1/* 2 * 3 * This file is part of FFmpeg. 4 * 5 * FFmpeg is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * FFmpeg is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License along 16 * with FFmpeg; if not, write to the Free Software Foundation, Inc., 17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. 18 */ 19 20#include <string.h> 21 22#include "libavutil/common.h" 23#include "libavutil/intreadwrite.h" 24#include "libavutil/mem_internal.h" 25 26#include "libswscale/swscale.h" 27#include "libswscale/swscale_internal.h" 28 29#include "checkasm.h" 30 31#define randomize_buffers(buf, size) \ 32 do { \ 33 int j; \ 34 for (j = 0; j < size; j+=4) \ 35 AV_WN32(buf + j, rnd()); \ 36 } while (0) 37 38// This reference function is the same approximate algorithm employed by the 39// SIMD functions 40static void ref_function(const int16_t *filter, int filterSize, 41 const int16_t **src, uint8_t *dest, int dstW, 42 const uint8_t *dither, int offset) 43{ 44 int i, d; 45 d = ((filterSize - 1) * 8 + dither[0]) >> 4; 46 for ( i = 0; i < dstW; i++) { 47 int16_t val = d; 48 int j; 49 union { 50 int val; 51 int16_t v[2]; 52 } t; 53 for (j = 0; j < filterSize; j++){ 54 t.val = (int)src[j][i + offset] * (int)filter[j]; 55 val += t.v[1]; 56 } 57 dest[i]= av_clip_uint8(val>>3); 58 } 59} 60 61static void check_yuv2yuvX(void) 62{ 63 struct SwsContext *ctx; 64 int fsi, osi, isi, i, j; 65 int dstW; 66#define LARGEST_FILTER 16 67#define FILTER_SIZES 4 68 static const int filter_sizes[FILTER_SIZES] = {1, 4, 8, 16}; 69#define LARGEST_INPUT_SIZE 512 70#define INPUT_SIZES 6 71 static const int input_sizes[INPUT_SIZES] = {8, 24, 128, 144, 256, 512}; 72 73 declare_func_emms(AV_CPU_FLAG_MMX, void, const int16_t *filter, 74 int filterSize, const int16_t **src, uint8_t *dest, 75 int dstW, const uint8_t *dither, int offset); 76 77 const int16_t **src; 78 LOCAL_ALIGNED_16(int16_t, src_pixels, [LARGEST_FILTER * LARGEST_INPUT_SIZE]); 79 LOCAL_ALIGNED_16(int16_t, filter_coeff, [LARGEST_FILTER]); 80 LOCAL_ALIGNED_16(uint8_t, dst0, [LARGEST_INPUT_SIZE]); 81 LOCAL_ALIGNED_16(uint8_t, dst1, [LARGEST_INPUT_SIZE]); 82 LOCAL_ALIGNED_16(uint8_t, dither, [LARGEST_INPUT_SIZE]); 83 union VFilterData{ 84 const int16_t *src; 85 uint16_t coeff[8]; 86 } *vFilterData; 87 uint8_t d_val = rnd(); 88 memset(dither, d_val, LARGEST_INPUT_SIZE); 89 randomize_buffers((uint8_t*)src_pixels, LARGEST_FILTER * LARGEST_INPUT_SIZE * sizeof(int16_t)); 90 randomize_buffers((uint8_t*)filter_coeff, LARGEST_FILTER * sizeof(int16_t)); 91 ctx = sws_alloc_context(); 92 if (sws_init_context(ctx, NULL, NULL) < 0) 93 fail(); 94 95 ff_sws_init_scale(ctx); 96 for(isi = 0; isi < INPUT_SIZES; ++isi){ 97 dstW = input_sizes[isi]; 98 for(osi = 0; osi < 64; osi += 16){ 99 for(fsi = 0; fsi < FILTER_SIZES; ++fsi){ 100 src = av_malloc(sizeof(int16_t*) * filter_sizes[fsi]); 101 vFilterData = av_malloc((filter_sizes[fsi] + 2) * sizeof(union VFilterData)); 102 memset(vFilterData, 0, (filter_sizes[fsi] + 2) * sizeof(union VFilterData)); 103 for(i = 0; i < filter_sizes[fsi]; ++i){ 104 src[i] = &src_pixels[i * LARGEST_INPUT_SIZE]; 105 vFilterData[i].src = src[i]; 106 for(j = 0; j < 4; ++j) 107 vFilterData[i].coeff[j + 4] = filter_coeff[i]; 108 } 109 if (check_func(ctx->yuv2planeX, "yuv2yuvX_%d_%d_%d", filter_sizes[fsi], osi, dstW)){ 110 memset(dst0, 0, LARGEST_INPUT_SIZE * sizeof(dst0[0])); 111 memset(dst1, 0, LARGEST_INPUT_SIZE * sizeof(dst1[0])); 112 113 // The reference function is not the scalar function selected when mmx 114 // is deactivated as the SIMD functions do not give the same result as 115 // the scalar ones due to rounding. The SIMD functions are activated by 116 // the flag SWS_ACCURATE_RND 117 ref_function(&filter_coeff[0], filter_sizes[fsi], src, dst0, dstW - osi, dither, osi); 118 // There's no point in calling new for the reference function 119 if(ctx->use_mmx_vfilter){ 120 call_new((const int16_t*)vFilterData, filter_sizes[fsi], src, dst1, dstW - osi, dither, osi); 121 if (memcmp(dst0, dst1, LARGEST_INPUT_SIZE * sizeof(dst0[0]))) 122 fail(); 123 if(dstW == LARGEST_INPUT_SIZE) 124 bench_new((const int16_t*)vFilterData, filter_sizes[fsi], src, dst1, dstW - osi, dither, osi); 125 } 126 } 127 av_freep(&src); 128 av_freep(&vFilterData); 129 } 130 } 131 } 132 sws_freeContext(ctx); 133#undef FILTER_SIZES 134} 135 136#undef SRC_PIXELS 137#define SRC_PIXELS 512 138 139static void check_hscale(void) 140{ 141#define MAX_FILTER_WIDTH 40 142#define FILTER_SIZES 6 143 static const int filter_sizes[FILTER_SIZES] = { 4, 8, 12, 16, 32, 40 }; 144 145#define HSCALE_PAIRS 2 146 static const int hscale_pairs[HSCALE_PAIRS][2] = { 147 { 8, 14 }, 148 { 8, 18 }, 149 }; 150 151#define LARGEST_INPUT_SIZE 512 152#define INPUT_SIZES 6 153 static const int input_sizes[INPUT_SIZES] = {8, 24, 128, 144, 256, 512}; 154 155 int i, j, fsi, hpi, width, dstWi; 156 struct SwsContext *ctx; 157 158 // padded 159 LOCAL_ALIGNED_32(uint8_t, src, [FFALIGN(SRC_PIXELS + MAX_FILTER_WIDTH - 1, 4)]); 160 LOCAL_ALIGNED_32(uint32_t, dst0, [SRC_PIXELS]); 161 LOCAL_ALIGNED_32(uint32_t, dst1, [SRC_PIXELS]); 162 163 // padded 164 LOCAL_ALIGNED_32(int16_t, filter, [SRC_PIXELS * MAX_FILTER_WIDTH + MAX_FILTER_WIDTH]); 165 LOCAL_ALIGNED_32(int32_t, filterPos, [SRC_PIXELS]); 166 LOCAL_ALIGNED_32(int16_t, filterAvx2, [SRC_PIXELS * MAX_FILTER_WIDTH + MAX_FILTER_WIDTH]); 167 LOCAL_ALIGNED_32(int32_t, filterPosAvx, [SRC_PIXELS]); 168 169 // The dst parameter here is either int16_t or int32_t but we use void* to 170 // just cover both cases. 171 declare_func_emms(AV_CPU_FLAG_MMX, void, void *c, void *dst, int dstW, 172 const uint8_t *src, const int16_t *filter, 173 const int32_t *filterPos, int filterSize); 174 175 int cpu_flags = av_get_cpu_flags(); 176 177 ctx = sws_alloc_context(); 178 if (sws_init_context(ctx, NULL, NULL) < 0) 179 fail(); 180 181 randomize_buffers(src, SRC_PIXELS + MAX_FILTER_WIDTH - 1); 182 183 for (hpi = 0; hpi < HSCALE_PAIRS; hpi++) { 184 for (fsi = 0; fsi < FILTER_SIZES; fsi++) { 185 for (dstWi = 0; dstWi < INPUT_SIZES; dstWi++) { 186 width = filter_sizes[fsi]; 187 188 ctx->srcBpc = hscale_pairs[hpi][0]; 189 ctx->dstBpc = hscale_pairs[hpi][1]; 190 ctx->hLumFilterSize = ctx->hChrFilterSize = width; 191 192 for (i = 0; i < SRC_PIXELS; i++) { 193 filterPos[i] = i; 194 filterPosAvx[i] = i; 195 196 // These filter cofficients are chosen to try break two corner 197 // cases, namely: 198 // 199 // - Negative filter coefficients. The filters output signed 200 // values, and it should be possible to end up with negative 201 // output values. 202 // 203 // - Positive clipping. The hscale filter function has clipping 204 // at (1<<15) - 1 205 // 206 // The coefficients sum to the 1.0 point for the hscale 207 // functions (1 << 14). 208 209 for (j = 0; j < width; j++) { 210 filter[i * width + j] = -((1 << 14) / (width - 1)); 211 } 212 filter[i * width + (rnd() % width)] = ((1 << 15) - 1); 213 } 214 215 for (i = 0; i < MAX_FILTER_WIDTH; i++) { 216 // These values should be unused in SIMD implementations but 217 // may still be read, random coefficients here should help show 218 // issues where they are used in error. 219 220 filter[SRC_PIXELS * width + i] = rnd(); 221 } 222 ctx->dstW = ctx->chrDstW = input_sizes[dstWi]; 223 ff_sws_init_scale(ctx); 224 memcpy(filterAvx2, filter, sizeof(uint16_t) * (SRC_PIXELS * MAX_FILTER_WIDTH + MAX_FILTER_WIDTH)); 225 if ((cpu_flags & AV_CPU_FLAG_AVX2) && !(cpu_flags & AV_CPU_FLAG_SLOW_GATHER)) 226 ff_shuffle_filter_coefficients(ctx, filterPosAvx, width, filterAvx2, SRC_PIXELS); 227 228 if (check_func(ctx->hcScale, "hscale_%d_to_%d__fs_%d_dstW_%d", ctx->srcBpc, ctx->dstBpc + 1, width, ctx->dstW)) { 229 memset(dst0, 0, SRC_PIXELS * sizeof(dst0[0])); 230 memset(dst1, 0, SRC_PIXELS * sizeof(dst1[0])); 231 232 call_ref(NULL, dst0, ctx->dstW, src, filter, filterPos, width); 233 call_new(NULL, dst1, ctx->dstW, src, filterAvx2, filterPosAvx, width); 234 if (memcmp(dst0, dst1, ctx->dstW * sizeof(dst0[0]))) 235 fail(); 236 bench_new(NULL, dst0, ctx->dstW, src, filter, filterPosAvx, width); 237 } 238 } 239 } 240 } 241 sws_freeContext(ctx); 242} 243 244void checkasm_check_sw_scale(void) 245{ 246 check_hscale(); 247 report("hscale"); 248 check_yuv2yuvX(); 249 report("yuv2yuvX"); 250} 251