const Strings& param_values) {
55  std::string result = ConvertIdentifierNameToWords(matcher_name);
56  if (param_values.size() >= 1) {
57    result += " " + JoinAsKeyValueTuple(param_names, param_values);
58  }
59  return negation ? "not (" + result + ")" : result;
60}
61
62// FindMaxBipartiteMatching and its helper class.
63//
64// Uses the well-known Ford-Fulkerson max flow method to find a maximum
65// bipartite matching. Flow is considered to be from left to right.
66// There is an implicit source node that is connected to all of the left
67// nodes, and an implicit sink node that is connected to all of the
68// right nodes. All edges have unit capacity.
69//
70// Neither the flow graph nor the residual flow graph are represented
71// explicitly. Instead, they are implied by the information in 'graph' and
72// a vector<int> called 'left_' whose elements are initialized to the
73// value kUnused. This represents the initial state of the algorithm,
74// where the flow graph is empty, and the residual flow graph has the
75// following edges:
76//   - An edge from source to each left_ node
77//   - An edge from each right_ node to sink
78//   - An edge from each left_ node to each right_ node, if the
79//     corresponding edge exists in 'graph'.
80//
81// When the TryAugment() method adds a flow, it sets left_[l] = r for some
82// nodes l and r. This induces the following changes:
83//   - The edges (source, l), (l, r), and (r, sink) are added to the
84//     flow graph.
85//   - The same three edges are removed from the residual flow graph.
86//   - The reverse edges (l, source), (r, l), and (sink, r) are added
87//     to the residual flow graph, which is a directional graph
88//     representing unused flow capacity.
89//
90// When the method augments a flow (moving left_[l] from some r1 to some
91// other r2), this can be thought of as "undoing" the above steps with
92// respect to r1 and "redoing" them with respect to r2.
93//
94// It bears repeating that the flow graph and residual flow graph are
95// never represented explicitly, but can be derived by looking at the
96// information in 'graph' and in left_.
97//
98// As an optimization, there is a second vector<int> called right_ which
99// does not provide any new information. Instead, it enables more
100// efficient queries about edges entering or leaving the right-side nodes
101// of the flow or residual flow graphs. The following invariants are
102// maintained:
103//
104// left[l] == kUnused or right[left[l]] == l
105// right[r] == kUnused or left[right[r]] == r
106//
107// . [ source ]                                        .
108// .   |||                                             .
109// .   |||                                             .
110// .   ||\--> left[0]=1  ---\    right[0]=-1 ----\     .
111// .   ||                   |                    |     .
112// .   |\---> left[1]=-1    \--> right[1]=0  ---\|     .
113// .   |                                        ||     .
114// .   \----> left[2]=2  ------> right[2]=2  --\||     .
115// .                                           |||     .
116// .         elements           matchers       vvv     .
117// .                                         [ sink ]  .
118//
119// See Also:
120//   [1] Cormen, et al (2001). "Section 26.2: The Ford-Fulkerson method".
121//       "Introduction to Algorithms (Second ed.)", pp. 651-664.
122//   [2] "Ford-Fulkerson algorithm", Wikipedia,
123//       'http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm'
124class MaxBipartiteMatchState {
125 public:
126  explicit MaxBipartiteMatchState(const MatchMatrix& graph)
127      : graph_(&graph),
128        left_(graph_->LhsSize(), kUnused),
129        right_(graph_->RhsSize(), kUnused) {}
130
131  // Returns the edges of a maximal match, each in the form {left, right}.
132  ElementMatcherPairs Compute() {
133    // 'seen' is used for path finding { 0: unseen, 1: seen }.
134    ::std::vector<char> seen;
135    // Searches the residual flow graph for a path from each left node to
136    // the sink in the residual flow graph, and if one is found, add flow
137    // to the graph. It's okay to search through the left nodes once. The
138    // edge from the implicit source node to each previously-visited left
139    // node will have flow if that left node has any path to the sink
140    // whatsoever. Subsequent augmentations can only add flow to the
141    // network, and cannot take away that previous flow unit from the source.
142    // Since the source-to-left edge can only carry one flow unit (or,
143    // each element can be matched to only one matcher), there is no need
144    // to visit the left nodes more than once looking for augmented paths.
145    // The flow is known to be possible or impossible by looking at the
146    // node once.
147    for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) {
148      // Reset the path-marking vector and try to find a path from
149      // source to sink starting at the left_[ilhs] node.
150      GTEST_CHECK_(left_[ilhs] == kUnused)
151          << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs];
152      // 'seen' initialized to 'graph_->RhsSize()' copies of 0.
153      seen.assign(graph_->RhsSize(), 0);
154      TryAugment(ilhs, &seen);
155    }
156    ElementMatcherPairs result;
157    for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) {
158      size_t irhs = left_[ilhs];
159      if (irhs == kUnused) continue;
160      result.push_back(ElementMatcherPair(ilhs, irhs));
161    }
162    return result;
163  }
164
165 private:
166  static const size_t kUnused = static_cast<size_t>(-1);
167
168  // Perform a depth-first search from left node ilhs to the sink.  If a
169  // path is found, flow is added to the network by linking the left and
170  // right vector elements corresponding each segment of the path.
171  // Returns true if a path to sink was found, which means that a unit of
172  // flow was added to the network. The 'seen' vector elements correspond
173  // to right nodes and are marked to eliminate cycles from the search.
174  //
175  // Left nodes will only be explored at most once because they
176  // are accessible from at most one right node in the residual flow
177  // graph.
178  //
179  // Note that left_[ilhs] is the only element of left_ that TryAugment will
180  // potentially transition from kUnused to another value. Any other
181  // left_ element holding kUnused before TryAugment will be holding it
182  // when TryAugment returns.
183  //
184  bool TryAugment(size_t ilhs, ::std::vector<char>* seen) {
185    for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) {
186      if ((*seen)[irhs]) continue;
187      if (!graph_->HasEdge(ilhs, irhs)) continue;
188      // There's an available edge from ilhs to irhs.
189      (*seen)[irhs] = 1;
190      // Next a search is performed to determine whether
191      // this edge is a dead end or leads to the sink.
192      //
193      // right_[irhs] == kUnused means that there is residual flow from
194      // right node irhs to the sink, so we can use that to finish this
195      // flow path and return success.
196      //
197      // Otherwise there is residual flow to some ilhs. We push flow
198      // along that path and call ourselves recursively to see if this
199      // ultimately leads to sink.
200      if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) {
201        // Add flow from left_[ilhs] to right_[irhs].
202        left_[ilhs] = irhs;
203        right_[irhs] = ilhs;
204        return true;
205      }
206    }
207    return false;
208  }
209
210  const MatchMatrix* graph_;  // not owned
211  // Each element of the left_ vector represents a left hand side node
212  // (i.e. an element) and each element of right_ is a right hand side
213  // node (i.e. a matcher). The values in the left_ vector indicate
214  // outflow from that node to a node on the right_ side. The values
215  // in the right_ indicate inflow, and specify which left_ node is
216  // feeding that right_ node, if any. For example, left_[3] == 1 means
217  // there's a flow from element #3 to matcher #1. Such a flow would also
218  // be redundantly represented in the right_ vector as right_[1] == 3.
219  // Elements of left_ and right_ are either kUnused or mutually
220  // referent. Mutually referent means that left_[right_[i]] = i and
221  // right_[left_[i]] = i.
222  ::std::vector<size_t> left_;
223  ::std::vector<size_t> right_;
224};
225
226const size_t MaxBipartiteMatchState::kUnused;
227
228GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g) {
229  return MaxBipartiteMatchState(g).Compute();
230}
231
232static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs,
233                                     ::std::ostream* stream) {
234  typedef ElementMatcherPairs::const_iterator Iter;
235  ::std::ostream& os = *stream;
236  os << "{";
237  const char* sep = "";
238  for (Iter it = pairs.begin(); it != pairs.end(); ++it) {
239    os << sep << "\n  ("
240       << "element #" << it->first << ", "
241       << "matcher #" << it->second << ")";
242    sep = ",";
243  }
244  os << "\n}";
245}
246
247bool MatchMatrix::NextGraph() {
248  for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
249    for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
250      char& b = matched_[SpaceIndex(ilhs, irhs)];
251      if (!b) {
252        b = 1;
253        return true;
254      }
255      b = 0;
256    }
257  }
258  return false;
259}
260
261void MatchMatrix::Randomize() {
262  for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
263    for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
264      char& b = matched_[SpaceIndex(ilhs, irhs)];
265      b = static_cast<char>(rand() & 1);  // NOLINT
266    }
267  }
268}
269
270std::string MatchMatrix::DebugString() const {
271  ::std::stringstream ss;
272  const char* sep = "";
273  for (size_t i = 0; i < LhsSize(); ++i) {
274    ss << sep;
275    for (size_t j = 0; j < RhsSize(); ++j) {
276      ss << HasEdge(i, j);
277    }
278    sep = ";";
279  }
280  return ss.str();
281}
282
283void UnorderedElementsAreMatcherImplBase::DescribeToImpl(
284    ::std::ostream* os) const {
285  switch (match_flags()) {
286    case UnorderedMatcherRequire::ExactMatch:
287      if (matcher_describers_.empty()) {
288        *os << "is empty";
289        return;
290      }
291      if (matcher_describers_.size() == 1) {
292        *os << "has " << Elements(1) << " and that element ";
293        matcher_describers_[0]->DescribeTo(os);
294        return;
295      }
296      *os << "has " << Elements(matcher_describers_.size())
297          << " and there exists some permutation of elements such that:\n";
298      break;
299    case UnorderedMatcherRequire::Superset:
300      *os << "a surjection from elements to requirements exists such that:\n";
301      break;
302    case UnorderedMatcherRequire::Subset:
303      *os << "an injection from elements to requirements exists such that:\n";
304      break;
305  }
306
307  const char* sep = "";
308  for (size_t i = 0; i != matcher_describers_.size(); ++i) {
309    *os << sep;
310    if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
311      *os << " - element #" << i << " ";
312    } else {
313      *os << " - an element ";
314    }
315    matcher_describers_[i]->DescribeTo(os);
316    if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
317      sep = ", and\n";
318    } else {
319      sep = "\n";
320    }
321  }
322}
323
324void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(
325    ::std::ostream* os) const {
326  switch (match_flags()) {
327    case UnorderedMatcherRequire::ExactMatch:
328      if (matcher_describers_.empty()) {
329        *os << "isn't empty";
330        return;
331      }
332      if (matcher_describers_.size() == 1) {
333        *os << "doesn't have " << Elements(1) << ", or has " << Elements(1)
334            << " that ";
335        matcher_describers_[0]->DescribeNegationTo(os);
336        return;
337      }
338      *os << "doesn't have " << Elements(matcher_describers_.size())
339          << ", or there exists no permutation of elements such that:\n";
340      break;
341    case UnorderedMatcherRequire::Superset:
342      *os << "no surjection from elements to requirements exists such that:\n";
343      break;
344    case UnorderedMatcherRequire::Subset:
345      *os << "no injection from elements to requirements exists such that:\n";
346      break;
347  }
348  const char* sep = "";
349  for (size_t i = 0; i != matcher_describers_.size(); ++i) {
350    *os << sep;
351    if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
352      *os << " - element #" << i << " ";
353    } else {
354      *os << " - an element ";
355    }
356    matcher_describers_[i]->DescribeTo(os);
357    if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
358      sep = ", and\n";
359    } else {
360      sep = "\n";
361    }
362  }
363}
364
365// Checks that all matchers match at least one element, and that all
366// elements match at least one matcher. This enables faster matching
367// and better error reporting.
368// Returns false, writing an explanation to 'listener', if and only
369// if the success criteria are not met.
370bool UnorderedElementsAreMatcherImplBase::VerifyMatchMatrix(
371    const ::std::vector<std::string>& element_printouts,
372    const MatchMatrix& matrix, MatchResultListener* listener) const {
373  if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) {
374    return true;
375  }
376
377  if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
378    if (matrix.LhsSize() != matrix.RhsSize()) {
379      // The element count doesn't match.  If the container is empty,
380      // there's no need to explain anything as Google Mock already
381      // prints the empty container. Otherwise we just need to show
382      // how many elements there actually are.
383      if (matrix.LhsSize() != 0 && listener->IsInterested()) {
384        *listener << "which has " << Elements(matrix.LhsSize());
385      }
386      return false;
387    }
388  }
389
390  bool result = true;
391  ::std::vector<char> element_matched(matrix.LhsSize(), 0);
392  ::std::vector<char> matcher_matched(matrix.RhsSize(), 0);
393
394  for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) {
395    for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) {
396      char matched = matrix.HasEdge(ilhs, irhs);
397      element_matched[ilhs] |= matched;
398      matcher_matched[irhs] |= matched;
399    }
400  }
401
402  if (match_flags() & UnorderedMatcherRequire::Superset) {
403    const char* sep =
404        "where the following matchers don't match any elements:\n";
405    for (size_t mi = 0; mi < matcher_matched.size(); ++mi) {
406      if (matcher_matched[mi]) continue;
407      result = false;
408      if (listener->IsInterested()) {
409        *listener << sep << "matcher #" << mi << ": ";
410        matcher_describers_[mi]->DescribeTo(listener->stream());
411        sep = ",\n";
412      }
413    }
414  }
415
416  if (match_flags() & UnorderedMatcherRequire::Subset) {
417    const char* sep =
418        "where the following elements don't match any matchers:\n";
419    const char* outer_sep = "";
420    if (!result) {
421      outer_sep = "\nand ";
422    }
423    for (size_t ei = 0; ei < element_matched.size(); ++ei) {
424      if (element_matched[ei]) continue;
425      result = false;
426      if (listener->IsInterested()) {
427        *listener << outer_sep << sep << "element #" << ei << ": "
428                  << element_printouts[ei];
429        sep = ",\n";
430        outer_sep = "";
431      }
432    }
433  }
434  return result;
435}
436
437bool UnorderedElementsAreMatcherImplBase::FindPairing(
438    const MatchMatrix& matrix, MatchResultListener* listener) const {
439  ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix);
440
441  size_t max_flow = matches.size();
442  if ((match_flags() & UnorderedMatcherRequire::Superset) &&
443      max_flow < matrix.RhsSize()) {
444    if (listener->IsInterested()) {
445      *listener << "where no permutation of the elements can satisfy all "
446                   "matchers, and the closest match is "
447                << max_flow << " of " << matrix.RhsSize()
448                << " matchers with the pairings:\n";
449      LogElementMatcherPairVec(matches, listener->stream());
450    }
451    return false;
452  }
453  if ((match_flags() & UnorderedMatcherRequire::Subset) &&
454      max_flow < matrix.LhsSize()) {
455    if (listener->IsInterested()) {
456      *listener
457          << "where not all elements can be matched, and the closest match is "
458          << max_flow << " of " << matrix.RhsSize()
459          << " matchers with the pairings:\n";
460      LogElementMatcherPairVec(matches, listener->stream());
461    }
462    return false;
463  }
464
465  if (matches.size() > 1) {
466    if (listener->IsInterested()) {
467      const char* sep = "where:\n";
468      for (size_t mi = 0; mi < matches.size(); ++mi) {
469        *listener << sep << " - element #" << matches[mi].first
470                  << " is matched by matcher #" << matches[mi].second;
471        sep = ",\n";
472      }
473    }
474  }
475  return true;
476}
477
478}  // namespace internal
479}  // namespace testing
480