1/* 2 * principal component analysis (PCA) 3 * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at> 4 * 5 * This file is part of FFmpeg. 6 * 7 * FFmpeg is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU Lesser General Public 9 * License as published by the Free Software Foundation; either 10 * version 2.1 of the License, or (at your option) any later version. 11 * 12 * FFmpeg is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * Lesser General Public License for more details. 16 * 17 * You should have received a copy of the GNU Lesser General Public 18 * License along with FFmpeg; if not, write to the Free Software 19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 20 */ 21 22/** 23 * @file 24 * principal component analysis (PCA) 25 */ 26 27#include "common.h" 28#include "pca.h" 29 30typedef struct PCA{ 31 int count; 32 int n; 33 double *covariance; 34 double *mean; 35 double *z; 36}PCA; 37 38PCA *ff_pca_init(int n){ 39 PCA *pca; 40 if(n<=0) 41 return NULL; 42 43 pca= av_mallocz(sizeof(*pca)); 44 if (!pca) 45 return NULL; 46 47 pca->n= n; 48 pca->z = av_malloc_array(n, sizeof(*pca->z)); 49 pca->count=0; 50 pca->covariance= av_calloc(n*n, sizeof(double)); 51 pca->mean= av_calloc(n, sizeof(double)); 52 53 if (!pca->z || !pca->covariance || !pca->mean) { 54 ff_pca_free(pca); 55 return NULL; 56 } 57 58 return pca; 59} 60 61void ff_pca_free(PCA *pca){ 62 av_freep(&pca->covariance); 63 av_freep(&pca->mean); 64 av_freep(&pca->z); 65 av_free(pca); 66} 67 68void ff_pca_add(PCA *pca, const double *v){ 69 int i, j; 70 const int n= pca->n; 71 72 for(i=0; i<n; i++){ 73 pca->mean[i] += v[i]; 74 for(j=i; j<n; j++) 75 pca->covariance[j + i*n] += v[i]*v[j]; 76 } 77 pca->count++; 78} 79 80int ff_pca(PCA *pca, double *eigenvector, double *eigenvalue){ 81 int i, j, pass; 82 int k=0; 83 const int n= pca->n; 84 double *z = pca->z; 85 86 memset(eigenvector, 0, sizeof(double)*n*n); 87 88 for(j=0; j<n; j++){ 89 pca->mean[j] /= pca->count; 90 eigenvector[j + j*n] = 1.0; 91 for(i=0; i<=j; i++){ 92 pca->covariance[j + i*n] /= pca->count; 93 pca->covariance[j + i*n] -= pca->mean[i] * pca->mean[j]; 94 pca->covariance[i + j*n] = pca->covariance[j + i*n]; 95 } 96 eigenvalue[j]= pca->covariance[j + j*n]; 97 z[j]= 0; 98 } 99 100 for(pass=0; pass < 50; pass++){ 101 double sum=0; 102 103 for(i=0; i<n; i++) 104 for(j=i+1; j<n; j++) 105 sum += fabs(pca->covariance[j + i*n]); 106 107 if(sum == 0){ 108 for(i=0; i<n; i++){ 109 double maxvalue= -1; 110 for(j=i; j<n; j++){ 111 if(eigenvalue[j] > maxvalue){ 112 maxvalue= eigenvalue[j]; 113 k= j; 114 } 115 } 116 eigenvalue[k]= eigenvalue[i]; 117 eigenvalue[i]= maxvalue; 118 for(j=0; j<n; j++){ 119 double tmp= eigenvector[k + j*n]; 120 eigenvector[k + j*n]= eigenvector[i + j*n]; 121 eigenvector[i + j*n]= tmp; 122 } 123 } 124 return pass; 125 } 126 127 for(i=0; i<n; i++){ 128 for(j=i+1; j<n; j++){ 129 double covar= pca->covariance[j + i*n]; 130 double t,c,s,tau,theta, h; 131 132 if(pass < 3 && fabs(covar) < sum / (5*n*n)) //FIXME why pass < 3 133 continue; 134 if(fabs(covar) == 0.0) //FIXME should not be needed 135 continue; 136 if(pass >=3 && fabs((eigenvalue[j]+z[j])/covar) > (1LL<<32) && fabs((eigenvalue[i]+z[i])/covar) > (1LL<<32)){ 137 pca->covariance[j + i*n]=0.0; 138 continue; 139 } 140 141 h= (eigenvalue[j]+z[j]) - (eigenvalue[i]+z[i]); 142 theta=0.5*h/covar; 143 t=1.0/(fabs(theta)+sqrt(1.0+theta*theta)); 144 if(theta < 0.0) t = -t; 145 146 c=1.0/sqrt(1+t*t); 147 s=t*c; 148 tau=s/(1.0+c); 149 z[i] -= t*covar; 150 z[j] += t*covar; 151 152#define ROTATE(a,i,j,k,l) {\ 153 double g=a[j + i*n];\ 154 double h=a[l + k*n];\ 155 a[j + i*n]=g-s*(h+g*tau);\ 156 a[l + k*n]=h+s*(g-h*tau); } 157 for(k=0; k<n; k++) { 158 if(k!=i && k!=j){ 159 ROTATE(pca->covariance,FFMIN(k,i),FFMAX(k,i),FFMIN(k,j),FFMAX(k,j)) 160 } 161 ROTATE(eigenvector,k,i,k,j) 162 } 163 pca->covariance[j + i*n]=0.0; 164 } 165 } 166 for (i=0; i<n; i++) { 167 eigenvalue[i] += z[i]; 168 z[i]=0.0; 169 } 170 } 171 172 return -1; 173} 174