1cabdff1aSopenharmony_ci# Copyright (c) 2019 Guo Yejun
2cabdff1aSopenharmony_ci#
3cabdff1aSopenharmony_ci# This file is part of FFmpeg.
4cabdff1aSopenharmony_ci#
5cabdff1aSopenharmony_ci# FFmpeg is free software; you can redistribute it and/or
6cabdff1aSopenharmony_ci# modify it under the terms of the GNU Lesser General Public
7cabdff1aSopenharmony_ci# License as published by the Free Software Foundation; either
8cabdff1aSopenharmony_ci# version 2.1 of the License, or (at your option) any later version.
9cabdff1aSopenharmony_ci#
10cabdff1aSopenharmony_ci# FFmpeg is distributed in the hope that it will be useful,
11cabdff1aSopenharmony_ci# but WITHOUT ANY WARRANTY; without even the implied warranty of
12cabdff1aSopenharmony_ci# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13cabdff1aSopenharmony_ci# Lesser General Public License for more details.
14cabdff1aSopenharmony_ci#
15cabdff1aSopenharmony_ci# You should have received a copy of the GNU Lesser General Public
16cabdff1aSopenharmony_ci# License along with FFmpeg; if not, write to the Free Software
17cabdff1aSopenharmony_ci# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18cabdff1aSopenharmony_ci# ==============================================================================
19cabdff1aSopenharmony_ci
20cabdff1aSopenharmony_ciimport tensorflow as tf
21cabdff1aSopenharmony_ciimport numpy as np
22cabdff1aSopenharmony_ciimport sys, struct
23cabdff1aSopenharmony_ciimport convert_header as header
24cabdff1aSopenharmony_ci
25cabdff1aSopenharmony_ci__all__ = ['convert_from_tensorflow']
26cabdff1aSopenharmony_ci
27cabdff1aSopenharmony_ciclass Operand(object):
28cabdff1aSopenharmony_ci    IOTYPE_INPUT = 1
29cabdff1aSopenharmony_ci    IOTYPE_OUTPUT = 2
30cabdff1aSopenharmony_ci    IOTYPE_INTERMEDIATE = IOTYPE_INPUT | IOTYPE_OUTPUT
31cabdff1aSopenharmony_ci    DTYPE_FLOAT = 1
32cabdff1aSopenharmony_ci    DTYPE_UINT8 = 4
33cabdff1aSopenharmony_ci    index = 0
34cabdff1aSopenharmony_ci    def __init__(self, name, dtype, dims):
35cabdff1aSopenharmony_ci        self.name = name
36cabdff1aSopenharmony_ci        self.dtype = dtype
37cabdff1aSopenharmony_ci        self.dims = dims
38cabdff1aSopenharmony_ci        self.iotype = 0
39cabdff1aSopenharmony_ci        self.used_count = 0
40cabdff1aSopenharmony_ci        self.index = Operand.index
41cabdff1aSopenharmony_ci        Operand.index = Operand.index + 1
42cabdff1aSopenharmony_ci        self.iotype2str = {Operand.IOTYPE_INPUT: 'in', Operand.IOTYPE_OUTPUT: 'out', Operand.IOTYPE_INTERMEDIATE: 'inout'}
43cabdff1aSopenharmony_ci        self.dtype2str = {Operand.DTYPE_FLOAT: 'DT_FLOAT', Operand.DTYPE_UINT8: 'DT_UINT8'}
44cabdff1aSopenharmony_ci
45cabdff1aSopenharmony_ci    def add_iotype(self, iotype):
46cabdff1aSopenharmony_ci        self.iotype = self.iotype | iotype
47cabdff1aSopenharmony_ci        if iotype == Operand.IOTYPE_INPUT:
48cabdff1aSopenharmony_ci            self.used_count = self.used_count + 1
49cabdff1aSopenharmony_ci
50cabdff1aSopenharmony_ci    def __str__(self):
51cabdff1aSopenharmony_ci        return "{}: (name: {}, iotype: {}, dtype: {}, dims: {}, used_count: {})".format(self.index,
52cabdff1aSopenharmony_ci                            self.name, self.iotype2str[self.iotype], self.dtype2str[self.dtype],
53cabdff1aSopenharmony_ci                            self.dims, self.used_count)
54cabdff1aSopenharmony_ci
55cabdff1aSopenharmony_ci    def __lt__(self, other):
56cabdff1aSopenharmony_ci        return self.index < other.index
57cabdff1aSopenharmony_ci
58cabdff1aSopenharmony_ciclass TFConverter:
59cabdff1aSopenharmony_ci    def __init__(self, graph_def, nodes, outfile, dump4tb):
60cabdff1aSopenharmony_ci        self.graph_def = graph_def
61cabdff1aSopenharmony_ci        self.nodes = nodes
62cabdff1aSopenharmony_ci        self.outfile = outfile
63cabdff1aSopenharmony_ci        self.dump4tb = dump4tb
64cabdff1aSopenharmony_ci        self.layer_number = 0
65cabdff1aSopenharmony_ci        self.output_names = []
66cabdff1aSopenharmony_ci        self.name_node_dict = {}
67cabdff1aSopenharmony_ci        self.edges = {}
68cabdff1aSopenharmony_ci        self.conv_activations = {'Relu':0, 'Tanh':1, 'Sigmoid':2, 'None':3, 'LeakyRelu':4}
69cabdff1aSopenharmony_ci        self.conv_paddings = {'VALID':0, 'SAME':1}
70cabdff1aSopenharmony_ci        self.pool_paddings = {'VALID':0, 'SAME':1}
71cabdff1aSopenharmony_ci        self.converted_nodes = set()
72cabdff1aSopenharmony_ci        self.conv2d_scope_names = set()
73cabdff1aSopenharmony_ci        self.conv2d_scopename_inputname_dict = {}
74cabdff1aSopenharmony_ci        self.dense_scope_names = set()
75cabdff1aSopenharmony_ci        self.dense_scopename_inputname_dict = {}
76cabdff1aSopenharmony_ci        self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4,
77cabdff1aSopenharmony_ci                        'MathBinary':5, 'MathUnary':6, 'AvgPool':7, 'MatMul':8}
78cabdff1aSopenharmony_ci        self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3, 'Minimum':4, 'FloorMod':5}
79cabdff1aSopenharmony_ci        self.mathun2code  = {'Abs':0, 'Sin':1, 'Cos':2, 'Tan':3, 'Asin':4,
80cabdff1aSopenharmony_ci                'Acos':5, 'Atan':6, 'Sinh':7, 'Cosh':8, 'Tanh':9, 'Asinh':10,
81cabdff1aSopenharmony_ci                'Acosh':11, 'Atanh':12, 'Ceil':13, 'Floor':14, 'Round':15,
82cabdff1aSopenharmony_ci                'Exp':16}
83cabdff1aSopenharmony_ci        self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2}
84cabdff1aSopenharmony_ci        self.name_operand_dict = {}
85cabdff1aSopenharmony_ci
86cabdff1aSopenharmony_ci
87cabdff1aSopenharmony_ci    def add_operand(self, name, type):
88cabdff1aSopenharmony_ci        node = self.name_node_dict[name]
89cabdff1aSopenharmony_ci        if name not in self.name_operand_dict:
90cabdff1aSopenharmony_ci            dtype = node.attr['dtype'].type
91cabdff1aSopenharmony_ci            if dtype == 0:
92cabdff1aSopenharmony_ci                dtype = node.attr['T'].type
93cabdff1aSopenharmony_ci            dims = [-1,-1,-1,-1]
94cabdff1aSopenharmony_ci            if 'shape' in node.attr:
95cabdff1aSopenharmony_ci                dims[0] = node.attr['shape'].shape.dim[0].size
96cabdff1aSopenharmony_ci                dims[1] = node.attr['shape'].shape.dim[1].size
97cabdff1aSopenharmony_ci                dims[2] = node.attr['shape'].shape.dim[2].size
98cabdff1aSopenharmony_ci                dims[3] = node.attr['shape'].shape.dim[3].size
99cabdff1aSopenharmony_ci            operand = Operand(name, dtype, dims)
100cabdff1aSopenharmony_ci            self.name_operand_dict[name] = operand;
101cabdff1aSopenharmony_ci        self.name_operand_dict[name].add_iotype(type)
102cabdff1aSopenharmony_ci        return self.name_operand_dict[name].index
103cabdff1aSopenharmony_ci
104cabdff1aSopenharmony_ci
105cabdff1aSopenharmony_ci    def dump_for_tensorboard(self):
106cabdff1aSopenharmony_ci        graph = tf.get_default_graph()
107cabdff1aSopenharmony_ci        tf.import_graph_def(self.graph_def, name="")
108cabdff1aSopenharmony_ci        tf.summary.FileWriter('/tmp/graph', graph)
109cabdff1aSopenharmony_ci        print('graph saved, run "tensorboard --logdir=/tmp/graph" to see it')
110cabdff1aSopenharmony_ci
111cabdff1aSopenharmony_ci
112cabdff1aSopenharmony_ci    def get_conv2d_params(self, conv2d_scope_name):
113cabdff1aSopenharmony_ci        knode = self.name_node_dict[conv2d_scope_name + '/kernel']
114cabdff1aSopenharmony_ci        bnode = self.name_node_dict[conv2d_scope_name + '/bias']
115cabdff1aSopenharmony_ci
116cabdff1aSopenharmony_ci        if conv2d_scope_name + '/dilation_rate' in self.name_node_dict:
117cabdff1aSopenharmony_ci            dnode = self.name_node_dict[conv2d_scope_name + '/dilation_rate']
118cabdff1aSopenharmony_ci        else:
119cabdff1aSopenharmony_ci            dnode = None
120cabdff1aSopenharmony_ci
121cabdff1aSopenharmony_ci        # the BiasAdd name is possible be changed into the output name,
122cabdff1aSopenharmony_ci        # if activation is None, and BiasAdd.next is the last op which is Identity
123cabdff1aSopenharmony_ci        if conv2d_scope_name + '/BiasAdd' in self.edges:
124cabdff1aSopenharmony_ci            anode = self.edges[conv2d_scope_name + '/BiasAdd'][0]
125cabdff1aSopenharmony_ci            if anode.op not in self.conv_activations:
126cabdff1aSopenharmony_ci                anode = None
127cabdff1aSopenharmony_ci        else:
128cabdff1aSopenharmony_ci            anode = None
129cabdff1aSopenharmony_ci        return knode, bnode, dnode, anode
130cabdff1aSopenharmony_ci
131cabdff1aSopenharmony_ci
132cabdff1aSopenharmony_ci    def get_dense_params(self, dense_scope_name):
133cabdff1aSopenharmony_ci        knode = self.name_node_dict[dense_scope_name + '/kernel']
134cabdff1aSopenharmony_ci        bnode = self.name_node_dict.get(dense_scope_name + '/bias')
135cabdff1aSopenharmony_ci        # the BiasAdd name is possible be changed into the output name,
136cabdff1aSopenharmony_ci        # if activation is None, and BiasAdd.next is the last op which is Identity
137cabdff1aSopenharmony_ci        anode = None
138cabdff1aSopenharmony_ci        if bnode:
139cabdff1aSopenharmony_ci            if dense_scope_name + '/BiasAdd' in self.edges:
140cabdff1aSopenharmony_ci                anode = self.edges[dense_scope_name + '/BiasAdd'][0]
141cabdff1aSopenharmony_ci                if anode.op not in self.conv_activations:
142cabdff1aSopenharmony_ci                    anode = None
143cabdff1aSopenharmony_ci        else:
144cabdff1aSopenharmony_ci            anode = None
145cabdff1aSopenharmony_ci        return knode, bnode, anode
146cabdff1aSopenharmony_ci
147cabdff1aSopenharmony_ci
148cabdff1aSopenharmony_ci    def dump_complex_conv2d_to_file(self, node, f):
149cabdff1aSopenharmony_ci        assert(node.op == 'Conv2D')
150cabdff1aSopenharmony_ci        self.layer_number = self.layer_number + 1
151cabdff1aSopenharmony_ci        self.converted_nodes.add(node.name)
152cabdff1aSopenharmony_ci
153cabdff1aSopenharmony_ci        scope_name = TFConverter.get_scope_name(node.name)
154cabdff1aSopenharmony_ci        #knode for kernel, bnode for bias, dnode for dilation, anode for activation
155cabdff1aSopenharmony_ci        knode, bnode, dnode, anode = self.get_conv2d_params(scope_name)
156cabdff1aSopenharmony_ci
157cabdff1aSopenharmony_ci        if dnode is not None:
158cabdff1aSopenharmony_ci            dilation = struct.unpack('i', dnode.attr['value'].tensor.tensor_content[0:4])[0]
159cabdff1aSopenharmony_ci        else:
160cabdff1aSopenharmony_ci            dilation = 1
161cabdff1aSopenharmony_ci
162cabdff1aSopenharmony_ci        if anode is not None:
163cabdff1aSopenharmony_ci            activation = anode.op
164cabdff1aSopenharmony_ci        else:
165cabdff1aSopenharmony_ci            activation = 'None'
166cabdff1aSopenharmony_ci
167cabdff1aSopenharmony_ci        padding = node.attr['padding'].s.decode("utf-8")
168cabdff1aSopenharmony_ci        # conv2d with dilation > 1 generates tens of nodes, not easy to parse them, so use this tricky method.
169cabdff1aSopenharmony_ci        if dilation > 1 and scope_name + '/stack' in self.name_node_dict:
170cabdff1aSopenharmony_ci            if self.name_node_dict[scope_name + '/stack'].op == "Const":
171cabdff1aSopenharmony_ci                padding = 'SAME'
172cabdff1aSopenharmony_ci        padding = self.conv_paddings[padding]
173cabdff1aSopenharmony_ci
174cabdff1aSopenharmony_ci        ktensor = knode.attr['value'].tensor
175cabdff1aSopenharmony_ci        filter_height = ktensor.tensor_shape.dim[0].size
176cabdff1aSopenharmony_ci        filter_width = ktensor.tensor_shape.dim[1].size
177cabdff1aSopenharmony_ci        in_channels = ktensor.tensor_shape.dim[2].size
178cabdff1aSopenharmony_ci        out_channels = ktensor.tensor_shape.dim[3].size
179cabdff1aSopenharmony_ci        kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32)
180cabdff1aSopenharmony_ci        kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels)
181cabdff1aSopenharmony_ci        kernel = np.transpose(kernel, [3, 0, 1, 2])
182cabdff1aSopenharmony_ci
183cabdff1aSopenharmony_ci        has_bias = 1
184cabdff1aSopenharmony_ci        np.array([self.op2code[node.op], dilation, padding, self.conv_activations[activation], in_channels, out_channels, filter_height, has_bias], dtype=np.uint32).tofile(f)
185cabdff1aSopenharmony_ci        kernel.tofile(f)
186cabdff1aSopenharmony_ci
187cabdff1aSopenharmony_ci        btensor = bnode.attr['value'].tensor
188cabdff1aSopenharmony_ci        if btensor.tensor_shape.dim[0].size == 1:
189cabdff1aSopenharmony_ci            bias = struct.pack("f", btensor.float_val[0])
190cabdff1aSopenharmony_ci        else:
191cabdff1aSopenharmony_ci            bias = btensor.tensor_content
192cabdff1aSopenharmony_ci        f.write(bias)
193cabdff1aSopenharmony_ci
194cabdff1aSopenharmony_ci        input_name = self.conv2d_scopename_inputname_dict[scope_name]
195cabdff1aSopenharmony_ci        input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT)
196cabdff1aSopenharmony_ci
197cabdff1aSopenharmony_ci        if anode is not None:
198cabdff1aSopenharmony_ci            output_operand_index = self.add_operand(anode.name, Operand.IOTYPE_OUTPUT)
199cabdff1aSopenharmony_ci        else:
200cabdff1aSopenharmony_ci            output_operand_index = self.add_operand(self.edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT)
201cabdff1aSopenharmony_ci        np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
202cabdff1aSopenharmony_ci
203cabdff1aSopenharmony_ci    def dump_dense_to_file(self, node, f):
204cabdff1aSopenharmony_ci        assert(node.op == 'MatMul')
205cabdff1aSopenharmony_ci        self.layer_number = self.layer_number + 1
206cabdff1aSopenharmony_ci        self.converted_nodes.add(node.name)
207cabdff1aSopenharmony_ci
208cabdff1aSopenharmony_ci        scope_name = TFConverter.get_scope_name(node.name)
209cabdff1aSopenharmony_ci        #knode for kernel, bnode for bias, anode for activation
210cabdff1aSopenharmony_ci        knode, bnode, anode = self.get_dense_params(scope_name.split('/')[0])
211cabdff1aSopenharmony_ci
212cabdff1aSopenharmony_ci        if bnode is not None:
213cabdff1aSopenharmony_ci            has_bias = 1
214cabdff1aSopenharmony_ci            btensor = bnode.attr['value'].tensor
215cabdff1aSopenharmony_ci            if btensor.tensor_shape.dim[0].size == 1:
216cabdff1aSopenharmony_ci                bias = struct.pack("f", btensor.float_val[0])
217cabdff1aSopenharmony_ci            else:
218cabdff1aSopenharmony_ci                bias = btensor.tensor_content
219cabdff1aSopenharmony_ci        else:
220cabdff1aSopenharmony_ci            has_bias = 0
221cabdff1aSopenharmony_ci
222cabdff1aSopenharmony_ci        if anode is not None:
223cabdff1aSopenharmony_ci            activation = anode.op
224cabdff1aSopenharmony_ci        else:
225cabdff1aSopenharmony_ci            activation = 'None'
226cabdff1aSopenharmony_ci
227cabdff1aSopenharmony_ci        ktensor = knode.attr['value'].tensor
228cabdff1aSopenharmony_ci        in_channels = ktensor.tensor_shape.dim[0].size
229cabdff1aSopenharmony_ci        out_channels = ktensor.tensor_shape.dim[1].size
230cabdff1aSopenharmony_ci        if in_channels * out_channels == 1:
231cabdff1aSopenharmony_ci            kernel = np.float32(ktensor.float_val[0])
232cabdff1aSopenharmony_ci        else:
233cabdff1aSopenharmony_ci            kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32)
234cabdff1aSopenharmony_ci        kernel = kernel.reshape(in_channels, out_channels)
235cabdff1aSopenharmony_ci        kernel = np.transpose(kernel, [1, 0])
236cabdff1aSopenharmony_ci
237cabdff1aSopenharmony_ci        np.array([self.op2code[node.op], self.conv_activations[activation], in_channels, out_channels, has_bias], dtype=np.uint32).tofile(f)
238cabdff1aSopenharmony_ci        kernel.tofile(f)
239cabdff1aSopenharmony_ci        if has_bias:
240cabdff1aSopenharmony_ci            f.write(bias)
241cabdff1aSopenharmony_ci
242cabdff1aSopenharmony_ci        input_name = self.dense_scopename_inputname_dict[scope_name.split('/')[0]]
243cabdff1aSopenharmony_ci        input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT)
244cabdff1aSopenharmony_ci
245cabdff1aSopenharmony_ci        if anode is not None:
246cabdff1aSopenharmony_ci            output_operand_index = self.add_operand(anode.name, Operand.IOTYPE_OUTPUT)
247cabdff1aSopenharmony_ci        else:
248cabdff1aSopenharmony_ci            if bnode is not None:
249cabdff1aSopenharmony_ci                output_operand_index = self.add_operand(self.edges[bnode.name][0].name, Operand.IOTYPE_OUTPUT)
250cabdff1aSopenharmony_ci            else:
251cabdff1aSopenharmony_ci                output_operand_index = self.add_operand(self.edges[scope_name+'/concat_1'][0].name, Operand.IOTYPE_OUTPUT)
252cabdff1aSopenharmony_ci        np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
253cabdff1aSopenharmony_ci
254cabdff1aSopenharmony_ci
255cabdff1aSopenharmony_ci    def dump_simple_conv2d_to_file(self, node, f):
256cabdff1aSopenharmony_ci        assert(node.op == 'Conv2D')
257cabdff1aSopenharmony_ci        self.layer_number = self.layer_number + 1
258cabdff1aSopenharmony_ci        self.converted_nodes.add(node.name)
259cabdff1aSopenharmony_ci
260cabdff1aSopenharmony_ci        node0 = self.name_node_dict[node.input[0]]
261cabdff1aSopenharmony_ci        node1 = self.name_node_dict[node.input[1]]
262cabdff1aSopenharmony_ci        if node0.op == 'Const':
263cabdff1aSopenharmony_ci            knode = node0
264cabdff1aSopenharmony_ci            input_name = node.input[1]
265cabdff1aSopenharmony_ci        else:
266cabdff1aSopenharmony_ci            knode = node1
267cabdff1aSopenharmony_ci            input_name = node.input[0]
268cabdff1aSopenharmony_ci
269cabdff1aSopenharmony_ci        ktensor = knode.attr['value'].tensor
270cabdff1aSopenharmony_ci        filter_height = ktensor.tensor_shape.dim[0].size
271cabdff1aSopenharmony_ci        filter_width = ktensor.tensor_shape.dim[1].size
272cabdff1aSopenharmony_ci        in_channels = ktensor.tensor_shape.dim[2].size
273cabdff1aSopenharmony_ci        out_channels = ktensor.tensor_shape.dim[3].size
274cabdff1aSopenharmony_ci        if filter_height * filter_width * in_channels * out_channels == 1:
275cabdff1aSopenharmony_ci            kernel = np.float32(ktensor.float_val[0])
276cabdff1aSopenharmony_ci        else:
277cabdff1aSopenharmony_ci            kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32)
278cabdff1aSopenharmony_ci        kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels)
279cabdff1aSopenharmony_ci        kernel = np.transpose(kernel, [3, 0, 1, 2])
280cabdff1aSopenharmony_ci
281cabdff1aSopenharmony_ci        has_bias = 0
282cabdff1aSopenharmony_ci        dilation = 1
283cabdff1aSopenharmony_ci        padding = node.attr['padding'].s.decode("utf-8")
284cabdff1aSopenharmony_ci        np.array([self.op2code[node.op], dilation, self.conv_paddings[padding], self.conv_activations['None'],
285cabdff1aSopenharmony_ci                  in_channels, out_channels, filter_height, has_bias], dtype=np.uint32).tofile(f)
286cabdff1aSopenharmony_ci        kernel.tofile(f)
287cabdff1aSopenharmony_ci
288cabdff1aSopenharmony_ci        input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT)
289cabdff1aSopenharmony_ci        output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
290cabdff1aSopenharmony_ci        np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
291cabdff1aSopenharmony_ci
292cabdff1aSopenharmony_ci
293cabdff1aSopenharmony_ci    def dump_depth2space_to_file(self, node, f):
294cabdff1aSopenharmony_ci        assert(node.op == 'DepthToSpace')
295cabdff1aSopenharmony_ci        self.layer_number = self.layer_number + 1
296cabdff1aSopenharmony_ci        block_size = node.attr['block_size'].i
297cabdff1aSopenharmony_ci        np.array([self.op2code[node.op], block_size], dtype=np.uint32).tofile(f)
298cabdff1aSopenharmony_ci        self.converted_nodes.add(node.name)
299cabdff1aSopenharmony_ci        input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
300cabdff1aSopenharmony_ci        output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
301cabdff1aSopenharmony_ci        np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
302cabdff1aSopenharmony_ci
303cabdff1aSopenharmony_ci
304cabdff1aSopenharmony_ci    def dump_mirrorpad_to_file(self, node, f):
305cabdff1aSopenharmony_ci        assert(node.op == 'MirrorPad')
306cabdff1aSopenharmony_ci        self.layer_number = self.layer_number + 1
307cabdff1aSopenharmony_ci        mode = node.attr['mode'].s
308cabdff1aSopenharmony_ci        mode = self.mirrorpad_mode[mode.decode("utf-8")]
309cabdff1aSopenharmony_ci        np.array([self.op2code[node.op], mode], dtype=np.uint32).tofile(f)
310cabdff1aSopenharmony_ci        pnode = self.name_node_dict[node.input[1]]
311cabdff1aSopenharmony_ci        self.converted_nodes.add(pnode.name)
312cabdff1aSopenharmony_ci        paddings = pnode.attr['value'].tensor.tensor_content
313cabdff1aSopenharmony_ci        f.write(paddings)
314cabdff1aSopenharmony_ci        self.converted_nodes.add(node.name)
315cabdff1aSopenharmony_ci        input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
316cabdff1aSopenharmony_ci        output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
317cabdff1aSopenharmony_ci        np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
318cabdff1aSopenharmony_ci
319cabdff1aSopenharmony_ci
320cabdff1aSopenharmony_ci    def dump_maximum_to_file(self, node, f):
321cabdff1aSopenharmony_ci        assert(node.op == 'Maximum')
322cabdff1aSopenharmony_ci        self.layer_number = self.layer_number + 1
323cabdff1aSopenharmony_ci        ynode = self.name_node_dict[node.input[1]]
324cabdff1aSopenharmony_ci        y = ynode.attr['value'].tensor.float_val[0]
325cabdff1aSopenharmony_ci        np.array([self.op2code[node.op]], dtype=np.uint32).tofile(f)
326cabdff1aSopenharmony_ci        np.array([y], dtype=np.float32).tofile(f)
327cabdff1aSopenharmony_ci        self.converted_nodes.add(node.name)
328cabdff1aSopenharmony_ci        input_operand_index = self.add_operand(node.input[0], Operand.IOTYPE_INPUT)
329cabdff1aSopenharmony_ci        output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
330cabdff1aSopenharmony_ci        np.array([input_operand_index, output_operand_index], dtype=np.uint32).tofile(f)
331cabdff1aSopenharmony_ci
332cabdff1aSopenharmony_ci
333cabdff1aSopenharmony_ci    def dump_mathbinary_to_file(self, node, f):
334cabdff1aSopenharmony_ci        self.layer_number = self.layer_number + 1
335cabdff1aSopenharmony_ci        self.converted_nodes.add(node.name)
336cabdff1aSopenharmony_ci        i0_node = self.name_node_dict[node.input[0]]
337cabdff1aSopenharmony_ci        i1_node = self.name_node_dict[node.input[1]]
338cabdff1aSopenharmony_ci        np.array([self.op2code['MathBinary'], self.mathbin2code[node.op]], dtype=np.uint32).tofile(f)
339cabdff1aSopenharmony_ci        if i0_node.op == 'Const':
340cabdff1aSopenharmony_ci            scalar = i0_node.attr['value'].tensor.float_val[0]
341cabdff1aSopenharmony_ci            np.array([1], dtype=np.uint32).tofile(f)            # broadcast: 1
342cabdff1aSopenharmony_ci            np.array([scalar], dtype=np.float32).tofile(f)
343cabdff1aSopenharmony_ci            np.array([0], dtype=np.uint32).tofile(f)            # broadcast: 0
344cabdff1aSopenharmony_ci            input_operand_index = self.add_operand(i1_node.name, Operand.IOTYPE_INPUT)
345cabdff1aSopenharmony_ci            np.array([input_operand_index], dtype=np.uint32).tofile(f)
346cabdff1aSopenharmony_ci        elif i1_node.op == 'Const':
347cabdff1aSopenharmony_ci            scalar = i1_node.attr['value'].tensor.float_val[0]
348cabdff1aSopenharmony_ci            np.array([0], dtype=np.uint32).tofile(f)
349cabdff1aSopenharmony_ci            input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT)
350cabdff1aSopenharmony_ci            np.array([input_operand_index], dtype=np.uint32).tofile(f)
351cabdff1aSopenharmony_ci            np.array([1], dtype=np.uint32).tofile(f)
352cabdff1aSopenharmony_ci            np.array([scalar], dtype=np.float32).tofile(f)
353cabdff1aSopenharmony_ci        else:
354cabdff1aSopenharmony_ci            np.array([0], dtype=np.uint32).tofile(f)
355cabdff1aSopenharmony_ci            input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT)
356cabdff1aSopenharmony_ci            np.array([input_operand_index], dtype=np.uint32).tofile(f)
357cabdff1aSopenharmony_ci            np.array([0], dtype=np.uint32).tofile(f)
358cabdff1aSopenharmony_ci            input_operand_index = self.add_operand(i1_node.name, Operand.IOTYPE_INPUT)
359cabdff1aSopenharmony_ci            np.array([input_operand_index], dtype=np.uint32).tofile(f)
360cabdff1aSopenharmony_ci        output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
361cabdff1aSopenharmony_ci        np.array([output_operand_index], dtype=np.uint32).tofile(f)
362cabdff1aSopenharmony_ci
363cabdff1aSopenharmony_ci
364cabdff1aSopenharmony_ci    def dump_mathunary_to_file(self, node, f):
365cabdff1aSopenharmony_ci        self.layer_number = self.layer_number + 1
366cabdff1aSopenharmony_ci        self.converted_nodes.add(node.name)
367cabdff1aSopenharmony_ci        i0_node = self.name_node_dict[node.input[0]]
368cabdff1aSopenharmony_ci        np.array([self.op2code['MathUnary'], self.mathun2code[node.op]], dtype=np.uint32).tofile(f)
369cabdff1aSopenharmony_ci        input_operand_index = self.add_operand(i0_node.name, Operand.IOTYPE_INPUT)
370cabdff1aSopenharmony_ci        np.array([input_operand_index], dtype=np.uint32).tofile(f)
371cabdff1aSopenharmony_ci        output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
372cabdff1aSopenharmony_ci        np.array([output_operand_index],dtype=np.uint32).tofile(f)
373cabdff1aSopenharmony_ci
374cabdff1aSopenharmony_ci
375cabdff1aSopenharmony_ci    def dump_avg_pool_to_file(self, node, f):
376cabdff1aSopenharmony_ci        assert(node.op == 'AvgPool')
377cabdff1aSopenharmony_ci        self.layer_number = self.layer_number + 1
378cabdff1aSopenharmony_ci        self.converted_nodes.add(node.name)
379cabdff1aSopenharmony_ci        node0 = self.name_node_dict[node.input[0]]
380cabdff1aSopenharmony_ci        strides = node.attr['strides']
381cabdff1aSopenharmony_ci
382cabdff1aSopenharmony_ci        # Tensorflow do not support pooling strides in batch dimension and
383cabdff1aSopenharmony_ci        # current native NN do not support pooling strides in channel dimension, added assert() here.
384cabdff1aSopenharmony_ci        assert(strides.list.i[1]==strides.list.i[2])
385cabdff1aSopenharmony_ci        assert(strides.list.i[0]==1)
386cabdff1aSopenharmony_ci        assert(strides.list.i[3]==1)
387cabdff1aSopenharmony_ci        strides = strides.list.i[1]
388cabdff1aSopenharmony_ci        filter_node = node.attr['ksize']
389cabdff1aSopenharmony_ci        input_name = node.input[0]
390cabdff1aSopenharmony_ci
391cabdff1aSopenharmony_ci        # Tensorflow do not support pooling ksize in batch dimension and channel dimension.
392cabdff1aSopenharmony_ci        assert(filter_node.list.i[0]==1)
393cabdff1aSopenharmony_ci        assert(filter_node.list.i[3]==1)
394cabdff1aSopenharmony_ci        filter_height = filter_node.list.i[1]
395cabdff1aSopenharmony_ci        filter_width = filter_node.list.i[2]
396cabdff1aSopenharmony_ci
397cabdff1aSopenharmony_ci        padding = node.attr['padding'].s.decode("utf-8")
398cabdff1aSopenharmony_ci        np.array([self.op2code[node.op], strides, self.pool_paddings[padding], filter_height],
399cabdff1aSopenharmony_ci                 dtype=np.uint32).tofile(f)
400cabdff1aSopenharmony_ci
401cabdff1aSopenharmony_ci        input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT)
402cabdff1aSopenharmony_ci        output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT)
403cabdff1aSopenharmony_ci        np.array([input_operand_index, output_operand_index],dtype=np.uint32).tofile(f)
404cabdff1aSopenharmony_ci
405cabdff1aSopenharmony_ci
406cabdff1aSopenharmony_ci    def dump_layers_to_file(self, f):
407cabdff1aSopenharmony_ci        for node in self.nodes:
408cabdff1aSopenharmony_ci            if node.name in self.converted_nodes:
409cabdff1aSopenharmony_ci                continue
410cabdff1aSopenharmony_ci
411cabdff1aSopenharmony_ci            # conv2d with dilation generates very complex nodes, so handle it in special
412cabdff1aSopenharmony_ci            if self.in_conv2d_scope(node.name):
413cabdff1aSopenharmony_ci                if node.op == 'Conv2D':
414cabdff1aSopenharmony_ci                    self.dump_complex_conv2d_to_file(node, f)
415cabdff1aSopenharmony_ci                continue
416cabdff1aSopenharmony_ci            if self.in_dense_scope(node.name):
417cabdff1aSopenharmony_ci                if node.op == 'MatMul':
418cabdff1aSopenharmony_ci                    self.dump_dense_to_file(node, f)
419cabdff1aSopenharmony_ci                continue
420cabdff1aSopenharmony_ci
421cabdff1aSopenharmony_ci
422cabdff1aSopenharmony_ci            if node.op == 'Conv2D':
423cabdff1aSopenharmony_ci                self.dump_simple_conv2d_to_file(node, f)
424cabdff1aSopenharmony_ci                continue
425cabdff1aSopenharmony_ci            if node.name in self.output_names:
426cabdff1aSopenharmony_ci                input_name = self.id_different_scope_dict[node.name]
427cabdff1aSopenharmony_ci                if TFConverter.get_scope_name(input_name)!=TFConverter.get_scope_name(node.name):
428cabdff1aSopenharmony_ci                    continue
429cabdff1aSopenharmony_ci            if node.op == 'AvgPool':
430cabdff1aSopenharmony_ci                self.dump_avg_pool_to_file(node, f)
431cabdff1aSopenharmony_ci            elif node.op == 'DepthToSpace':
432cabdff1aSopenharmony_ci                self.dump_depth2space_to_file(node, f)
433cabdff1aSopenharmony_ci            elif node.op == 'MirrorPad':
434cabdff1aSopenharmony_ci                self.dump_mirrorpad_to_file(node, f)
435cabdff1aSopenharmony_ci            elif node.op == 'Maximum':
436cabdff1aSopenharmony_ci                self.dump_maximum_to_file(node, f)
437cabdff1aSopenharmony_ci            elif node.op in self.mathbin2code:
438cabdff1aSopenharmony_ci                self.dump_mathbinary_to_file(node, f)
439cabdff1aSopenharmony_ci            elif node.op in self.mathun2code:
440cabdff1aSopenharmony_ci                self.dump_mathunary_to_file(node, f)
441cabdff1aSopenharmony_ci
442cabdff1aSopenharmony_ci
443cabdff1aSopenharmony_ci    def dump_operands_to_file(self, f):
444cabdff1aSopenharmony_ci            operands = sorted(self.name_operand_dict.values())
445cabdff1aSopenharmony_ci            for operand in operands:
446cabdff1aSopenharmony_ci                #print('{}'.format(operand))
447cabdff1aSopenharmony_ci                np.array([operand.index, len(operand.name)], dtype=np.uint32).tofile(f)
448cabdff1aSopenharmony_ci                f.write(operand.name.encode('utf-8'))
449cabdff1aSopenharmony_ci                np.array([operand.iotype, operand.dtype], dtype=np.uint32).tofile(f)
450cabdff1aSopenharmony_ci                np.array(operand.dims, dtype=np.uint32).tofile(f)
451cabdff1aSopenharmony_ci
452cabdff1aSopenharmony_ci
453cabdff1aSopenharmony_ci    def dump_to_file(self):
454cabdff1aSopenharmony_ci        with open(self.outfile, 'wb') as f:
455cabdff1aSopenharmony_ci            f.write(header.str.encode('utf-8'))
456cabdff1aSopenharmony_ci            np.array([header.major, header.minor], dtype=np.uint32).tofile(f)
457cabdff1aSopenharmony_ci            self.dump_layers_to_file(f)
458cabdff1aSopenharmony_ci            self.dump_operands_to_file(f)
459cabdff1aSopenharmony_ci            np.array([self.layer_number, len(self.name_operand_dict)], dtype=np.uint32).tofile(f)
460cabdff1aSopenharmony_ci
461cabdff1aSopenharmony_ci
462cabdff1aSopenharmony_ci    def generate_name_node_dict(self):
463cabdff1aSopenharmony_ci        for node in self.nodes:
464cabdff1aSopenharmony_ci            self.name_node_dict[node.name] = node
465cabdff1aSopenharmony_ci
466cabdff1aSopenharmony_ci
467cabdff1aSopenharmony_ci    def generate_output_names(self):
468cabdff1aSopenharmony_ci        used_names = []
469cabdff1aSopenharmony_ci        for node in self.nodes:
470cabdff1aSopenharmony_ci            for input in node.input:
471cabdff1aSopenharmony_ci                used_names.append(input)
472cabdff1aSopenharmony_ci
473cabdff1aSopenharmony_ci        for node in self.nodes:
474cabdff1aSopenharmony_ci            if node.name not in used_names:
475cabdff1aSopenharmony_ci                self.output_names.append(node.name)
476cabdff1aSopenharmony_ci
477cabdff1aSopenharmony_ci
478cabdff1aSopenharmony_ci    def remove_identity(self):
479cabdff1aSopenharmony_ci        self.id_different_scope_dict = {}
480cabdff1aSopenharmony_ci        id_nodes = []
481cabdff1aSopenharmony_ci        id_dict = {}
482cabdff1aSopenharmony_ci        for node in self.nodes:
483cabdff1aSopenharmony_ci            if node.op == 'Identity':
484cabdff1aSopenharmony_ci                name = node.name
485cabdff1aSopenharmony_ci                input = node.input[0]
486cabdff1aSopenharmony_ci                id_nodes.append(node)
487cabdff1aSopenharmony_ci                # do not change the output name
488cabdff1aSopenharmony_ci                if name in self.output_names:
489cabdff1aSopenharmony_ci                    self.name_node_dict[input].name = name
490cabdff1aSopenharmony_ci                    self.name_node_dict[name] = self.name_node_dict[input]
491cabdff1aSopenharmony_ci                    del self.name_node_dict[input]
492cabdff1aSopenharmony_ci                    self.id_different_scope_dict[name] = input
493cabdff1aSopenharmony_ci                else:
494cabdff1aSopenharmony_ci                    id_dict[name] = input
495cabdff1aSopenharmony_ci
496cabdff1aSopenharmony_ci        for idnode in id_nodes:
497cabdff1aSopenharmony_ci            self.nodes.remove(idnode)
498cabdff1aSopenharmony_ci
499cabdff1aSopenharmony_ci        for node in self.nodes:
500cabdff1aSopenharmony_ci            for i in range(len(node.input)):
501cabdff1aSopenharmony_ci                input = node.input[i]
502cabdff1aSopenharmony_ci                if input in id_dict:
503cabdff1aSopenharmony_ci                    node.input[i] = id_dict[input]
504cabdff1aSopenharmony_ci
505cabdff1aSopenharmony_ci
506cabdff1aSopenharmony_ci    def generate_edges(self):
507cabdff1aSopenharmony_ci        for node in self.nodes:
508cabdff1aSopenharmony_ci            for input in node.input:
509cabdff1aSopenharmony_ci                if input in self.edges:
510cabdff1aSopenharmony_ci                    self.edges[input].append(node)
511cabdff1aSopenharmony_ci                else:
512cabdff1aSopenharmony_ci                    self.edges[input] = [node]
513cabdff1aSopenharmony_ci
514cabdff1aSopenharmony_ci
515cabdff1aSopenharmony_ci    @staticmethod
516cabdff1aSopenharmony_ci    def get_scope_name(name):
517cabdff1aSopenharmony_ci        index = name.rfind('/')
518cabdff1aSopenharmony_ci        if index == -1:
519cabdff1aSopenharmony_ci            return ""
520cabdff1aSopenharmony_ci        return name[0:index]
521cabdff1aSopenharmony_ci
522cabdff1aSopenharmony_ci
523cabdff1aSopenharmony_ci    def in_conv2d_scope(self, name):
524cabdff1aSopenharmony_ci        inner_scope = TFConverter.get_scope_name(name)
525cabdff1aSopenharmony_ci        if inner_scope == "":
526cabdff1aSopenharmony_ci            return False;
527cabdff1aSopenharmony_ci        for scope in self.conv2d_scope_names:
528cabdff1aSopenharmony_ci            index = inner_scope.find(scope)
529cabdff1aSopenharmony_ci            if index == 0:
530cabdff1aSopenharmony_ci                return True
531cabdff1aSopenharmony_ci        return False
532cabdff1aSopenharmony_ci
533cabdff1aSopenharmony_ci
534cabdff1aSopenharmony_ci    def in_dense_scope(self, name):
535cabdff1aSopenharmony_ci        inner_scope = TFConverter.get_scope_name(name)
536cabdff1aSopenharmony_ci        if inner_scope == "":
537cabdff1aSopenharmony_ci            return False;
538cabdff1aSopenharmony_ci        for scope in self.dense_scope_names:
539cabdff1aSopenharmony_ci            index = inner_scope.find(scope)
540cabdff1aSopenharmony_ci            if index == 0:
541cabdff1aSopenharmony_ci                return True
542cabdff1aSopenharmony_ci        return False
543cabdff1aSopenharmony_ci
544cabdff1aSopenharmony_ci    def generate_sub_block_op_scope_info(self):
545cabdff1aSopenharmony_ci        # mostly, conv2d/dense is a sub block in graph, get the scope name
546cabdff1aSopenharmony_ci        for node in self.nodes:
547cabdff1aSopenharmony_ci            if node.op == 'Conv2D':
548cabdff1aSopenharmony_ci                scope = TFConverter.get_scope_name(node.name)
549cabdff1aSopenharmony_ci                # for the case tf.nn.conv2d is called directly
550cabdff1aSopenharmony_ci                if scope == '':
551cabdff1aSopenharmony_ci                    continue
552cabdff1aSopenharmony_ci                # for the case tf.nn.conv2d is called within a scope
553cabdff1aSopenharmony_ci                if scope + '/kernel' not in self.name_node_dict:
554cabdff1aSopenharmony_ci                    continue
555cabdff1aSopenharmony_ci                self.conv2d_scope_names.add(scope)
556cabdff1aSopenharmony_ci            elif node.op == 'MatMul':
557cabdff1aSopenharmony_ci                scope = TFConverter.get_scope_name(node.name)
558cabdff1aSopenharmony_ci                # for the case tf.nn.dense is called directly
559cabdff1aSopenharmony_ci                if scope == '':
560cabdff1aSopenharmony_ci                    continue
561cabdff1aSopenharmony_ci                # for the case tf.nn.dense is called within a scope
562cabdff1aSopenharmony_ci                if scope + '/kernel' not in self.name_node_dict and scope.split('/Tensordot')[0] + '/kernel' not in self.name_node_dict:
563cabdff1aSopenharmony_ci                    continue
564cabdff1aSopenharmony_ci                self.dense_scope_names.add(scope.split('/Tensordot')[0])
565cabdff1aSopenharmony_ci
566cabdff1aSopenharmony_ci        # get the input name to the conv2d/dense sub block
567cabdff1aSopenharmony_ci        for node in self.nodes:
568cabdff1aSopenharmony_ci            scope = TFConverter.get_scope_name(node.name)
569cabdff1aSopenharmony_ci            if scope in self.conv2d_scope_names:
570cabdff1aSopenharmony_ci                if node.op == 'Conv2D' or node.op == 'Shape':
571cabdff1aSopenharmony_ci                    for inp in node.input:
572cabdff1aSopenharmony_ci                        if TFConverter.get_scope_name(inp) != scope:
573cabdff1aSopenharmony_ci                            self.conv2d_scopename_inputname_dict[scope] = inp
574cabdff1aSopenharmony_ci            elif scope in self.dense_scope_names:
575cabdff1aSopenharmony_ci                if node.op == 'MatMul' or node.op == 'Shape':
576cabdff1aSopenharmony_ci                    for inp in node.input:
577cabdff1aSopenharmony_ci                        if TFConverter.get_scope_name(inp) != scope:
578cabdff1aSopenharmony_ci                            self.dense_scopename_inputname_dict[scope] = inp
579cabdff1aSopenharmony_ci            elif scope.split('/Tensordot')[0] in self.dense_scope_names:
580cabdff1aSopenharmony_ci                if node.op == 'Transpose':
581cabdff1aSopenharmony_ci                    for inp in node.input:
582cabdff1aSopenharmony_ci                        if TFConverter.get_scope_name(inp).find(scope)<0 and TFConverter.get_scope_name(inp).find(scope.split('/')[0])<0:
583cabdff1aSopenharmony_ci                            self.dense_scopename_inputname_dict[scope.split('/Tensordot')[0]] = inp
584cabdff1aSopenharmony_ci
585cabdff1aSopenharmony_ci
586cabdff1aSopenharmony_ci    def run(self):
587cabdff1aSopenharmony_ci        self.generate_name_node_dict()
588cabdff1aSopenharmony_ci        self.generate_output_names()
589cabdff1aSopenharmony_ci        self.remove_identity()
590cabdff1aSopenharmony_ci        self.generate_edges()
591cabdff1aSopenharmony_ci        self.generate_sub_block_op_scope_info()
592cabdff1aSopenharmony_ci
593cabdff1aSopenharmony_ci        if self.dump4tb:
594cabdff1aSopenharmony_ci            self.dump_for_tensorboard()
595cabdff1aSopenharmony_ci
596cabdff1aSopenharmony_ci        self.dump_to_file()
597cabdff1aSopenharmony_ci
598cabdff1aSopenharmony_ci
599cabdff1aSopenharmony_cidef convert_from_tensorflow(infile, outfile, dump4tb):
600cabdff1aSopenharmony_ci    with open(infile, 'rb') as f:
601cabdff1aSopenharmony_ci        # read the file in .proto format
602cabdff1aSopenharmony_ci        graph_def = tf.GraphDef()
603cabdff1aSopenharmony_ci        graph_def.ParseFromString(f.read())
604cabdff1aSopenharmony_ci        nodes = graph_def.node
605cabdff1aSopenharmony_ci
606cabdff1aSopenharmony_ci    converter = TFConverter(graph_def, nodes, outfile, dump4tb)
607cabdff1aSopenharmony_ci    converter.run()
608