1f92157deSopenharmony_ci# Matchers Reference
2f92157deSopenharmony_ci
3f92157deSopenharmony_ciA **matcher** matches a *single* argument. You can use it inside `ON_CALL()` or
4f92157deSopenharmony_ci`EXPECT_CALL()`, or use it to validate a value directly using two macros:
5f92157deSopenharmony_ci
6f92157deSopenharmony_ci| Macro                                | Description                           |
7f92157deSopenharmony_ci| :----------------------------------- | :------------------------------------ |
8f92157deSopenharmony_ci| `EXPECT_THAT(actual_value, matcher)` | Asserts that `actual_value` matches `matcher`. |
9f92157deSopenharmony_ci| `ASSERT_THAT(actual_value, matcher)` | The same as `EXPECT_THAT(actual_value, matcher)`, except that it generates a **fatal** failure. |
10f92157deSopenharmony_ci
11f92157deSopenharmony_ci{: .callout .warning}
12f92157deSopenharmony_ci**WARNING:** Equality matching via `EXPECT_THAT(actual_value, expected_value)`
13f92157deSopenharmony_ciis supported, however note that implicit conversions can cause surprising
14f92157deSopenharmony_ciresults. For example, `EXPECT_THAT(some_bool, "some string")` will compile and
15f92157deSopenharmony_cimay pass unintentionally.
16f92157deSopenharmony_ci
17f92157deSopenharmony_ci**BEST PRACTICE:** Prefer to make the comparison explicit via
18f92157deSopenharmony_ci`EXPECT_THAT(actual_value, Eq(expected_value))` or `EXPECT_EQ(actual_value,
19f92157deSopenharmony_ciexpected_value)`.
20f92157deSopenharmony_ci
21f92157deSopenharmony_ciBuilt-in matchers (where `argument` is the function argument, e.g.
22f92157deSopenharmony_ci`actual_value` in the example above, or when used in the context of
23f92157deSopenharmony_ci`EXPECT_CALL(mock_object, method(matchers))`, the arguments of `method`) are
24f92157deSopenharmony_cidivided into several categories. All matchers are defined in the `::testing`
25f92157deSopenharmony_cinamespace unless otherwise noted.
26f92157deSopenharmony_ci
27f92157deSopenharmony_ci## Wildcard
28f92157deSopenharmony_ci
29f92157deSopenharmony_ciMatcher                     | Description
30f92157deSopenharmony_ci:-------------------------- | :-----------------------------------------------
31f92157deSopenharmony_ci`_`                         | `argument` can be any value of the correct type.
32f92157deSopenharmony_ci`A<type>()` or `An<type>()` | `argument` can be any value of type `type`.
33f92157deSopenharmony_ci
34f92157deSopenharmony_ci## Generic Comparison
35f92157deSopenharmony_ci
36f92157deSopenharmony_ci| Matcher                | Description                                         |
37f92157deSopenharmony_ci| :--------------------- | :-------------------------------------------------- |
38f92157deSopenharmony_ci| `Eq(value)` or `value` | `argument == value`                                 |
39f92157deSopenharmony_ci| `Ge(value)`            | `argument >= value`                                 |
40f92157deSopenharmony_ci| `Gt(value)`            | `argument > value`                                  |
41f92157deSopenharmony_ci| `Le(value)`            | `argument <= value`                                 |
42f92157deSopenharmony_ci| `Lt(value)`            | `argument < value`                                  |
43f92157deSopenharmony_ci| `Ne(value)`            | `argument != value`                                 |
44f92157deSopenharmony_ci| `IsFalse()`            | `argument` evaluates to `false` in a Boolean context. |
45f92157deSopenharmony_ci| `IsTrue()`             | `argument` evaluates to `true` in a Boolean context. |
46f92157deSopenharmony_ci| `IsNull()`             | `argument` is a `NULL` pointer (raw or smart).      |
47f92157deSopenharmony_ci| `NotNull()`            | `argument` is a non-null pointer (raw or smart).    |
48f92157deSopenharmony_ci| `Optional(m)`          | `argument` is `optional<>` that contains a value matching `m`. (For testing whether an `optional<>` is set, check for equality with `nullopt`. You may need to use `Eq(nullopt)` if the inner type doesn't have `==`.)|
49f92157deSopenharmony_ci| `VariantWith<T>(m)`    | `argument` is `variant<>` that holds the alternative of type T with a value matching `m`. |
50f92157deSopenharmony_ci| `Ref(variable)`        | `argument` is a reference to `variable`.            |
51f92157deSopenharmony_ci| `TypedEq<type>(value)` | `argument` has type `type` and is equal to `value`. You may need to use this instead of `Eq(value)` when the mock function is overloaded. |
52f92157deSopenharmony_ci
53f92157deSopenharmony_ciExcept `Ref()`, these matchers make a *copy* of `value` in case it's modified or
54f92157deSopenharmony_cidestructed later. If the compiler complains that `value` doesn't have a public
55f92157deSopenharmony_cicopy constructor, try wrap it in `std::ref()`, e.g.
56f92157deSopenharmony_ci`Eq(std::ref(non_copyable_value))`. If you do that, make sure
57f92157deSopenharmony_ci`non_copyable_value` is not changed afterwards, or the meaning of your matcher
58f92157deSopenharmony_ciwill be changed.
59f92157deSopenharmony_ci
60f92157deSopenharmony_ci`IsTrue` and `IsFalse` are useful when you need to use a matcher, or for types
61f92157deSopenharmony_cithat can be explicitly converted to Boolean, but are not implicitly converted to
62f92157deSopenharmony_ciBoolean. In other cases, you can use the basic
63f92157deSopenharmony_ci[`EXPECT_TRUE` and `EXPECT_FALSE`](assertions.md#boolean) assertions.
64f92157deSopenharmony_ci
65f92157deSopenharmony_ci## Floating-Point Matchers {#FpMatchers}
66f92157deSopenharmony_ci
67f92157deSopenharmony_ci| Matcher                          | Description                        |
68f92157deSopenharmony_ci| :------------------------------- | :--------------------------------- |
69f92157deSopenharmony_ci| `DoubleEq(a_double)`             | `argument` is a `double` value approximately equal to `a_double`, treating two NaNs as unequal. |
70f92157deSopenharmony_ci| `FloatEq(a_float)`               | `argument` is a `float` value approximately equal to `a_float`, treating two NaNs as unequal. |
71f92157deSopenharmony_ci| `NanSensitiveDoubleEq(a_double)` | `argument` is a `double` value approximately equal to `a_double`, treating two NaNs as equal. |
72f92157deSopenharmony_ci| `NanSensitiveFloatEq(a_float)`   | `argument` is a `float` value approximately equal to `a_float`, treating two NaNs as equal. |
73f92157deSopenharmony_ci| `IsNan()`   | `argument` is any floating-point type with a NaN value. |
74f92157deSopenharmony_ci
75f92157deSopenharmony_ciThe above matchers use ULP-based comparison (the same as used in googletest).
76f92157deSopenharmony_ciThey automatically pick a reasonable error bound based on the absolute value of
77f92157deSopenharmony_cithe expected value. `DoubleEq()` and `FloatEq()` conform to the IEEE standard,
78f92157deSopenharmony_ciwhich requires comparing two NaNs for equality to return false. The
79f92157deSopenharmony_ci`NanSensitive*` version instead treats two NaNs as equal, which is often what a
80f92157deSopenharmony_ciuser wants.
81f92157deSopenharmony_ci
82f92157deSopenharmony_ci| Matcher                                           | Description              |
83f92157deSopenharmony_ci| :------------------------------------------------ | :----------------------- |
84f92157deSopenharmony_ci| `DoubleNear(a_double, max_abs_error)`             | `argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as unequal. |
85f92157deSopenharmony_ci| `FloatNear(a_float, max_abs_error)`               | `argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as unequal. |
86f92157deSopenharmony_ci| `NanSensitiveDoubleNear(a_double, max_abs_error)` | `argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as equal. |
87f92157deSopenharmony_ci| `NanSensitiveFloatNear(a_float, max_abs_error)`   | `argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as equal. |
88f92157deSopenharmony_ci
89f92157deSopenharmony_ci## String Matchers
90f92157deSopenharmony_ci
91f92157deSopenharmony_ciThe `argument` can be either a C string or a C++ string object:
92f92157deSopenharmony_ci
93f92157deSopenharmony_ci| Matcher                 | Description                                        |
94f92157deSopenharmony_ci| :---------------------- | :------------------------------------------------- |
95f92157deSopenharmony_ci| `ContainsRegex(string)`  | `argument` matches the given regular expression.  |
96f92157deSopenharmony_ci| `EndsWith(suffix)`       | `argument` ends with string `suffix`.             |
97f92157deSopenharmony_ci| `HasSubstr(string)`      | `argument` contains `string` as a sub-string.     |
98f92157deSopenharmony_ci| `IsEmpty()`              | `argument` is an empty string.                    |
99f92157deSopenharmony_ci| `MatchesRegex(string)`   | `argument` matches the given regular expression with the match starting at the first character and ending at the last character. |
100f92157deSopenharmony_ci| `StartsWith(prefix)`     | `argument` starts with string `prefix`.           |
101f92157deSopenharmony_ci| `StrCaseEq(string)`      | `argument` is equal to `string`, ignoring case.   |
102f92157deSopenharmony_ci| `StrCaseNe(string)`      | `argument` is not equal to `string`, ignoring case. |
103f92157deSopenharmony_ci| `StrEq(string)`          | `argument` is equal to `string`.                  |
104f92157deSopenharmony_ci| `StrNe(string)`          | `argument` is not equal to `string`.              |
105f92157deSopenharmony_ci| `WhenBase64Unescaped(m)` | `argument` is a base-64 escaped string whose unescaped string matches `m`. |
106f92157deSopenharmony_ci
107f92157deSopenharmony_ci`ContainsRegex()` and `MatchesRegex()` take ownership of the `RE` object. They
108f92157deSopenharmony_ciuse the regular expression syntax defined
109f92157deSopenharmony_ci[here](../advanced.md#regular-expression-syntax). All of these matchers, except
110f92157deSopenharmony_ci`ContainsRegex()` and `MatchesRegex()` work for wide strings as well.
111f92157deSopenharmony_ci
112f92157deSopenharmony_ci## Container Matchers
113f92157deSopenharmony_ci
114f92157deSopenharmony_ciMost STL-style containers support `==`, so you can use `Eq(expected_container)`
115f92157deSopenharmony_cior simply `expected_container` to match a container exactly. If you want to
116f92157deSopenharmony_ciwrite the elements in-line, match them more flexibly, or get more informative
117f92157deSopenharmony_cimessages, you can use:
118f92157deSopenharmony_ci
119f92157deSopenharmony_ci| Matcher                                   | Description                      |
120f92157deSopenharmony_ci| :---------------------------------------- | :------------------------------- |
121f92157deSopenharmony_ci| `BeginEndDistanceIs(m)` | `argument` is a container whose `begin()` and `end()` iterators are separated by a number of increments matching `m`. E.g. `BeginEndDistanceIs(2)` or `BeginEndDistanceIs(Lt(2))`. For containers that define a `size()` method, `SizeIs(m)` may be more efficient. |
122f92157deSopenharmony_ci| `ContainerEq(container)` | The same as `Eq(container)` except that the failure message also includes which elements are in one container but not the other. |
123f92157deSopenharmony_ci| `Contains(e)` | `argument` contains an element that matches `e`, which can be either a value or a matcher. |
124f92157deSopenharmony_ci| `Contains(e).Times(n)` | `argument` contains elements that match `e`, which can be either a value or a matcher, and the number of matches is `n`, which can be either a value or a matcher. Unlike the plain `Contains` and `Each` this allows to check for arbitrary occurrences including testing for absence with `Contains(e).Times(0)`. |
125f92157deSopenharmony_ci| `Each(e)` | `argument` is a container where *every* element matches `e`, which can be either a value or a matcher. |
126f92157deSopenharmony_ci| `ElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, where the *i*-th element matches `ei`, which can be a value or a matcher. |
127f92157deSopenharmony_ci| `ElementsAreArray({e0, e1, ..., en})`, `ElementsAreArray(a_container)`, `ElementsAreArray(begin, end)`, `ElementsAreArray(array)`, or `ElementsAreArray(array, count)` | The same as `ElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, iterator range, or C-style array. |
128f92157deSopenharmony_ci| `IsEmpty()` | `argument` is an empty container (`container.empty()`). |
129f92157deSopenharmony_ci| `IsSubsetOf({e0, e1, ..., en})`, `IsSubsetOf(a_container)`, `IsSubsetOf(begin, end)`, `IsSubsetOf(array)`, or `IsSubsetOf(array, count)` | `argument` matches `UnorderedElementsAre(x0, x1, ..., xk)` for some subset `{x0, x1, ..., xk}` of the expected matchers. |
130f92157deSopenharmony_ci| `IsSupersetOf({e0, e1, ..., en})`, `IsSupersetOf(a_container)`, `IsSupersetOf(begin, end)`, `IsSupersetOf(array)`, or `IsSupersetOf(array, count)` | Some subset of `argument` matches `UnorderedElementsAre(`expected matchers`)`. |
131f92157deSopenharmony_ci| `Pointwise(m, container)`, `Pointwise(m, {e0, e1, ..., en})` | `argument` contains the same number of elements as in `container`, and for all i, (the i-th element in `argument`, the i-th element in `container`) match `m`, which is a matcher on 2-tuples. E.g. `Pointwise(Le(), upper_bounds)` verifies that each element in `argument` doesn't exceed the corresponding element in `upper_bounds`. See more detail below. |
132f92157deSopenharmony_ci| `SizeIs(m)` | `argument` is a container whose size matches `m`. E.g. `SizeIs(2)` or `SizeIs(Lt(2))`. |
133f92157deSopenharmony_ci| `UnorderedElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, and under *some* permutation of the elements, each element matches an `ei` (for a different `i`), which can be a value or a matcher. |
134f92157deSopenharmony_ci| `UnorderedElementsAreArray({e0, e1, ..., en})`, `UnorderedElementsAreArray(a_container)`, `UnorderedElementsAreArray(begin, end)`, `UnorderedElementsAreArray(array)`, or `UnorderedElementsAreArray(array, count)` | The same as `UnorderedElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, iterator range, or C-style array. |
135f92157deSopenharmony_ci| `UnorderedPointwise(m, container)`, `UnorderedPointwise(m, {e0, e1, ..., en})` | Like `Pointwise(m, container)`, but ignores the order of elements. |
136f92157deSopenharmony_ci| `WhenSorted(m)` | When `argument` is sorted using the `<` operator, it matches container matcher `m`. E.g. `WhenSorted(ElementsAre(1, 2, 3))` verifies that `argument` contains elements 1, 2, and 3, ignoring order. |
137f92157deSopenharmony_ci| `WhenSortedBy(comparator, m)` | The same as `WhenSorted(m)`, except that the given comparator instead of `<` is used to sort `argument`. E.g. `WhenSortedBy(std::greater(), ElementsAre(3, 2, 1))`. |
138f92157deSopenharmony_ci
139f92157deSopenharmony_ci**Notes:**
140f92157deSopenharmony_ci
141f92157deSopenharmony_ci*   These matchers can also match:
142f92157deSopenharmony_ci    1.  a native array passed by reference (e.g. in `Foo(const int (&a)[5])`),
143f92157deSopenharmony_ci        and
144f92157deSopenharmony_ci    2.  an array passed as a pointer and a count (e.g. in `Bar(const T* buffer,
145f92157deSopenharmony_ci        int len)` -- see [Multi-argument Matchers](#MultiArgMatchers)).
146f92157deSopenharmony_ci*   The array being matched may be multi-dimensional (i.e. its elements can be
147f92157deSopenharmony_ci    arrays).
148f92157deSopenharmony_ci*   `m` in `Pointwise(m, ...)` and `UnorderedPointwise(m, ...)` should be a
149f92157deSopenharmony_ci    matcher for `::std::tuple<T, U>` where `T` and `U` are the element type of
150f92157deSopenharmony_ci    the actual container and the expected container, respectively. For example,
151f92157deSopenharmony_ci    to compare two `Foo` containers where `Foo` doesn't support `operator==`,
152f92157deSopenharmony_ci    one might write:
153f92157deSopenharmony_ci
154f92157deSopenharmony_ci    ```cpp
155f92157deSopenharmony_ci    MATCHER(FooEq, "") {
156f92157deSopenharmony_ci      return std::get<0>(arg).Equals(std::get<1>(arg));
157f92157deSopenharmony_ci    }
158f92157deSopenharmony_ci    ...
159f92157deSopenharmony_ci    EXPECT_THAT(actual_foos, Pointwise(FooEq(), expected_foos));
160f92157deSopenharmony_ci    ```
161f92157deSopenharmony_ci
162f92157deSopenharmony_ci## Member Matchers
163f92157deSopenharmony_ci
164f92157deSopenharmony_ci| Matcher                         | Description                                |
165f92157deSopenharmony_ci| :------------------------------ | :----------------------------------------- |
166f92157deSopenharmony_ci| `Field(&class::field, m)`       | `argument.field` (or `argument->field` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_. |
167f92157deSopenharmony_ci| `Field(field_name, &class::field, m)` | The same as the two-parameter version, but provides a better error message. |
168f92157deSopenharmony_ci| `Key(e)`                        | `argument.first` matches `e`, which can be either a value or a matcher. E.g. `Contains(Key(Le(5)))` can verify that a `map` contains a key `<= 5`. |
169f92157deSopenharmony_ci| `Pair(m1, m2)`                  | `argument` is an `std::pair` whose `first` field matches `m1` and `second` field matches `m2`. |
170f92157deSopenharmony_ci| `FieldsAre(m...)`                   | `argument` is a compatible object where each field matches piecewise with the matchers `m...`. A compatible object is any that supports the `std::tuple_size<Obj>`+`get<I>(obj)` protocol. In C++17 and up this also supports types compatible with structured bindings, like aggregates. |
171f92157deSopenharmony_ci| `Property(&class::property, m)` | `argument.property()` (or `argument->property()` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_. The method `property()` must take no argument and be declared as `const`. |
172f92157deSopenharmony_ci| `Property(property_name, &class::property, m)` | The same as the two-parameter version, but provides a better error message.
173f92157deSopenharmony_ci
174f92157deSopenharmony_ci**Notes:**
175f92157deSopenharmony_ci
176f92157deSopenharmony_ci*   You can use `FieldsAre()` to match any type that supports structured
177f92157deSopenharmony_ci    bindings, such as `std::tuple`, `std::pair`, `std::array`, and aggregate
178f92157deSopenharmony_ci    types. For example:
179f92157deSopenharmony_ci
180f92157deSopenharmony_ci    ```cpp
181f92157deSopenharmony_ci    std::tuple<int, std::string> my_tuple{7, "hello world"};
182f92157deSopenharmony_ci    EXPECT_THAT(my_tuple, FieldsAre(Ge(0), HasSubstr("hello")));
183f92157deSopenharmony_ci
184f92157deSopenharmony_ci    struct MyStruct {
185f92157deSopenharmony_ci      int value = 42;
186f92157deSopenharmony_ci      std::string greeting = "aloha";
187f92157deSopenharmony_ci    };
188f92157deSopenharmony_ci    MyStruct s;
189f92157deSopenharmony_ci    EXPECT_THAT(s, FieldsAre(42, "aloha"));
190f92157deSopenharmony_ci    ```
191f92157deSopenharmony_ci
192f92157deSopenharmony_ci*   Don't use `Property()` against member functions that you do not own, because
193f92157deSopenharmony_ci    taking addresses of functions is fragile and generally not part of the
194f92157deSopenharmony_ci    contract of the function.
195f92157deSopenharmony_ci
196f92157deSopenharmony_ci## Matching the Result of a Function, Functor, or Callback
197f92157deSopenharmony_ci
198f92157deSopenharmony_ci| Matcher          | Description                                       |
199f92157deSopenharmony_ci| :--------------- | :------------------------------------------------ |
200f92157deSopenharmony_ci| `ResultOf(f, m)` | `f(argument)` matches matcher `m`, where `f` is a function or functor. |
201f92157deSopenharmony_ci| `ResultOf(result_description, f, m)` | The same as the two-parameter version, but provides a better error message.
202f92157deSopenharmony_ci
203f92157deSopenharmony_ci## Pointer Matchers
204f92157deSopenharmony_ci
205f92157deSopenharmony_ci| Matcher                   | Description                                     |
206f92157deSopenharmony_ci| :------------------------ | :---------------------------------------------- |
207f92157deSopenharmony_ci| `Address(m)`              | the result of `std::addressof(argument)` matches `m`. |
208f92157deSopenharmony_ci| `Pointee(m)`              | `argument` (either a smart pointer or a raw pointer) points to a value that matches matcher `m`. |
209f92157deSopenharmony_ci| `Pointer(m)`              | `argument` (either a smart pointer or a raw pointer) contains a pointer that matches `m`. `m` will match against the raw pointer regardless of the type of `argument`. |
210f92157deSopenharmony_ci| `WhenDynamicCastTo<T>(m)` | when `argument` is passed through `dynamic_cast<T>()`, it matches matcher `m`. |
211f92157deSopenharmony_ci
212f92157deSopenharmony_ci## Multi-argument Matchers {#MultiArgMatchers}
213f92157deSopenharmony_ci
214f92157deSopenharmony_ciTechnically, all matchers match a *single* value. A "multi-argument" matcher is
215f92157deSopenharmony_cijust one that matches a *tuple*. The following matchers can be used to match a
216f92157deSopenharmony_cituple `(x, y)`:
217f92157deSopenharmony_ci
218f92157deSopenharmony_ciMatcher | Description
219f92157deSopenharmony_ci:------ | :----------
220f92157deSopenharmony_ci`Eq()`  | `x == y`
221f92157deSopenharmony_ci`Ge()`  | `x >= y`
222f92157deSopenharmony_ci`Gt()`  | `x > y`
223f92157deSopenharmony_ci`Le()`  | `x <= y`
224f92157deSopenharmony_ci`Lt()`  | `x < y`
225f92157deSopenharmony_ci`Ne()`  | `x != y`
226f92157deSopenharmony_ci
227f92157deSopenharmony_ciYou can use the following selectors to pick a subset of the arguments (or
228f92157deSopenharmony_cireorder them) to participate in the matching:
229f92157deSopenharmony_ci
230f92157deSopenharmony_ci| Matcher                    | Description                                     |
231f92157deSopenharmony_ci| :------------------------- | :---------------------------------------------- |
232f92157deSopenharmony_ci| `AllArgs(m)`               | Equivalent to `m`. Useful as syntactic sugar in `.With(AllArgs(m))`. |
233f92157deSopenharmony_ci| `Args<N1, N2, ..., Nk>(m)` | The tuple of the `k` selected (using 0-based indices) arguments matches `m`, e.g. `Args<1, 2>(Eq())`. |
234f92157deSopenharmony_ci
235f92157deSopenharmony_ci## Composite Matchers
236f92157deSopenharmony_ci
237f92157deSopenharmony_ciYou can make a matcher from one or more other matchers:
238f92157deSopenharmony_ci
239f92157deSopenharmony_ci| Matcher                          | Description                             |
240f92157deSopenharmony_ci| :------------------------------- | :-------------------------------------- |
241f92157deSopenharmony_ci| `AllOf(m1, m2, ..., mn)` | `argument` matches all of the matchers `m1` to `mn`. |
242f92157deSopenharmony_ci| `AllOfArray({m0, m1, ..., mn})`, `AllOfArray(a_container)`, `AllOfArray(begin, end)`, `AllOfArray(array)`, or `AllOfArray(array, count)` | The same as `AllOf()` except that the matchers come from an initializer list, STL-style container, iterator range, or C-style array. |
243f92157deSopenharmony_ci| `AnyOf(m1, m2, ..., mn)` | `argument` matches at least one of the matchers `m1` to `mn`. |
244f92157deSopenharmony_ci| `AnyOfArray({m0, m1, ..., mn})`, `AnyOfArray(a_container)`, `AnyOfArray(begin, end)`, `AnyOfArray(array)`, or `AnyOfArray(array, count)` | The same as `AnyOf()` except that the matchers come from an initializer list, STL-style container, iterator range, or C-style array. |
245f92157deSopenharmony_ci| `Not(m)` | `argument` doesn't match matcher `m`. |
246f92157deSopenharmony_ci| `Conditional(cond, m1, m2)` | Matches matcher `m1` if `cond` evaluates to true, else matches `m2`.|
247f92157deSopenharmony_ci
248f92157deSopenharmony_ci## Adapters for Matchers
249f92157deSopenharmony_ci
250f92157deSopenharmony_ci| Matcher                 | Description                           |
251f92157deSopenharmony_ci| :---------------------- | :------------------------------------ |
252f92157deSopenharmony_ci| `MatcherCast<T>(m)`     | casts matcher `m` to type `Matcher<T>`. |
253f92157deSopenharmony_ci| `SafeMatcherCast<T>(m)` | [safely casts](../gmock_cook_book.md#SafeMatcherCast) matcher `m` to type `Matcher<T>`. |
254f92157deSopenharmony_ci| `Truly(predicate)`      | `predicate(argument)` returns something considered by C++ to be true, where `predicate` is a function or functor. |
255f92157deSopenharmony_ci
256f92157deSopenharmony_ci`AddressSatisfies(callback)` and `Truly(callback)` take ownership of `callback`,
257f92157deSopenharmony_ciwhich must be a permanent callback.
258f92157deSopenharmony_ci
259f92157deSopenharmony_ci## Using Matchers as Predicates {#MatchersAsPredicatesCheat}
260f92157deSopenharmony_ci
261f92157deSopenharmony_ci| Matcher                       | Description                                 |
262f92157deSopenharmony_ci| :---------------------------- | :------------------------------------------ |
263f92157deSopenharmony_ci| `Matches(m)(value)` | evaluates to `true` if `value` matches `m`. You can use `Matches(m)` alone as a unary functor. |
264f92157deSopenharmony_ci| `ExplainMatchResult(m, value, result_listener)` | evaluates to `true` if `value` matches `m`, explaining the result to `result_listener`. |
265f92157deSopenharmony_ci| `Value(value, m)` | evaluates to `true` if `value` matches `m`. |
266f92157deSopenharmony_ci
267f92157deSopenharmony_ci## Defining Matchers
268f92157deSopenharmony_ci
269f92157deSopenharmony_ci| Macro                                | Description                           |
270f92157deSopenharmony_ci| :----------------------------------- | :------------------------------------ |
271f92157deSopenharmony_ci| `MATCHER(IsEven, "") { return (arg % 2) == 0; }` | Defines a matcher `IsEven()` to match an even number. |
272f92157deSopenharmony_ci| `MATCHER_P(IsDivisibleBy, n, "") { *result_listener << "where the remainder is " << (arg % n); return (arg % n) == 0; }` | Defines a matcher `IsDivisibleBy(n)` to match a number divisible by `n`. |
273f92157deSopenharmony_ci| `MATCHER_P2(IsBetween, a, b, absl::StrCat(negation ? "isn't" : "is", " between ", PrintToString(a), " and ", PrintToString(b))) { return a <= arg && arg <= b; }` | Defines a matcher `IsBetween(a, b)` to match a value in the range [`a`, `b`]. |
274f92157deSopenharmony_ci
275f92157deSopenharmony_ci**Notes:**
276f92157deSopenharmony_ci
277f92157deSopenharmony_ci1.  The `MATCHER*` macros cannot be used inside a function or class.
278f92157deSopenharmony_ci2.  The matcher body must be *purely functional* (i.e. it cannot have any side
279f92157deSopenharmony_ci    effect, and the result must not depend on anything other than the value
280f92157deSopenharmony_ci    being matched and the matcher parameters).
281f92157deSopenharmony_ci3.  You can use `PrintToString(x)` to convert a value `x` of any type to a
282f92157deSopenharmony_ci    string.
283f92157deSopenharmony_ci4.  You can use `ExplainMatchResult()` in a custom matcher to wrap another
284f92157deSopenharmony_ci    matcher, for example:
285f92157deSopenharmony_ci
286f92157deSopenharmony_ci    ```cpp
287f92157deSopenharmony_ci    MATCHER_P(NestedPropertyMatches, matcher, "") {
288f92157deSopenharmony_ci      return ExplainMatchResult(matcher, arg.nested().property(), result_listener);
289f92157deSopenharmony_ci    }
290f92157deSopenharmony_ci    ```
291