1cabdff1aSopenharmony_ci# Copyright (c) 2019 Guo Yejun 2cabdff1aSopenharmony_ci# 3cabdff1aSopenharmony_ci# This file is part of FFmpeg. 4cabdff1aSopenharmony_ci# 5cabdff1aSopenharmony_ci# FFmpeg is free software; you can redistribute it and/or 6cabdff1aSopenharmony_ci# modify it under the terms of the GNU Lesser General Public 7cabdff1aSopenharmony_ci# License as published by the Free Software Foundation; either 8cabdff1aSopenharmony_ci# version 2.1 of the License, or (at your option) any later version. 9cabdff1aSopenharmony_ci# 10cabdff1aSopenharmony_ci# FFmpeg is distributed in the hope that it will be useful, 11cabdff1aSopenharmony_ci# but WITHOUT ANY WARRANTY; without even the implied warranty of 12cabdff1aSopenharmony_ci# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 13cabdff1aSopenharmony_ci# Lesser General Public License for more details. 14cabdff1aSopenharmony_ci# 15cabdff1aSopenharmony_ci# You should have received a copy of the GNU Lesser General Public 16cabdff1aSopenharmony_ci# License along with FFmpeg; if not, write to the Free Software 17cabdff1aSopenharmony_ci# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 18cabdff1aSopenharmony_ci# ============================================================================== 19cabdff1aSopenharmony_ci 20cabdff1aSopenharmony_ciimport tensorflow as tf 21cabdff1aSopenharmony_ciimport numpy as np 22cabdff1aSopenharmony_ciimport sys, struct 23cabdff1aSopenharmony_ciimport convert_header as header 24cabdff1aSopenharmony_ci 25cabdff1aSopenharmony_ci__all__ = ['convert_from_tensorflow'] 26cabdff1aSopenharmony_ci 27cabdff1aSopenharmony_ciclass Operand(object): 28cabdff1aSopenharmony_ci IOTYPE_INPUT = 1 29cabdff1aSopenharmony_ci IOTYPE_OUTPUT = 2 30cabdff1aSopenharmony_ci IOTYPE_INTERMEDIATE = IOTYPE_INPUT | IOTYPE_OUTPUT 31cabdff1aSopenharmony_ci DTYPE_FLOAT = 1 32cabdff1aSopenharmony_ci DTYPE_UINT8 = 4 33cabdff1aSopenharmony_ci index = 0 34cabdff1aSopenharmony_ci def __init__(self, name, dtype, dims): 35cabdff1aSopenharmony_ci self.name = name 36cabdff1aSopenharmony_ci self.dtype = dtype 37cabdff1aSopenharmony_ci self.dims = dims 38cabdff1aSopenharmony_ci self.iotype = 0 39cabdff1aSopenharmony_ci self.used_count = 0 40cabdff1aSopenharmony_ci self.index = Operand.index 41cabdff1aSopenharmony_ci Operand.index = Operand.index + 1 42cabdff1aSopenharmony_ci self.iotype2str = {Operand.IOTYPE_INPUT: 'in', Operand.IOTYPE_OUTPUT: 'out', Operand.IOTYPE_INTERMEDIATE: 'inout'} 43cabdff1aSopenharmony_ci self.dtype2str = {Operand.DTYPE_FLOAT: 'DT_FLOAT', Operand.DTYPE_UINT8: 'DT_UINT8'} 44cabdff1aSopenharmony_ci 45cabdff1aSopenharmony_ci def add_iotype(self, iotype): 46cabdff1aSopenharmony_ci self.iotype = self.iotype | iotype 47cabdff1aSopenharmony_ci if iotype == Operand.IOTYPE_INPUT: 48cabdff1aSopenharmony_ci self.used_count = self.used_count + 1 49cabdff1aSopenharmony_ci 50cabdff1aSopenharmony_ci def __str__(self): 51cabdff1aSopenharmony_ci return "{}: (name: {}, iotype: {}, dtype: {}, dims: {}, used_count: {})".format(self.index, 52cabdff1aSopenharmony_ci self.name, self.iotype2str[self.iotype], self.dtype2str[self.dtype], 53cabdff1aSopenharmony_ci self.dims, self.used_count) 54cabdff1aSopenharmony_ci 55cabdff1aSopenharmony_ci def __lt__(self, other): 56cabdff1aSopenharmony_ci return self.index < other.index 57cabdff1aSopenharmony_ci 58cabdff1aSopenharmony_ciclass TFConverter: 59cabdff1aSopenharmony_ci def __init__(self, graph_def, nodes, outfile, dump4tb): 60cabdff1aSopenharmony_ci self.graph_def = graph_def 61cabdff1aSopenharmony_ci self.nodes = nodes 62cabdff1aSopenharmony_ci self.outfile = outfile 63cabdff1aSopenharmony_ci self.dump4tb = dump4tb 64cabdff1aSopenharmony_ci self.layer_number = 0 65cabdff1aSopenharmony_ci self.output_names = [] 66cabdff1aSopenharmony_ci self.name_node_dict = {} 67cabdff1aSopenharmony_ci self.edges = {} 68cabdff1aSopenharmony_ci self.conv_activations = {'Relu':0, 'Tanh':1, 'Sigmoid':2, 'None':3, 'LeakyRelu':4} 69cabdff1aSopenharmony_ci self.conv_paddings = {'VALID':0, 'SAME':1} 70cabdff1aSopenharmony_ci self.pool_paddings = {'VALID':0, 'SAME':1} 71cabdff1aSopenharmony_ci self.converted_nodes = set() 72cabdff1aSopenharmony_ci self.conv2d_scope_names = set() 73cabdff1aSopenharmony_ci self.conv2d_scopename_inputname_dict = {} 74cabdff1aSopenharmony_ci self.dense_scope_names = set() 75cabdff1aSopenharmony_ci self.dense_scopename_inputname_dict = {} 76cabdff1aSopenharmony_ci self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, 77cabdff1aSopenharmony_ci 'MathBinary':5, 'MathUnary':6, 'AvgPool':7, 'MatMul':8} 78cabdff1aSopenharmony_ci self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3, 'Minimum':4, 'FloorMod':5} 79cabdff1aSopenharmony_ci self.mathun2code = {'Abs':0, 'Sin':1, 'Cos':2, 'Tan':3, 'Asin':4, 80cabdff1aSopenharmony_ci 'Acos':5, 'Atan':6, 'Sinh':7, 'Cosh':8, 'Tanh':9, 'Asinh':10, 81cabdff1aSopenharmony_ci 'Acosh':11, 'Atanh':12, 'Ceil':13, 'Floor':14, 'Round':15, 82cabdff1aSopenharmony_ci 'Exp':16} 83cabdff1aSopenharmony_ci self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2} 84cabdff1aSopenharmony_ci self.name_operand_dict = {} 85cabdff1aSopenharmony_ci 86cabdff1aSopenharmony_ci 87cabdff1aSopenharmony_ci def add_operand(self, name, type): 88cabdff1aSopenharmony_ci node = self.name_node_dict[name] 89cabdff1aSopenharmony_ci if name not in self.name_operand_dict: 90cabdff1aSopenharmony_ci dtype = node.attr['dtype'].type 91cabdff1aSopenharmony_ci if dtype == 0: 92cabdff1aSopenharmony_ci dtype = node.attr['T'].type 93cabdff1aSopenharmony_ci dims = [-1,-1,-1,-1] 94cabdff1aSopenharmony_ci if 'shape' in node.attr: 95cabdff1aSopenharmony_ci dims[0] = node.attr['shape'].shape.dim[0].size 96cabdff1aSopenharmony_ci dims[1] = node.attr['shape'].shape.dim[1].size 97cabdff1aSopenharmony_ci dims[2] = node.attr['shape'].shape.dim[2].size 98cabdff1aSopenharmony_ci dims[3] = node.attr['shape'].shape.dim[3].size 99cabdff1aSopenharmony_ci operand = Operand(name, dtype, dims) 100cabdff1aSopenharmony_ci self.name_operand_dict[name] = operand; 101cabdff1aSopenharmony_ci self.name_operand_dict[name].add_iotype(type) 102cabdff1aSopenharmony_ci return self.name_operand_dict[name].index 103cabdff1aSopenharmony_ci 104cabdff1aSopenharmony_ci 105cabdff1aSopenharmony_ci def dump_for_tensorboard(self): 106cabdff1aSopenharmony_ci graph = tf.get_default_graph() 107cabdff1aSopenharmony_ci tf.import_graph_def(self.graph_def, name="") 108cabdff1aSopenharmony_ci tf.summary.FileWriter('/tmp/graph', graph) 109cabdff1aSopenharmony_ci print('graph saved, run "tensorboard --logdir=/tmp/graph" to see it') 110cabdff1aSopenharmony_ci 111cabdff1aSopenharmony_ci 112cabdff1aSopenharmony_ci def get_conv2d_params(self, conv2d_scope_name): 113cabdff1aSopenharmony_ci knode = self.name_node_dict[conv2d_scope_name + '/kernel'] 114cabdff1aSopenharmony_ci bnode = self.name_node_dict[conv2d_scope_name + '/bias'] 115cabdff1aSopenharmony_ci 116cabdff1aSopenharmony_ci if conv2d_scope_name + '/dilation_rate' in self.name_node_dict: 117cabdff1aSopenharmony_ci dnode = self.name_node_dict[conv2d_scope_name + '/dilation_rate'] 118cabdff1aSopenharmony_ci else: 119cabdff1aSopenharmony_ci dnode = None 120cabdff1aSopenharmony_ci 121cabdff1aSopenharmony_ci # the BiasAdd name is possible be changed into the output name, 122cabdff1aSopenharmony_ci # if activation is None, and BiasAdd.next is the last op which is Identity 123cabdff1aSopenharmony_ci if conv2d_scope_name + '/BiasAdd' in self.edges: 124cabdff1aSopenharmony_ci anode = self.edges[conv2d_scope_name + '/BiasAdd'][0] 125cabdff1aSopenharmony_ci if anode.op not in self.conv_activations: 126cabdff1aSopenharmony_ci anode = None 127cabdff1aSopenharmony_ci else: 128cabdff1aSopenharmony_ci anode = None 129cabdff1aSopenharmony_ci return knode, bnode, dnode, anode 130cabdff1aSopenharmony_ci 131cabdff1aSopenharmony_ci 132cabdff1aSopenharmony_ci def get_dense_params(self, dense_scope_name): 133cabdff1aSopenharmony_ci knode = self.name_node_dict[dense_scope_name + '/kernel'] 134cabdff1aSopenharmony_ci bnode = self.name_node_dict.get(dense_scope_name + '/bias') 135cabdff1aSopenharmony_ci # the BiasAdd name is possible be changed into the output name, 136cabdff1aSopenharmony_ci # if activation is None, and BiasAdd.next is the last op which is Identity 137cabdff1aSopenharmony_ci anode = None 138cabdff1aSopenharmony_ci if bnode: 139cabdff1aSopenharmony_ci if dense_scope_name + '/BiasAdd' in self.edges: 140cabdff1aSopenharmony_ci anode = self.edges[dense_scope_name + '/BiasAdd'][0] 141cabdff1aSopenharmony_ci if anode.op not in self.conv_activations: 142cabdff1aSopenharmony_ci anode = None 143cabdff1aSopenharmony_ci else: 144cabdff1aSopenharmony_ci anode = None 145cabdff1aSopenharmony_ci return knode, bnode, anode 146cabdff1aSopenharmony_ci 147cabdff1aSopenharmony_ci 148cabdff1aSopenharmony_ci def dump_complex_conv2d_to_file(self, node, f): 149cabdff1aSopenharmony_ci assert(node.op == 'Conv2D') 150cabdff1aSopenharmony_ci self.layer_number = self.layer_number + 1 151cabdff1aSopenharmony_ci self.converted_nodes.add(node.name) 152cabdff1aSopenharmony_ci 153cabdff1aSopenharmony_ci scope_name = TFConverter.get_scope_name(node.name) 154cabdff1aSopenharmony_ci #knode for kernel, bnode for bias, dnode for dilation, anode for activation 155cabdff1aSopenharmony_ci knode, bnode, dnode, anode = self.get_conv2d_params(scope_name) 156cabdff1aSopenharmony_ci 157cabdff1aSopenharmony_ci if dnode is not None: 158cabdff1aSopenharmony_ci dilation = struct.unpack('i', dnode.attr['value'].tensor.tensor_content[0:4])[0] 159cabdff1aSopenharmony_ci else: 160cabdff1aSopenharmony_ci dilation = 1 161cabdff1aSopenharmony_ci 162cabdff1aSopenharmony_ci if anode is not None: 163cabdff1aSopenharmony_ci activation = anode.op 164cabdff1aSopenharmony_ci else: 165cabdff1aSopenharmony_ci activation = 'None' 166cabdff1aSopenharmony_ci 167cabdff1aSopenharmony_ci padding = node.attr['padding'].s.decode("utf-8") 168cabdff1aSopenharmony_ci # conv2d with dilation > 1 generates tens of nodes, not easy to parse them, so use this tricky method. 169cabdff1aSopenharmony_ci if dilation > 1 and scope_name + '/stack' in self.name_node_dict: 170cabdff1aSopenharmony_ci if self.name_node_dict[scope_name + '/stack'].op == "Const": 171cabdff1aSopenharmony_ci padding = 'SAME' 172cabdff1aSopenharmony_ci padding = self.conv_paddings[padding] 173cabdff1aSopenharmony_ci 174cabdff1aSopenharmony_ci ktensor = knode.attr['value'].tensor 175cabdff1aSopenharmony_ci filter_height = ktensor.tensor_shape.dim[0].size 176cabdff1aSopenharmony_ci filter_width = ktensor.tensor_shape.dim[1].size 177cabdff1aSopenharmony_ci in_channels = ktensor.tensor_shape.dim[2].size 178cabdff1aSopenharmony_ci out_channels = ktensor.tensor_shape.dim[3].size 179cabdff1aSopenharmony_ci kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32) 180cabdff1aSopenharmony_ci kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels) 181cabdff1aSopenharmony_ci kernel = np.transpose(kernel, [3, 0, 1, 2]) 182cabdff1aSopenharmony_ci 183cabdff1aSopenharmony_ci has_bias = 1 184cabdff1aSopenharmony_ci np.array([self.op2code[node.op], dilation, padding, self.conv_activations[activation], in_channels, out_channels, filter_height, has_bias], dtype=np.uint32).tofile(f) 185cabdff1aSopenharmony_ci kernel.tofile(f) 186cabdff1aSopenharmony_ci 187cabdff1aSopenharmony_ci btensor = bnode.attr['value'].tensor 188cabdff1aSopenharmony_ci if btensor.tensor_shape.dim[0].size == 1: 189cabdff1aSopenharmony_ci bias = struct.pack("f", btensor.float_val[0]) 190cabdff1aSopenharmony_ci else: 191cabdff1aSopenharmony_ci bias = btensor.tensor_content 192cabdff1aSopenharmony_ci f.write(bias) 193cabdff1aSopenharmony_ci 194cabdff1aSopenharmony_ci input_name = self.conv2d_scopename_inputname_dict[scope_name] 195cabdff1aSopenharmony_ci input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT) 196cabdff1aSopenharmony_ci 197cabdff1aSopenharmony_ci if anode is not None: 198cabdff1aSopenharmony_ci output_operand_index = self.add_operand(anode.name, Operand.IOTYPE_OUTPUT) 199cabdff1aSopenharmony_ci else: 200cabdff1aSopenharmony_ci output_operand_index = self.add_operand(self.edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT) 201cabdff1aSopenharmony_ci np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) 202cabdff1aSopenharmony_ci 203cabdff1aSopenharmony_ci def dump_dense_to_file(self, node, f): 204cabdff1aSopenharmony_ci assert(node.op == 'MatMul') 205cabdff1aSopenharmony_ci self.layer_number = self.layer_number + 1 206cabdff1aSopenharmony_ci self.converted_nodes.add(node.name) 207cabdff1aSopenharmony_ci 208cabdff1aSopenharmony_ci scope_name = TFConverter.get_scope_name(node.name) 209cabdff1aSopenharmony_ci #knode for kernel, bnode for bias, anode for activation 210cabdff1aSopenharmony_ci knode, bnode, anode = self.get_dense_params(scope_name.split('/')[0]) 211cabdff1aSopenharmony_ci 212cabdff1aSopenharmony_ci if bnode is not None: 213cabdff1aSopenharmony_ci has_bias = 1 214cabdff1aSopenharmony_ci btensor = bnode.attr['value'].tensor 215cabdff1aSopenharmony_ci if btensor.tensor_shape.dim[0].size == 1: 216cabdff1aSopenharmony_ci bias = struct.pack("f", btensor.float_val[0]) 217cabdff1aSopenharmony_ci else: 218cabdff1aSopenharmony_ci bias = btensor.tensor_content 219cabdff1aSopenharmony_ci else: 220cabdff1aSopenharmony_ci has_bias = 0 221cabdff1aSopenharmony_ci 222cabdff1aSopenharmony_ci if anode is not None: 223cabdff1aSopenharmony_ci activation = anode.op 224cabdff1aSopenharmony_ci else: 225cabdff1aSopenharmony_ci activation = 'None' 226cabdff1aSopenharmony_ci 227cabdff1aSopenharmony_ci ktensor = knode.attr['value'].tensor 228cabdff1aSopenharmony_ci in_channels = ktensor.tensor_shape.dim[0].size 229cabdff1aSopenharmony_ci out_channels = ktensor.tensor_shape.dim[1].size 230cabdff1aSopenharmony_ci if in_channels * out_channels == 1: 231cabdff1aSopenharmony_ci kernel = np.float32(ktensor.float_val[0]) 232cabdff1aSopenharmony_ci else: 233cabdff1aSopenharmony_ci kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32) 234cabdff1aSopenharmony_ci kernel = kernel.reshape(in_channels, out_channels) 235cabdff1aSopenharmony_ci kernel = np.transpose(kernel, [1, 0]) 236cabdff1aSopenharmony_ci 237cabdff1aSopenharmony_ci np.array([self.op2code[node.op], self.conv_activations[activation], in_channels, out_channels, has_bias], dtype=np.uint32).tofile(f) 238cabdff1aSopenharmony_ci kernel.tofile(f) 239cabdff1aSopenharmony_ci if has_bias: 240cabdff1aSopenharmony_ci f.write(bias) 241cabdff1aSopenharmony_ci 242cabdff1aSopenharmony_ci input_name = self.dense_scopename_inputname_dict[scope_name.split('/')[0]] 243cabdff1aSopenharmony_ci input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT) 244cabdff1aSopenharmony_ci 245cabdff1aSopenharmony_ci if anode is not None: 246cabdff1aSopenharmony_ci output_operand_index = self.add_operand(anode.name, Operand.IOTYPE_OUTPUT) 247cabdff1aSopenharmony_ci else: 248cabdff1aSopenharmony_ci if bnode is not None: 249cabdff1aSopenharmony_ci output_operand_index = self.add_operand(self.edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT) 250cabdff1aSopenharmony_ci else: 251cabdff1aSopenharmony_ci output_operand_index = self.add_operand(self.edges[scope_name+'/concat_1'][0].name, Operand.IOTYPE_OUTPUT) 252cabdff1aSopenharmony_ci np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) 253cabdff1aSopenharmony_ci 254cabdff1aSopenharmony_ci 255cabdff1aSopenharmony_ci def dump_simple_conv2d_to_file(self, node, f): 256cabdff1aSopenharmony_ci assert(node.op == 'Conv2D') 257cabdff1aSopenharmony_ci self.layer_number = self.layer_number + 1 258cabdff1aSopenharmony_ci self.converted_nodes.add(node.name) 259cabdff1aSopenharmony_ci 260cabdff1aSopenharmony_ci node0 = self.name_node_dict[node.input[0]] 261cabdff1aSopenharmony_ci node1 = self.name_node_dict[node.input[1]] 262cabdff1aSopenharmony_ci if node0.op == 'Const': 263cabdff1aSopenharmony_ci knode = node0 264cabdff1aSopenharmony_ci input_name = node.input[1] 265cabdff1aSopenharmony_ci else: 266cabdff1aSopenharmony_ci knode = node1 267cabdff1aSopenharmony_ci input_name = node.input[0] 268cabdff1aSopenharmony_ci 269cabdff1aSopenharmony_ci ktensor = knode.attr['value'].tensor 270cabdff1aSopenharmony_ci filter_height = ktensor.tensor_shape.dim[0].size 271cabdff1aSopenharmony_ci filter_width = ktensor.tensor_shape.dim[1].size 272cabdff1aSopenharmony_ci in_channels = ktensor.tensor_shape.dim[2].size 273cabdff1aSopenharmony_ci out_channels = ktensor.tensor_shape.dim[3].size 274cabdff1aSopenharmony_ci if filter_height * filter_width * in_channels * out_channels == 1: 275cabdff1aSopenharmony_ci kernel = np.float32(ktensor.float_val[0]) 276cabdff1aSopenharmony_ci else: 277cabdff1aSopenharmony_ci kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32) 278cabdff1aSopenharmony_ci kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels) 279cabdff1aSopenharmony_ci kernel = np.transpose(kernel, [3, 0, 1, 2]) 280cabdff1aSopenharmony_ci 281cabdff1aSopenharmony_ci has_bias = 0 282cabdff1aSopenharmony_ci dilation = 1 283cabdff1aSopenharmony_ci padding = node.attr['padding'].s.decode("utf-8") 284cabdff1aSopenharmony_ci np.array([self.op2code[node.op], dilation, self.conv_paddings[padding], self.conv_activations['None'], 285cabdff1aSopenharmony_ci in_channels, out_channels, filter_height, has_bias], dtype=np.uint32).tofile(f) 286cabdff1aSopenharmony_ci kernel.tofile(f) 287cabdff1aSopenharmony_ci 288cabdff1aSopenharmony_ci input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT) 289cabdff1aSopenharmony_ci output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) 290cabdff1aSopenharmony_ci np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) 291cabdff1aSopenharmony_ci 292cabdff1aSopenharmony_ci 293cabdff1aSopenharmony_ci def dump_depth2space_to_file(self, node, f): 294cabdff1aSopenharmony_ci assert(node.op == 'DepthToSpace') 295cabdff1aSopenharmony_ci self.layer_number = self.layer_number + 1 296cabdff1aSopenharmony_ci block_size = node.attr['block_size'].i 297cabdff1aSopenharmony_ci np.array([self.op2code[node.op], block_size], dtype=np.uint32).tofile(f) 298cabdff1aSopenharmony_ci self.converted_nodes.add(node.name) 299cabdff1aSopenharmony_ci input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT) 300cabdff1aSopenharmony_ci output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) 301cabdff1aSopenharmony_ci np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) 302cabdff1aSopenharmony_ci 303cabdff1aSopenharmony_ci 304cabdff1aSopenharmony_ci def dump_mirrorpad_to_file(self, node, f): 305cabdff1aSopenharmony_ci assert(node.op == 'MirrorPad') 306cabdff1aSopenharmony_ci self.layer_number = self.layer_number + 1 307cabdff1aSopenharmony_ci mode = node.attr['mode'].s 308cabdff1aSopenharmony_ci mode = self.mirrorpad_mode[mode.decode("utf-8")] 309cabdff1aSopenharmony_ci np.array([self.op2code[node.op], mode], dtype=np.uint32).tofile(f) 310cabdff1aSopenharmony_ci pnode = self.name_node_dict[node.input[1]] 311cabdff1aSopenharmony_ci self.converted_nodes.add(pnode.name) 312cabdff1aSopenharmony_ci paddings = pnode.attr['value'].tensor.tensor_content 313cabdff1aSopenharmony_ci f.write(paddings) 314cabdff1aSopenharmony_ci self.converted_nodes.add(node.name) 315cabdff1aSopenharmony_ci input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT) 316cabdff1aSopenharmony_ci output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) 317cabdff1aSopenharmony_ci np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) 318cabdff1aSopenharmony_ci 319cabdff1aSopenharmony_ci 320cabdff1aSopenharmony_ci def dump_maximum_to_file(self, node, f): 321cabdff1aSopenharmony_ci assert(node.op == 'Maximum') 322cabdff1aSopenharmony_ci self.layer_number = self.layer_number + 1 323cabdff1aSopenharmony_ci ynode = self.name_node_dict[node.input[1]] 324cabdff1aSopenharmony_ci y = ynode.attr['value'].tensor.float_val[0] 325cabdff1aSopenharmony_ci np.array([self.op2code[node.op]], dtype=np.uint32).tofile(f) 326cabdff1aSopenharmony_ci np.array([y], dtype=np.float32).tofile(f) 327cabdff1aSopenharmony_ci self.converted_nodes.add(node.name) 328cabdff1aSopenharmony_ci input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT) 329cabdff1aSopenharmony_ci output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) 330cabdff1aSopenharmony_ci np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f) 331cabdff1aSopenharmony_ci 332cabdff1aSopenharmony_ci 333cabdff1aSopenharmony_ci def dump_mathbinary_to_file(self, node, f): 334cabdff1aSopenharmony_ci self.layer_number = self.layer_number + 1 335cabdff1aSopenharmony_ci self.converted_nodes.add(node.name) 336cabdff1aSopenharmony_ci i0_node = self.name_node_dict[node.input[0]] 337cabdff1aSopenharmony_ci i1_node = self.name_node_dict[node.input[1]] 338cabdff1aSopenharmony_ci np.array([self.op2code['MathBinary'], self.mathbin2code[node.op]], dtype=np.uint32).tofile(f) 339cabdff1aSopenharmony_ci if i0_node.op == 'Const': 340cabdff1aSopenharmony_ci scalar = i0_node.attr['value'].tensor.float_val[0] 341cabdff1aSopenharmony_ci np.array([1], dtype=np.uint32).tofile(f) # broadcast: 1 342cabdff1aSopenharmony_ci np.array([scalar], dtype=np.float32).tofile(f) 343cabdff1aSopenharmony_ci np.array([0], dtype=np.uint32).tofile(f) # broadcast: 0 344cabdff1aSopenharmony_ci input_operand_index = self.add_operand(i1_node.name, Operand.IOTYPE_INPUT) 345cabdff1aSopenharmony_ci np.array([input_operand_index], dtype=np.uint32).tofile(f) 346cabdff1aSopenharmony_ci elif i1_node.op == 'Const': 347cabdff1aSopenharmony_ci scalar = i1_node.attr['value'].tensor.float_val[0] 348cabdff1aSopenharmony_ci np.array([0], dtype=np.uint32).tofile(f) 349cabdff1aSopenharmony_ci input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT) 350cabdff1aSopenharmony_ci np.array([input_operand_index], dtype=np.uint32).tofile(f) 351cabdff1aSopenharmony_ci np.array([1], dtype=np.uint32).tofile(f) 352cabdff1aSopenharmony_ci np.array([scalar], dtype=np.float32).tofile(f) 353cabdff1aSopenharmony_ci else: 354cabdff1aSopenharmony_ci np.array([0], dtype=np.uint32).tofile(f) 355cabdff1aSopenharmony_ci input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT) 356cabdff1aSopenharmony_ci np.array([input_operand_index], dtype=np.uint32).tofile(f) 357cabdff1aSopenharmony_ci np.array([0], dtype=np.uint32).tofile(f) 358cabdff1aSopenharmony_ci input_operand_index = self.add_operand(i1_node.name, Operand.IOTYPE_INPUT) 359cabdff1aSopenharmony_ci np.array([input_operand_index], dtype=np.uint32).tofile(f) 360cabdff1aSopenharmony_ci output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) 361cabdff1aSopenharmony_ci np.array([output_operand_index], dtype=np.uint32).tofile(f) 362cabdff1aSopenharmony_ci 363cabdff1aSopenharmony_ci 364cabdff1aSopenharmony_ci def dump_mathunary_to_file(self, node, f): 365cabdff1aSopenharmony_ci self.layer_number = self.layer_number + 1 366cabdff1aSopenharmony_ci self.converted_nodes.add(node.name) 367cabdff1aSopenharmony_ci i0_node = self.name_node_dict[node.input[0]] 368cabdff1aSopenharmony_ci np.array([self.op2code['MathUnary'], self.mathun2code[node.op]], dtype=np.uint32).tofile(f) 369cabdff1aSopenharmony_ci input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT) 370cabdff1aSopenharmony_ci np.array([input_operand_index], dtype=np.uint32).tofile(f) 371cabdff1aSopenharmony_ci output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) 372cabdff1aSopenharmony_ci np.array([output_operand_index],dtype=np.uint32).tofile(f) 373cabdff1aSopenharmony_ci 374cabdff1aSopenharmony_ci 375cabdff1aSopenharmony_ci def dump_avg_pool_to_file(self, node, f): 376cabdff1aSopenharmony_ci assert(node.op == 'AvgPool') 377cabdff1aSopenharmony_ci self.layer_number = self.layer_number + 1 378cabdff1aSopenharmony_ci self.converted_nodes.add(node.name) 379cabdff1aSopenharmony_ci node0 = self.name_node_dict[node.input[0]] 380cabdff1aSopenharmony_ci strides = node.attr['strides'] 381cabdff1aSopenharmony_ci 382cabdff1aSopenharmony_ci # Tensorflow do not support pooling strides in batch dimension and 383cabdff1aSopenharmony_ci # current native NN do not support pooling strides in channel dimension, added assert() here. 384cabdff1aSopenharmony_ci assert(strides.list.i[1]==strides.list.i[2]) 385cabdff1aSopenharmony_ci assert(strides.list.i[0]==1) 386cabdff1aSopenharmony_ci assert(strides.list.i[3]==1) 387cabdff1aSopenharmony_ci strides = strides.list.i[1] 388cabdff1aSopenharmony_ci filter_node = node.attr['ksize'] 389cabdff1aSopenharmony_ci input_name = node.input[0] 390cabdff1aSopenharmony_ci 391cabdff1aSopenharmony_ci # Tensorflow do not support pooling ksize in batch dimension and channel dimension. 392cabdff1aSopenharmony_ci assert(filter_node.list.i[0]==1) 393cabdff1aSopenharmony_ci assert(filter_node.list.i[3]==1) 394cabdff1aSopenharmony_ci filter_height = filter_node.list.i[1] 395cabdff1aSopenharmony_ci filter_width = filter_node.list.i[2] 396cabdff1aSopenharmony_ci 397cabdff1aSopenharmony_ci padding = node.attr['padding'].s.decode("utf-8") 398cabdff1aSopenharmony_ci np.array([self.op2code[node.op], strides, self.pool_paddings[padding], filter_height], 399cabdff1aSopenharmony_ci dtype=np.uint32).tofile(f) 400cabdff1aSopenharmony_ci 401cabdff1aSopenharmony_ci input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT) 402cabdff1aSopenharmony_ci output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) 403cabdff1aSopenharmony_ci np.array([input_operand_index, output_operand_index],dtype=np.uint32).tofile(f) 404cabdff1aSopenharmony_ci 405cabdff1aSopenharmony_ci 406cabdff1aSopenharmony_ci def dump_layers_to_file(self, f): 407cabdff1aSopenharmony_ci for node in self.nodes: 408cabdff1aSopenharmony_ci if node.name in self.converted_nodes: 409cabdff1aSopenharmony_ci continue 410cabdff1aSopenharmony_ci 411cabdff1aSopenharmony_ci # conv2d with dilation generates very complex nodes, so handle it in special 412cabdff1aSopenharmony_ci if self.in_conv2d_scope(node.name): 413cabdff1aSopenharmony_ci if node.op == 'Conv2D': 414cabdff1aSopenharmony_ci self.dump_complex_conv2d_to_file(node, f) 415cabdff1aSopenharmony_ci continue 416cabdff1aSopenharmony_ci if self.in_dense_scope(node.name): 417cabdff1aSopenharmony_ci if node.op == 'MatMul': 418cabdff1aSopenharmony_ci self.dump_dense_to_file(node, f) 419cabdff1aSopenharmony_ci continue 420cabdff1aSopenharmony_ci 421cabdff1aSopenharmony_ci 422cabdff1aSopenharmony_ci if node.op == 'Conv2D': 423cabdff1aSopenharmony_ci self.dump_simple_conv2d_to_file(node, f) 424cabdff1aSopenharmony_ci continue 425cabdff1aSopenharmony_ci if node.name in self.output_names: 426cabdff1aSopenharmony_ci input_name = self.id_different_scope_dict[node.name] 427cabdff1aSopenharmony_ci if TFConverter.get_scope_name(input_name)!=TFConverter.get_scope_name(node.name): 428cabdff1aSopenharmony_ci continue 429cabdff1aSopenharmony_ci if node.op == 'AvgPool': 430cabdff1aSopenharmony_ci self.dump_avg_pool_to_file(node, f) 431cabdff1aSopenharmony_ci elif node.op == 'DepthToSpace': 432cabdff1aSopenharmony_ci self.dump_depth2space_to_file(node, f) 433cabdff1aSopenharmony_ci elif node.op == 'MirrorPad': 434cabdff1aSopenharmony_ci self.dump_mirrorpad_to_file(node, f) 435cabdff1aSopenharmony_ci elif node.op == 'Maximum': 436cabdff1aSopenharmony_ci self.dump_maximum_to_file(node, f) 437cabdff1aSopenharmony_ci elif node.op in self.mathbin2code: 438cabdff1aSopenharmony_ci self.dump_mathbinary_to_file(node, f) 439cabdff1aSopenharmony_ci elif node.op in self.mathun2code: 440cabdff1aSopenharmony_ci self.dump_mathunary_to_file(node, f) 441cabdff1aSopenharmony_ci 442cabdff1aSopenharmony_ci 443cabdff1aSopenharmony_ci def dump_operands_to_file(self, f): 444cabdff1aSopenharmony_ci operands = sorted(self.name_operand_dict.values()) 445cabdff1aSopenharmony_ci for operand in operands: 446cabdff1aSopenharmony_ci #print('{}'.format(operand)) 447cabdff1aSopenharmony_ci np.array([operand.index, len(operand.name)], dtype=np.uint32).tofile(f) 448cabdff1aSopenharmony_ci f.write(operand.name.encode('utf-8')) 449cabdff1aSopenharmony_ci np.array([operand.iotype, operand.dtype], dtype=np.uint32).tofile(f) 450cabdff1aSopenharmony_ci np.array(operand.dims, dtype=np.uint32).tofile(f) 451cabdff1aSopenharmony_ci 452cabdff1aSopenharmony_ci 453cabdff1aSopenharmony_ci def dump_to_file(self): 454cabdff1aSopenharmony_ci with open(self.outfile, 'wb') as f: 455cabdff1aSopenharmony_ci f.write(header.str.encode('utf-8')) 456cabdff1aSopenharmony_ci np.array([header.major, header.minor], dtype=np.uint32).tofile(f) 457cabdff1aSopenharmony_ci self.dump_layers_to_file(f) 458cabdff1aSopenharmony_ci self.dump_operands_to_file(f) 459cabdff1aSopenharmony_ci np.array([self.layer_number, len(self.name_operand_dict)], dtype=np.uint32).tofile(f) 460cabdff1aSopenharmony_ci 461cabdff1aSopenharmony_ci 462cabdff1aSopenharmony_ci def generate_name_node_dict(self): 463cabdff1aSopenharmony_ci for node in self.nodes: 464cabdff1aSopenharmony_ci self.name_node_dict[node.name] = node 465cabdff1aSopenharmony_ci 466cabdff1aSopenharmony_ci 467cabdff1aSopenharmony_ci def generate_output_names(self): 468cabdff1aSopenharmony_ci used_names = [] 469cabdff1aSopenharmony_ci for node in self.nodes: 470cabdff1aSopenharmony_ci for input in node.input: 471cabdff1aSopenharmony_ci used_names.append(input) 472cabdff1aSopenharmony_ci 473cabdff1aSopenharmony_ci for node in self.nodes: 474cabdff1aSopenharmony_ci if node.name not in used_names: 475cabdff1aSopenharmony_ci self.output_names.append(node.name) 476cabdff1aSopenharmony_ci 477cabdff1aSopenharmony_ci 478cabdff1aSopenharmony_ci def remove_identity(self): 479cabdff1aSopenharmony_ci self.id_different_scope_dict = {} 480cabdff1aSopenharmony_ci id_nodes = [] 481cabdff1aSopenharmony_ci id_dict = {} 482cabdff1aSopenharmony_ci for node in self.nodes: 483cabdff1aSopenharmony_ci if node.op == 'Identity': 484cabdff1aSopenharmony_ci name = node.name 485cabdff1aSopenharmony_ci input = node.input[0] 486cabdff1aSopenharmony_ci id_nodes.append(node) 487cabdff1aSopenharmony_ci # do not change the output name 488cabdff1aSopenharmony_ci if name in self.output_names: 489cabdff1aSopenharmony_ci self.name_node_dict[input].name = name 490cabdff1aSopenharmony_ci self.name_node_dict[name] = self.name_node_dict[input] 491cabdff1aSopenharmony_ci del self.name_node_dict[input] 492cabdff1aSopenharmony_ci self.id_different_scope_dict[name] = input 493cabdff1aSopenharmony_ci else: 494cabdff1aSopenharmony_ci id_dict[name] = input 495cabdff1aSopenharmony_ci 496cabdff1aSopenharmony_ci for idnode in id_nodes: 497cabdff1aSopenharmony_ci self.nodes.remove(idnode) 498cabdff1aSopenharmony_ci 499cabdff1aSopenharmony_ci for node in self.nodes: 500cabdff1aSopenharmony_ci for i in range(len(node.input)): 501cabdff1aSopenharmony_ci input = node.input[i] 502cabdff1aSopenharmony_ci if input in id_dict: 503cabdff1aSopenharmony_ci node.input[i] = id_dict[input] 504cabdff1aSopenharmony_ci 505cabdff1aSopenharmony_ci 506cabdff1aSopenharmony_ci def generate_edges(self): 507cabdff1aSopenharmony_ci for node in self.nodes: 508cabdff1aSopenharmony_ci for input in node.input: 509cabdff1aSopenharmony_ci if input in self.edges: 510cabdff1aSopenharmony_ci self.edges[input].append(node) 511cabdff1aSopenharmony_ci else: 512cabdff1aSopenharmony_ci self.edges[input] = [node] 513cabdff1aSopenharmony_ci 514cabdff1aSopenharmony_ci 515cabdff1aSopenharmony_ci @staticmethod 516cabdff1aSopenharmony_ci def get_scope_name(name): 517cabdff1aSopenharmony_ci index = name.rfind('/') 518cabdff1aSopenharmony_ci if index == -1: 519cabdff1aSopenharmony_ci return "" 520cabdff1aSopenharmony_ci return name[0:index] 521cabdff1aSopenharmony_ci 522cabdff1aSopenharmony_ci 523cabdff1aSopenharmony_ci def in_conv2d_scope(self, name): 524cabdff1aSopenharmony_ci inner_scope = TFConverter.get_scope_name(name) 525cabdff1aSopenharmony_ci if inner_scope == "": 526cabdff1aSopenharmony_ci return False; 527cabdff1aSopenharmony_ci for scope in self.conv2d_scope_names: 528cabdff1aSopenharmony_ci index = inner_scope.find(scope) 529cabdff1aSopenharmony_ci if index == 0: 530cabdff1aSopenharmony_ci return True 531cabdff1aSopenharmony_ci return False 532cabdff1aSopenharmony_ci 533cabdff1aSopenharmony_ci 534cabdff1aSopenharmony_ci def in_dense_scope(self, name): 535cabdff1aSopenharmony_ci inner_scope = TFConverter.get_scope_name(name) 536cabdff1aSopenharmony_ci if inner_scope == "": 537cabdff1aSopenharmony_ci return False; 538cabdff1aSopenharmony_ci for scope in self.dense_scope_names: 539cabdff1aSopenharmony_ci index = inner_scope.find(scope) 540cabdff1aSopenharmony_ci if index == 0: 541cabdff1aSopenharmony_ci return True 542cabdff1aSopenharmony_ci return False 543cabdff1aSopenharmony_ci 544cabdff1aSopenharmony_ci def generate_sub_block_op_scope_info(self): 545cabdff1aSopenharmony_ci # mostly, conv2d/dense is a sub block in graph, get the scope name 546cabdff1aSopenharmony_ci for node in self.nodes: 547cabdff1aSopenharmony_ci if node.op == 'Conv2D': 548cabdff1aSopenharmony_ci scope = TFConverter.get_scope_name(node.name) 549cabdff1aSopenharmony_ci # for the case tf.nn.conv2d is called directly 550cabdff1aSopenharmony_ci if scope == '': 551cabdff1aSopenharmony_ci continue 552cabdff1aSopenharmony_ci # for the case tf.nn.conv2d is called within a scope 553cabdff1aSopenharmony_ci if scope + '/kernel' not in self.name_node_dict: 554cabdff1aSopenharmony_ci continue 555cabdff1aSopenharmony_ci self.conv2d_scope_names.add(scope) 556cabdff1aSopenharmony_ci elif node.op == 'MatMul': 557cabdff1aSopenharmony_ci scope = TFConverter.get_scope_name(node.name) 558cabdff1aSopenharmony_ci # for the case tf.nn.dense is called directly 559cabdff1aSopenharmony_ci if scope == '': 560cabdff1aSopenharmony_ci continue 561cabdff1aSopenharmony_ci # for the case tf.nn.dense is called within a scope 562cabdff1aSopenharmony_ci if scope + '/kernel' not in self.name_node_dict and scope.split('/Tensordot')[0] + '/kernel' not in self.name_node_dict: 563cabdff1aSopenharmony_ci continue 564cabdff1aSopenharmony_ci self.dense_scope_names.add(scope.split('/Tensordot')[0]) 565cabdff1aSopenharmony_ci 566cabdff1aSopenharmony_ci # get the input name to the conv2d/dense sub block 567cabdff1aSopenharmony_ci for node in self.nodes: 568cabdff1aSopenharmony_ci scope = TFConverter.get_scope_name(node.name) 569cabdff1aSopenharmony_ci if scope in self.conv2d_scope_names: 570cabdff1aSopenharmony_ci if node.op == 'Conv2D' or node.op == 'Shape': 571cabdff1aSopenharmony_ci for inp in node.input: 572cabdff1aSopenharmony_ci if TFConverter.get_scope_name(inp) != scope: 573cabdff1aSopenharmony_ci self.conv2d_scopename_inputname_dict[scope] = inp 574cabdff1aSopenharmony_ci elif scope in self.dense_scope_names: 575cabdff1aSopenharmony_ci if node.op == 'MatMul' or node.op == 'Shape': 576cabdff1aSopenharmony_ci for inp in node.input: 577cabdff1aSopenharmony_ci if TFConverter.get_scope_name(inp) != scope: 578cabdff1aSopenharmony_ci self.dense_scopename_inputname_dict[scope] = inp 579cabdff1aSopenharmony_ci elif scope.split('/Tensordot')[0] in self.dense_scope_names: 580cabdff1aSopenharmony_ci if node.op == 'Transpose': 581cabdff1aSopenharmony_ci for inp in node.input: 582cabdff1aSopenharmony_ci if TFConverter.get_scope_name(inp).find(scope)<0 and TFConverter.get_scope_name(inp).find(scope.split('/')[0])<0: 583cabdff1aSopenharmony_ci self.dense_scopename_inputname_dict[scope.split('/Tensordot')[0]] = inp 584cabdff1aSopenharmony_ci 585cabdff1aSopenharmony_ci 586cabdff1aSopenharmony_ci def run(self): 587cabdff1aSopenharmony_ci self.generate_name_node_dict() 588cabdff1aSopenharmony_ci self.generate_output_names() 589cabdff1aSopenharmony_ci self.remove_identity() 590cabdff1aSopenharmony_ci self.generate_edges() 591cabdff1aSopenharmony_ci self.generate_sub_block_op_scope_info() 592cabdff1aSopenharmony_ci 593cabdff1aSopenharmony_ci if self.dump4tb: 594cabdff1aSopenharmony_ci self.dump_for_tensorboard() 595cabdff1aSopenharmony_ci 596cabdff1aSopenharmony_ci self.dump_to_file() 597cabdff1aSopenharmony_ci 598cabdff1aSopenharmony_ci 599cabdff1aSopenharmony_cidef convert_from_tensorflow(infile, outfile, dump4tb): 600cabdff1aSopenharmony_ci with open(infile, 'rb') as f: 601cabdff1aSopenharmony_ci # read the file in .proto format 602cabdff1aSopenharmony_ci graph_def = tf.GraphDef() 603cabdff1aSopenharmony_ci graph_def.ParseFromString(f.read()) 604cabdff1aSopenharmony_ci nodes = graph_def.node 605cabdff1aSopenharmony_ci 606cabdff1aSopenharmony_ci converter = TFConverter(graph_def, nodes, outfile, dump4tb) 607cabdff1aSopenharmony_ci converter.run() 608