1/* 2 * Copyright (c) Lynne 3 * 4 * Power of two FFT: 5 * Copyright (c) Lynne 6 * Copyright (c) 2008 Loren Merritt 7 * Copyright (c) 2002 Fabrice Bellard 8 * Partly based on libdjbfft by D. J. Bernstein 9 * 10 * This file is part of FFmpeg. 11 * 12 * FFmpeg is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU Lesser General Public 14 * License as published by the Free Software Foundation; either 15 * version 2.1 of the License, or (at your option) any later version. 16 * 17 * FFmpeg is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 20 * Lesser General Public License for more details. 21 * 22 * You should have received a copy of the GNU Lesser General Public 23 * License along with FFmpeg; if not, write to the Free Software 24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 25 */ 26 27#define TABLE_DEF(name, size) \ 28 DECLARE_ALIGNED(32, TXSample, TX_TAB(ff_tx_tab_ ##name))[size] 29 30#define SR_TABLE(len) \ 31 TABLE_DEF(len, len/4 + 1) 32 33/* Power of two tables */ 34SR_TABLE(8); 35SR_TABLE(16); 36SR_TABLE(32); 37SR_TABLE(64); 38SR_TABLE(128); 39SR_TABLE(256); 40SR_TABLE(512); 41SR_TABLE(1024); 42SR_TABLE(2048); 43SR_TABLE(4096); 44SR_TABLE(8192); 45SR_TABLE(16384); 46SR_TABLE(32768); 47SR_TABLE(65536); 48SR_TABLE(131072); 49 50/* Other factors' tables */ 51TABLE_DEF(53, 8); 52TABLE_DEF( 7, 6); 53TABLE_DEF( 9, 8); 54 55typedef struct FFSRTabsInitOnce { 56 void (*func)(void); 57 AVOnce control; 58 int factors[TX_MAX_SUB]; /* Must be sorted high -> low */ 59} FFSRTabsInitOnce; 60 61#define INIT_FF_SR_TAB(len) \ 62static av_cold void TX_TAB(ff_tx_init_tab_ ##len)(void) \ 63{ \ 64 double freq = 2*M_PI/len; \ 65 TXSample *tab = TX_TAB(ff_tx_tab_ ##len); \ 66 \ 67 for (int i = 0; i < len/4; i++) \ 68 *tab++ = RESCALE(cos(i*freq)); \ 69 \ 70 *tab = 0; \ 71} 72 73INIT_FF_SR_TAB(8) 74INIT_FF_SR_TAB(16) 75INIT_FF_SR_TAB(32) 76INIT_FF_SR_TAB(64) 77INIT_FF_SR_TAB(128) 78INIT_FF_SR_TAB(256) 79INIT_FF_SR_TAB(512) 80INIT_FF_SR_TAB(1024) 81INIT_FF_SR_TAB(2048) 82INIT_FF_SR_TAB(4096) 83INIT_FF_SR_TAB(8192) 84INIT_FF_SR_TAB(16384) 85INIT_FF_SR_TAB(32768) 86INIT_FF_SR_TAB(65536) 87INIT_FF_SR_TAB(131072) 88 89static FFSRTabsInitOnce sr_tabs_init_once[] = { 90 { TX_TAB(ff_tx_init_tab_8), AV_ONCE_INIT }, 91 { TX_TAB(ff_tx_init_tab_16), AV_ONCE_INIT }, 92 { TX_TAB(ff_tx_init_tab_32), AV_ONCE_INIT }, 93 { TX_TAB(ff_tx_init_tab_64), AV_ONCE_INIT }, 94 { TX_TAB(ff_tx_init_tab_128), AV_ONCE_INIT }, 95 { TX_TAB(ff_tx_init_tab_256), AV_ONCE_INIT }, 96 { TX_TAB(ff_tx_init_tab_512), AV_ONCE_INIT }, 97 { TX_TAB(ff_tx_init_tab_1024), AV_ONCE_INIT }, 98 { TX_TAB(ff_tx_init_tab_2048), AV_ONCE_INIT }, 99 { TX_TAB(ff_tx_init_tab_4096), AV_ONCE_INIT }, 100 { TX_TAB(ff_tx_init_tab_8192), AV_ONCE_INIT }, 101 { TX_TAB(ff_tx_init_tab_16384), AV_ONCE_INIT }, 102 { TX_TAB(ff_tx_init_tab_32768), AV_ONCE_INIT }, 103 { TX_TAB(ff_tx_init_tab_65536), AV_ONCE_INIT }, 104 { TX_TAB(ff_tx_init_tab_131072), AV_ONCE_INIT }, 105}; 106 107static av_cold void TX_TAB(ff_tx_init_tab_53)(void) 108{ 109 TX_TAB(ff_tx_tab_53)[0] = RESCALE(cos(2 * M_PI / 12)); 110 TX_TAB(ff_tx_tab_53)[1] = RESCALE(cos(2 * M_PI / 12)); 111 TX_TAB(ff_tx_tab_53)[2] = RESCALE(cos(2 * M_PI / 6)); 112 TX_TAB(ff_tx_tab_53)[3] = RESCALE(cos(2 * M_PI / 6)); 113 TX_TAB(ff_tx_tab_53)[4] = RESCALE(cos(2 * M_PI / 5)); 114 TX_TAB(ff_tx_tab_53)[5] = RESCALE(sin(2 * M_PI / 5)); 115 TX_TAB(ff_tx_tab_53)[6] = RESCALE(cos(2 * M_PI / 10)); 116 TX_TAB(ff_tx_tab_53)[7] = RESCALE(sin(2 * M_PI / 10)); 117} 118 119static av_cold void TX_TAB(ff_tx_init_tab_7)(void) 120{ 121 TX_TAB(ff_tx_tab_7)[0] = RESCALE(cos(2 * M_PI / 7)); 122 TX_TAB(ff_tx_tab_7)[1] = RESCALE(sin(2 * M_PI / 7)); 123 TX_TAB(ff_tx_tab_7)[2] = RESCALE(sin(2 * M_PI / 28)); 124 TX_TAB(ff_tx_tab_7)[3] = RESCALE(cos(2 * M_PI / 28)); 125 TX_TAB(ff_tx_tab_7)[4] = RESCALE(cos(2 * M_PI / 14)); 126 TX_TAB(ff_tx_tab_7)[5] = RESCALE(sin(2 * M_PI / 14)); 127} 128 129static av_cold void TX_TAB(ff_tx_init_tab_9)(void) 130{ 131 TX_TAB(ff_tx_tab_9)[0] = RESCALE(cos(2 * M_PI / 3)); 132 TX_TAB(ff_tx_tab_9)[1] = RESCALE(sin(2 * M_PI / 3)); 133 TX_TAB(ff_tx_tab_9)[2] = RESCALE(cos(2 * M_PI / 9)); 134 TX_TAB(ff_tx_tab_9)[3] = RESCALE(sin(2 * M_PI / 9)); 135 TX_TAB(ff_tx_tab_9)[4] = RESCALE(cos(2 * M_PI / 36)); 136 TX_TAB(ff_tx_tab_9)[5] = RESCALE(sin(2 * M_PI / 36)); 137 TX_TAB(ff_tx_tab_9)[6] = TX_TAB(ff_tx_tab_9)[2] + TX_TAB(ff_tx_tab_9)[5]; 138 TX_TAB(ff_tx_tab_9)[7] = TX_TAB(ff_tx_tab_9)[3] - TX_TAB(ff_tx_tab_9)[4]; 139} 140 141static FFSRTabsInitOnce nptwo_tabs_init_once[] = { 142 { TX_TAB(ff_tx_init_tab_53), AV_ONCE_INIT, { 15, 5, 3 } }, 143 { TX_TAB(ff_tx_init_tab_9), AV_ONCE_INIT, { 9 } }, 144 { TX_TAB(ff_tx_init_tab_7), AV_ONCE_INIT, { 7 } }, 145}; 146 147av_cold void TX_TAB(ff_tx_init_tabs)(int len) 148{ 149 int factor_2 = ff_ctz(len); 150 if (factor_2) { 151 int idx = factor_2 - 3; 152 for (int i = 0; i <= idx; i++) 153 ff_thread_once(&sr_tabs_init_once[i].control, 154 sr_tabs_init_once[i].func); 155 len >>= factor_2; 156 } 157 158 for (int i = 0; i < FF_ARRAY_ELEMS(nptwo_tabs_init_once); i++) { 159 int f, f_idx = 0; 160 161 if (len <= 1) 162 return; 163 164 while ((f = nptwo_tabs_init_once[i].factors[f_idx++])) { 165 if (f % len) 166 continue; 167 168 ff_thread_once(&nptwo_tabs_init_once[i].control, 169 nptwo_tabs_init_once[i].func); 170 len /= f; 171 break; 172 } 173 } 174} 175 176static av_always_inline void fft3(TXComplex *out, TXComplex *in, 177 ptrdiff_t stride) 178{ 179 TXComplex tmp[2]; 180 const TXSample *tab = TX_TAB(ff_tx_tab_53); 181#ifdef TX_INT32 182 int64_t mtmp[4]; 183#endif 184 185 BF(tmp[0].re, tmp[1].im, in[1].im, in[2].im); 186 BF(tmp[0].im, tmp[1].re, in[1].re, in[2].re); 187 188 out[0*stride].re = in[0].re + tmp[1].re; 189 out[0*stride].im = in[0].im + tmp[1].im; 190 191#ifdef TX_INT32 192 mtmp[0] = (int64_t)tab[0] * tmp[0].re; 193 mtmp[1] = (int64_t)tab[1] * tmp[0].im; 194 mtmp[2] = (int64_t)tab[2] * tmp[1].re; 195 mtmp[3] = (int64_t)tab[2] * tmp[1].im; 196 out[1*stride].re = in[0].re - (mtmp[2] + mtmp[0] + 0x40000000 >> 31); 197 out[1*stride].im = in[0].im - (mtmp[3] - mtmp[1] + 0x40000000 >> 31); 198 out[2*stride].re = in[0].re - (mtmp[2] - mtmp[0] + 0x40000000 >> 31); 199 out[2*stride].im = in[0].im - (mtmp[3] + mtmp[1] + 0x40000000 >> 31); 200#else 201 tmp[0].re = tab[0] * tmp[0].re; 202 tmp[0].im = tab[1] * tmp[0].im; 203 tmp[1].re = tab[2] * tmp[1].re; 204 tmp[1].im = tab[2] * tmp[1].im; 205 out[1*stride].re = in[0].re - tmp[1].re + tmp[0].re; 206 out[1*stride].im = in[0].im - tmp[1].im - tmp[0].im; 207 out[2*stride].re = in[0].re - tmp[1].re - tmp[0].re; 208 out[2*stride].im = in[0].im - tmp[1].im + tmp[0].im; 209#endif 210} 211 212#define DECL_FFT5(NAME, D0, D1, D2, D3, D4) \ 213static av_always_inline void NAME(TXComplex *out, TXComplex *in, \ 214 ptrdiff_t stride) \ 215{ \ 216 TXComplex z0[4], t[6]; \ 217 const TXSample *tab = TX_TAB(ff_tx_tab_53); \ 218 \ 219 BF(t[1].im, t[0].re, in[1].re, in[4].re); \ 220 BF(t[1].re, t[0].im, in[1].im, in[4].im); \ 221 BF(t[3].im, t[2].re, in[2].re, in[3].re); \ 222 BF(t[3].re, t[2].im, in[2].im, in[3].im); \ 223 \ 224 out[D0*stride].re = in[0].re + t[0].re + t[2].re; \ 225 out[D0*stride].im = in[0].im + t[0].im + t[2].im; \ 226 \ 227 SMUL(t[4].re, t[0].re, tab[4], tab[6], t[2].re, t[0].re); \ 228 SMUL(t[4].im, t[0].im, tab[4], tab[6], t[2].im, t[0].im); \ 229 CMUL(t[5].re, t[1].re, tab[5], tab[7], t[3].re, t[1].re); \ 230 CMUL(t[5].im, t[1].im, tab[5], tab[7], t[3].im, t[1].im); \ 231 \ 232 BF(z0[0].re, z0[3].re, t[0].re, t[1].re); \ 233 BF(z0[0].im, z0[3].im, t[0].im, t[1].im); \ 234 BF(z0[2].re, z0[1].re, t[4].re, t[5].re); \ 235 BF(z0[2].im, z0[1].im, t[4].im, t[5].im); \ 236 \ 237 out[D1*stride].re = in[0].re + z0[3].re; \ 238 out[D1*stride].im = in[0].im + z0[0].im; \ 239 out[D2*stride].re = in[0].re + z0[2].re; \ 240 out[D2*stride].im = in[0].im + z0[1].im; \ 241 out[D3*stride].re = in[0].re + z0[1].re; \ 242 out[D3*stride].im = in[0].im + z0[2].im; \ 243 out[D4*stride].re = in[0].re + z0[0].re; \ 244 out[D4*stride].im = in[0].im + z0[3].im; \ 245} 246 247DECL_FFT5(fft5, 0, 1, 2, 3, 4) 248DECL_FFT5(fft5_m1, 0, 6, 12, 3, 9) 249DECL_FFT5(fft5_m2, 10, 1, 7, 13, 4) 250DECL_FFT5(fft5_m3, 5, 11, 2, 8, 14) 251 252static av_always_inline void fft7(TXComplex *out, TXComplex *in, 253 ptrdiff_t stride) 254{ 255 TXComplex t[6], z[3]; 256 const TXComplex *tab = (const TXComplex *)TX_TAB(ff_tx_tab_7); 257#ifdef TX_INT32 258 int64_t mtmp[12]; 259#endif 260 261 BF(t[1].re, t[0].re, in[1].re, in[6].re); 262 BF(t[1].im, t[0].im, in[1].im, in[6].im); 263 BF(t[3].re, t[2].re, in[2].re, in[5].re); 264 BF(t[3].im, t[2].im, in[2].im, in[5].im); 265 BF(t[5].re, t[4].re, in[3].re, in[4].re); 266 BF(t[5].im, t[4].im, in[3].im, in[4].im); 267 268 out[0*stride].re = in[0].re + t[0].re + t[2].re + t[4].re; 269 out[0*stride].im = in[0].im + t[0].im + t[2].im + t[4].im; 270 271#ifdef TX_INT32 /* NOTE: it's possible to do this with 16 mults but 72 adds */ 272 mtmp[ 0] = ((int64_t)tab[0].re)*t[0].re - ((int64_t)tab[2].re)*t[4].re; 273 mtmp[ 1] = ((int64_t)tab[0].re)*t[4].re - ((int64_t)tab[1].re)*t[0].re; 274 mtmp[ 2] = ((int64_t)tab[0].re)*t[2].re - ((int64_t)tab[2].re)*t[0].re; 275 mtmp[ 3] = ((int64_t)tab[0].re)*t[0].im - ((int64_t)tab[1].re)*t[2].im; 276 mtmp[ 4] = ((int64_t)tab[0].re)*t[4].im - ((int64_t)tab[1].re)*t[0].im; 277 mtmp[ 5] = ((int64_t)tab[0].re)*t[2].im - ((int64_t)tab[2].re)*t[0].im; 278 279 mtmp[ 6] = ((int64_t)tab[2].im)*t[1].im + ((int64_t)tab[1].im)*t[5].im; 280 mtmp[ 7] = ((int64_t)tab[0].im)*t[5].im + ((int64_t)tab[2].im)*t[3].im; 281 mtmp[ 8] = ((int64_t)tab[2].im)*t[5].im + ((int64_t)tab[1].im)*t[3].im; 282 mtmp[ 9] = ((int64_t)tab[0].im)*t[1].re + ((int64_t)tab[1].im)*t[3].re; 283 mtmp[10] = ((int64_t)tab[2].im)*t[3].re + ((int64_t)tab[0].im)*t[5].re; 284 mtmp[11] = ((int64_t)tab[2].im)*t[1].re + ((int64_t)tab[1].im)*t[5].re; 285 286 z[0].re = (int32_t)(mtmp[ 0] - ((int64_t)tab[1].re)*t[2].re + 0x40000000 >> 31); 287 z[1].re = (int32_t)(mtmp[ 1] - ((int64_t)tab[2].re)*t[2].re + 0x40000000 >> 31); 288 z[2].re = (int32_t)(mtmp[ 2] - ((int64_t)tab[1].re)*t[4].re + 0x40000000 >> 31); 289 z[0].im = (int32_t)(mtmp[ 3] - ((int64_t)tab[2].re)*t[4].im + 0x40000000 >> 31); 290 z[1].im = (int32_t)(mtmp[ 4] - ((int64_t)tab[2].re)*t[2].im + 0x40000000 >> 31); 291 z[2].im = (int32_t)(mtmp[ 5] - ((int64_t)tab[1].re)*t[4].im + 0x40000000 >> 31); 292 293 t[0].re = (int32_t)(mtmp[ 6] - ((int64_t)tab[0].im)*t[3].im + 0x40000000 >> 31); 294 t[2].re = (int32_t)(mtmp[ 7] - ((int64_t)tab[1].im)*t[1].im + 0x40000000 >> 31); 295 t[4].re = (int32_t)(mtmp[ 8] + ((int64_t)tab[0].im)*t[1].im + 0x40000000 >> 31); 296 t[0].im = (int32_t)(mtmp[ 9] + ((int64_t)tab[2].im)*t[5].re + 0x40000000 >> 31); 297 t[2].im = (int32_t)(mtmp[10] - ((int64_t)tab[1].im)*t[1].re + 0x40000000 >> 31); 298 t[4].im = (int32_t)(mtmp[11] - ((int64_t)tab[0].im)*t[3].re + 0x40000000 >> 31); 299#else 300 z[0].re = tab[0].re*t[0].re - tab[2].re*t[4].re - tab[1].re*t[2].re; 301 z[1].re = tab[0].re*t[4].re - tab[1].re*t[0].re - tab[2].re*t[2].re; 302 z[2].re = tab[0].re*t[2].re - tab[2].re*t[0].re - tab[1].re*t[4].re; 303 z[0].im = tab[0].re*t[0].im - tab[1].re*t[2].im - tab[2].re*t[4].im; 304 z[1].im = tab[0].re*t[4].im - tab[1].re*t[0].im - tab[2].re*t[2].im; 305 z[2].im = tab[0].re*t[2].im - tab[2].re*t[0].im - tab[1].re*t[4].im; 306 307 /* It's possible to do t[4].re and t[0].im with 2 multiplies only by 308 * multiplying the sum of all with the average of the twiddles */ 309 310 t[0].re = tab[2].im*t[1].im + tab[1].im*t[5].im - tab[0].im*t[3].im; 311 t[2].re = tab[0].im*t[5].im + tab[2].im*t[3].im - tab[1].im*t[1].im; 312 t[4].re = tab[2].im*t[5].im + tab[1].im*t[3].im + tab[0].im*t[1].im; 313 t[0].im = tab[0].im*t[1].re + tab[1].im*t[3].re + tab[2].im*t[5].re; 314 t[2].im = tab[2].im*t[3].re + tab[0].im*t[5].re - tab[1].im*t[1].re; 315 t[4].im = tab[2].im*t[1].re + tab[1].im*t[5].re - tab[0].im*t[3].re; 316#endif 317 318 BF(t[1].re, z[0].re, z[0].re, t[4].re); 319 BF(t[3].re, z[1].re, z[1].re, t[2].re); 320 BF(t[5].re, z[2].re, z[2].re, t[0].re); 321 BF(t[1].im, z[0].im, z[0].im, t[0].im); 322 BF(t[3].im, z[1].im, z[1].im, t[2].im); 323 BF(t[5].im, z[2].im, z[2].im, t[4].im); 324 325 out[1*stride].re = in[0].re + z[0].re; 326 out[1*stride].im = in[0].im + t[1].im; 327 out[2*stride].re = in[0].re + t[3].re; 328 out[2*stride].im = in[0].im + z[1].im; 329 out[3*stride].re = in[0].re + z[2].re; 330 out[3*stride].im = in[0].im + t[5].im; 331 out[4*stride].re = in[0].re + t[5].re; 332 out[4*stride].im = in[0].im + z[2].im; 333 out[5*stride].re = in[0].re + z[1].re; 334 out[5*stride].im = in[0].im + t[3].im; 335 out[6*stride].re = in[0].re + t[1].re; 336 out[6*stride].im = in[0].im + z[0].im; 337} 338 339static av_always_inline void fft9(TXComplex *out, TXComplex *in, 340 ptrdiff_t stride) 341{ 342 const TXComplex *tab = (const TXComplex *)TX_TAB(ff_tx_tab_9); 343 TXComplex t[16], w[4], x[5], y[5], z[2]; 344#ifdef TX_INT32 345 int64_t mtmp[12]; 346#endif 347 348 BF(t[1].re, t[0].re, in[1].re, in[8].re); 349 BF(t[1].im, t[0].im, in[1].im, in[8].im); 350 BF(t[3].re, t[2].re, in[2].re, in[7].re); 351 BF(t[3].im, t[2].im, in[2].im, in[7].im); 352 BF(t[5].re, t[4].re, in[3].re, in[6].re); 353 BF(t[5].im, t[4].im, in[3].im, in[6].im); 354 BF(t[7].re, t[6].re, in[4].re, in[5].re); 355 BF(t[7].im, t[6].im, in[4].im, in[5].im); 356 357 w[0].re = t[0].re - t[6].re; 358 w[0].im = t[0].im - t[6].im; 359 w[1].re = t[2].re - t[6].re; 360 w[1].im = t[2].im - t[6].im; 361 w[2].re = t[1].re - t[7].re; 362 w[2].im = t[1].im - t[7].im; 363 w[3].re = t[3].re + t[7].re; 364 w[3].im = t[3].im + t[7].im; 365 366 z[0].re = in[0].re + t[4].re; 367 z[0].im = in[0].im + t[4].im; 368 369 z[1].re = t[0].re + t[2].re + t[6].re; 370 z[1].im = t[0].im + t[2].im + t[6].im; 371 372 out[0*stride].re = z[0].re + z[1].re; 373 out[0*stride].im = z[0].im + z[1].im; 374 375#ifdef TX_INT32 376 mtmp[0] = t[1].re - t[3].re + t[7].re; 377 mtmp[1] = t[1].im - t[3].im + t[7].im; 378 379 y[3].re = (int32_t)(((int64_t)tab[0].im)*mtmp[0] + 0x40000000 >> 31); 380 y[3].im = (int32_t)(((int64_t)tab[0].im)*mtmp[1] + 0x40000000 >> 31); 381 382 mtmp[0] = (int32_t)(((int64_t)tab[0].re)*z[1].re + 0x40000000 >> 31); 383 mtmp[1] = (int32_t)(((int64_t)tab[0].re)*z[1].im + 0x40000000 >> 31); 384 mtmp[2] = (int32_t)(((int64_t)tab[0].re)*t[4].re + 0x40000000 >> 31); 385 mtmp[3] = (int32_t)(((int64_t)tab[0].re)*t[4].im + 0x40000000 >> 31); 386 387 x[3].re = z[0].re + (int32_t)mtmp[0]; 388 x[3].im = z[0].im + (int32_t)mtmp[1]; 389 z[0].re = in[0].re + (int32_t)mtmp[2]; 390 z[0].im = in[0].im + (int32_t)mtmp[3]; 391 392 mtmp[0] = ((int64_t)tab[1].re)*w[0].re; 393 mtmp[1] = ((int64_t)tab[1].re)*w[0].im; 394 mtmp[2] = ((int64_t)tab[2].im)*w[0].re; 395 mtmp[3] = ((int64_t)tab[2].im)*w[0].im; 396 mtmp[4] = ((int64_t)tab[1].im)*w[2].re; 397 mtmp[5] = ((int64_t)tab[1].im)*w[2].im; 398 mtmp[6] = ((int64_t)tab[2].re)*w[2].re; 399 mtmp[7] = ((int64_t)tab[2].re)*w[2].im; 400 401 x[1].re = (int32_t)(mtmp[0] + ((int64_t)tab[2].im)*w[1].re + 0x40000000 >> 31); 402 x[1].im = (int32_t)(mtmp[1] + ((int64_t)tab[2].im)*w[1].im + 0x40000000 >> 31); 403 x[2].re = (int32_t)(mtmp[2] - ((int64_t)tab[3].re)*w[1].re + 0x40000000 >> 31); 404 x[2].im = (int32_t)(mtmp[3] - ((int64_t)tab[3].re)*w[1].im + 0x40000000 >> 31); 405 y[1].re = (int32_t)(mtmp[4] + ((int64_t)tab[2].re)*w[3].re + 0x40000000 >> 31); 406 y[1].im = (int32_t)(mtmp[5] + ((int64_t)tab[2].re)*w[3].im + 0x40000000 >> 31); 407 y[2].re = (int32_t)(mtmp[6] - ((int64_t)tab[3].im)*w[3].re + 0x40000000 >> 31); 408 y[2].im = (int32_t)(mtmp[7] - ((int64_t)tab[3].im)*w[3].im + 0x40000000 >> 31); 409 410 y[0].re = (int32_t)(((int64_t)tab[0].im)*t[5].re + 0x40000000 >> 31); 411 y[0].im = (int32_t)(((int64_t)tab[0].im)*t[5].im + 0x40000000 >> 31); 412 413#else 414 y[3].re = tab[0].im*(t[1].re - t[3].re + t[7].re); 415 y[3].im = tab[0].im*(t[1].im - t[3].im + t[7].im); 416 417 x[3].re = z[0].re + tab[0].re*z[1].re; 418 x[3].im = z[0].im + tab[0].re*z[1].im; 419 z[0].re = in[0].re + tab[0].re*t[4].re; 420 z[0].im = in[0].im + tab[0].re*t[4].im; 421 422 x[1].re = tab[1].re*w[0].re + tab[2].im*w[1].re; 423 x[1].im = tab[1].re*w[0].im + tab[2].im*w[1].im; 424 x[2].re = tab[2].im*w[0].re - tab[3].re*w[1].re; 425 x[2].im = tab[2].im*w[0].im - tab[3].re*w[1].im; 426 y[1].re = tab[1].im*w[2].re + tab[2].re*w[3].re; 427 y[1].im = tab[1].im*w[2].im + tab[2].re*w[3].im; 428 y[2].re = tab[2].re*w[2].re - tab[3].im*w[3].re; 429 y[2].im = tab[2].re*w[2].im - tab[3].im*w[3].im; 430 431 y[0].re = tab[0].im*t[5].re; 432 y[0].im = tab[0].im*t[5].im; 433#endif 434 435 x[4].re = x[1].re + x[2].re; 436 x[4].im = x[1].im + x[2].im; 437 438 y[4].re = y[1].re - y[2].re; 439 y[4].im = y[1].im - y[2].im; 440 x[1].re = z[0].re + x[1].re; 441 x[1].im = z[0].im + x[1].im; 442 y[1].re = y[0].re + y[1].re; 443 y[1].im = y[0].im + y[1].im; 444 x[2].re = z[0].re + x[2].re; 445 x[2].im = z[0].im + x[2].im; 446 y[2].re = y[2].re - y[0].re; 447 y[2].im = y[2].im - y[0].im; 448 x[4].re = z[0].re - x[4].re; 449 x[4].im = z[0].im - x[4].im; 450 y[4].re = y[0].re - y[4].re; 451 y[4].im = y[0].im - y[4].im; 452 453 out[1*stride] = (TXComplex){ x[1].re + y[1].im, x[1].im - y[1].re }; 454 out[2*stride] = (TXComplex){ x[2].re + y[2].im, x[2].im - y[2].re }; 455 out[3*stride] = (TXComplex){ x[3].re + y[3].im, x[3].im - y[3].re }; 456 out[4*stride] = (TXComplex){ x[4].re + y[4].im, x[4].im - y[4].re }; 457 out[5*stride] = (TXComplex){ x[4].re - y[4].im, x[4].im + y[4].re }; 458 out[6*stride] = (TXComplex){ x[3].re - y[3].im, x[3].im + y[3].re }; 459 out[7*stride] = (TXComplex){ x[2].re - y[2].im, x[2].im + y[2].re }; 460 out[8*stride] = (TXComplex){ x[1].re - y[1].im, x[1].im + y[1].re }; 461} 462 463static av_always_inline void fft15(TXComplex *out, TXComplex *in, 464 ptrdiff_t stride) 465{ 466 TXComplex tmp[15]; 467 468 for (int i = 0; i < 5; i++) 469 fft3(tmp + i, in + i*3, 5); 470 471 fft5_m1(out, tmp + 0, stride); 472 fft5_m2(out, tmp + 5, stride); 473 fft5_m3(out, tmp + 10, stride); 474} 475 476#define BUTTERFLIES(a0, a1, a2, a3) \ 477 do { \ 478 r0=a0.re; \ 479 i0=a0.im; \ 480 r1=a1.re; \ 481 i1=a1.im; \ 482 BF(t3, t5, t5, t1); \ 483 BF(a2.re, a0.re, r0, t5); \ 484 BF(a3.im, a1.im, i1, t3); \ 485 BF(t4, t6, t2, t6); \ 486 BF(a3.re, a1.re, r1, t4); \ 487 BF(a2.im, a0.im, i0, t6); \ 488 } while (0) 489 490#define TRANSFORM(a0, a1, a2, a3, wre, wim) \ 491 do { \ 492 CMUL(t1, t2, a2.re, a2.im, wre, -wim); \ 493 CMUL(t5, t6, a3.re, a3.im, wre, wim); \ 494 BUTTERFLIES(a0, a1, a2, a3); \ 495 } while (0) 496 497/* z[0...8n-1], w[1...2n-1] */ 498static inline void TX_NAME(ff_tx_fft_sr_combine)(TXComplex *z, 499 const TXSample *cos, int len) 500{ 501 int o1 = 2*len; 502 int o2 = 4*len; 503 int o3 = 6*len; 504 const TXSample *wim = cos + o1 - 7; 505 TXUSample t1, t2, t3, t4, t5, t6, r0, i0, r1, i1; 506 507 for (int i = 0; i < len; i += 4) { 508 TRANSFORM(z[0], z[o1 + 0], z[o2 + 0], z[o3 + 0], cos[0], wim[7]); 509 TRANSFORM(z[2], z[o1 + 2], z[o2 + 2], z[o3 + 2], cos[2], wim[5]); 510 TRANSFORM(z[4], z[o1 + 4], z[o2 + 4], z[o3 + 4], cos[4], wim[3]); 511 TRANSFORM(z[6], z[o1 + 6], z[o2 + 6], z[o3 + 6], cos[6], wim[1]); 512 513 TRANSFORM(z[1], z[o1 + 1], z[o2 + 1], z[o3 + 1], cos[1], wim[6]); 514 TRANSFORM(z[3], z[o1 + 3], z[o2 + 3], z[o3 + 3], cos[3], wim[4]); 515 TRANSFORM(z[5], z[o1 + 5], z[o2 + 5], z[o3 + 5], cos[5], wim[2]); 516 TRANSFORM(z[7], z[o1 + 7], z[o2 + 7], z[o3 + 7], cos[7], wim[0]); 517 518 z += 2*4; 519 cos += 2*4; 520 wim -= 2*4; 521 } 522} 523 524static av_cold int TX_NAME(ff_tx_fft_sr_codelet_init)(AVTXContext *s, 525 const FFTXCodelet *cd, 526 uint64_t flags, 527 FFTXCodeletOptions *opts, 528 int len, int inv, 529 const void *scale) 530{ 531 TX_TAB(ff_tx_init_tabs)(len); 532 return ff_tx_gen_ptwo_revtab(s, opts ? opts->invert_lookup : 1); 533} 534 535#define DECL_SR_CODELET_DEF(n) \ 536static const FFTXCodelet TX_NAME(ff_tx_fft##n##_ns_def) = { \ 537 .name = TX_NAME_STR("fft" #n "_ns"), \ 538 .function = TX_NAME(ff_tx_fft##n##_ns), \ 539 .type = TX_TYPE(FFT), \ 540 .flags = AV_TX_INPLACE | AV_TX_UNALIGNED | \ 541 FF_TX_PRESHUFFLE, \ 542 .factors[0] = 2, \ 543 .min_len = n, \ 544 .max_len = n, \ 545 .init = TX_NAME(ff_tx_fft_sr_codelet_init), \ 546 .cpu_flags = FF_TX_CPU_FLAGS_ALL, \ 547 .prio = FF_TX_PRIO_BASE, \ 548}; 549 550#define DECL_SR_CODELET(n, n2, n4) \ 551static void TX_NAME(ff_tx_fft##n##_ns)(AVTXContext *s, void *dst, \ 552 void *src, ptrdiff_t stride) \ 553{ \ 554 TXComplex *z = dst; \ 555 const TXSample *cos = TX_TAB(ff_tx_tab_##n); \ 556 \ 557 TX_NAME(ff_tx_fft##n2##_ns)(s, z, z, stride); \ 558 TX_NAME(ff_tx_fft##n4##_ns)(s, z + n4*2, z + n4*2, stride); \ 559 TX_NAME(ff_tx_fft##n4##_ns)(s, z + n4*3, z + n4*3, stride); \ 560 TX_NAME(ff_tx_fft_sr_combine)(z, cos, n4 >> 1); \ 561} \ 562 \ 563DECL_SR_CODELET_DEF(n) 564 565static void TX_NAME(ff_tx_fft2_ns)(AVTXContext *s, void *dst, 566 void *src, ptrdiff_t stride) 567{ 568 TXComplex *z = dst; 569 TXComplex tmp; 570 571 BF(tmp.re, z[0].re, z[0].re, z[1].re); 572 BF(tmp.im, z[0].im, z[0].im, z[1].im); 573 z[1] = tmp; 574} 575 576static void TX_NAME(ff_tx_fft4_ns)(AVTXContext *s, void *dst, 577 void *src, ptrdiff_t stride) 578{ 579 TXComplex *z = dst; 580 TXSample t1, t2, t3, t4, t5, t6, t7, t8; 581 582 BF(t3, t1, z[0].re, z[1].re); 583 BF(t8, t6, z[3].re, z[2].re); 584 BF(z[2].re, z[0].re, t1, t6); 585 BF(t4, t2, z[0].im, z[1].im); 586 BF(t7, t5, z[2].im, z[3].im); 587 BF(z[3].im, z[1].im, t4, t8); 588 BF(z[3].re, z[1].re, t3, t7); 589 BF(z[2].im, z[0].im, t2, t5); 590} 591 592static void TX_NAME(ff_tx_fft8_ns)(AVTXContext *s, void *dst, 593 void *src, ptrdiff_t stride) 594{ 595 TXComplex *z = dst; 596 TXSample t1, t2, t3, t4, t5, t6, r0, i0, r1, i1; 597 const TXSample cos = TX_TAB(ff_tx_tab_8)[1]; 598 599 TX_NAME(ff_tx_fft4_ns)(s, z, z, stride); 600 601 BF(t1, z[5].re, z[4].re, -z[5].re); 602 BF(t2, z[5].im, z[4].im, -z[5].im); 603 BF(t5, z[7].re, z[6].re, -z[7].re); 604 BF(t6, z[7].im, z[6].im, -z[7].im); 605 606 BUTTERFLIES(z[0], z[2], z[4], z[6]); 607 TRANSFORM(z[1], z[3], z[5], z[7], cos, cos); 608} 609 610static void TX_NAME(ff_tx_fft16_ns)(AVTXContext *s, void *dst, 611 void *src, ptrdiff_t stride) 612{ 613 TXComplex *z = dst; 614 const TXSample *cos = TX_TAB(ff_tx_tab_16); 615 616 TXSample t1, t2, t3, t4, t5, t6, r0, i0, r1, i1; 617 TXSample cos_16_1 = cos[1]; 618 TXSample cos_16_2 = cos[2]; 619 TXSample cos_16_3 = cos[3]; 620 621 TX_NAME(ff_tx_fft8_ns)(s, z + 0, z + 0, stride); 622 TX_NAME(ff_tx_fft4_ns)(s, z + 8, z + 8, stride); 623 TX_NAME(ff_tx_fft4_ns)(s, z + 12, z + 12, stride); 624 625 t1 = z[ 8].re; 626 t2 = z[ 8].im; 627 t5 = z[12].re; 628 t6 = z[12].im; 629 BUTTERFLIES(z[0], z[4], z[8], z[12]); 630 631 TRANSFORM(z[ 2], z[ 6], z[10], z[14], cos_16_2, cos_16_2); 632 TRANSFORM(z[ 1], z[ 5], z[ 9], z[13], cos_16_1, cos_16_3); 633 TRANSFORM(z[ 3], z[ 7], z[11], z[15], cos_16_3, cos_16_1); 634} 635 636DECL_SR_CODELET_DEF(2) 637DECL_SR_CODELET_DEF(4) 638DECL_SR_CODELET_DEF(8) 639DECL_SR_CODELET_DEF(16) 640DECL_SR_CODELET(32,16,8) 641DECL_SR_CODELET(64,32,16) 642DECL_SR_CODELET(128,64,32) 643DECL_SR_CODELET(256,128,64) 644DECL_SR_CODELET(512,256,128) 645DECL_SR_CODELET(1024,512,256) 646DECL_SR_CODELET(2048,1024,512) 647DECL_SR_CODELET(4096,2048,1024) 648DECL_SR_CODELET(8192,4096,2048) 649DECL_SR_CODELET(16384,8192,4096) 650DECL_SR_CODELET(32768,16384,8192) 651DECL_SR_CODELET(65536,32768,16384) 652DECL_SR_CODELET(131072,65536,32768) 653 654static av_cold int TX_NAME(ff_tx_fft_sr_init)(AVTXContext *s, 655 const FFTXCodelet *cd, 656 uint64_t flags, 657 FFTXCodeletOptions *opts, 658 int len, int inv, 659 const void *scale) 660{ 661 int ret; 662 int is_inplace = !!(flags & AV_TX_INPLACE); 663 FFTXCodeletOptions sub_opts = { .invert_lookup = !is_inplace }; 664 665 flags &= ~FF_TX_OUT_OF_PLACE; /* We want the subtransform to be */ 666 flags |= AV_TX_INPLACE; /* in-place */ 667 flags |= FF_TX_PRESHUFFLE; /* This function handles the permute step */ 668 669 if ((ret = ff_tx_init_subtx(s, TX_TYPE(FFT), flags, &sub_opts, len, inv, scale))) 670 return ret; 671 672 if (is_inplace && (ret = ff_tx_gen_ptwo_inplace_revtab_idx(s))) 673 return ret; 674 675 return 0; 676} 677 678static void TX_NAME(ff_tx_fft_sr)(AVTXContext *s, void *_dst, 679 void *_src, ptrdiff_t stride) 680{ 681 TXComplex *src = _src; 682 TXComplex *dst = _dst; 683 int *map = s->sub[0].map; 684 int len = s->len; 685 686 /* Compilers can't vectorize this anyway without assuming AVX2, which they 687 * generally don't, at least without -march=native -mtune=native */ 688 for (int i = 0; i < len; i++) 689 dst[i] = src[map[i]]; 690 691 s->fn[0](&s->sub[0], dst, dst, stride); 692} 693 694static void TX_NAME(ff_tx_fft_sr_inplace)(AVTXContext *s, void *_dst, 695 void *_src, ptrdiff_t stride) 696{ 697 TXComplex *dst = _dst; 698 TXComplex tmp; 699 const int *map = s->sub->map; 700 const int *inplace_idx = s->map; 701 int src_idx, dst_idx; 702 703 src_idx = *inplace_idx++; 704 do { 705 tmp = dst[src_idx]; 706 dst_idx = map[src_idx]; 707 do { 708 FFSWAP(TXComplex, tmp, dst[dst_idx]); 709 dst_idx = map[dst_idx]; 710 } while (dst_idx != src_idx); /* Can be > as well, but was less predictable */ 711 dst[dst_idx] = tmp; 712 } while ((src_idx = *inplace_idx++)); 713 714 s->fn[0](&s->sub[0], dst, dst, stride); 715} 716 717static const FFTXCodelet TX_NAME(ff_tx_fft_sr_def) = { 718 .name = TX_NAME_STR("fft_sr"), 719 .function = TX_NAME(ff_tx_fft_sr), 720 .type = TX_TYPE(FFT), 721 .flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE, 722 .factors[0] = 2, 723 .min_len = 2, 724 .max_len = TX_LEN_UNLIMITED, 725 .init = TX_NAME(ff_tx_fft_sr_init), 726 .cpu_flags = FF_TX_CPU_FLAGS_ALL, 727 .prio = FF_TX_PRIO_BASE, 728}; 729 730static const FFTXCodelet TX_NAME(ff_tx_fft_sr_inplace_def) = { 731 .name = TX_NAME_STR("fft_sr_inplace"), 732 .function = TX_NAME(ff_tx_fft_sr_inplace), 733 .type = TX_TYPE(FFT), 734 .flags = AV_TX_UNALIGNED | AV_TX_INPLACE, 735 .factors[0] = 2, 736 .min_len = 2, 737 .max_len = TX_LEN_UNLIMITED, 738 .init = TX_NAME(ff_tx_fft_sr_init), 739 .cpu_flags = FF_TX_CPU_FLAGS_ALL, 740 .prio = FF_TX_PRIO_BASE, 741}; 742 743static void TX_NAME(ff_tx_fft_naive)(AVTXContext *s, void *_dst, void *_src, 744 ptrdiff_t stride) 745{ 746 TXComplex *src = _src; 747 TXComplex *dst = _dst; 748 const int n = s->len; 749 double phase = s->inv ? 2.0*M_PI/n : -2.0*M_PI/n; 750 751 for(int i = 0; i < n; i++) { 752 TXComplex tmp = { 0 }; 753 for(int j = 0; j < n; j++) { 754 const double factor = phase*i*j; 755 const TXComplex mult = { 756 RESCALE(cos(factor)), 757 RESCALE(sin(factor)), 758 }; 759 TXComplex res; 760 CMUL3(res, src[j], mult); 761 tmp.re += res.re; 762 tmp.im += res.im; 763 } 764 dst[i] = tmp; 765 } 766} 767 768static const FFTXCodelet TX_NAME(ff_tx_fft_naive_def) = { 769 .name = TX_NAME_STR("fft_naive"), 770 .function = TX_NAME(ff_tx_fft_naive), 771 .type = TX_TYPE(FFT), 772 .flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE, 773 .factors[0] = TX_FACTOR_ANY, 774 .min_len = 2, 775 .max_len = TX_LEN_UNLIMITED, 776 .init = NULL, 777 .cpu_flags = FF_TX_CPU_FLAGS_ALL, 778 .prio = FF_TX_PRIO_MIN, 779}; 780 781static av_cold int TX_NAME(ff_tx_fft_pfa_init)(AVTXContext *s, 782 const FFTXCodelet *cd, 783 uint64_t flags, 784 FFTXCodeletOptions *opts, 785 int len, int inv, 786 const void *scale) 787{ 788 int ret; 789 int sub_len = len / cd->factors[0]; 790 FFTXCodeletOptions sub_opts = { .invert_lookup = 0 }; 791 792 flags &= ~FF_TX_OUT_OF_PLACE; /* We want the subtransform to be */ 793 flags |= AV_TX_INPLACE; /* in-place */ 794 flags |= FF_TX_PRESHUFFLE; /* This function handles the permute step */ 795 796 if ((ret = ff_tx_init_subtx(s, TX_TYPE(FFT), flags, &sub_opts, 797 sub_len, inv, scale))) 798 return ret; 799 800 if ((ret = ff_tx_gen_compound_mapping(s, cd->factors[0], sub_len))) 801 return ret; 802 803 if (!(s->tmp = av_malloc(len*sizeof(*s->tmp)))) 804 return AVERROR(ENOMEM); 805 806 TX_TAB(ff_tx_init_tabs)(len / sub_len); 807 808 return 0; 809} 810 811#define DECL_COMP_FFT(N) \ 812static void TX_NAME(ff_tx_fft_pfa_##N##xM)(AVTXContext *s, void *_out, \ 813 void *_in, ptrdiff_t stride) \ 814{ \ 815 const int m = s->sub->len; \ 816 const int *in_map = s->map, *out_map = in_map + s->len; \ 817 const int *sub_map = s->sub->map; \ 818 TXComplex *in = _in; \ 819 TXComplex *out = _out; \ 820 TXComplex fft##N##in[N]; \ 821 \ 822 for (int i = 0; i < m; i++) { \ 823 for (int j = 0; j < N; j++) \ 824 fft##N##in[j] = in[in_map[i*N + j]]; \ 825 fft##N(s->tmp + sub_map[i], fft##N##in, m); \ 826 } \ 827 \ 828 for (int i = 0; i < N; i++) \ 829 s->fn[0](&s->sub[0], s->tmp + m*i, s->tmp + m*i, sizeof(TXComplex)); \ 830 \ 831 for (int i = 0; i < N*m; i++) \ 832 out[i] = s->tmp[out_map[i]]; \ 833} \ 834 \ 835static const FFTXCodelet TX_NAME(ff_tx_fft_pfa_##N##xM_def) = { \ 836 .name = TX_NAME_STR("fft_pfa_" #N "xM"), \ 837 .function = TX_NAME(ff_tx_fft_pfa_##N##xM), \ 838 .type = TX_TYPE(FFT), \ 839 .flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE, \ 840 .factors = { N, TX_FACTOR_ANY }, \ 841 .min_len = N*2, \ 842 .max_len = TX_LEN_UNLIMITED, \ 843 .init = TX_NAME(ff_tx_fft_pfa_init), \ 844 .cpu_flags = FF_TX_CPU_FLAGS_ALL, \ 845 .prio = FF_TX_PRIO_BASE, \ 846}; 847 848DECL_COMP_FFT(3) 849DECL_COMP_FFT(5) 850DECL_COMP_FFT(7) 851DECL_COMP_FFT(9) 852DECL_COMP_FFT(15) 853 854static av_cold int TX_NAME(ff_tx_mdct_naive_init)(AVTXContext *s, 855 const FFTXCodelet *cd, 856 uint64_t flags, 857 FFTXCodeletOptions *opts, 858 int len, int inv, 859 const void *scale) 860{ 861 s->scale_d = *((SCALE_TYPE *)scale); 862 s->scale_f = s->scale_d; 863 return 0; 864} 865 866static void TX_NAME(ff_tx_mdct_naive_fwd)(AVTXContext *s, void *_dst, 867 void *_src, ptrdiff_t stride) 868{ 869 TXSample *src = _src; 870 TXSample *dst = _dst; 871 double scale = s->scale_d; 872 int len = s->len; 873 const double phase = M_PI/(4.0*len); 874 875 stride /= sizeof(*dst); 876 877 for (int i = 0; i < len; i++) { 878 double sum = 0.0; 879 for (int j = 0; j < len*2; j++) { 880 int a = (2*j + 1 + len) * (2*i + 1); 881 sum += UNSCALE(src[j]) * cos(a * phase); 882 } 883 dst[i*stride] = RESCALE(sum*scale); 884 } 885} 886 887static void TX_NAME(ff_tx_mdct_naive_inv)(AVTXContext *s, void *_dst, 888 void *_src, ptrdiff_t stride) 889{ 890 TXSample *src = _src; 891 TXSample *dst = _dst; 892 double scale = s->scale_d; 893 int len = s->len >> 1; 894 int len2 = len*2; 895 const double phase = M_PI/(4.0*len2); 896 897 stride /= sizeof(*src); 898 899 for (int i = 0; i < len; i++) { 900 double sum_d = 0.0; 901 double sum_u = 0.0; 902 double i_d = phase * (4*len - 2*i - 1); 903 double i_u = phase * (3*len2 + 2*i + 1); 904 for (int j = 0; j < len2; j++) { 905 double a = (2 * j + 1); 906 double a_d = cos(a * i_d); 907 double a_u = cos(a * i_u); 908 double val = UNSCALE(src[j*stride]); 909 sum_d += a_d * val; 910 sum_u += a_u * val; 911 } 912 dst[i + 0] = RESCALE( sum_d*scale); 913 dst[i + len] = RESCALE(-sum_u*scale); 914 } 915} 916 917static const FFTXCodelet TX_NAME(ff_tx_mdct_naive_fwd_def) = { 918 .name = TX_NAME_STR("mdct_naive_fwd"), 919 .function = TX_NAME(ff_tx_mdct_naive_fwd), 920 .type = TX_TYPE(MDCT), 921 .flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE | FF_TX_FORWARD_ONLY, 922 .factors = { 2, TX_FACTOR_ANY }, /* MDCTs need an even length */ 923 .min_len = 2, 924 .max_len = TX_LEN_UNLIMITED, 925 .init = TX_NAME(ff_tx_mdct_naive_init), 926 .cpu_flags = FF_TX_CPU_FLAGS_ALL, 927 .prio = FF_TX_PRIO_MIN, 928}; 929 930static const FFTXCodelet TX_NAME(ff_tx_mdct_naive_inv_def) = { 931 .name = TX_NAME_STR("mdct_naive_inv"), 932 .function = TX_NAME(ff_tx_mdct_naive_inv), 933 .type = TX_TYPE(MDCT), 934 .flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE | FF_TX_INVERSE_ONLY, 935 .factors = { 2, TX_FACTOR_ANY }, 936 .min_len = 2, 937 .max_len = TX_LEN_UNLIMITED, 938 .init = TX_NAME(ff_tx_mdct_naive_init), 939 .cpu_flags = FF_TX_CPU_FLAGS_ALL, 940 .prio = FF_TX_PRIO_MIN, 941}; 942 943static av_cold int TX_NAME(ff_tx_mdct_sr_init)(AVTXContext *s, 944 const FFTXCodelet *cd, 945 uint64_t flags, 946 FFTXCodeletOptions *opts, 947 int len, int inv, 948 const void *scale) 949{ 950 int ret; 951 FFTXCodeletOptions sub_opts = { .invert_lookup = 0 }; 952 953 s->scale_d = *((SCALE_TYPE *)scale); 954 s->scale_f = s->scale_d; 955 956 flags &= ~FF_TX_OUT_OF_PLACE; /* We want the subtransform to be */ 957 flags |= AV_TX_INPLACE; /* in-place */ 958 flags |= FF_TX_PRESHUFFLE; /* This function handles the permute step */ 959 960 if ((ret = ff_tx_init_subtx(s, TX_TYPE(FFT), flags, &sub_opts, len >> 1, 961 inv, scale))) 962 return ret; 963 964 if ((ret = TX_TAB(ff_tx_mdct_gen_exp)(s))) 965 return ret; 966 967 return 0; 968} 969 970static void TX_NAME(ff_tx_mdct_sr_fwd)(AVTXContext *s, void *_dst, void *_src, 971 ptrdiff_t stride) 972{ 973 TXSample *src = _src, *dst = _dst; 974 TXComplex *exp = s->exp, tmp, *z = _dst; 975 const int len2 = s->len >> 1; 976 const int len4 = s->len >> 2; 977 const int len3 = len2 * 3; 978 const int *sub_map = s->sub->map; 979 980 stride /= sizeof(*dst); 981 982 for (int i = 0; i < len2; i++) { /* Folding and pre-reindexing */ 983 const int k = 2*i; 984 const int idx = sub_map[i]; 985 if (k < len2) { 986 tmp.re = FOLD(-src[ len2 + k], src[1*len2 - 1 - k]); 987 tmp.im = FOLD(-src[ len3 + k], -src[1*len3 - 1 - k]); 988 } else { 989 tmp.re = FOLD(-src[ len2 + k], -src[5*len2 - 1 - k]); 990 tmp.im = FOLD( src[-len2 + k], -src[1*len3 - 1 - k]); 991 } 992 CMUL(z[idx].im, z[idx].re, tmp.re, tmp.im, exp[i].re, exp[i].im); 993 } 994 995 s->fn[0](&s->sub[0], z, z, sizeof(TXComplex)); 996 997 for (int i = 0; i < len4; i++) { 998 const int i0 = len4 + i, i1 = len4 - i - 1; 999 TXComplex src1 = { z[i1].re, z[i1].im }; 1000 TXComplex src0 = { z[i0].re, z[i0].im }; 1001 1002 CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], src0.re, src0.im, 1003 exp[i0].im, exp[i0].re); 1004 CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], src1.re, src1.im, 1005 exp[i1].im, exp[i1].re); 1006 } 1007} 1008 1009static void TX_NAME(ff_tx_mdct_sr_inv)(AVTXContext *s, void *_dst, void *_src, 1010 ptrdiff_t stride) 1011{ 1012 TXComplex *z = _dst, *exp = s->exp; 1013 const TXSample *src = _src, *in1, *in2; 1014 const int len2 = s->len >> 1; 1015 const int len4 = s->len >> 2; 1016 const int *sub_map = s->sub->map; 1017 1018 stride /= sizeof(*src); 1019 in1 = src; 1020 in2 = src + ((len2*2) - 1) * stride; 1021 1022 for (int i = 0; i < len2; i++) { 1023 TXComplex tmp = { in2[-2*i*stride], in1[2*i*stride] }; 1024 CMUL3(z[sub_map[i]], tmp, exp[i]); 1025 } 1026 1027 s->fn[0](&s->sub[0], z, z, sizeof(TXComplex)); 1028 1029 for (int i = 0; i < len4; i++) { 1030 const int i0 = len4 + i, i1 = len4 - i - 1; 1031 TXComplex src1 = { z[i1].im, z[i1].re }; 1032 TXComplex src0 = { z[i0].im, z[i0].re }; 1033 1034 CMUL(z[i1].re, z[i0].im, src1.re, src1.im, exp[i1].im, exp[i1].re); 1035 CMUL(z[i0].re, z[i1].im, src0.re, src0.im, exp[i0].im, exp[i0].re); 1036 } 1037} 1038 1039static const FFTXCodelet TX_NAME(ff_tx_mdct_sr_fwd_def) = { 1040 .name = TX_NAME_STR("mdct_sr_fwd"), 1041 .function = TX_NAME(ff_tx_mdct_sr_fwd), 1042 .type = TX_TYPE(MDCT), 1043 .flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE | FF_TX_FORWARD_ONLY, 1044 .factors[0] = 2, 1045 .min_len = 2, 1046 .max_len = TX_LEN_UNLIMITED, 1047 .init = TX_NAME(ff_tx_mdct_sr_init), 1048 .cpu_flags = FF_TX_CPU_FLAGS_ALL, 1049 .prio = FF_TX_PRIO_BASE, 1050}; 1051 1052static const FFTXCodelet TX_NAME(ff_tx_mdct_sr_inv_def) = { 1053 .name = TX_NAME_STR("mdct_sr_inv"), 1054 .function = TX_NAME(ff_tx_mdct_sr_inv), 1055 .type = TX_TYPE(MDCT), 1056 .flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE | FF_TX_INVERSE_ONLY, 1057 .factors[0] = 2, 1058 .min_len = 2, 1059 .max_len = TX_LEN_UNLIMITED, 1060 .init = TX_NAME(ff_tx_mdct_sr_init), 1061 .cpu_flags = FF_TX_CPU_FLAGS_ALL, 1062 .prio = FF_TX_PRIO_BASE, 1063}; 1064 1065static av_cold int TX_NAME(ff_tx_mdct_inv_full_init)(AVTXContext *s, 1066 const FFTXCodelet *cd, 1067 uint64_t flags, 1068 FFTXCodeletOptions *opts, 1069 int len, int inv, 1070 const void *scale) 1071{ 1072 int ret; 1073 1074 s->scale_d = *((SCALE_TYPE *)scale); 1075 s->scale_f = s->scale_d; 1076 1077 flags &= ~AV_TX_FULL_IMDCT; 1078 1079 if ((ret = ff_tx_init_subtx(s, TX_TYPE(MDCT), flags, NULL, len, 1, scale))) 1080 return ret; 1081 1082 return 0; 1083} 1084 1085static void TX_NAME(ff_tx_mdct_inv_full)(AVTXContext *s, void *_dst, 1086 void *_src, ptrdiff_t stride) 1087{ 1088 int len = s->len << 1; 1089 int len2 = len >> 1; 1090 int len4 = len >> 2; 1091 TXSample *dst = _dst; 1092 1093 s->fn[0](&s->sub[0], dst + len4, _src, stride); 1094 1095 stride /= sizeof(*dst); 1096 1097 for (int i = 0; i < len4; i++) { 1098 dst[ i*stride] = -dst[(len2 - i - 1)*stride]; 1099 dst[(len - i - 1)*stride] = dst[(len2 + i + 0)*stride]; 1100 } 1101} 1102 1103static const FFTXCodelet TX_NAME(ff_tx_mdct_inv_full_def) = { 1104 .name = TX_NAME_STR("mdct_inv_full"), 1105 .function = TX_NAME(ff_tx_mdct_inv_full), 1106 .type = TX_TYPE(MDCT), 1107 .flags = AV_TX_UNALIGNED | AV_TX_INPLACE | 1108 FF_TX_OUT_OF_PLACE | AV_TX_FULL_IMDCT, 1109 .factors = { 2, TX_FACTOR_ANY }, 1110 .min_len = 2, 1111 .max_len = TX_LEN_UNLIMITED, 1112 .init = TX_NAME(ff_tx_mdct_inv_full_init), 1113 .cpu_flags = FF_TX_CPU_FLAGS_ALL, 1114 .prio = FF_TX_PRIO_BASE, 1115}; 1116 1117static av_cold int TX_NAME(ff_tx_mdct_pfa_init)(AVTXContext *s, 1118 const FFTXCodelet *cd, 1119 uint64_t flags, 1120 FFTXCodeletOptions *opts, 1121 int len, int inv, 1122 const void *scale) 1123{ 1124 int ret, sub_len; 1125 FFTXCodeletOptions sub_opts = { .invert_lookup = 0 }; 1126 1127 len >>= 1; 1128 sub_len = len / cd->factors[0]; 1129 1130 s->scale_d = *((SCALE_TYPE *)scale); 1131 s->scale_f = s->scale_d; 1132 1133 flags &= ~FF_TX_OUT_OF_PLACE; /* We want the subtransform to be */ 1134 flags |= AV_TX_INPLACE; /* in-place */ 1135 flags |= FF_TX_PRESHUFFLE; /* This function handles the permute step */ 1136 1137 if ((ret = ff_tx_init_subtx(s, TX_TYPE(FFT), flags, &sub_opts, 1138 sub_len, inv, scale))) 1139 return ret; 1140 1141 if ((ret = ff_tx_gen_compound_mapping(s, cd->factors[0], sub_len))) 1142 return ret; 1143 1144 if ((ret = TX_TAB(ff_tx_mdct_gen_exp)(s))) 1145 return ret; 1146 1147 if (!(s->tmp = av_malloc(len*sizeof(*s->tmp)))) 1148 return AVERROR(ENOMEM); 1149 1150 TX_TAB(ff_tx_init_tabs)(len / sub_len); 1151 1152 return 0; 1153} 1154 1155#define DECL_COMP_IMDCT(N) \ 1156static void TX_NAME(ff_tx_mdct_pfa_##N##xM_inv)(AVTXContext *s, void *_dst, \ 1157 void *_src, ptrdiff_t stride) \ 1158{ \ 1159 TXComplex fft##N##in[N]; \ 1160 TXComplex *z = _dst, *exp = s->exp; \ 1161 const TXSample *src = _src, *in1, *in2; \ 1162 const int len4 = s->len >> 2; \ 1163 const int m = s->sub->len; \ 1164 const int *in_map = s->map, *out_map = in_map + N*m; \ 1165 const int *sub_map = s->sub->map; \ 1166 \ 1167 stride /= sizeof(*src); /* To convert it from bytes */ \ 1168 in1 = src; \ 1169 in2 = src + ((N*m*2) - 1) * stride; \ 1170 \ 1171 for (int i = 0; i < m; i++) { \ 1172 for (int j = 0; j < N; j++) { \ 1173 const int k = in_map[i*N + j]; \ 1174 TXComplex tmp = { in2[-k*stride], in1[k*stride] }; \ 1175 CMUL3(fft##N##in[j], tmp, exp[k >> 1]); \ 1176 } \ 1177 fft##N(s->tmp + sub_map[i], fft##N##in, m); \ 1178 } \ 1179 \ 1180 for (int i = 0; i < N; i++) \ 1181 s->fn[0](&s->sub[0], s->tmp + m*i, s->tmp + m*i, sizeof(TXComplex)); \ 1182 \ 1183 for (int i = 0; i < len4; i++) { \ 1184 const int i0 = len4 + i, i1 = len4 - i - 1; \ 1185 const int s0 = out_map[i0], s1 = out_map[i1]; \ 1186 TXComplex src1 = { s->tmp[s1].im, s->tmp[s1].re }; \ 1187 TXComplex src0 = { s->tmp[s0].im, s->tmp[s0].re }; \ 1188 \ 1189 CMUL(z[i1].re, z[i0].im, src1.re, src1.im, exp[i1].im, exp[i1].re); \ 1190 CMUL(z[i0].re, z[i1].im, src0.re, src0.im, exp[i0].im, exp[i0].re); \ 1191 } \ 1192} \ 1193 \ 1194static const FFTXCodelet TX_NAME(ff_tx_mdct_pfa_##N##xM_inv_def) = { \ 1195 .name = TX_NAME_STR("mdct_pfa_" #N "xM_inv"), \ 1196 .function = TX_NAME(ff_tx_mdct_pfa_##N##xM_inv), \ 1197 .type = TX_TYPE(MDCT), \ 1198 .flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE | FF_TX_INVERSE_ONLY, \ 1199 .factors = { N, TX_FACTOR_ANY }, \ 1200 .min_len = N*2, \ 1201 .max_len = TX_LEN_UNLIMITED, \ 1202 .init = TX_NAME(ff_tx_mdct_pfa_init), \ 1203 .cpu_flags = FF_TX_CPU_FLAGS_ALL, \ 1204 .prio = FF_TX_PRIO_BASE, \ 1205}; 1206 1207DECL_COMP_IMDCT(3) 1208DECL_COMP_IMDCT(5) 1209DECL_COMP_IMDCT(7) 1210DECL_COMP_IMDCT(9) 1211DECL_COMP_IMDCT(15) 1212 1213#define DECL_COMP_MDCT(N) \ 1214static void TX_NAME(ff_tx_mdct_pfa_##N##xM_fwd)(AVTXContext *s, void *_dst, \ 1215 void *_src, ptrdiff_t stride) \ 1216{ \ 1217 TXComplex fft##N##in[N]; \ 1218 TXSample *src = _src, *dst = _dst; \ 1219 TXComplex *exp = s->exp, tmp; \ 1220 const int m = s->sub->len; \ 1221 const int len4 = N*m; \ 1222 const int len3 = len4 * 3; \ 1223 const int len8 = s->len >> 2; \ 1224 const int *in_map = s->map, *out_map = in_map + N*m; \ 1225 const int *sub_map = s->sub->map; \ 1226 \ 1227 stride /= sizeof(*dst); \ 1228 \ 1229 for (int i = 0; i < m; i++) { /* Folding and pre-reindexing */ \ 1230 for (int j = 0; j < N; j++) { \ 1231 const int k = in_map[i*N + j]; \ 1232 if (k < len4) { \ 1233 tmp.re = FOLD(-src[ len4 + k], src[1*len4 - 1 - k]); \ 1234 tmp.im = FOLD(-src[ len3 + k], -src[1*len3 - 1 - k]); \ 1235 } else { \ 1236 tmp.re = FOLD(-src[ len4 + k], -src[5*len4 - 1 - k]); \ 1237 tmp.im = FOLD( src[-len4 + k], -src[1*len3 - 1 - k]); \ 1238 } \ 1239 CMUL(fft##N##in[j].im, fft##N##in[j].re, tmp.re, tmp.im, \ 1240 exp[k >> 1].re, exp[k >> 1].im); \ 1241 } \ 1242 fft##N(s->tmp + sub_map[i], fft##N##in, m); \ 1243 } \ 1244 \ 1245 for (int i = 0; i < N; i++) \ 1246 s->fn[0](&s->sub[0], s->tmp + m*i, s->tmp + m*i, sizeof(TXComplex)); \ 1247 \ 1248 for (int i = 0; i < len8; i++) { \ 1249 const int i0 = len8 + i, i1 = len8 - i - 1; \ 1250 const int s0 = out_map[i0], s1 = out_map[i1]; \ 1251 TXComplex src1 = { s->tmp[s1].re, s->tmp[s1].im }; \ 1252 TXComplex src0 = { s->tmp[s0].re, s->tmp[s0].im }; \ 1253 \ 1254 CMUL(dst[2*i1*stride + stride], dst[2*i0*stride], src0.re, src0.im, \ 1255 exp[i0].im, exp[i0].re); \ 1256 CMUL(dst[2*i0*stride + stride], dst[2*i1*stride], src1.re, src1.im, \ 1257 exp[i1].im, exp[i1].re); \ 1258 } \ 1259} \ 1260 \ 1261static const FFTXCodelet TX_NAME(ff_tx_mdct_pfa_##N##xM_fwd_def) = { \ 1262 .name = TX_NAME_STR("mdct_pfa_" #N "xM_fwd"), \ 1263 .function = TX_NAME(ff_tx_mdct_pfa_##N##xM_fwd), \ 1264 .type = TX_TYPE(MDCT), \ 1265 .flags = AV_TX_UNALIGNED | FF_TX_OUT_OF_PLACE | FF_TX_FORWARD_ONLY, \ 1266 .factors = { N, TX_FACTOR_ANY }, \ 1267 .min_len = N*2, \ 1268 .max_len = TX_LEN_UNLIMITED, \ 1269 .init = TX_NAME(ff_tx_mdct_pfa_init), \ 1270 .cpu_flags = FF_TX_CPU_FLAGS_ALL, \ 1271 .prio = FF_TX_PRIO_BASE, \ 1272}; 1273 1274DECL_COMP_MDCT(3) 1275DECL_COMP_MDCT(5) 1276DECL_COMP_MDCT(7) 1277DECL_COMP_MDCT(9) 1278DECL_COMP_MDCT(15) 1279 1280static av_cold int TX_NAME(ff_tx_rdft_init)(AVTXContext *s, 1281 const FFTXCodelet *cd, 1282 uint64_t flags, 1283 FFTXCodeletOptions *opts, 1284 int len, int inv, 1285 const void *scale) 1286{ 1287 int ret; 1288 double f, m; 1289 TXSample *tab; 1290 1291 s->scale_d = *((SCALE_TYPE *)scale); 1292 s->scale_f = s->scale_d; 1293 1294 if ((ret = ff_tx_init_subtx(s, TX_TYPE(FFT), flags, NULL, len >> 1, inv, scale))) 1295 return ret; 1296 1297 if (!(s->exp = av_mallocz((8 + (len >> 2) - 1)*sizeof(*s->exp)))) 1298 return AVERROR(ENOMEM); 1299 1300 tab = (TXSample *)s->exp; 1301 1302 f = 2*M_PI/len; 1303 1304 m = (inv ? 2*s->scale_d : s->scale_d); 1305 1306 *tab++ = RESCALE((inv ? 0.5 : 1.0) * m); 1307 *tab++ = RESCALE(inv ? 0.5*m : 1.0); 1308 *tab++ = RESCALE( m); 1309 *tab++ = RESCALE(-m); 1310 1311 *tab++ = RESCALE( (0.5 - 0.0) * m); 1312 *tab++ = RESCALE( (0.0 - 0.5) * m); 1313 *tab++ = RESCALE( (0.5 - inv) * m); 1314 *tab++ = RESCALE(-(0.5 - inv) * m); 1315 1316 for (int i = 0; i < len >> 2; i++) 1317 *tab++ = RESCALE(cos(i*f)); 1318 for (int i = len >> 2; i >= 0; i--) 1319 *tab++ = RESCALE(cos(i*f) * (inv ? +1.0 : -1.0)); 1320 1321 return 0; 1322} 1323 1324#define DECL_RDFT(name, inv) \ 1325static void TX_NAME(ff_tx_rdft_ ##name)(AVTXContext *s, void *_dst, \ 1326 void *_src, ptrdiff_t stride) \ 1327{ \ 1328 const int len2 = s->len >> 1; \ 1329 const int len4 = s->len >> 2; \ 1330 const TXSample *fact = (void *)s->exp; \ 1331 const TXSample *tcos = fact + 8; \ 1332 const TXSample *tsin = tcos + len4; \ 1333 TXComplex *data = inv ? _src : _dst; \ 1334 TXComplex t[3]; \ 1335 \ 1336 if (!inv) \ 1337 s->fn[0](&s->sub[0], data, _src, sizeof(TXComplex)); \ 1338 else \ 1339 data[0].im = data[len2].re; \ 1340 \ 1341 /* The DC value's both components are real, but we need to change them \ 1342 * into complex values. Also, the middle of the array is special-cased. \ 1343 * These operations can be done before or after the loop. */ \ 1344 t[0].re = data[0].re; \ 1345 data[0].re = t[0].re + data[0].im; \ 1346 data[0].im = t[0].re - data[0].im; \ 1347 data[ 0].re = MULT(fact[0], data[ 0].re); \ 1348 data[ 0].im = MULT(fact[1], data[ 0].im); \ 1349 data[len4].re = MULT(fact[2], data[len4].re); \ 1350 data[len4].im = MULT(fact[3], data[len4].im); \ 1351 \ 1352 for (int i = 1; i < len4; i++) { \ 1353 /* Separate even and odd FFTs */ \ 1354 t[0].re = MULT(fact[4], (data[i].re + data[len2 - i].re)); \ 1355 t[0].im = MULT(fact[5], (data[i].im - data[len2 - i].im)); \ 1356 t[1].re = MULT(fact[6], (data[i].im + data[len2 - i].im)); \ 1357 t[1].im = MULT(fact[7], (data[i].re - data[len2 - i].re)); \ 1358 \ 1359 /* Apply twiddle factors to the odd FFT and add to the even FFT */ \ 1360 CMUL(t[2].re, t[2].im, t[1].re, t[1].im, tcos[i], tsin[i]); \ 1361 \ 1362 data[ i].re = t[0].re + t[2].re; \ 1363 data[ i].im = t[2].im - t[0].im; \ 1364 data[len2 - i].re = t[0].re - t[2].re; \ 1365 data[len2 - i].im = t[2].im + t[0].im; \ 1366 } \ 1367 \ 1368 if (inv) { \ 1369 s->fn[0](&s->sub[0], _dst, data, sizeof(TXComplex)); \ 1370 } else { \ 1371 /* Move [0].im to the last position, as convention requires */ \ 1372 data[len2].re = data[0].im; \ 1373 data[ 0].im = 0; \ 1374 } \ 1375} 1376 1377DECL_RDFT(r2c, 0) 1378DECL_RDFT(c2r, 1) 1379 1380static const FFTXCodelet TX_NAME(ff_tx_rdft_r2c_def) = { 1381 .name = TX_NAME_STR("rdft_r2c"), 1382 .function = TX_NAME(ff_tx_rdft_r2c), 1383 .type = TX_TYPE(RDFT), 1384 .flags = AV_TX_UNALIGNED | AV_TX_INPLACE | 1385 FF_TX_OUT_OF_PLACE | FF_TX_FORWARD_ONLY, 1386 .factors = { 2, TX_FACTOR_ANY }, 1387 .min_len = 2, 1388 .max_len = TX_LEN_UNLIMITED, 1389 .init = TX_NAME(ff_tx_rdft_init), 1390 .cpu_flags = FF_TX_CPU_FLAGS_ALL, 1391 .prio = FF_TX_PRIO_BASE, 1392}; 1393 1394static const FFTXCodelet TX_NAME(ff_tx_rdft_c2r_def) = { 1395 .name = TX_NAME_STR("rdft_c2r"), 1396 .function = TX_NAME(ff_tx_rdft_c2r), 1397 .type = TX_TYPE(RDFT), 1398 .flags = AV_TX_UNALIGNED | AV_TX_INPLACE | 1399 FF_TX_OUT_OF_PLACE | FF_TX_INVERSE_ONLY, 1400 .factors = { 2, TX_FACTOR_ANY }, 1401 .min_len = 2, 1402 .max_len = TX_LEN_UNLIMITED, 1403 .init = TX_NAME(ff_tx_rdft_init), 1404 .cpu_flags = FF_TX_CPU_FLAGS_ALL, 1405 .prio = FF_TX_PRIO_BASE, 1406}; 1407 1408int TX_TAB(ff_tx_mdct_gen_exp)(AVTXContext *s) 1409{ 1410 int len4 = s->len >> 1; 1411 double scale = s->scale_d; 1412 const double theta = (scale < 0 ? len4 : 0) + 1.0/8.0; 1413 1414 if (!(s->exp = av_malloc_array(len4, sizeof(*s->exp)))) 1415 return AVERROR(ENOMEM); 1416 1417 scale = sqrt(fabs(scale)); 1418 for (int i = 0; i < len4; i++) { 1419 const double alpha = M_PI_2 * (i + theta) / len4; 1420 s->exp[i].re = RESCALE(cos(alpha) * scale); 1421 s->exp[i].im = RESCALE(sin(alpha) * scale); 1422 } 1423 1424 return 0; 1425} 1426 1427const FFTXCodelet * const TX_NAME(ff_tx_codelet_list)[] = { 1428 /* Split-Radix codelets */ 1429 &TX_NAME(ff_tx_fft2_ns_def), 1430 &TX_NAME(ff_tx_fft4_ns_def), 1431 &TX_NAME(ff_tx_fft8_ns_def), 1432 &TX_NAME(ff_tx_fft16_ns_def), 1433 &TX_NAME(ff_tx_fft32_ns_def), 1434 &TX_NAME(ff_tx_fft64_ns_def), 1435 &TX_NAME(ff_tx_fft128_ns_def), 1436 &TX_NAME(ff_tx_fft256_ns_def), 1437 &TX_NAME(ff_tx_fft512_ns_def), 1438 &TX_NAME(ff_tx_fft1024_ns_def), 1439 &TX_NAME(ff_tx_fft2048_ns_def), 1440 &TX_NAME(ff_tx_fft4096_ns_def), 1441 &TX_NAME(ff_tx_fft8192_ns_def), 1442 &TX_NAME(ff_tx_fft16384_ns_def), 1443 &TX_NAME(ff_tx_fft32768_ns_def), 1444 &TX_NAME(ff_tx_fft65536_ns_def), 1445 &TX_NAME(ff_tx_fft131072_ns_def), 1446 1447 /* Standalone transforms */ 1448 &TX_NAME(ff_tx_fft_sr_def), 1449 &TX_NAME(ff_tx_fft_sr_inplace_def), 1450 &TX_NAME(ff_tx_fft_pfa_3xM_def), 1451 &TX_NAME(ff_tx_fft_pfa_5xM_def), 1452 &TX_NAME(ff_tx_fft_pfa_7xM_def), 1453 &TX_NAME(ff_tx_fft_pfa_9xM_def), 1454 &TX_NAME(ff_tx_fft_pfa_15xM_def), 1455 &TX_NAME(ff_tx_fft_naive_def), 1456 &TX_NAME(ff_tx_mdct_sr_fwd_def), 1457 &TX_NAME(ff_tx_mdct_sr_inv_def), 1458 &TX_NAME(ff_tx_mdct_pfa_3xM_fwd_def), 1459 &TX_NAME(ff_tx_mdct_pfa_5xM_fwd_def), 1460 &TX_NAME(ff_tx_mdct_pfa_7xM_fwd_def), 1461 &TX_NAME(ff_tx_mdct_pfa_9xM_fwd_def), 1462 &TX_NAME(ff_tx_mdct_pfa_15xM_fwd_def), 1463 &TX_NAME(ff_tx_mdct_pfa_3xM_inv_def), 1464 &TX_NAME(ff_tx_mdct_pfa_5xM_inv_def), 1465 &TX_NAME(ff_tx_mdct_pfa_7xM_inv_def), 1466 &TX_NAME(ff_tx_mdct_pfa_9xM_inv_def), 1467 &TX_NAME(ff_tx_mdct_pfa_15xM_inv_def), 1468 &TX_NAME(ff_tx_mdct_naive_fwd_def), 1469 &TX_NAME(ff_tx_mdct_naive_inv_def), 1470 &TX_NAME(ff_tx_mdct_inv_full_def), 1471 &TX_NAME(ff_tx_rdft_r2c_def), 1472 &TX_NAME(ff_tx_rdft_c2r_def), 1473 1474 NULL, 1475}; 1476