1/* 2 * Copyright (c) 2006 Michael Niedermayer <michaelni@gmx.at> 3 * 4 * This file is part of FFmpeg. 5 * 6 * FFmpeg is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * FFmpeg is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with FFmpeg; if not, write to the Free Software 18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 19 */ 20 21#ifndef AVUTIL_SOFTFLOAT_H 22#define AVUTIL_SOFTFLOAT_H 23 24#include <stdint.h> 25#include "common.h" 26 27#include "avassert.h" 28#include "softfloat_tables.h" 29 30#define MIN_EXP -149 31#define MAX_EXP 126 32#define ONE_BITS 29 33 34typedef struct SoftFloat{ 35 int32_t mant; 36 int32_t exp; 37}SoftFloat; 38 39static const SoftFloat FLOAT_0 = { 0, MIN_EXP}; ///< 0.0 40static const SoftFloat FLOAT_05 = { 0x20000000, 0}; ///< 0.5 41static const SoftFloat FLOAT_1 = { 0x20000000, 1}; ///< 1.0 42static const SoftFloat FLOAT_EPSILON = { 0x29F16B12, -16}; ///< A small value 43static const SoftFloat FLOAT_1584893192 = { 0x32B771ED, 1}; ///< 1.584893192 (10^.2) 44static const SoftFloat FLOAT_100000 = { 0x30D40000, 17}; ///< 100000 45static const SoftFloat FLOAT_0999999 = { 0x3FFFFBCE, 0}; ///< 0.999999 46static const SoftFloat FLOAT_MIN = { 0x20000000, MIN_EXP}; 47 48 49/** 50 * Convert a SoftFloat to a double precision float. 51 */ 52static inline av_const double av_sf2double(SoftFloat v) { 53 v.exp -= ONE_BITS +1; 54 return ldexp(v.mant, v.exp); 55} 56 57static av_const SoftFloat av_normalize_sf(SoftFloat a){ 58 if(a.mant){ 59#if 1 60 while((a.mant + 0x1FFFFFFFU)<0x3FFFFFFFU){ 61 a.mant += a.mant; 62 a.exp -= 1; 63 } 64#else 65 int s=ONE_BITS - av_log2(FFABS(a.mant)); 66 a.exp -= s; 67 a.mant <<= s; 68#endif 69 if(a.exp < MIN_EXP){ 70 a.exp = MIN_EXP; 71 a.mant= 0; 72 } 73 }else{ 74 a.exp= MIN_EXP; 75 } 76 return a; 77} 78 79static inline av_const SoftFloat av_normalize1_sf(SoftFloat a){ 80#if 1 81 if((int32_t)(a.mant + 0x40000000U) <= 0){ 82 a.exp++; 83 a.mant>>=1; 84 } 85 av_assert2(a.mant < 0x40000000 && a.mant > -0x40000000); 86 av_assert2(a.exp <= MAX_EXP); 87 return a; 88#elif 1 89 int t= a.mant + 0x40000000 < 0; 90 return (SoftFloat){ a.mant>>t, a.exp+t}; 91#else 92 int t= (a.mant + 0x3FFFFFFFU)>>31; 93 return (SoftFloat){a.mant>>t, a.exp+t}; 94#endif 95} 96 97/** 98 * @return Will not be more denormalized than a*b. So if either input is 99 * normalized, then the output will not be worse then the other input. 100 * If both are normalized, then the output will be normalized. 101 */ 102static inline av_const SoftFloat av_mul_sf(SoftFloat a, SoftFloat b){ 103 a.exp += b.exp; 104 av_assert2((int32_t)((a.mant * (int64_t)b.mant) >> ONE_BITS) == (a.mant * (int64_t)b.mant) >> ONE_BITS); 105 a.mant = (a.mant * (int64_t)b.mant) >> ONE_BITS; 106 a = av_normalize1_sf((SoftFloat){a.mant, a.exp - 1}); 107 if (!a.mant || a.exp < MIN_EXP) 108 return FLOAT_0; 109 return a; 110} 111 112/** 113 * b has to be normalized and not zero. 114 * @return Will not be more denormalized than a. 115 */ 116static inline av_const SoftFloat av_div_sf(SoftFloat a, SoftFloat b){ 117 int64_t temp = (int64_t)a.mant * (1<<(ONE_BITS+1)); 118 temp /= b.mant; 119 a.exp -= b.exp; 120 a.mant = temp; 121 while (a.mant != temp) { 122 temp /= 2; 123 a.exp--; 124 a.mant = temp; 125 } 126 a = av_normalize1_sf(a); 127 if (!a.mant || a.exp < MIN_EXP) 128 return FLOAT_0; 129 return a; 130} 131 132/** 133 * Compares two SoftFloats. 134 * @returns < 0 if the first is less 135 * > 0 if the first is greater 136 * 0 if they are equal 137 */ 138static inline av_const int av_cmp_sf(SoftFloat a, SoftFloat b){ 139 int t= a.exp - b.exp; 140 if (t <-31) return - b.mant ; 141 else if (t < 0) return (a.mant >> (-t)) - b.mant ; 142 else if (t < 32) return a.mant - (b.mant >> t); 143 else return a.mant ; 144} 145 146/** 147 * Compares two SoftFloats. 148 * @returns 1 if a is greater than b, 0 otherwise 149 */ 150static inline av_const int av_gt_sf(SoftFloat a, SoftFloat b) 151{ 152 int t= a.exp - b.exp; 153 if (t <-31) return 0 > b.mant ; 154 else if (t < 0) return (a.mant >> (-t)) > b.mant ; 155 else if (t < 32) return a.mant > (b.mant >> t); 156 else return a.mant > 0 ; 157} 158 159/** 160 * @returns the sum of 2 SoftFloats. 161 */ 162static inline av_const SoftFloat av_add_sf(SoftFloat a, SoftFloat b){ 163 int t= a.exp - b.exp; 164 if (t <-31) return b; 165 else if (t < 0) return av_normalize_sf(av_normalize1_sf((SoftFloat){ b.mant + (a.mant >> (-t)), b.exp})); 166 else if (t < 32) return av_normalize_sf(av_normalize1_sf((SoftFloat){ a.mant + (b.mant >> t ), a.exp})); 167 else return a; 168} 169 170/** 171 * @returns the difference of 2 SoftFloats. 172 */ 173static inline av_const SoftFloat av_sub_sf(SoftFloat a, SoftFloat b){ 174 return av_add_sf(a, (SoftFloat){ -b.mant, b.exp}); 175} 176 177//FIXME log, exp, pow 178 179/** 180 * Converts a mantisse and exponent to a SoftFloat. 181 * This converts a fixed point value v with frac_bits fractional bits to a 182 * SoftFloat. 183 * @returns a SoftFloat with value v * 2^-frac_bits 184 */ 185static inline av_const SoftFloat av_int2sf(int v, int frac_bits){ 186 int exp_offset = 0; 187 if(v <= INT_MIN + 1){ 188 exp_offset = 1; 189 v>>=1; 190 } 191 return av_normalize_sf(av_normalize1_sf((SoftFloat){v, ONE_BITS + 1 - frac_bits + exp_offset})); 192} 193 194/** 195 * Converts a SoftFloat to an integer. 196 * Rounding is to -inf. 197 */ 198static inline av_const int av_sf2int(SoftFloat v, int frac_bits){ 199 v.exp += frac_bits - (ONE_BITS + 1); 200 if(v.exp >= 0) return v.mant << v.exp ; 201 else return v.mant >>(-v.exp); 202} 203 204/** 205 * Rounding-to-nearest used. 206 */ 207static av_always_inline SoftFloat av_sqrt_sf(SoftFloat val) 208{ 209 int tabIndex, rem; 210 211 if (val.mant == 0) 212 val.exp = MIN_EXP; 213 else if (val.mant < 0) 214 abort(); 215 else 216 { 217 tabIndex = (val.mant - 0x20000000) >> 20; 218 219 rem = val.mant & 0xFFFFF; 220 val.mant = (int)(((int64_t)av_sqrttbl_sf[tabIndex] * (0x100000 - rem) + 221 (int64_t)av_sqrttbl_sf[tabIndex + 1] * rem + 222 0x80000) >> 20); 223 val.mant = (int)(((int64_t)av_sqr_exp_multbl_sf[val.exp & 1] * val.mant + 224 0x10000000) >> 29); 225 226 if (val.mant < 0x40000000) 227 val.exp -= 2; 228 else 229 val.mant >>= 1; 230 231 val.exp = (val.exp >> 1) + 1; 232 } 233 234 return val; 235} 236 237/** 238 * Rounding-to-nearest used. 239 * 240 * @param a angle in units of (1ULL<<30)/M_PI radians 241 * @param s pointer to where sine in units of (1<<30) is returned 242 * @param c pointer to where cosine in units of (1<<30) is returned 243 */ 244static av_unused void av_sincos_sf(int a, int *s, int *c) 245{ 246 int idx, sign; 247 int sv, cv; 248 int st, ct; 249 250 idx = a >> 26; 251 sign = (int32_t)((unsigned)idx << 27) >> 31; 252 cv = av_costbl_1_sf[idx & 0xf]; 253 cv = (cv ^ sign) - sign; 254 255 idx -= 8; 256 sign = (int32_t)((unsigned)idx << 27) >> 31; 257 sv = av_costbl_1_sf[idx & 0xf]; 258 sv = (sv ^ sign) - sign; 259 260 idx = a >> 21; 261 ct = av_costbl_2_sf[idx & 0x1f]; 262 st = av_sintbl_2_sf[idx & 0x1f]; 263 264 idx = (int)(((int64_t)cv * ct - (int64_t)sv * st + 0x20000000) >> 30); 265 266 sv = (int)(((int64_t)cv * st + (int64_t)sv * ct + 0x20000000) >> 30); 267 268 cv = idx; 269 270 idx = a >> 16; 271 ct = av_costbl_3_sf[idx & 0x1f]; 272 st = av_sintbl_3_sf[idx & 0x1f]; 273 274 idx = (int)(((int64_t)cv * ct - (int64_t)sv * st + 0x20000000) >> 30); 275 276 sv = (int)(((int64_t)cv * st + (int64_t)sv * ct + 0x20000000) >> 30); 277 cv = idx; 278 279 idx = a >> 11; 280 281 ct = (int)(((int64_t)av_costbl_4_sf[idx & 0x1f] * (0x800 - (a & 0x7ff)) + 282 (int64_t)av_costbl_4_sf[(idx & 0x1f)+1]*(a & 0x7ff) + 283 0x400) >> 11); 284 st = (int)(((int64_t)av_sintbl_4_sf[idx & 0x1f] * (0x800 - (a & 0x7ff)) + 285 (int64_t)av_sintbl_4_sf[(idx & 0x1f) + 1] * (a & 0x7ff) + 286 0x400) >> 11); 287 288 *c = (int)(((int64_t)cv * ct - (int64_t)sv * st + 0x20000000) >> 30); 289 290 *s = (int)(((int64_t)cv * st + (int64_t)sv * ct + 0x20000000) >> 30); 291} 292 293#endif /* AVUTIL_SOFTFLOAT_H */ 294