1cabdff1aSopenharmony_ci/* 2cabdff1aSopenharmony_ci * ASF decryption 3cabdff1aSopenharmony_ci * Copyright (c) 2007 Reimar Doeffinger 4cabdff1aSopenharmony_ci * This is a rewrite of code contained in freeme/freeme2 5cabdff1aSopenharmony_ci * 6cabdff1aSopenharmony_ci * This file is part of FFmpeg. 7cabdff1aSopenharmony_ci * 8cabdff1aSopenharmony_ci * FFmpeg is free software; you can redistribute it and/or 9cabdff1aSopenharmony_ci * modify it under the terms of the GNU Lesser General Public 10cabdff1aSopenharmony_ci * License as published by the Free Software Foundation; either 11cabdff1aSopenharmony_ci * version 2.1 of the License, or (at your option) any later version. 12cabdff1aSopenharmony_ci * 13cabdff1aSopenharmony_ci * FFmpeg is distributed in the hope that it will be useful, 14cabdff1aSopenharmony_ci * but WITHOUT ANY WARRANTY; without even the implied warranty of 15cabdff1aSopenharmony_ci * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16cabdff1aSopenharmony_ci * Lesser General Public License for more details. 17cabdff1aSopenharmony_ci * 18cabdff1aSopenharmony_ci * You should have received a copy of the GNU Lesser General Public 19cabdff1aSopenharmony_ci * License along with FFmpeg; if not, write to the Free Software 20cabdff1aSopenharmony_ci * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 21cabdff1aSopenharmony_ci */ 22cabdff1aSopenharmony_ci 23cabdff1aSopenharmony_ci#include <stddef.h> 24cabdff1aSopenharmony_ci#include "libavutil/bswap.h" 25cabdff1aSopenharmony_ci#include "libavutil/des.h" 26cabdff1aSopenharmony_ci#include "libavutil/intreadwrite.h" 27cabdff1aSopenharmony_ci#include "libavutil/mem.h" 28cabdff1aSopenharmony_ci#include "libavutil/rc4.h" 29cabdff1aSopenharmony_ci#include "asfcrypt.h" 30cabdff1aSopenharmony_ci 31cabdff1aSopenharmony_ci/** 32cabdff1aSopenharmony_ci * @brief find multiplicative inverse modulo 2 ^ 32 33cabdff1aSopenharmony_ci * @param v number to invert, must be odd! 34cabdff1aSopenharmony_ci * @return number so that result * v = 1 (mod 2^32) 35cabdff1aSopenharmony_ci */ 36cabdff1aSopenharmony_cistatic uint32_t inverse(uint32_t v) 37cabdff1aSopenharmony_ci{ 38cabdff1aSopenharmony_ci // v ^ 3 gives the inverse (mod 16), could also be implemented 39cabdff1aSopenharmony_ci // as table etc. (only lowest 4 bits matter!) 40cabdff1aSopenharmony_ci uint32_t inverse = v * v * v; 41cabdff1aSopenharmony_ci // uses a fixpoint-iteration that doubles the number 42cabdff1aSopenharmony_ci // of correct lowest bits each time 43cabdff1aSopenharmony_ci inverse *= 2 - v * inverse; 44cabdff1aSopenharmony_ci inverse *= 2 - v * inverse; 45cabdff1aSopenharmony_ci inverse *= 2 - v * inverse; 46cabdff1aSopenharmony_ci return inverse; 47cabdff1aSopenharmony_ci} 48cabdff1aSopenharmony_ci 49cabdff1aSopenharmony_ci/** 50cabdff1aSopenharmony_ci * @brief read keys from keybuf into keys 51cabdff1aSopenharmony_ci * @param keybuf buffer containing the keys 52cabdff1aSopenharmony_ci * @param keys output key array containing the keys for encryption in 53cabdff1aSopenharmony_ci * native endianness 54cabdff1aSopenharmony_ci */ 55cabdff1aSopenharmony_cistatic void multiswap_init(const uint8_t keybuf[48], uint32_t keys[12]) 56cabdff1aSopenharmony_ci{ 57cabdff1aSopenharmony_ci int i; 58cabdff1aSopenharmony_ci for (i = 0; i < 12; i++) 59cabdff1aSopenharmony_ci keys[i] = AV_RL32(keybuf + (i << 2)) | 1; 60cabdff1aSopenharmony_ci} 61cabdff1aSopenharmony_ci 62cabdff1aSopenharmony_ci/** 63cabdff1aSopenharmony_ci * @brief invert the keys so that encryption become decryption keys and 64cabdff1aSopenharmony_ci * the other way round. 65cabdff1aSopenharmony_ci * @param keys key array of ints to invert 66cabdff1aSopenharmony_ci */ 67cabdff1aSopenharmony_cistatic void multiswap_invert_keys(uint32_t keys[12]) 68cabdff1aSopenharmony_ci{ 69cabdff1aSopenharmony_ci int i; 70cabdff1aSopenharmony_ci for (i = 0; i < 5; i++) 71cabdff1aSopenharmony_ci keys[i] = inverse(keys[i]); 72cabdff1aSopenharmony_ci for (i = 6; i < 11; i++) 73cabdff1aSopenharmony_ci keys[i] = inverse(keys[i]); 74cabdff1aSopenharmony_ci} 75cabdff1aSopenharmony_ci 76cabdff1aSopenharmony_cistatic uint32_t multiswap_step(const uint32_t keys[12], uint32_t v) 77cabdff1aSopenharmony_ci{ 78cabdff1aSopenharmony_ci int i; 79cabdff1aSopenharmony_ci v *= keys[0]; 80cabdff1aSopenharmony_ci for (i = 1; i < 5; i++) { 81cabdff1aSopenharmony_ci v = (v >> 16) | (v << 16); 82cabdff1aSopenharmony_ci v *= keys[i]; 83cabdff1aSopenharmony_ci } 84cabdff1aSopenharmony_ci v += keys[5]; 85cabdff1aSopenharmony_ci return v; 86cabdff1aSopenharmony_ci} 87cabdff1aSopenharmony_ci 88cabdff1aSopenharmony_cistatic uint32_t multiswap_inv_step(const uint32_t keys[12], uint32_t v) 89cabdff1aSopenharmony_ci{ 90cabdff1aSopenharmony_ci int i; 91cabdff1aSopenharmony_ci v -= keys[5]; 92cabdff1aSopenharmony_ci for (i = 4; i > 0; i--) { 93cabdff1aSopenharmony_ci v *= keys[i]; 94cabdff1aSopenharmony_ci v = (v >> 16) | (v << 16); 95cabdff1aSopenharmony_ci } 96cabdff1aSopenharmony_ci v *= keys[0]; 97cabdff1aSopenharmony_ci return v; 98cabdff1aSopenharmony_ci} 99cabdff1aSopenharmony_ci 100cabdff1aSopenharmony_ci/** 101cabdff1aSopenharmony_ci * @brief "MultiSwap" encryption 102cabdff1aSopenharmony_ci * @param keys 32 bit numbers in machine endianness, 103cabdff1aSopenharmony_ci * 0-4 and 6-10 must be inverted from decryption 104cabdff1aSopenharmony_ci * @param key another key, this one must be the same for the decryption 105cabdff1aSopenharmony_ci * @param data data to encrypt 106cabdff1aSopenharmony_ci * @return encrypted data 107cabdff1aSopenharmony_ci */ 108cabdff1aSopenharmony_cistatic uint64_t multiswap_enc(const uint32_t keys[12], 109cabdff1aSopenharmony_ci uint64_t key, uint64_t data) 110cabdff1aSopenharmony_ci{ 111cabdff1aSopenharmony_ci uint32_t a = data; 112cabdff1aSopenharmony_ci uint32_t b = data >> 32; 113cabdff1aSopenharmony_ci uint32_t c; 114cabdff1aSopenharmony_ci uint32_t tmp; 115cabdff1aSopenharmony_ci a += key; 116cabdff1aSopenharmony_ci tmp = multiswap_step(keys, a); 117cabdff1aSopenharmony_ci b += tmp; 118cabdff1aSopenharmony_ci c = (key >> 32) + tmp; 119cabdff1aSopenharmony_ci tmp = multiswap_step(keys + 6, b); 120cabdff1aSopenharmony_ci c += tmp; 121cabdff1aSopenharmony_ci return ((uint64_t)c << 32) | tmp; 122cabdff1aSopenharmony_ci} 123cabdff1aSopenharmony_ci 124cabdff1aSopenharmony_ci/** 125cabdff1aSopenharmony_ci * @brief "MultiSwap" decryption 126cabdff1aSopenharmony_ci * @param keys 32 bit numbers in machine endianness, 127cabdff1aSopenharmony_ci * 0-4 and 6-10 must be inverted from encryption 128cabdff1aSopenharmony_ci * @param key another key, this one must be the same as for the encryption 129cabdff1aSopenharmony_ci * @param data data to decrypt 130cabdff1aSopenharmony_ci * @return decrypted data 131cabdff1aSopenharmony_ci */ 132cabdff1aSopenharmony_cistatic uint64_t multiswap_dec(const uint32_t keys[12], 133cabdff1aSopenharmony_ci uint64_t key, uint64_t data) 134cabdff1aSopenharmony_ci{ 135cabdff1aSopenharmony_ci uint32_t a; 136cabdff1aSopenharmony_ci uint32_t b; 137cabdff1aSopenharmony_ci uint32_t c = data >> 32; 138cabdff1aSopenharmony_ci uint32_t tmp = data; 139cabdff1aSopenharmony_ci c -= tmp; 140cabdff1aSopenharmony_ci b = multiswap_inv_step(keys + 6, tmp); 141cabdff1aSopenharmony_ci tmp = c - (key >> 32); 142cabdff1aSopenharmony_ci b -= tmp; 143cabdff1aSopenharmony_ci a = multiswap_inv_step(keys, tmp); 144cabdff1aSopenharmony_ci a -= key; 145cabdff1aSopenharmony_ci return ((uint64_t)b << 32) | a; 146cabdff1aSopenharmony_ci} 147cabdff1aSopenharmony_ci 148cabdff1aSopenharmony_civoid ff_asfcrypt_dec(const uint8_t key[20], uint8_t *data, int len) 149cabdff1aSopenharmony_ci{ 150cabdff1aSopenharmony_ci struct AVDES *des; 151cabdff1aSopenharmony_ci struct AVRC4 *rc4; 152cabdff1aSopenharmony_ci int num_qwords = len >> 3; 153cabdff1aSopenharmony_ci uint8_t *qwords = data; 154cabdff1aSopenharmony_ci uint64_t rc4buff[8] = { 0 }; 155cabdff1aSopenharmony_ci uint64_t packetkey; 156cabdff1aSopenharmony_ci uint32_t ms_keys[12]; 157cabdff1aSopenharmony_ci uint64_t ms_state; 158cabdff1aSopenharmony_ci int i; 159cabdff1aSopenharmony_ci if (len < 16) { 160cabdff1aSopenharmony_ci for (i = 0; i < len; i++) 161cabdff1aSopenharmony_ci data[i] ^= key[i]; 162cabdff1aSopenharmony_ci return; 163cabdff1aSopenharmony_ci } 164cabdff1aSopenharmony_ci des = av_des_alloc(); 165cabdff1aSopenharmony_ci rc4 = av_rc4_alloc(); 166cabdff1aSopenharmony_ci if (!des || !rc4) { 167cabdff1aSopenharmony_ci av_freep(&des); 168cabdff1aSopenharmony_ci av_freep(&rc4); 169cabdff1aSopenharmony_ci return; 170cabdff1aSopenharmony_ci } 171cabdff1aSopenharmony_ci 172cabdff1aSopenharmony_ci av_rc4_init(rc4, key, 12 * 8, 1); 173cabdff1aSopenharmony_ci av_rc4_crypt(rc4, (uint8_t *)rc4buff, NULL, sizeof(rc4buff), NULL, 1); 174cabdff1aSopenharmony_ci multiswap_init((uint8_t *)rc4buff, ms_keys); 175cabdff1aSopenharmony_ci 176cabdff1aSopenharmony_ci packetkey = AV_RN64(&qwords[num_qwords * 8 - 8]); 177cabdff1aSopenharmony_ci packetkey ^= rc4buff[7]; 178cabdff1aSopenharmony_ci av_des_init(des, key + 12, 64, 1); 179cabdff1aSopenharmony_ci av_des_crypt(des, (uint8_t *)&packetkey, (uint8_t *)&packetkey, 1, NULL, 1); 180cabdff1aSopenharmony_ci packetkey ^= rc4buff[6]; 181cabdff1aSopenharmony_ci 182cabdff1aSopenharmony_ci av_rc4_init(rc4, (uint8_t *)&packetkey, 64, 1); 183cabdff1aSopenharmony_ci av_rc4_crypt(rc4, data, data, len, NULL, 1); 184cabdff1aSopenharmony_ci 185cabdff1aSopenharmony_ci ms_state = 0; 186cabdff1aSopenharmony_ci for (i = 0; i < num_qwords - 1; i++, qwords += 8) 187cabdff1aSopenharmony_ci ms_state = multiswap_enc(ms_keys, ms_state, AV_RL64(qwords)); 188cabdff1aSopenharmony_ci multiswap_invert_keys(ms_keys); 189cabdff1aSopenharmony_ci packetkey = (packetkey << 32) | (packetkey >> 32); 190cabdff1aSopenharmony_ci packetkey = av_le2ne64(packetkey); 191cabdff1aSopenharmony_ci packetkey = multiswap_dec(ms_keys, ms_state, packetkey); 192cabdff1aSopenharmony_ci AV_WL64(qwords, packetkey); 193cabdff1aSopenharmony_ci 194cabdff1aSopenharmony_ci av_free(rc4); 195cabdff1aSopenharmony_ci av_free(des); 196cabdff1aSopenharmony_ci} 197