1/* 2 * Copyright (C) 2003-2004 The FFmpeg project 3 * Copyright (C) 2019 Peter Ross 4 * 5 * This file is part of FFmpeg. 6 * 7 * FFmpeg is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU Lesser General Public 9 * License as published by the Free Software Foundation; either 10 * version 2.1 of the License, or (at your option) any later version. 11 * 12 * FFmpeg is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * Lesser General Public License for more details. 16 * 17 * You should have received a copy of the GNU Lesser General Public 18 * License along with FFmpeg; if not, write to the Free Software 19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 20 */ 21 22/** 23 * @file 24 * On2 VP3/VP4 Video Decoder 25 * 26 * VP3 Video Decoder by Mike Melanson (mike at multimedia.cx) 27 * For more information about the VP3 coding process, visit: 28 * http://wiki.multimedia.cx/index.php?title=On2_VP3 29 * 30 * Theora decoder by Alex Beregszaszi 31 */ 32 33#include "config_components.h" 34 35#include <stdio.h> 36#include <stdlib.h> 37#include <string.h> 38 39#include "libavutil/imgutils.h" 40#include "libavutil/mem_internal.h" 41 42#include "avcodec.h" 43#include "codec_internal.h" 44#include "get_bits.h" 45#include "hpeldsp.h" 46#include "internal.h" 47#include "mathops.h" 48#include "thread.h" 49#include "threadframe.h" 50#include "videodsp.h" 51#include "vp3data.h" 52#include "vp4data.h" 53#include "vp3dsp.h" 54#include "xiph.h" 55 56#define VP3_MV_VLC_BITS 6 57#define VP4_MV_VLC_BITS 6 58#define SUPERBLOCK_VLC_BITS 6 59 60#define FRAGMENT_PIXELS 8 61 62// FIXME split things out into their own arrays 63typedef struct Vp3Fragment { 64 int16_t dc; 65 uint8_t coding_method; 66 uint8_t qpi; 67} Vp3Fragment; 68 69#define SB_NOT_CODED 0 70#define SB_PARTIALLY_CODED 1 71#define SB_FULLY_CODED 2 72 73// This is the maximum length of a single long bit run that can be encoded 74// for superblock coding or block qps. Theora special-cases this to read a 75// bit instead of flipping the current bit to allow for runs longer than 4129. 76#define MAXIMUM_LONG_BIT_RUN 4129 77 78#define MODE_INTER_NO_MV 0 79#define MODE_INTRA 1 80#define MODE_INTER_PLUS_MV 2 81#define MODE_INTER_LAST_MV 3 82#define MODE_INTER_PRIOR_LAST 4 83#define MODE_USING_GOLDEN 5 84#define MODE_GOLDEN_MV 6 85#define MODE_INTER_FOURMV 7 86#define CODING_MODE_COUNT 8 87 88/* special internal mode */ 89#define MODE_COPY 8 90 91static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb); 92static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb); 93 94 95/* There are 6 preset schemes, plus a free-form scheme */ 96static const int ModeAlphabet[6][CODING_MODE_COUNT] = { 97 /* scheme 1: Last motion vector dominates */ 98 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, 99 MODE_INTER_PLUS_MV, MODE_INTER_NO_MV, 100 MODE_INTRA, MODE_USING_GOLDEN, 101 MODE_GOLDEN_MV, MODE_INTER_FOURMV }, 102 103 /* scheme 2 */ 104 { MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, 105 MODE_INTER_NO_MV, MODE_INTER_PLUS_MV, 106 MODE_INTRA, MODE_USING_GOLDEN, 107 MODE_GOLDEN_MV, MODE_INTER_FOURMV }, 108 109 /* scheme 3 */ 110 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV, 111 MODE_INTER_PRIOR_LAST, MODE_INTER_NO_MV, 112 MODE_INTRA, MODE_USING_GOLDEN, 113 MODE_GOLDEN_MV, MODE_INTER_FOURMV }, 114 115 /* scheme 4 */ 116 { MODE_INTER_LAST_MV, MODE_INTER_PLUS_MV, 117 MODE_INTER_NO_MV, MODE_INTER_PRIOR_LAST, 118 MODE_INTRA, MODE_USING_GOLDEN, 119 MODE_GOLDEN_MV, MODE_INTER_FOURMV }, 120 121 /* scheme 5: No motion vector dominates */ 122 { MODE_INTER_NO_MV, MODE_INTER_LAST_MV, 123 MODE_INTER_PRIOR_LAST, MODE_INTER_PLUS_MV, 124 MODE_INTRA, MODE_USING_GOLDEN, 125 MODE_GOLDEN_MV, MODE_INTER_FOURMV }, 126 127 /* scheme 6 */ 128 { MODE_INTER_NO_MV, MODE_USING_GOLDEN, 129 MODE_INTER_LAST_MV, MODE_INTER_PRIOR_LAST, 130 MODE_INTER_PLUS_MV, MODE_INTRA, 131 MODE_GOLDEN_MV, MODE_INTER_FOURMV }, 132}; 133 134static const uint8_t hilbert_offset[16][2] = { 135 { 0, 0 }, { 1, 0 }, { 1, 1 }, { 0, 1 }, 136 { 0, 2 }, { 0, 3 }, { 1, 3 }, { 1, 2 }, 137 { 2, 2 }, { 2, 3 }, { 3, 3 }, { 3, 2 }, 138 { 3, 1 }, { 2, 1 }, { 2, 0 }, { 3, 0 } 139}; 140 141enum { 142 VP4_DC_INTRA = 0, 143 VP4_DC_INTER = 1, 144 VP4_DC_GOLDEN = 2, 145 NB_VP4_DC_TYPES, 146 VP4_DC_UNDEFINED = NB_VP4_DC_TYPES 147}; 148 149static const uint8_t vp4_pred_block_type_map[8] = { 150 [MODE_INTER_NO_MV] = VP4_DC_INTER, 151 [MODE_INTRA] = VP4_DC_INTRA, 152 [MODE_INTER_PLUS_MV] = VP4_DC_INTER, 153 [MODE_INTER_LAST_MV] = VP4_DC_INTER, 154 [MODE_INTER_PRIOR_LAST] = VP4_DC_INTER, 155 [MODE_USING_GOLDEN] = VP4_DC_GOLDEN, 156 [MODE_GOLDEN_MV] = VP4_DC_GOLDEN, 157 [MODE_INTER_FOURMV] = VP4_DC_INTER, 158}; 159 160typedef struct { 161 int dc; 162 int type; 163} VP4Predictor; 164 165#define MIN_DEQUANT_VAL 2 166 167typedef struct HuffEntry { 168 uint8_t len, sym; 169} HuffEntry; 170 171typedef struct HuffTable { 172 HuffEntry entries[32]; 173 uint8_t nb_entries; 174} HuffTable; 175 176typedef struct Vp3DecodeContext { 177 AVCodecContext *avctx; 178 int theora, theora_tables, theora_header; 179 int version; 180 int width, height; 181 int chroma_x_shift, chroma_y_shift; 182 ThreadFrame golden_frame; 183 ThreadFrame last_frame; 184 ThreadFrame current_frame; 185 int keyframe; 186 uint8_t idct_permutation[64]; 187 uint8_t idct_scantable[64]; 188 HpelDSPContext hdsp; 189 VideoDSPContext vdsp; 190 VP3DSPContext vp3dsp; 191 DECLARE_ALIGNED(16, int16_t, block)[64]; 192 int flipped_image; 193 int last_slice_end; 194 int skip_loop_filter; 195 196 int qps[3]; 197 int nqps; 198 int last_qps[3]; 199 200 int superblock_count; 201 int y_superblock_width; 202 int y_superblock_height; 203 int y_superblock_count; 204 int c_superblock_width; 205 int c_superblock_height; 206 int c_superblock_count; 207 int u_superblock_start; 208 int v_superblock_start; 209 unsigned char *superblock_coding; 210 211 int macroblock_count; /* y macroblock count */ 212 int macroblock_width; 213 int macroblock_height; 214 int c_macroblock_count; 215 int c_macroblock_width; 216 int c_macroblock_height; 217 int yuv_macroblock_count; /* y+u+v macroblock count */ 218 219 int fragment_count; 220 int fragment_width[2]; 221 int fragment_height[2]; 222 223 Vp3Fragment *all_fragments; 224 int fragment_start[3]; 225 int data_offset[3]; 226 uint8_t offset_x; 227 uint8_t offset_y; 228 int offset_x_warned; 229 230 int8_t (*motion_val[2])[2]; 231 232 /* tables */ 233 uint16_t coded_dc_scale_factor[2][64]; 234 uint32_t coded_ac_scale_factor[64]; 235 uint8_t base_matrix[384][64]; 236 uint8_t qr_count[2][3]; 237 uint8_t qr_size[2][3][64]; 238 uint16_t qr_base[2][3][64]; 239 240 /** 241 * This is a list of all tokens in bitstream order. Reordering takes place 242 * by pulling from each level during IDCT. As a consequence, IDCT must be 243 * in Hilbert order, making the minimum slice height 64 for 4:2:0 and 32 244 * otherwise. The 32 different tokens with up to 12 bits of extradata are 245 * collapsed into 3 types, packed as follows: 246 * (from the low to high bits) 247 * 248 * 2 bits: type (0,1,2) 249 * 0: EOB run, 14 bits for run length (12 needed) 250 * 1: zero run, 7 bits for run length 251 * 7 bits for the next coefficient (3 needed) 252 * 2: coefficient, 14 bits (11 needed) 253 * 254 * Coefficients are signed, so are packed in the highest bits for automatic 255 * sign extension. 256 */ 257 int16_t *dct_tokens[3][64]; 258 int16_t *dct_tokens_base; 259#define TOKEN_EOB(eob_run) ((eob_run) << 2) 260#define TOKEN_ZERO_RUN(coeff, zero_run) (((coeff) * 512) + ((zero_run) << 2) + 1) 261#define TOKEN_COEFF(coeff) (((coeff) * 4) + 2) 262 263 /** 264 * number of blocks that contain DCT coefficients at 265 * the given level or higher 266 */ 267 int num_coded_frags[3][64]; 268 int total_num_coded_frags; 269 270 /* this is a list of indexes into the all_fragments array indicating 271 * which of the fragments are coded */ 272 int *coded_fragment_list[3]; 273 274 int *kf_coded_fragment_list; 275 int *nkf_coded_fragment_list; 276 int num_kf_coded_fragment[3]; 277 278 /* The first 16 of the following VLCs are for the dc coefficients; 279 the others are four groups of 16 VLCs each for ac coefficients. */ 280 VLC coeff_vlc[5 * 16]; 281 282 VLC superblock_run_length_vlc; /* version < 2 */ 283 VLC fragment_run_length_vlc; /* version < 2 */ 284 VLC block_pattern_vlc[2]; /* version >= 2*/ 285 VLC mode_code_vlc; 286 VLC motion_vector_vlc; /* version < 2 */ 287 VLC vp4_mv_vlc[2][7]; /* version >=2 */ 288 289 /* these arrays need to be on 16-byte boundaries since SSE2 operations 290 * index into them */ 291 DECLARE_ALIGNED(16, int16_t, qmat)[3][2][3][64]; ///< qmat[qpi][is_inter][plane] 292 293 /* This table contains superblock_count * 16 entries. Each set of 16 294 * numbers corresponds to the fragment indexes 0..15 of the superblock. 295 * An entry will be -1 to indicate that no entry corresponds to that 296 * index. */ 297 int *superblock_fragments; 298 299 /* This is an array that indicates how a particular macroblock 300 * is coded. */ 301 unsigned char *macroblock_coding; 302 303 uint8_t *edge_emu_buffer; 304 305 /* Huffman decode */ 306 HuffTable huffman_table[5 * 16]; 307 308 uint8_t filter_limit_values[64]; 309 DECLARE_ALIGNED(8, int, bounding_values_array)[256 + 2]; 310 311 VP4Predictor * dc_pred_row; /* dc_pred_row[y_superblock_width * 4] */ 312} Vp3DecodeContext; 313 314/************************************************************************ 315 * VP3 specific functions 316 ************************************************************************/ 317 318static av_cold void free_tables(AVCodecContext *avctx) 319{ 320 Vp3DecodeContext *s = avctx->priv_data; 321 322 av_freep(&s->superblock_coding); 323 av_freep(&s->all_fragments); 324 av_freep(&s->nkf_coded_fragment_list); 325 av_freep(&s->kf_coded_fragment_list); 326 av_freep(&s->dct_tokens_base); 327 av_freep(&s->superblock_fragments); 328 av_freep(&s->macroblock_coding); 329 av_freep(&s->dc_pred_row); 330 av_freep(&s->motion_val[0]); 331 av_freep(&s->motion_val[1]); 332} 333 334static void vp3_decode_flush(AVCodecContext *avctx) 335{ 336 Vp3DecodeContext *s = avctx->priv_data; 337 338 if (s->golden_frame.f) 339 ff_thread_release_ext_buffer(avctx, &s->golden_frame); 340 if (s->last_frame.f) 341 ff_thread_release_ext_buffer(avctx, &s->last_frame); 342 if (s->current_frame.f) 343 ff_thread_release_ext_buffer(avctx, &s->current_frame); 344} 345 346static av_cold int vp3_decode_end(AVCodecContext *avctx) 347{ 348 Vp3DecodeContext *s = avctx->priv_data; 349 int i, j; 350 351 free_tables(avctx); 352 av_freep(&s->edge_emu_buffer); 353 354 s->theora_tables = 0; 355 356 /* release all frames */ 357 vp3_decode_flush(avctx); 358 av_frame_free(&s->current_frame.f); 359 av_frame_free(&s->last_frame.f); 360 av_frame_free(&s->golden_frame.f); 361 362 for (i = 0; i < FF_ARRAY_ELEMS(s->coeff_vlc); i++) 363 ff_free_vlc(&s->coeff_vlc[i]); 364 365 ff_free_vlc(&s->superblock_run_length_vlc); 366 ff_free_vlc(&s->fragment_run_length_vlc); 367 ff_free_vlc(&s->mode_code_vlc); 368 ff_free_vlc(&s->motion_vector_vlc); 369 370 for (j = 0; j < 2; j++) 371 for (i = 0; i < 7; i++) 372 ff_free_vlc(&s->vp4_mv_vlc[j][i]); 373 374 for (i = 0; i < 2; i++) 375 ff_free_vlc(&s->block_pattern_vlc[i]); 376 return 0; 377} 378 379/** 380 * This function sets up all of the various blocks mappings: 381 * superblocks <-> fragments, macroblocks <-> fragments, 382 * superblocks <-> macroblocks 383 * 384 * @return 0 is successful; returns 1 if *anything* went wrong. 385 */ 386static int init_block_mapping(Vp3DecodeContext *s) 387{ 388 int sb_x, sb_y, plane; 389 int x, y, i, j = 0; 390 391 for (plane = 0; plane < 3; plane++) { 392 int sb_width = plane ? s->c_superblock_width 393 : s->y_superblock_width; 394 int sb_height = plane ? s->c_superblock_height 395 : s->y_superblock_height; 396 int frag_width = s->fragment_width[!!plane]; 397 int frag_height = s->fragment_height[!!plane]; 398 399 for (sb_y = 0; sb_y < sb_height; sb_y++) 400 for (sb_x = 0; sb_x < sb_width; sb_x++) 401 for (i = 0; i < 16; i++) { 402 x = 4 * sb_x + hilbert_offset[i][0]; 403 y = 4 * sb_y + hilbert_offset[i][1]; 404 405 if (x < frag_width && y < frag_height) 406 s->superblock_fragments[j++] = s->fragment_start[plane] + 407 y * frag_width + x; 408 else 409 s->superblock_fragments[j++] = -1; 410 } 411 } 412 413 return 0; /* successful path out */ 414} 415 416/* 417 * This function sets up the dequantization tables used for a particular 418 * frame. 419 */ 420static void init_dequantizer(Vp3DecodeContext *s, int qpi) 421{ 422 int ac_scale_factor = s->coded_ac_scale_factor[s->qps[qpi]]; 423 int i, plane, inter, qri, bmi, bmj, qistart; 424 425 for (inter = 0; inter < 2; inter++) { 426 for (plane = 0; plane < 3; plane++) { 427 int dc_scale_factor = s->coded_dc_scale_factor[!!plane][s->qps[qpi]]; 428 int sum = 0; 429 for (qri = 0; qri < s->qr_count[inter][plane]; qri++) { 430 sum += s->qr_size[inter][plane][qri]; 431 if (s->qps[qpi] <= sum) 432 break; 433 } 434 qistart = sum - s->qr_size[inter][plane][qri]; 435 bmi = s->qr_base[inter][plane][qri]; 436 bmj = s->qr_base[inter][plane][qri + 1]; 437 for (i = 0; i < 64; i++) { 438 int coeff = (2 * (sum - s->qps[qpi]) * s->base_matrix[bmi][i] - 439 2 * (qistart - s->qps[qpi]) * s->base_matrix[bmj][i] + 440 s->qr_size[inter][plane][qri]) / 441 (2 * s->qr_size[inter][plane][qri]); 442 443 int qmin = 8 << (inter + !i); 444 int qscale = i ? ac_scale_factor : dc_scale_factor; 445 int qbias = (1 + inter) * 3; 446 s->qmat[qpi][inter][plane][s->idct_permutation[i]] = 447 (i == 0 || s->version < 2) ? av_clip((qscale * coeff) / 100 * 4, qmin, 4096) 448 : (qscale * (coeff - qbias) / 100 + qbias) * 4; 449 } 450 /* all DC coefficients use the same quant so as not to interfere 451 * with DC prediction */ 452 s->qmat[qpi][inter][plane][0] = s->qmat[0][inter][plane][0]; 453 } 454 } 455} 456 457/* 458 * This function initializes the loop filter boundary limits if the frame's 459 * quality index is different from the previous frame's. 460 * 461 * The filter_limit_values may not be larger than 127. 462 */ 463static void init_loop_filter(Vp3DecodeContext *s) 464{ 465 ff_vp3dsp_set_bounding_values(s->bounding_values_array, s->filter_limit_values[s->qps[0]]); 466} 467 468/* 469 * This function unpacks all of the superblock/macroblock/fragment coding 470 * information from the bitstream. 471 */ 472static int unpack_superblocks(Vp3DecodeContext *s, GetBitContext *gb) 473{ 474 int superblock_starts[3] = { 475 0, s->u_superblock_start, s->v_superblock_start 476 }; 477 int bit = 0; 478 int current_superblock = 0; 479 int current_run = 0; 480 int num_partial_superblocks = 0; 481 482 int i, j; 483 int current_fragment; 484 int plane; 485 int plane0_num_coded_frags = 0; 486 487 if (s->keyframe) { 488 memset(s->superblock_coding, SB_FULLY_CODED, s->superblock_count); 489 } else { 490 /* unpack the list of partially-coded superblocks */ 491 bit = get_bits1(gb) ^ 1; 492 current_run = 0; 493 494 while (current_superblock < s->superblock_count && get_bits_left(gb) > 0) { 495 if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN) 496 bit = get_bits1(gb); 497 else 498 bit ^= 1; 499 500 current_run = get_vlc2(gb, s->superblock_run_length_vlc.table, 501 SUPERBLOCK_VLC_BITS, 2); 502 if (current_run == 34) 503 current_run += get_bits(gb, 12); 504 505 if (current_run > s->superblock_count - current_superblock) { 506 av_log(s->avctx, AV_LOG_ERROR, 507 "Invalid partially coded superblock run length\n"); 508 return -1; 509 } 510 511 memset(s->superblock_coding + current_superblock, bit, current_run); 512 513 current_superblock += current_run; 514 if (bit) 515 num_partial_superblocks += current_run; 516 } 517 518 /* unpack the list of fully coded superblocks if any of the blocks were 519 * not marked as partially coded in the previous step */ 520 if (num_partial_superblocks < s->superblock_count) { 521 int superblocks_decoded = 0; 522 523 current_superblock = 0; 524 bit = get_bits1(gb) ^ 1; 525 current_run = 0; 526 527 while (superblocks_decoded < s->superblock_count - num_partial_superblocks && 528 get_bits_left(gb) > 0) { 529 if (s->theora && current_run == MAXIMUM_LONG_BIT_RUN) 530 bit = get_bits1(gb); 531 else 532 bit ^= 1; 533 534 current_run = get_vlc2(gb, s->superblock_run_length_vlc.table, 535 SUPERBLOCK_VLC_BITS, 2); 536 if (current_run == 34) 537 current_run += get_bits(gb, 12); 538 539 for (j = 0; j < current_run; current_superblock++) { 540 if (current_superblock >= s->superblock_count) { 541 av_log(s->avctx, AV_LOG_ERROR, 542 "Invalid fully coded superblock run length\n"); 543 return -1; 544 } 545 546 /* skip any superblocks already marked as partially coded */ 547 if (s->superblock_coding[current_superblock] == SB_NOT_CODED) { 548 s->superblock_coding[current_superblock] = 2 * bit; 549 j++; 550 } 551 } 552 superblocks_decoded += current_run; 553 } 554 } 555 556 /* if there were partial blocks, initialize bitstream for 557 * unpacking fragment codings */ 558 if (num_partial_superblocks) { 559 current_run = 0; 560 bit = get_bits1(gb); 561 /* toggle the bit because as soon as the first run length is 562 * fetched the bit will be toggled again */ 563 bit ^= 1; 564 } 565 } 566 567 /* figure out which fragments are coded; iterate through each 568 * superblock (all planes) */ 569 s->total_num_coded_frags = 0; 570 memset(s->macroblock_coding, MODE_COPY, s->macroblock_count); 571 572 s->coded_fragment_list[0] = s->keyframe ? s->kf_coded_fragment_list 573 : s->nkf_coded_fragment_list; 574 575 for (plane = 0; plane < 3; plane++) { 576 int sb_start = superblock_starts[plane]; 577 int sb_end = sb_start + (plane ? s->c_superblock_count 578 : s->y_superblock_count); 579 int num_coded_frags = 0; 580 581 if (s->keyframe) { 582 if (s->num_kf_coded_fragment[plane] == -1) { 583 for (i = sb_start; i < sb_end; i++) { 584 /* iterate through all 16 fragments in a superblock */ 585 for (j = 0; j < 16; j++) { 586 /* if the fragment is in bounds, check its coding status */ 587 current_fragment = s->superblock_fragments[i * 16 + j]; 588 if (current_fragment != -1) { 589 s->coded_fragment_list[plane][num_coded_frags++] = 590 current_fragment; 591 } 592 } 593 } 594 s->num_kf_coded_fragment[plane] = num_coded_frags; 595 } else 596 num_coded_frags = s->num_kf_coded_fragment[plane]; 597 } else { 598 for (i = sb_start; i < sb_end && get_bits_left(gb) > 0; i++) { 599 if (get_bits_left(gb) < plane0_num_coded_frags >> 2) { 600 return AVERROR_INVALIDDATA; 601 } 602 /* iterate through all 16 fragments in a superblock */ 603 for (j = 0; j < 16; j++) { 604 /* if the fragment is in bounds, check its coding status */ 605 current_fragment = s->superblock_fragments[i * 16 + j]; 606 if (current_fragment != -1) { 607 int coded = s->superblock_coding[i]; 608 609 if (coded == SB_PARTIALLY_CODED) { 610 /* fragment may or may not be coded; this is the case 611 * that cares about the fragment coding runs */ 612 if (current_run-- == 0) { 613 bit ^= 1; 614 current_run = get_vlc2(gb, s->fragment_run_length_vlc.table, 5, 2); 615 } 616 coded = bit; 617 } 618 619 if (coded) { 620 /* default mode; actual mode will be decoded in 621 * the next phase */ 622 s->all_fragments[current_fragment].coding_method = 623 MODE_INTER_NO_MV; 624 s->coded_fragment_list[plane][num_coded_frags++] = 625 current_fragment; 626 } else { 627 /* not coded; copy this fragment from the prior frame */ 628 s->all_fragments[current_fragment].coding_method = 629 MODE_COPY; 630 } 631 } 632 } 633 } 634 } 635 if (!plane) 636 plane0_num_coded_frags = num_coded_frags; 637 s->total_num_coded_frags += num_coded_frags; 638 for (i = 0; i < 64; i++) 639 s->num_coded_frags[plane][i] = num_coded_frags; 640 if (plane < 2) 641 s->coded_fragment_list[plane + 1] = s->coded_fragment_list[plane] + 642 num_coded_frags; 643 } 644 return 0; 645} 646 647#define BLOCK_X (2 * mb_x + (k & 1)) 648#define BLOCK_Y (2 * mb_y + (k >> 1)) 649 650#if CONFIG_VP4_DECODER 651/** 652 * @return number of blocks, or > yuv_macroblock_count on error. 653 * return value is always >= 1. 654 */ 655static int vp4_get_mb_count(Vp3DecodeContext *s, GetBitContext *gb) 656{ 657 int v = 1; 658 int bits; 659 while ((bits = show_bits(gb, 9)) == 0x1ff) { 660 skip_bits(gb, 9); 661 v += 256; 662 if (v > s->yuv_macroblock_count) { 663 av_log(s->avctx, AV_LOG_ERROR, "Invalid run length\n"); 664 return v; 665 } 666 } 667#define body(n) { \ 668 skip_bits(gb, 2 + n); \ 669 v += (1 << n) + get_bits(gb, n); } 670#define thresh(n) (0x200 - (0x80 >> n)) 671#define else_if(n) else if (bits < thresh(n)) body(n) 672 if (bits < 0x100) { 673 skip_bits(gb, 1); 674 } else if (bits < thresh(0)) { 675 skip_bits(gb, 2); 676 v += 1; 677 } 678 else_if(1) 679 else_if(2) 680 else_if(3) 681 else_if(4) 682 else_if(5) 683 else_if(6) 684 else body(7) 685#undef body 686#undef thresh 687#undef else_if 688 return v; 689} 690 691static int vp4_get_block_pattern(Vp3DecodeContext *s, GetBitContext *gb, int *next_block_pattern_table) 692{ 693 int v = get_vlc2(gb, s->block_pattern_vlc[*next_block_pattern_table].table, 3, 2); 694 *next_block_pattern_table = vp4_block_pattern_table_selector[v]; 695 return v + 1; 696} 697 698static int vp4_unpack_macroblocks(Vp3DecodeContext *s, GetBitContext *gb) 699{ 700 int plane, i, j, k, fragment; 701 int next_block_pattern_table; 702 int bit, current_run, has_partial; 703 704 memset(s->macroblock_coding, MODE_COPY, s->macroblock_count); 705 706 if (s->keyframe) 707 return 0; 708 709 has_partial = 0; 710 bit = get_bits1(gb); 711 for (i = 0; i < s->yuv_macroblock_count; i += current_run) { 712 if (get_bits_left(gb) <= 0) 713 return AVERROR_INVALIDDATA; 714 current_run = vp4_get_mb_count(s, gb); 715 if (current_run > s->yuv_macroblock_count - i) 716 return -1; 717 memset(s->superblock_coding + i, 2 * bit, current_run); 718 bit ^= 1; 719 has_partial |= bit; 720 } 721 722 if (has_partial) { 723 if (get_bits_left(gb) <= 0) 724 return AVERROR_INVALIDDATA; 725 bit = get_bits1(gb); 726 current_run = vp4_get_mb_count(s, gb); 727 for (i = 0; i < s->yuv_macroblock_count; i++) { 728 if (!s->superblock_coding[i]) { 729 if (!current_run) { 730 bit ^= 1; 731 current_run = vp4_get_mb_count(s, gb); 732 } 733 s->superblock_coding[i] = bit; 734 current_run--; 735 } 736 } 737 if (current_run) /* handle situation when vp4_get_mb_count() fails */ 738 return -1; 739 } 740 741 next_block_pattern_table = 0; 742 i = 0; 743 for (plane = 0; plane < 3; plane++) { 744 int sb_x, sb_y; 745 int sb_width = plane ? s->c_superblock_width : s->y_superblock_width; 746 int sb_height = plane ? s->c_superblock_height : s->y_superblock_height; 747 int mb_width = plane ? s->c_macroblock_width : s->macroblock_width; 748 int mb_height = plane ? s->c_macroblock_height : s->macroblock_height; 749 int fragment_width = s->fragment_width[!!plane]; 750 int fragment_height = s->fragment_height[!!plane]; 751 752 for (sb_y = 0; sb_y < sb_height; sb_y++) { 753 for (sb_x = 0; sb_x < sb_width; sb_x++) { 754 for (j = 0; j < 4; j++) { 755 int mb_x = 2 * sb_x + (j >> 1); 756 int mb_y = 2 * sb_y + (j >> 1) ^ (j & 1); 757 int mb_coded, pattern, coded; 758 759 if (mb_x >= mb_width || mb_y >= mb_height) 760 continue; 761 762 mb_coded = s->superblock_coding[i++]; 763 764 if (mb_coded == SB_FULLY_CODED) 765 pattern = 0xF; 766 else if (mb_coded == SB_PARTIALLY_CODED) 767 pattern = vp4_get_block_pattern(s, gb, &next_block_pattern_table); 768 else 769 pattern = 0; 770 771 for (k = 0; k < 4; k++) { 772 if (BLOCK_X >= fragment_width || BLOCK_Y >= fragment_height) 773 continue; 774 fragment = s->fragment_start[plane] + BLOCK_Y * fragment_width + BLOCK_X; 775 coded = pattern & (8 >> k); 776 /* MODE_INTER_NO_MV is the default for coded fragments. 777 the actual method is decoded in the next phase. */ 778 s->all_fragments[fragment].coding_method = coded ? MODE_INTER_NO_MV : MODE_COPY; 779 } 780 } 781 } 782 } 783 } 784 return 0; 785} 786#endif 787 788/* 789 * This function unpacks all the coding mode data for individual macroblocks 790 * from the bitstream. 791 */ 792static int unpack_modes(Vp3DecodeContext *s, GetBitContext *gb) 793{ 794 int i, j, k, sb_x, sb_y; 795 int scheme; 796 int current_macroblock; 797 int current_fragment; 798 int coding_mode; 799 int custom_mode_alphabet[CODING_MODE_COUNT]; 800 const int *alphabet; 801 Vp3Fragment *frag; 802 803 if (s->keyframe) { 804 for (i = 0; i < s->fragment_count; i++) 805 s->all_fragments[i].coding_method = MODE_INTRA; 806 } else { 807 /* fetch the mode coding scheme for this frame */ 808 scheme = get_bits(gb, 3); 809 810 /* is it a custom coding scheme? */ 811 if (scheme == 0) { 812 for (i = 0; i < 8; i++) 813 custom_mode_alphabet[i] = MODE_INTER_NO_MV; 814 for (i = 0; i < 8; i++) 815 custom_mode_alphabet[get_bits(gb, 3)] = i; 816 alphabet = custom_mode_alphabet; 817 } else 818 alphabet = ModeAlphabet[scheme - 1]; 819 820 /* iterate through all of the macroblocks that contain 1 or more 821 * coded fragments */ 822 for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) { 823 for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) { 824 if (get_bits_left(gb) <= 0) 825 return -1; 826 827 for (j = 0; j < 4; j++) { 828 int mb_x = 2 * sb_x + (j >> 1); 829 int mb_y = 2 * sb_y + (((j >> 1) + j) & 1); 830 current_macroblock = mb_y * s->macroblock_width + mb_x; 831 832 if (mb_x >= s->macroblock_width || 833 mb_y >= s->macroblock_height) 834 continue; 835 836 /* coding modes are only stored if the macroblock has 837 * at least one luma block coded, otherwise it must be 838 * INTER_NO_MV */ 839 for (k = 0; k < 4; k++) { 840 current_fragment = BLOCK_Y * 841 s->fragment_width[0] + BLOCK_X; 842 if (s->all_fragments[current_fragment].coding_method != MODE_COPY) 843 break; 844 } 845 if (k == 4) { 846 s->macroblock_coding[current_macroblock] = MODE_INTER_NO_MV; 847 continue; 848 } 849 850 /* mode 7 means get 3 bits for each coding mode */ 851 if (scheme == 7) 852 coding_mode = get_bits(gb, 3); 853 else 854 coding_mode = alphabet[get_vlc2(gb, s->mode_code_vlc.table, 3, 3)]; 855 856 s->macroblock_coding[current_macroblock] = coding_mode; 857 for (k = 0; k < 4; k++) { 858 frag = s->all_fragments + BLOCK_Y * s->fragment_width[0] + BLOCK_X; 859 if (frag->coding_method != MODE_COPY) 860 frag->coding_method = coding_mode; 861 } 862 863#define SET_CHROMA_MODES \ 864 if (frag[s->fragment_start[1]].coding_method != MODE_COPY) \ 865 frag[s->fragment_start[1]].coding_method = coding_mode; \ 866 if (frag[s->fragment_start[2]].coding_method != MODE_COPY) \ 867 frag[s->fragment_start[2]].coding_method = coding_mode; 868 869 if (s->chroma_y_shift) { 870 frag = s->all_fragments + mb_y * 871 s->fragment_width[1] + mb_x; 872 SET_CHROMA_MODES 873 } else if (s->chroma_x_shift) { 874 frag = s->all_fragments + 875 2 * mb_y * s->fragment_width[1] + mb_x; 876 for (k = 0; k < 2; k++) { 877 SET_CHROMA_MODES 878 frag += s->fragment_width[1]; 879 } 880 } else { 881 for (k = 0; k < 4; k++) { 882 frag = s->all_fragments + 883 BLOCK_Y * s->fragment_width[1] + BLOCK_X; 884 SET_CHROMA_MODES 885 } 886 } 887 } 888 } 889 } 890 } 891 892 return 0; 893} 894 895static int vp4_get_mv(Vp3DecodeContext *s, GetBitContext *gb, int axis, int last_motion) 896{ 897 int v = get_vlc2(gb, s->vp4_mv_vlc[axis][vp4_mv_table_selector[FFABS(last_motion)]].table, 898 VP4_MV_VLC_BITS, 2); 899 return last_motion < 0 ? -v : v; 900} 901 902/* 903 * This function unpacks all the motion vectors for the individual 904 * macroblocks from the bitstream. 905 */ 906static int unpack_vectors(Vp3DecodeContext *s, GetBitContext *gb) 907{ 908 int j, k, sb_x, sb_y; 909 int coding_mode; 910 int motion_x[4]; 911 int motion_y[4]; 912 int last_motion_x = 0; 913 int last_motion_y = 0; 914 int prior_last_motion_x = 0; 915 int prior_last_motion_y = 0; 916 int last_gold_motion_x = 0; 917 int last_gold_motion_y = 0; 918 int current_macroblock; 919 int current_fragment; 920 int frag; 921 922 if (s->keyframe) 923 return 0; 924 925 /* coding mode 0 is the VLC scheme; 1 is the fixed code scheme; 2 is VP4 code scheme */ 926 coding_mode = s->version < 2 ? get_bits1(gb) : 2; 927 928 /* iterate through all of the macroblocks that contain 1 or more 929 * coded fragments */ 930 for (sb_y = 0; sb_y < s->y_superblock_height; sb_y++) { 931 for (sb_x = 0; sb_x < s->y_superblock_width; sb_x++) { 932 if (get_bits_left(gb) <= 0) 933 return -1; 934 935 for (j = 0; j < 4; j++) { 936 int mb_x = 2 * sb_x + (j >> 1); 937 int mb_y = 2 * sb_y + (((j >> 1) + j) & 1); 938 current_macroblock = mb_y * s->macroblock_width + mb_x; 939 940 if (mb_x >= s->macroblock_width || 941 mb_y >= s->macroblock_height || 942 s->macroblock_coding[current_macroblock] == MODE_COPY) 943 continue; 944 945 switch (s->macroblock_coding[current_macroblock]) { 946 case MODE_GOLDEN_MV: 947 if (coding_mode == 2) { /* VP4 */ 948 last_gold_motion_x = motion_x[0] = vp4_get_mv(s, gb, 0, last_gold_motion_x); 949 last_gold_motion_y = motion_y[0] = vp4_get_mv(s, gb, 1, last_gold_motion_y); 950 break; 951 } /* otherwise fall through */ 952 case MODE_INTER_PLUS_MV: 953 /* all 6 fragments use the same motion vector */ 954 if (coding_mode == 0) { 955 motion_x[0] = get_vlc2(gb, s->motion_vector_vlc.table, 956 VP3_MV_VLC_BITS, 2); 957 motion_y[0] = get_vlc2(gb, s->motion_vector_vlc.table, 958 VP3_MV_VLC_BITS, 2); 959 } else if (coding_mode == 1) { 960 motion_x[0] = fixed_motion_vector_table[get_bits(gb, 6)]; 961 motion_y[0] = fixed_motion_vector_table[get_bits(gb, 6)]; 962 } else { /* VP4 */ 963 motion_x[0] = vp4_get_mv(s, gb, 0, last_motion_x); 964 motion_y[0] = vp4_get_mv(s, gb, 1, last_motion_y); 965 } 966 967 /* vector maintenance, only on MODE_INTER_PLUS_MV */ 968 if (s->macroblock_coding[current_macroblock] == MODE_INTER_PLUS_MV) { 969 prior_last_motion_x = last_motion_x; 970 prior_last_motion_y = last_motion_y; 971 last_motion_x = motion_x[0]; 972 last_motion_y = motion_y[0]; 973 } 974 break; 975 976 case MODE_INTER_FOURMV: 977 /* vector maintenance */ 978 prior_last_motion_x = last_motion_x; 979 prior_last_motion_y = last_motion_y; 980 981 /* fetch 4 vectors from the bitstream, one for each 982 * Y fragment, then average for the C fragment vectors */ 983 for (k = 0; k < 4; k++) { 984 current_fragment = BLOCK_Y * s->fragment_width[0] + BLOCK_X; 985 if (s->all_fragments[current_fragment].coding_method != MODE_COPY) { 986 if (coding_mode == 0) { 987 motion_x[k] = get_vlc2(gb, s->motion_vector_vlc.table, 988 VP3_MV_VLC_BITS, 2); 989 motion_y[k] = get_vlc2(gb, s->motion_vector_vlc.table, 990 VP3_MV_VLC_BITS, 2); 991 } else if (coding_mode == 1) { 992 motion_x[k] = fixed_motion_vector_table[get_bits(gb, 6)]; 993 motion_y[k] = fixed_motion_vector_table[get_bits(gb, 6)]; 994 } else { /* VP4 */ 995 motion_x[k] = vp4_get_mv(s, gb, 0, prior_last_motion_x); 996 motion_y[k] = vp4_get_mv(s, gb, 1, prior_last_motion_y); 997 } 998 last_motion_x = motion_x[k]; 999 last_motion_y = motion_y[k]; 1000 } else { 1001 motion_x[k] = 0; 1002 motion_y[k] = 0; 1003 } 1004 } 1005 break; 1006 1007 case MODE_INTER_LAST_MV: 1008 /* all 6 fragments use the last motion vector */ 1009 motion_x[0] = last_motion_x; 1010 motion_y[0] = last_motion_y; 1011 1012 /* no vector maintenance (last vector remains the 1013 * last vector) */ 1014 break; 1015 1016 case MODE_INTER_PRIOR_LAST: 1017 /* all 6 fragments use the motion vector prior to the 1018 * last motion vector */ 1019 motion_x[0] = prior_last_motion_x; 1020 motion_y[0] = prior_last_motion_y; 1021 1022 /* vector maintenance */ 1023 prior_last_motion_x = last_motion_x; 1024 prior_last_motion_y = last_motion_y; 1025 last_motion_x = motion_x[0]; 1026 last_motion_y = motion_y[0]; 1027 break; 1028 1029 default: 1030 /* covers intra, inter without MV, golden without MV */ 1031 motion_x[0] = 0; 1032 motion_y[0] = 0; 1033 1034 /* no vector maintenance */ 1035 break; 1036 } 1037 1038 /* assign the motion vectors to the correct fragments */ 1039 for (k = 0; k < 4; k++) { 1040 current_fragment = 1041 BLOCK_Y * s->fragment_width[0] + BLOCK_X; 1042 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { 1043 s->motion_val[0][current_fragment][0] = motion_x[k]; 1044 s->motion_val[0][current_fragment][1] = motion_y[k]; 1045 } else { 1046 s->motion_val[0][current_fragment][0] = motion_x[0]; 1047 s->motion_val[0][current_fragment][1] = motion_y[0]; 1048 } 1049 } 1050 1051 if (s->chroma_y_shift) { 1052 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { 1053 motion_x[0] = RSHIFT(motion_x[0] + motion_x[1] + 1054 motion_x[2] + motion_x[3], 2); 1055 motion_y[0] = RSHIFT(motion_y[0] + motion_y[1] + 1056 motion_y[2] + motion_y[3], 2); 1057 } 1058 if (s->version <= 2) { 1059 motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1); 1060 motion_y[0] = (motion_y[0] >> 1) | (motion_y[0] & 1); 1061 } 1062 frag = mb_y * s->fragment_width[1] + mb_x; 1063 s->motion_val[1][frag][0] = motion_x[0]; 1064 s->motion_val[1][frag][1] = motion_y[0]; 1065 } else if (s->chroma_x_shift) { 1066 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { 1067 motion_x[0] = RSHIFT(motion_x[0] + motion_x[1], 1); 1068 motion_y[0] = RSHIFT(motion_y[0] + motion_y[1], 1); 1069 motion_x[1] = RSHIFT(motion_x[2] + motion_x[3], 1); 1070 motion_y[1] = RSHIFT(motion_y[2] + motion_y[3], 1); 1071 } else { 1072 motion_x[1] = motion_x[0]; 1073 motion_y[1] = motion_y[0]; 1074 } 1075 if (s->version <= 2) { 1076 motion_x[0] = (motion_x[0] >> 1) | (motion_x[0] & 1); 1077 motion_x[1] = (motion_x[1] >> 1) | (motion_x[1] & 1); 1078 } 1079 frag = 2 * mb_y * s->fragment_width[1] + mb_x; 1080 for (k = 0; k < 2; k++) { 1081 s->motion_val[1][frag][0] = motion_x[k]; 1082 s->motion_val[1][frag][1] = motion_y[k]; 1083 frag += s->fragment_width[1]; 1084 } 1085 } else { 1086 for (k = 0; k < 4; k++) { 1087 frag = BLOCK_Y * s->fragment_width[1] + BLOCK_X; 1088 if (s->macroblock_coding[current_macroblock] == MODE_INTER_FOURMV) { 1089 s->motion_val[1][frag][0] = motion_x[k]; 1090 s->motion_val[1][frag][1] = motion_y[k]; 1091 } else { 1092 s->motion_val[1][frag][0] = motion_x[0]; 1093 s->motion_val[1][frag][1] = motion_y[0]; 1094 } 1095 } 1096 } 1097 } 1098 } 1099 } 1100 1101 return 0; 1102} 1103 1104static int unpack_block_qpis(Vp3DecodeContext *s, GetBitContext *gb) 1105{ 1106 int qpi, i, j, bit, run_length, blocks_decoded, num_blocks_at_qpi; 1107 int num_blocks = s->total_num_coded_frags; 1108 1109 for (qpi = 0; qpi < s->nqps - 1 && num_blocks > 0; qpi++) { 1110 i = blocks_decoded = num_blocks_at_qpi = 0; 1111 1112 bit = get_bits1(gb) ^ 1; 1113 run_length = 0; 1114 1115 do { 1116 if (run_length == MAXIMUM_LONG_BIT_RUN) 1117 bit = get_bits1(gb); 1118 else 1119 bit ^= 1; 1120 1121 run_length = get_vlc2(gb, s->superblock_run_length_vlc.table, 1122 SUPERBLOCK_VLC_BITS, 2); 1123 if (run_length == 34) 1124 run_length += get_bits(gb, 12); 1125 blocks_decoded += run_length; 1126 1127 if (!bit) 1128 num_blocks_at_qpi += run_length; 1129 1130 for (j = 0; j < run_length; i++) { 1131 if (i >= s->total_num_coded_frags) 1132 return -1; 1133 1134 if (s->all_fragments[s->coded_fragment_list[0][i]].qpi == qpi) { 1135 s->all_fragments[s->coded_fragment_list[0][i]].qpi += bit; 1136 j++; 1137 } 1138 } 1139 } while (blocks_decoded < num_blocks && get_bits_left(gb) > 0); 1140 1141 num_blocks -= num_blocks_at_qpi; 1142 } 1143 1144 return 0; 1145} 1146 1147static inline int get_eob_run(GetBitContext *gb, int token) 1148{ 1149 int v = eob_run_table[token].base; 1150 if (eob_run_table[token].bits) 1151 v += get_bits(gb, eob_run_table[token].bits); 1152 return v; 1153} 1154 1155static inline int get_coeff(GetBitContext *gb, int token, int16_t *coeff) 1156{ 1157 int bits_to_get, zero_run; 1158 1159 bits_to_get = coeff_get_bits[token]; 1160 if (bits_to_get) 1161 bits_to_get = get_bits(gb, bits_to_get); 1162 *coeff = coeff_tables[token][bits_to_get]; 1163 1164 zero_run = zero_run_base[token]; 1165 if (zero_run_get_bits[token]) 1166 zero_run += get_bits(gb, zero_run_get_bits[token]); 1167 1168 return zero_run; 1169} 1170 1171/* 1172 * This function is called by unpack_dct_coeffs() to extract the VLCs from 1173 * the bitstream. The VLCs encode tokens which are used to unpack DCT 1174 * data. This function unpacks all the VLCs for either the Y plane or both 1175 * C planes, and is called for DC coefficients or different AC coefficient 1176 * levels (since different coefficient types require different VLC tables. 1177 * 1178 * This function returns a residual eob run. E.g, if a particular token gave 1179 * instructions to EOB the next 5 fragments and there were only 2 fragments 1180 * left in the current fragment range, 3 would be returned so that it could 1181 * be passed into the next call to this same function. 1182 */ 1183static int unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb, 1184 VLC *table, int coeff_index, 1185 int plane, 1186 int eob_run) 1187{ 1188 int i, j = 0; 1189 int token; 1190 int zero_run = 0; 1191 int16_t coeff = 0; 1192 int blocks_ended; 1193 int coeff_i = 0; 1194 int num_coeffs = s->num_coded_frags[plane][coeff_index]; 1195 int16_t *dct_tokens = s->dct_tokens[plane][coeff_index]; 1196 1197 /* local references to structure members to avoid repeated dereferences */ 1198 int *coded_fragment_list = s->coded_fragment_list[plane]; 1199 Vp3Fragment *all_fragments = s->all_fragments; 1200 const VLCElem *vlc_table = table->table; 1201 1202 if (num_coeffs < 0) { 1203 av_log(s->avctx, AV_LOG_ERROR, 1204 "Invalid number of coefficients at level %d\n", coeff_index); 1205 return AVERROR_INVALIDDATA; 1206 } 1207 1208 if (eob_run > num_coeffs) { 1209 coeff_i = 1210 blocks_ended = num_coeffs; 1211 eob_run -= num_coeffs; 1212 } else { 1213 coeff_i = 1214 blocks_ended = eob_run; 1215 eob_run = 0; 1216 } 1217 1218 // insert fake EOB token to cover the split between planes or zzi 1219 if (blocks_ended) 1220 dct_tokens[j++] = blocks_ended << 2; 1221 1222 while (coeff_i < num_coeffs && get_bits_left(gb) > 0) { 1223 /* decode a VLC into a token */ 1224 token = get_vlc2(gb, vlc_table, 11, 3); 1225 /* use the token to get a zero run, a coefficient, and an eob run */ 1226 if ((unsigned) token <= 6U) { 1227 eob_run = get_eob_run(gb, token); 1228 if (!eob_run) 1229 eob_run = INT_MAX; 1230 1231 // record only the number of blocks ended in this plane, 1232 // any spill will be recorded in the next plane. 1233 if (eob_run > num_coeffs - coeff_i) { 1234 dct_tokens[j++] = TOKEN_EOB(num_coeffs - coeff_i); 1235 blocks_ended += num_coeffs - coeff_i; 1236 eob_run -= num_coeffs - coeff_i; 1237 coeff_i = num_coeffs; 1238 } else { 1239 dct_tokens[j++] = TOKEN_EOB(eob_run); 1240 blocks_ended += eob_run; 1241 coeff_i += eob_run; 1242 eob_run = 0; 1243 } 1244 } else if (token >= 0) { 1245 zero_run = get_coeff(gb, token, &coeff); 1246 1247 if (zero_run) { 1248 dct_tokens[j++] = TOKEN_ZERO_RUN(coeff, zero_run); 1249 } else { 1250 // Save DC into the fragment structure. DC prediction is 1251 // done in raster order, so the actual DC can't be in with 1252 // other tokens. We still need the token in dct_tokens[] 1253 // however, or else the structure collapses on itself. 1254 if (!coeff_index) 1255 all_fragments[coded_fragment_list[coeff_i]].dc = coeff; 1256 1257 dct_tokens[j++] = TOKEN_COEFF(coeff); 1258 } 1259 1260 if (coeff_index + zero_run > 64) { 1261 av_log(s->avctx, AV_LOG_DEBUG, 1262 "Invalid zero run of %d with %d coeffs left\n", 1263 zero_run, 64 - coeff_index); 1264 zero_run = 64 - coeff_index; 1265 } 1266 1267 // zero runs code multiple coefficients, 1268 // so don't try to decode coeffs for those higher levels 1269 for (i = coeff_index + 1; i <= coeff_index + zero_run; i++) 1270 s->num_coded_frags[plane][i]--; 1271 coeff_i++; 1272 } else { 1273 av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token); 1274 return -1; 1275 } 1276 } 1277 1278 if (blocks_ended > s->num_coded_frags[plane][coeff_index]) 1279 av_log(s->avctx, AV_LOG_ERROR, "More blocks ended than coded!\n"); 1280 1281 // decrement the number of blocks that have higher coefficients for each 1282 // EOB run at this level 1283 if (blocks_ended) 1284 for (i = coeff_index + 1; i < 64; i++) 1285 s->num_coded_frags[plane][i] -= blocks_ended; 1286 1287 // setup the next buffer 1288 if (plane < 2) 1289 s->dct_tokens[plane + 1][coeff_index] = dct_tokens + j; 1290 else if (coeff_index < 63) 1291 s->dct_tokens[0][coeff_index + 1] = dct_tokens + j; 1292 1293 return eob_run; 1294} 1295 1296static void reverse_dc_prediction(Vp3DecodeContext *s, 1297 int first_fragment, 1298 int fragment_width, 1299 int fragment_height); 1300/* 1301 * This function unpacks all of the DCT coefficient data from the 1302 * bitstream. 1303 */ 1304static int unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb) 1305{ 1306 int i; 1307 int dc_y_table; 1308 int dc_c_table; 1309 int ac_y_table; 1310 int ac_c_table; 1311 int residual_eob_run = 0; 1312 VLC *y_tables[64]; 1313 VLC *c_tables[64]; 1314 1315 s->dct_tokens[0][0] = s->dct_tokens_base; 1316 1317 if (get_bits_left(gb) < 16) 1318 return AVERROR_INVALIDDATA; 1319 1320 /* fetch the DC table indexes */ 1321 dc_y_table = get_bits(gb, 4); 1322 dc_c_table = get_bits(gb, 4); 1323 1324 /* unpack the Y plane DC coefficients */ 1325 residual_eob_run = unpack_vlcs(s, gb, &s->coeff_vlc[dc_y_table], 0, 1326 0, residual_eob_run); 1327 if (residual_eob_run < 0) 1328 return residual_eob_run; 1329 if (get_bits_left(gb) < 8) 1330 return AVERROR_INVALIDDATA; 1331 1332 /* reverse prediction of the Y-plane DC coefficients */ 1333 reverse_dc_prediction(s, 0, s->fragment_width[0], s->fragment_height[0]); 1334 1335 /* unpack the C plane DC coefficients */ 1336 residual_eob_run = unpack_vlcs(s, gb, &s->coeff_vlc[dc_c_table], 0, 1337 1, residual_eob_run); 1338 if (residual_eob_run < 0) 1339 return residual_eob_run; 1340 residual_eob_run = unpack_vlcs(s, gb, &s->coeff_vlc[dc_c_table], 0, 1341 2, residual_eob_run); 1342 if (residual_eob_run < 0) 1343 return residual_eob_run; 1344 1345 /* reverse prediction of the C-plane DC coefficients */ 1346 if (!(s->avctx->flags & AV_CODEC_FLAG_GRAY)) { 1347 reverse_dc_prediction(s, s->fragment_start[1], 1348 s->fragment_width[1], s->fragment_height[1]); 1349 reverse_dc_prediction(s, s->fragment_start[2], 1350 s->fragment_width[1], s->fragment_height[1]); 1351 } 1352 1353 if (get_bits_left(gb) < 8) 1354 return AVERROR_INVALIDDATA; 1355 /* fetch the AC table indexes */ 1356 ac_y_table = get_bits(gb, 4); 1357 ac_c_table = get_bits(gb, 4); 1358 1359 /* build tables of AC VLC tables */ 1360 for (i = 1; i <= 5; i++) { 1361 /* AC VLC table group 1 */ 1362 y_tables[i] = &s->coeff_vlc[ac_y_table + 16]; 1363 c_tables[i] = &s->coeff_vlc[ac_c_table + 16]; 1364 } 1365 for (i = 6; i <= 14; i++) { 1366 /* AC VLC table group 2 */ 1367 y_tables[i] = &s->coeff_vlc[ac_y_table + 32]; 1368 c_tables[i] = &s->coeff_vlc[ac_c_table + 32]; 1369 } 1370 for (i = 15; i <= 27; i++) { 1371 /* AC VLC table group 3 */ 1372 y_tables[i] = &s->coeff_vlc[ac_y_table + 48]; 1373 c_tables[i] = &s->coeff_vlc[ac_c_table + 48]; 1374 } 1375 for (i = 28; i <= 63; i++) { 1376 /* AC VLC table group 4 */ 1377 y_tables[i] = &s->coeff_vlc[ac_y_table + 64]; 1378 c_tables[i] = &s->coeff_vlc[ac_c_table + 64]; 1379 } 1380 1381 /* decode all AC coefficients */ 1382 for (i = 1; i <= 63; i++) { 1383 residual_eob_run = unpack_vlcs(s, gb, y_tables[i], i, 1384 0, residual_eob_run); 1385 if (residual_eob_run < 0) 1386 return residual_eob_run; 1387 1388 residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i, 1389 1, residual_eob_run); 1390 if (residual_eob_run < 0) 1391 return residual_eob_run; 1392 residual_eob_run = unpack_vlcs(s, gb, c_tables[i], i, 1393 2, residual_eob_run); 1394 if (residual_eob_run < 0) 1395 return residual_eob_run; 1396 } 1397 1398 return 0; 1399} 1400 1401#if CONFIG_VP4_DECODER 1402/** 1403 * eob_tracker[] is instead of TOKEN_EOB(value) 1404 * a dummy TOKEN_EOB(0) value is used to make vp3_dequant work 1405 * 1406 * @return < 0 on error 1407 */ 1408static int vp4_unpack_vlcs(Vp3DecodeContext *s, GetBitContext *gb, 1409 VLC *vlc_tables[64], 1410 int plane, int eob_tracker[64], int fragment) 1411{ 1412 int token; 1413 int zero_run = 0; 1414 int16_t coeff = 0; 1415 int coeff_i = 0; 1416 int eob_run; 1417 1418 while (!eob_tracker[coeff_i]) { 1419 if (get_bits_left(gb) < 1) 1420 return AVERROR_INVALIDDATA; 1421 1422 token = get_vlc2(gb, vlc_tables[coeff_i]->table, 11, 3); 1423 1424 /* use the token to get a zero run, a coefficient, and an eob run */ 1425 if ((unsigned) token <= 6U) { 1426 eob_run = get_eob_run(gb, token); 1427 *s->dct_tokens[plane][coeff_i]++ = TOKEN_EOB(0); 1428 eob_tracker[coeff_i] = eob_run - 1; 1429 return 0; 1430 } else if (token >= 0) { 1431 zero_run = get_coeff(gb, token, &coeff); 1432 1433 if (zero_run) { 1434 if (coeff_i + zero_run > 64) { 1435 av_log(s->avctx, AV_LOG_DEBUG, 1436 "Invalid zero run of %d with %d coeffs left\n", 1437 zero_run, 64 - coeff_i); 1438 zero_run = 64 - coeff_i; 1439 } 1440 *s->dct_tokens[plane][coeff_i]++ = TOKEN_ZERO_RUN(coeff, zero_run); 1441 coeff_i += zero_run; 1442 } else { 1443 if (!coeff_i) 1444 s->all_fragments[fragment].dc = coeff; 1445 1446 *s->dct_tokens[plane][coeff_i]++ = TOKEN_COEFF(coeff); 1447 } 1448 coeff_i++; 1449 if (coeff_i >= 64) /* > 64 occurs when there is a zero_run overflow */ 1450 return 0; /* stop */ 1451 } else { 1452 av_log(s->avctx, AV_LOG_ERROR, "Invalid token %d\n", token); 1453 return -1; 1454 } 1455 } 1456 *s->dct_tokens[plane][coeff_i]++ = TOKEN_EOB(0); 1457 eob_tracker[coeff_i]--; 1458 return 0; 1459} 1460 1461static void vp4_dc_predictor_reset(VP4Predictor *p) 1462{ 1463 p->dc = 0; 1464 p->type = VP4_DC_UNDEFINED; 1465} 1466 1467static void vp4_dc_pred_before(const Vp3DecodeContext *s, VP4Predictor dc_pred[6][6], int sb_x) 1468{ 1469 int i, j; 1470 1471 for (i = 0; i < 4; i++) 1472 dc_pred[0][i + 1] = s->dc_pred_row[sb_x * 4 + i]; 1473 1474 for (j = 1; j < 5; j++) 1475 for (i = 0; i < 4; i++) 1476 vp4_dc_predictor_reset(&dc_pred[j][i + 1]); 1477} 1478 1479static void vp4_dc_pred_after(Vp3DecodeContext *s, VP4Predictor dc_pred[6][6], int sb_x) 1480{ 1481 int i; 1482 1483 for (i = 0; i < 4; i++) 1484 s->dc_pred_row[sb_x * 4 + i] = dc_pred[4][i + 1]; 1485 1486 for (i = 1; i < 5; i++) 1487 dc_pred[i][0] = dc_pred[i][4]; 1488} 1489 1490/* note: dc_pred points to the current block */ 1491static int vp4_dc_pred(const Vp3DecodeContext *s, const VP4Predictor * dc_pred, const int * last_dc, int type, int plane) 1492{ 1493 int count = 0; 1494 int dc = 0; 1495 1496 if (dc_pred[-6].type == type) { 1497 dc += dc_pred[-6].dc; 1498 count++; 1499 } 1500 1501 if (dc_pred[6].type == type) { 1502 dc += dc_pred[6].dc; 1503 count++; 1504 } 1505 1506 if (count != 2 && dc_pred[-1].type == type) { 1507 dc += dc_pred[-1].dc; 1508 count++; 1509 } 1510 1511 if (count != 2 && dc_pred[1].type == type) { 1512 dc += dc_pred[1].dc; 1513 count++; 1514 } 1515 1516 /* using division instead of shift to correctly handle negative values */ 1517 return count == 2 ? dc / 2 : last_dc[type]; 1518} 1519 1520static void vp4_set_tokens_base(Vp3DecodeContext *s) 1521{ 1522 int plane, i; 1523 int16_t *base = s->dct_tokens_base; 1524 for (plane = 0; plane < 3; plane++) { 1525 for (i = 0; i < 64; i++) { 1526 s->dct_tokens[plane][i] = base; 1527 base += s->fragment_width[!!plane] * s->fragment_height[!!plane]; 1528 } 1529 } 1530} 1531 1532static int vp4_unpack_dct_coeffs(Vp3DecodeContext *s, GetBitContext *gb) 1533{ 1534 int i, j; 1535 int dc_y_table; 1536 int dc_c_table; 1537 int ac_y_table; 1538 int ac_c_table; 1539 VLC *tables[2][64]; 1540 int plane, sb_y, sb_x; 1541 int eob_tracker[64]; 1542 VP4Predictor dc_pred[6][6]; 1543 int last_dc[NB_VP4_DC_TYPES]; 1544 1545 if (get_bits_left(gb) < 16) 1546 return AVERROR_INVALIDDATA; 1547 1548 /* fetch the DC table indexes */ 1549 dc_y_table = get_bits(gb, 4); 1550 dc_c_table = get_bits(gb, 4); 1551 1552 ac_y_table = get_bits(gb, 4); 1553 ac_c_table = get_bits(gb, 4); 1554 1555 /* build tables of DC/AC VLC tables */ 1556 1557 /* DC table group */ 1558 tables[0][0] = &s->coeff_vlc[dc_y_table]; 1559 tables[1][0] = &s->coeff_vlc[dc_c_table]; 1560 for (i = 1; i <= 5; i++) { 1561 /* AC VLC table group 1 */ 1562 tables[0][i] = &s->coeff_vlc[ac_y_table + 16]; 1563 tables[1][i] = &s->coeff_vlc[ac_c_table + 16]; 1564 } 1565 for (i = 6; i <= 14; i++) { 1566 /* AC VLC table group 2 */ 1567 tables[0][i] = &s->coeff_vlc[ac_y_table + 32]; 1568 tables[1][i] = &s->coeff_vlc[ac_c_table + 32]; 1569 } 1570 for (i = 15; i <= 27; i++) { 1571 /* AC VLC table group 3 */ 1572 tables[0][i] = &s->coeff_vlc[ac_y_table + 48]; 1573 tables[1][i] = &s->coeff_vlc[ac_c_table + 48]; 1574 } 1575 for (i = 28; i <= 63; i++) { 1576 /* AC VLC table group 4 */ 1577 tables[0][i] = &s->coeff_vlc[ac_y_table + 64]; 1578 tables[1][i] = &s->coeff_vlc[ac_c_table + 64]; 1579 } 1580 1581 vp4_set_tokens_base(s); 1582 1583 memset(last_dc, 0, sizeof(last_dc)); 1584 1585 for (plane = 0; plane < ((s->avctx->flags & AV_CODEC_FLAG_GRAY) ? 1 : 3); plane++) { 1586 memset(eob_tracker, 0, sizeof(eob_tracker)); 1587 1588 /* initialise dc prediction */ 1589 for (i = 0; i < s->fragment_width[!!plane]; i++) 1590 vp4_dc_predictor_reset(&s->dc_pred_row[i]); 1591 1592 for (j = 0; j < 6; j++) 1593 for (i = 0; i < 6; i++) 1594 vp4_dc_predictor_reset(&dc_pred[j][i]); 1595 1596 for (sb_y = 0; sb_y * 4 < s->fragment_height[!!plane]; sb_y++) { 1597 for (sb_x = 0; sb_x *4 < s->fragment_width[!!plane]; sb_x++) { 1598 vp4_dc_pred_before(s, dc_pred, sb_x); 1599 for (j = 0; j < 16; j++) { 1600 int hx = hilbert_offset[j][0]; 1601 int hy = hilbert_offset[j][1]; 1602 int x = 4 * sb_x + hx; 1603 int y = 4 * sb_y + hy; 1604 VP4Predictor *this_dc_pred = &dc_pred[hy + 1][hx + 1]; 1605 int fragment, dc_block_type; 1606 1607 if (x >= s->fragment_width[!!plane] || y >= s->fragment_height[!!plane]) 1608 continue; 1609 1610 fragment = s->fragment_start[plane] + y * s->fragment_width[!!plane] + x; 1611 1612 if (s->all_fragments[fragment].coding_method == MODE_COPY) 1613 continue; 1614 1615 if (vp4_unpack_vlcs(s, gb, tables[!!plane], plane, eob_tracker, fragment) < 0) 1616 return -1; 1617 1618 dc_block_type = vp4_pred_block_type_map[s->all_fragments[fragment].coding_method]; 1619 1620 s->all_fragments[fragment].dc += 1621 vp4_dc_pred(s, this_dc_pred, last_dc, dc_block_type, plane); 1622 1623 this_dc_pred->type = dc_block_type, 1624 this_dc_pred->dc = last_dc[dc_block_type] = s->all_fragments[fragment].dc; 1625 } 1626 vp4_dc_pred_after(s, dc_pred, sb_x); 1627 } 1628 } 1629 } 1630 1631 vp4_set_tokens_base(s); 1632 1633 return 0; 1634} 1635#endif 1636 1637/* 1638 * This function reverses the DC prediction for each coded fragment in 1639 * the frame. Much of this function is adapted directly from the original 1640 * VP3 source code. 1641 */ 1642#define COMPATIBLE_FRAME(x) \ 1643 (compatible_frame[s->all_fragments[x].coding_method] == current_frame_type) 1644#define DC_COEFF(u) s->all_fragments[u].dc 1645 1646static void reverse_dc_prediction(Vp3DecodeContext *s, 1647 int first_fragment, 1648 int fragment_width, 1649 int fragment_height) 1650{ 1651#define PUL 8 1652#define PU 4 1653#define PUR 2 1654#define PL 1 1655 1656 int x, y; 1657 int i = first_fragment; 1658 1659 int predicted_dc; 1660 1661 /* DC values for the left, up-left, up, and up-right fragments */ 1662 int vl, vul, vu, vur; 1663 1664 /* indexes for the left, up-left, up, and up-right fragments */ 1665 int l, ul, u, ur; 1666 1667 /* 1668 * The 6 fields mean: 1669 * 0: up-left multiplier 1670 * 1: up multiplier 1671 * 2: up-right multiplier 1672 * 3: left multiplier 1673 */ 1674 static const int predictor_transform[16][4] = { 1675 { 0, 0, 0, 0 }, 1676 { 0, 0, 0, 128 }, // PL 1677 { 0, 0, 128, 0 }, // PUR 1678 { 0, 0, 53, 75 }, // PUR|PL 1679 { 0, 128, 0, 0 }, // PU 1680 { 0, 64, 0, 64 }, // PU |PL 1681 { 0, 128, 0, 0 }, // PU |PUR 1682 { 0, 0, 53, 75 }, // PU |PUR|PL 1683 { 128, 0, 0, 0 }, // PUL 1684 { 0, 0, 0, 128 }, // PUL|PL 1685 { 64, 0, 64, 0 }, // PUL|PUR 1686 { 0, 0, 53, 75 }, // PUL|PUR|PL 1687 { 0, 128, 0, 0 }, // PUL|PU 1688 { -104, 116, 0, 116 }, // PUL|PU |PL 1689 { 24, 80, 24, 0 }, // PUL|PU |PUR 1690 { -104, 116, 0, 116 } // PUL|PU |PUR|PL 1691 }; 1692 1693 /* This table shows which types of blocks can use other blocks for 1694 * prediction. For example, INTRA is the only mode in this table to 1695 * have a frame number of 0. That means INTRA blocks can only predict 1696 * from other INTRA blocks. There are 2 golden frame coding types; 1697 * blocks encoding in these modes can only predict from other blocks 1698 * that were encoded with these 1 of these 2 modes. */ 1699 static const unsigned char compatible_frame[9] = { 1700 1, /* MODE_INTER_NO_MV */ 1701 0, /* MODE_INTRA */ 1702 1, /* MODE_INTER_PLUS_MV */ 1703 1, /* MODE_INTER_LAST_MV */ 1704 1, /* MODE_INTER_PRIOR_MV */ 1705 2, /* MODE_USING_GOLDEN */ 1706 2, /* MODE_GOLDEN_MV */ 1707 1, /* MODE_INTER_FOUR_MV */ 1708 3 /* MODE_COPY */ 1709 }; 1710 int current_frame_type; 1711 1712 /* there is a last DC predictor for each of the 3 frame types */ 1713 short last_dc[3]; 1714 1715 int transform = 0; 1716 1717 vul = 1718 vu = 1719 vur = 1720 vl = 0; 1721 last_dc[0] = 1722 last_dc[1] = 1723 last_dc[2] = 0; 1724 1725 /* for each fragment row... */ 1726 for (y = 0; y < fragment_height; y++) { 1727 /* for each fragment in a row... */ 1728 for (x = 0; x < fragment_width; x++, i++) { 1729 1730 /* reverse prediction if this block was coded */ 1731 if (s->all_fragments[i].coding_method != MODE_COPY) { 1732 current_frame_type = 1733 compatible_frame[s->all_fragments[i].coding_method]; 1734 1735 transform = 0; 1736 if (x) { 1737 l = i - 1; 1738 vl = DC_COEFF(l); 1739 if (COMPATIBLE_FRAME(l)) 1740 transform |= PL; 1741 } 1742 if (y) { 1743 u = i - fragment_width; 1744 vu = DC_COEFF(u); 1745 if (COMPATIBLE_FRAME(u)) 1746 transform |= PU; 1747 if (x) { 1748 ul = i - fragment_width - 1; 1749 vul = DC_COEFF(ul); 1750 if (COMPATIBLE_FRAME(ul)) 1751 transform |= PUL; 1752 } 1753 if (x + 1 < fragment_width) { 1754 ur = i - fragment_width + 1; 1755 vur = DC_COEFF(ur); 1756 if (COMPATIBLE_FRAME(ur)) 1757 transform |= PUR; 1758 } 1759 } 1760 1761 if (transform == 0) { 1762 /* if there were no fragments to predict from, use last 1763 * DC saved */ 1764 predicted_dc = last_dc[current_frame_type]; 1765 } else { 1766 /* apply the appropriate predictor transform */ 1767 predicted_dc = 1768 (predictor_transform[transform][0] * vul) + 1769 (predictor_transform[transform][1] * vu) + 1770 (predictor_transform[transform][2] * vur) + 1771 (predictor_transform[transform][3] * vl); 1772 1773 predicted_dc /= 128; 1774 1775 /* check for outranging on the [ul u l] and 1776 * [ul u ur l] predictors */ 1777 if ((transform == 15) || (transform == 13)) { 1778 if (FFABS(predicted_dc - vu) > 128) 1779 predicted_dc = vu; 1780 else if (FFABS(predicted_dc - vl) > 128) 1781 predicted_dc = vl; 1782 else if (FFABS(predicted_dc - vul) > 128) 1783 predicted_dc = vul; 1784 } 1785 } 1786 1787 /* at long last, apply the predictor */ 1788 DC_COEFF(i) += predicted_dc; 1789 /* save the DC */ 1790 last_dc[current_frame_type] = DC_COEFF(i); 1791 } 1792 } 1793 } 1794} 1795 1796static void apply_loop_filter(Vp3DecodeContext *s, int plane, 1797 int ystart, int yend) 1798{ 1799 int x, y; 1800 int *bounding_values = s->bounding_values_array + 127; 1801 1802 int width = s->fragment_width[!!plane]; 1803 int height = s->fragment_height[!!plane]; 1804 int fragment = s->fragment_start[plane] + ystart * width; 1805 ptrdiff_t stride = s->current_frame.f->linesize[plane]; 1806 uint8_t *plane_data = s->current_frame.f->data[plane]; 1807 if (!s->flipped_image) 1808 stride = -stride; 1809 plane_data += s->data_offset[plane] + 8 * ystart * stride; 1810 1811 for (y = ystart; y < yend; y++) { 1812 for (x = 0; x < width; x++) { 1813 /* This code basically just deblocks on the edges of coded blocks. 1814 * However, it has to be much more complicated because of the 1815 * brain damaged deblock ordering used in VP3/Theora. Order matters 1816 * because some pixels get filtered twice. */ 1817 if (s->all_fragments[fragment].coding_method != MODE_COPY) { 1818 /* do not perform left edge filter for left columns frags */ 1819 if (x > 0) { 1820 s->vp3dsp.h_loop_filter( 1821 plane_data + 8 * x, 1822 stride, bounding_values); 1823 } 1824 1825 /* do not perform top edge filter for top row fragments */ 1826 if (y > 0) { 1827 s->vp3dsp.v_loop_filter( 1828 plane_data + 8 * x, 1829 stride, bounding_values); 1830 } 1831 1832 /* do not perform right edge filter for right column 1833 * fragments or if right fragment neighbor is also coded 1834 * in this frame (it will be filtered in next iteration) */ 1835 if ((x < width - 1) && 1836 (s->all_fragments[fragment + 1].coding_method == MODE_COPY)) { 1837 s->vp3dsp.h_loop_filter( 1838 plane_data + 8 * x + 8, 1839 stride, bounding_values); 1840 } 1841 1842 /* do not perform bottom edge filter for bottom row 1843 * fragments or if bottom fragment neighbor is also coded 1844 * in this frame (it will be filtered in the next row) */ 1845 if ((y < height - 1) && 1846 (s->all_fragments[fragment + width].coding_method == MODE_COPY)) { 1847 s->vp3dsp.v_loop_filter( 1848 plane_data + 8 * x + 8 * stride, 1849 stride, bounding_values); 1850 } 1851 } 1852 1853 fragment++; 1854 } 1855 plane_data += 8 * stride; 1856 } 1857} 1858 1859/** 1860 * Pull DCT tokens from the 64 levels to decode and dequant the coefficients 1861 * for the next block in coding order 1862 */ 1863static inline int vp3_dequant(Vp3DecodeContext *s, Vp3Fragment *frag, 1864 int plane, int inter, int16_t block[64]) 1865{ 1866 int16_t *dequantizer = s->qmat[frag->qpi][inter][plane]; 1867 uint8_t *perm = s->idct_scantable; 1868 int i = 0; 1869 1870 do { 1871 int token = *s->dct_tokens[plane][i]; 1872 switch (token & 3) { 1873 case 0: // EOB 1874 if (--token < 4) // 0-3 are token types so the EOB run must now be 0 1875 s->dct_tokens[plane][i]++; 1876 else 1877 *s->dct_tokens[plane][i] = token & ~3; 1878 goto end; 1879 case 1: // zero run 1880 s->dct_tokens[plane][i]++; 1881 i += (token >> 2) & 0x7f; 1882 if (i > 63) { 1883 av_log(s->avctx, AV_LOG_ERROR, "Coefficient index overflow\n"); 1884 return i; 1885 } 1886 block[perm[i]] = (token >> 9) * dequantizer[perm[i]]; 1887 i++; 1888 break; 1889 case 2: // coeff 1890 block[perm[i]] = (token >> 2) * dequantizer[perm[i]]; 1891 s->dct_tokens[plane][i++]++; 1892 break; 1893 default: // shouldn't happen 1894 return i; 1895 } 1896 } while (i < 64); 1897 // return value is expected to be a valid level 1898 i--; 1899end: 1900 // the actual DC+prediction is in the fragment structure 1901 block[0] = frag->dc * s->qmat[0][inter][plane][0]; 1902 return i; 1903} 1904 1905/** 1906 * called when all pixels up to row y are complete 1907 */ 1908static void vp3_draw_horiz_band(Vp3DecodeContext *s, int y) 1909{ 1910 int h, cy, i; 1911 int offset[AV_NUM_DATA_POINTERS]; 1912 1913 if (HAVE_THREADS && s->avctx->active_thread_type & FF_THREAD_FRAME) { 1914 int y_flipped = s->flipped_image ? s->height - y : y; 1915 1916 /* At the end of the frame, report INT_MAX instead of the height of 1917 * the frame. This makes the other threads' ff_thread_await_progress() 1918 * calls cheaper, because they don't have to clip their values. */ 1919 ff_thread_report_progress(&s->current_frame, 1920 y_flipped == s->height ? INT_MAX 1921 : y_flipped - 1, 1922 0); 1923 } 1924 1925 if (!s->avctx->draw_horiz_band) 1926 return; 1927 1928 h = y - s->last_slice_end; 1929 s->last_slice_end = y; 1930 y -= h; 1931 1932 if (!s->flipped_image) 1933 y = s->height - y - h; 1934 1935 cy = y >> s->chroma_y_shift; 1936 offset[0] = s->current_frame.f->linesize[0] * y; 1937 offset[1] = s->current_frame.f->linesize[1] * cy; 1938 offset[2] = s->current_frame.f->linesize[2] * cy; 1939 for (i = 3; i < AV_NUM_DATA_POINTERS; i++) 1940 offset[i] = 0; 1941 1942 emms_c(); 1943 s->avctx->draw_horiz_band(s->avctx, s->current_frame.f, offset, y, 3, h); 1944} 1945 1946/** 1947 * Wait for the reference frame of the current fragment. 1948 * The progress value is in luma pixel rows. 1949 */ 1950static void await_reference_row(Vp3DecodeContext *s, Vp3Fragment *fragment, 1951 int motion_y, int y) 1952{ 1953 ThreadFrame *ref_frame; 1954 int ref_row; 1955 int border = motion_y & 1; 1956 1957 if (fragment->coding_method == MODE_USING_GOLDEN || 1958 fragment->coding_method == MODE_GOLDEN_MV) 1959 ref_frame = &s->golden_frame; 1960 else 1961 ref_frame = &s->last_frame; 1962 1963 ref_row = y + (motion_y >> 1); 1964 ref_row = FFMAX(FFABS(ref_row), ref_row + 8 + border); 1965 1966 ff_thread_await_progress(ref_frame, ref_row, 0); 1967} 1968 1969#if CONFIG_VP4_DECODER 1970/** 1971 * @return non-zero if temp (edge_emu_buffer) was populated 1972 */ 1973static int vp4_mc_loop_filter(Vp3DecodeContext *s, int plane, int motion_x, int motion_y, int bx, int by, 1974 uint8_t * motion_source, int stride, int src_x, int src_y, uint8_t *temp) 1975{ 1976 int motion_shift = plane ? 4 : 2; 1977 int subpel_mask = plane ? 3 : 1; 1978 int *bounding_values = s->bounding_values_array + 127; 1979 1980 int i; 1981 int x, y; 1982 int x2, y2; 1983 int x_subpel, y_subpel; 1984 int x_offset, y_offset; 1985 1986 int block_width = plane ? 8 : 16; 1987 int plane_width = s->width >> (plane && s->chroma_x_shift); 1988 int plane_height = s->height >> (plane && s->chroma_y_shift); 1989 1990#define loop_stride 12 1991 uint8_t loop[12 * loop_stride]; 1992 1993 /* using division instead of shift to correctly handle negative values */ 1994 x = 8 * bx + motion_x / motion_shift; 1995 y = 8 * by + motion_y / motion_shift; 1996 1997 x_subpel = motion_x & subpel_mask; 1998 y_subpel = motion_y & subpel_mask; 1999 2000 if (x_subpel || y_subpel) { 2001 x--; 2002 y--; 2003 2004 if (x_subpel) 2005 x = FFMIN(x, x + FFSIGN(motion_x)); 2006 2007 if (y_subpel) 2008 y = FFMIN(y, y + FFSIGN(motion_y)); 2009 2010 x2 = x + block_width; 2011 y2 = y + block_width; 2012 2013 if (x2 < 0 || x2 >= plane_width || y2 < 0 || y2 >= plane_height) 2014 return 0; 2015 2016 x_offset = (-(x + 2) & 7) + 2; 2017 y_offset = (-(y + 2) & 7) + 2; 2018 2019 if (x_offset > 8 + x_subpel && y_offset > 8 + y_subpel) 2020 return 0; 2021 2022 s->vdsp.emulated_edge_mc(loop, motion_source - stride - 1, 2023 loop_stride, stride, 2024 12, 12, src_x - 1, src_y - 1, 2025 plane_width, 2026 plane_height); 2027 2028 if (x_offset <= 8 + x_subpel) 2029 ff_vp3dsp_h_loop_filter_12(loop + x_offset, loop_stride, bounding_values); 2030 2031 if (y_offset <= 8 + y_subpel) 2032 ff_vp3dsp_v_loop_filter_12(loop + y_offset*loop_stride, loop_stride, bounding_values); 2033 2034 } else { 2035 2036 x_offset = -x & 7; 2037 y_offset = -y & 7; 2038 2039 if (!x_offset && !y_offset) 2040 return 0; 2041 2042 s->vdsp.emulated_edge_mc(loop, motion_source - stride - 1, 2043 loop_stride, stride, 2044 12, 12, src_x - 1, src_y - 1, 2045 plane_width, 2046 plane_height); 2047 2048#define safe_loop_filter(name, ptr, stride, bounding_values) \ 2049 if ((uintptr_t)(ptr) & 7) \ 2050 s->vp3dsp.name##_unaligned(ptr, stride, bounding_values); \ 2051 else \ 2052 s->vp3dsp.name(ptr, stride, bounding_values); 2053 2054 if (x_offset) 2055 safe_loop_filter(h_loop_filter, loop + loop_stride + x_offset + 1, loop_stride, bounding_values); 2056 2057 if (y_offset) 2058 safe_loop_filter(v_loop_filter, loop + (y_offset + 1)*loop_stride + 1, loop_stride, bounding_values); 2059 } 2060 2061 for (i = 0; i < 9; i++) 2062 memcpy(temp + i*stride, loop + (i + 1) * loop_stride + 1, 9); 2063 2064 return 1; 2065} 2066#endif 2067 2068/* 2069 * Perform the final rendering for a particular slice of data. 2070 * The slice number ranges from 0..(c_superblock_height - 1). 2071 */ 2072static void render_slice(Vp3DecodeContext *s, int slice) 2073{ 2074 int x, y, i, j, fragment; 2075 int16_t *block = s->block; 2076 int motion_x = 0xdeadbeef, motion_y = 0xdeadbeef; 2077 int motion_halfpel_index; 2078 uint8_t *motion_source; 2079 int plane, first_pixel; 2080 2081 if (slice >= s->c_superblock_height) 2082 return; 2083 2084 for (plane = 0; plane < 3; plane++) { 2085 uint8_t *output_plane = s->current_frame.f->data[plane] + 2086 s->data_offset[plane]; 2087 uint8_t *last_plane = s->last_frame.f->data[plane] + 2088 s->data_offset[plane]; 2089 uint8_t *golden_plane = s->golden_frame.f->data[plane] + 2090 s->data_offset[plane]; 2091 ptrdiff_t stride = s->current_frame.f->linesize[plane]; 2092 int plane_width = s->width >> (plane && s->chroma_x_shift); 2093 int plane_height = s->height >> (plane && s->chroma_y_shift); 2094 int8_t(*motion_val)[2] = s->motion_val[!!plane]; 2095 2096 int sb_x, sb_y = slice << (!plane && s->chroma_y_shift); 2097 int slice_height = sb_y + 1 + (!plane && s->chroma_y_shift); 2098 int slice_width = plane ? s->c_superblock_width 2099 : s->y_superblock_width; 2100 2101 int fragment_width = s->fragment_width[!!plane]; 2102 int fragment_height = s->fragment_height[!!plane]; 2103 int fragment_start = s->fragment_start[plane]; 2104 2105 int do_await = !plane && HAVE_THREADS && 2106 (s->avctx->active_thread_type & FF_THREAD_FRAME); 2107 2108 if (!s->flipped_image) 2109 stride = -stride; 2110 if (CONFIG_GRAY && plane && (s->avctx->flags & AV_CODEC_FLAG_GRAY)) 2111 continue; 2112 2113 /* for each superblock row in the slice (both of them)... */ 2114 for (; sb_y < slice_height; sb_y++) { 2115 /* for each superblock in a row... */ 2116 for (sb_x = 0; sb_x < slice_width; sb_x++) { 2117 /* for each block in a superblock... */ 2118 for (j = 0; j < 16; j++) { 2119 x = 4 * sb_x + hilbert_offset[j][0]; 2120 y = 4 * sb_y + hilbert_offset[j][1]; 2121 fragment = y * fragment_width + x; 2122 2123 i = fragment_start + fragment; 2124 2125 // bounds check 2126 if (x >= fragment_width || y >= fragment_height) 2127 continue; 2128 2129 first_pixel = 8 * y * stride + 8 * x; 2130 2131 if (do_await && 2132 s->all_fragments[i].coding_method != MODE_INTRA) 2133 await_reference_row(s, &s->all_fragments[i], 2134 motion_val[fragment][1], 2135 (16 * y) >> s->chroma_y_shift); 2136 2137 /* transform if this block was coded */ 2138 if (s->all_fragments[i].coding_method != MODE_COPY) { 2139 if ((s->all_fragments[i].coding_method == MODE_USING_GOLDEN) || 2140 (s->all_fragments[i].coding_method == MODE_GOLDEN_MV)) 2141 motion_source = golden_plane; 2142 else 2143 motion_source = last_plane; 2144 2145 motion_source += first_pixel; 2146 motion_halfpel_index = 0; 2147 2148 /* sort out the motion vector if this fragment is coded 2149 * using a motion vector method */ 2150 if ((s->all_fragments[i].coding_method > MODE_INTRA) && 2151 (s->all_fragments[i].coding_method != MODE_USING_GOLDEN)) { 2152 int src_x, src_y; 2153 int standard_mc = 1; 2154 motion_x = motion_val[fragment][0]; 2155 motion_y = motion_val[fragment][1]; 2156#if CONFIG_VP4_DECODER 2157 if (plane && s->version >= 2) { 2158 motion_x = (motion_x >> 1) | (motion_x & 1); 2159 motion_y = (motion_y >> 1) | (motion_y & 1); 2160 } 2161#endif 2162 2163 src_x = (motion_x >> 1) + 8 * x; 2164 src_y = (motion_y >> 1) + 8 * y; 2165 2166 motion_halfpel_index = motion_x & 0x01; 2167 motion_source += (motion_x >> 1); 2168 2169 motion_halfpel_index |= (motion_y & 0x01) << 1; 2170 motion_source += ((motion_y >> 1) * stride); 2171 2172#if CONFIG_VP4_DECODER 2173 if (s->version >= 2) { 2174 uint8_t *temp = s->edge_emu_buffer; 2175 if (stride < 0) 2176 temp -= 8 * stride; 2177 if (vp4_mc_loop_filter(s, plane, motion_val[fragment][0], motion_val[fragment][1], x, y, motion_source, stride, src_x, src_y, temp)) { 2178 motion_source = temp; 2179 standard_mc = 0; 2180 } 2181 } 2182#endif 2183 2184 if (standard_mc && ( 2185 src_x < 0 || src_y < 0 || 2186 src_x + 9 >= plane_width || 2187 src_y + 9 >= plane_height)) { 2188 uint8_t *temp = s->edge_emu_buffer; 2189 if (stride < 0) 2190 temp -= 8 * stride; 2191 2192 s->vdsp.emulated_edge_mc(temp, motion_source, 2193 stride, stride, 2194 9, 9, src_x, src_y, 2195 plane_width, 2196 plane_height); 2197 motion_source = temp; 2198 } 2199 } 2200 2201 /* first, take care of copying a block from either the 2202 * previous or the golden frame */ 2203 if (s->all_fragments[i].coding_method != MODE_INTRA) { 2204 /* Note, it is possible to implement all MC cases 2205 * with put_no_rnd_pixels_l2 which would look more 2206 * like the VP3 source but this would be slower as 2207 * put_no_rnd_pixels_tab is better optimized */ 2208 if (motion_halfpel_index != 3) { 2209 s->hdsp.put_no_rnd_pixels_tab[1][motion_halfpel_index]( 2210 output_plane + first_pixel, 2211 motion_source, stride, 8); 2212 } else { 2213 /* d is 0 if motion_x and _y have the same sign, 2214 * else -1 */ 2215 int d = (motion_x ^ motion_y) >> 31; 2216 s->vp3dsp.put_no_rnd_pixels_l2(output_plane + first_pixel, 2217 motion_source - d, 2218 motion_source + stride + 1 + d, 2219 stride, 8); 2220 } 2221 } 2222 2223 /* invert DCT and place (or add) in final output */ 2224 2225 if (s->all_fragments[i].coding_method == MODE_INTRA) { 2226 vp3_dequant(s, s->all_fragments + i, 2227 plane, 0, block); 2228 s->vp3dsp.idct_put(output_plane + first_pixel, 2229 stride, 2230 block); 2231 } else { 2232 if (vp3_dequant(s, s->all_fragments + i, 2233 plane, 1, block)) { 2234 s->vp3dsp.idct_add(output_plane + first_pixel, 2235 stride, 2236 block); 2237 } else { 2238 s->vp3dsp.idct_dc_add(output_plane + first_pixel, 2239 stride, block); 2240 } 2241 } 2242 } else { 2243 /* copy directly from the previous frame */ 2244 s->hdsp.put_pixels_tab[1][0]( 2245 output_plane + first_pixel, 2246 last_plane + first_pixel, 2247 stride, 8); 2248 } 2249 } 2250 } 2251 2252 // Filter up to the last row in the superblock row 2253 if (s->version < 2 && !s->skip_loop_filter) 2254 apply_loop_filter(s, plane, 4 * sb_y - !!sb_y, 2255 FFMIN(4 * sb_y + 3, fragment_height - 1)); 2256 } 2257 } 2258 2259 /* this looks like a good place for slice dispatch... */ 2260 /* algorithm: 2261 * if (slice == s->macroblock_height - 1) 2262 * dispatch (both last slice & 2nd-to-last slice); 2263 * else if (slice > 0) 2264 * dispatch (slice - 1); 2265 */ 2266 2267 vp3_draw_horiz_band(s, FFMIN((32 << s->chroma_y_shift) * (slice + 1) - 16, 2268 s->height - 16)); 2269} 2270 2271/// Allocate tables for per-frame data in Vp3DecodeContext 2272static av_cold int allocate_tables(AVCodecContext *avctx) 2273{ 2274 Vp3DecodeContext *s = avctx->priv_data; 2275 int y_fragment_count, c_fragment_count; 2276 2277 free_tables(avctx); 2278 2279 y_fragment_count = s->fragment_width[0] * s->fragment_height[0]; 2280 c_fragment_count = s->fragment_width[1] * s->fragment_height[1]; 2281 2282 /* superblock_coding is used by unpack_superblocks (VP3/Theora) and vp4_unpack_macroblocks (VP4) */ 2283 s->superblock_coding = av_mallocz(FFMAX(s->superblock_count, s->yuv_macroblock_count)); 2284 s->all_fragments = av_calloc(s->fragment_count, sizeof(*s->all_fragments)); 2285 2286 s-> kf_coded_fragment_list = av_calloc(s->fragment_count, sizeof(int)); 2287 s->nkf_coded_fragment_list = av_calloc(s->fragment_count, sizeof(int)); 2288 memset(s-> num_kf_coded_fragment, -1, sizeof(s-> num_kf_coded_fragment)); 2289 2290 s->dct_tokens_base = av_calloc(s->fragment_count, 2291 64 * sizeof(*s->dct_tokens_base)); 2292 s->motion_val[0] = av_calloc(y_fragment_count, sizeof(*s->motion_val[0])); 2293 s->motion_val[1] = av_calloc(c_fragment_count, sizeof(*s->motion_val[1])); 2294 2295 /* work out the block mapping tables */ 2296 s->superblock_fragments = av_calloc(s->superblock_count, 16 * sizeof(int)); 2297 s->macroblock_coding = av_mallocz(s->macroblock_count + 1); 2298 2299 s->dc_pred_row = av_malloc_array(s->y_superblock_width * 4, sizeof(*s->dc_pred_row)); 2300 2301 if (!s->superblock_coding || !s->all_fragments || 2302 !s->dct_tokens_base || !s->kf_coded_fragment_list || 2303 !s->nkf_coded_fragment_list || 2304 !s->superblock_fragments || !s->macroblock_coding || 2305 !s->dc_pred_row || 2306 !s->motion_val[0] || !s->motion_val[1]) { 2307 return -1; 2308 } 2309 2310 init_block_mapping(s); 2311 2312 return 0; 2313} 2314 2315static av_cold int init_frames(Vp3DecodeContext *s) 2316{ 2317 s->current_frame.f = av_frame_alloc(); 2318 s->last_frame.f = av_frame_alloc(); 2319 s->golden_frame.f = av_frame_alloc(); 2320 2321 if (!s->current_frame.f || !s->last_frame.f || !s->golden_frame.f) 2322 return AVERROR(ENOMEM); 2323 2324 return 0; 2325} 2326 2327static av_cold int vp3_decode_init(AVCodecContext *avctx) 2328{ 2329 Vp3DecodeContext *s = avctx->priv_data; 2330 int i, inter, plane, ret; 2331 int c_width; 2332 int c_height; 2333 int y_fragment_count, c_fragment_count; 2334#if CONFIG_VP4_DECODER 2335 int j; 2336#endif 2337 2338 ret = init_frames(s); 2339 if (ret < 0) 2340 return ret; 2341 2342 if (avctx->codec_tag == MKTAG('V', 'P', '4', '0')) { 2343 s->version = 3; 2344#if !CONFIG_VP4_DECODER 2345 av_log(avctx, AV_LOG_ERROR, "This build does not support decoding VP4.\n"); 2346 return AVERROR_DECODER_NOT_FOUND; 2347#endif 2348 } else if (avctx->codec_tag == MKTAG('V', 'P', '3', '0')) 2349 s->version = 0; 2350 else 2351 s->version = 1; 2352 2353 s->avctx = avctx; 2354 s->width = FFALIGN(avctx->coded_width, 16); 2355 s->height = FFALIGN(avctx->coded_height, 16); 2356 if (s->width < 18) 2357 return AVERROR_PATCHWELCOME; 2358 if (avctx->codec_id != AV_CODEC_ID_THEORA) 2359 avctx->pix_fmt = AV_PIX_FMT_YUV420P; 2360 avctx->chroma_sample_location = AVCHROMA_LOC_CENTER; 2361 ff_hpeldsp_init(&s->hdsp, avctx->flags | AV_CODEC_FLAG_BITEXACT); 2362 ff_videodsp_init(&s->vdsp, 8); 2363 ff_vp3dsp_init(&s->vp3dsp, avctx->flags); 2364 2365 for (i = 0; i < 64; i++) { 2366#define TRANSPOSE(x) (((x) >> 3) | (((x) & 7) << 3)) 2367 s->idct_permutation[i] = TRANSPOSE(i); 2368 s->idct_scantable[i] = TRANSPOSE(ff_zigzag_direct[i]); 2369#undef TRANSPOSE 2370 } 2371 2372 /* initialize to an impossible value which will force a recalculation 2373 * in the first frame decode */ 2374 for (i = 0; i < 3; i++) 2375 s->qps[i] = -1; 2376 2377 ret = av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift); 2378 if (ret) 2379 return ret; 2380 2381 s->y_superblock_width = (s->width + 31) / 32; 2382 s->y_superblock_height = (s->height + 31) / 32; 2383 s->y_superblock_count = s->y_superblock_width * s->y_superblock_height; 2384 2385 /* work out the dimensions for the C planes */ 2386 c_width = s->width >> s->chroma_x_shift; 2387 c_height = s->height >> s->chroma_y_shift; 2388 s->c_superblock_width = (c_width + 31) / 32; 2389 s->c_superblock_height = (c_height + 31) / 32; 2390 s->c_superblock_count = s->c_superblock_width * s->c_superblock_height; 2391 2392 s->superblock_count = s->y_superblock_count + (s->c_superblock_count * 2); 2393 s->u_superblock_start = s->y_superblock_count; 2394 s->v_superblock_start = s->u_superblock_start + s->c_superblock_count; 2395 2396 s->macroblock_width = (s->width + 15) / 16; 2397 s->macroblock_height = (s->height + 15) / 16; 2398 s->macroblock_count = s->macroblock_width * s->macroblock_height; 2399 s->c_macroblock_width = (c_width + 15) / 16; 2400 s->c_macroblock_height = (c_height + 15) / 16; 2401 s->c_macroblock_count = s->c_macroblock_width * s->c_macroblock_height; 2402 s->yuv_macroblock_count = s->macroblock_count + 2 * s->c_macroblock_count; 2403 2404 s->fragment_width[0] = s->width / FRAGMENT_PIXELS; 2405 s->fragment_height[0] = s->height / FRAGMENT_PIXELS; 2406 s->fragment_width[1] = s->fragment_width[0] >> s->chroma_x_shift; 2407 s->fragment_height[1] = s->fragment_height[0] >> s->chroma_y_shift; 2408 2409 /* fragment count covers all 8x8 blocks for all 3 planes */ 2410 y_fragment_count = s->fragment_width[0] * s->fragment_height[0]; 2411 c_fragment_count = s->fragment_width[1] * s->fragment_height[1]; 2412 s->fragment_count = y_fragment_count + 2 * c_fragment_count; 2413 s->fragment_start[1] = y_fragment_count; 2414 s->fragment_start[2] = y_fragment_count + c_fragment_count; 2415 2416 if (!s->theora_tables) { 2417 const uint8_t (*bias_tabs)[32][2]; 2418 2419 for (i = 0; i < 64; i++) { 2420 s->coded_dc_scale_factor[0][i] = s->version < 2 ? vp31_dc_scale_factor[i] : vp4_y_dc_scale_factor[i]; 2421 s->coded_dc_scale_factor[1][i] = s->version < 2 ? vp31_dc_scale_factor[i] : vp4_uv_dc_scale_factor[i]; 2422 s->coded_ac_scale_factor[i] = s->version < 2 ? vp31_ac_scale_factor[i] : vp4_ac_scale_factor[i]; 2423 s->base_matrix[0][i] = s->version < 2 ? vp31_intra_y_dequant[i] : vp4_generic_dequant[i]; 2424 s->base_matrix[1][i] = s->version < 2 ? vp31_intra_c_dequant[i] : vp4_generic_dequant[i]; 2425 s->base_matrix[2][i] = s->version < 2 ? vp31_inter_dequant[i] : vp4_generic_dequant[i]; 2426 s->filter_limit_values[i] = s->version < 2 ? vp31_filter_limit_values[i] : vp4_filter_limit_values[i]; 2427 } 2428 2429 for (inter = 0; inter < 2; inter++) { 2430 for (plane = 0; plane < 3; plane++) { 2431 s->qr_count[inter][plane] = 1; 2432 s->qr_size[inter][plane][0] = 63; 2433 s->qr_base[inter][plane][0] = 2434 s->qr_base[inter][plane][1] = 2 * inter + (!!plane) * !inter; 2435 } 2436 } 2437 2438 /* init VLC tables */ 2439 bias_tabs = CONFIG_VP4_DECODER && s->version >= 2 ? vp4_bias : vp3_bias; 2440 for (int i = 0; i < FF_ARRAY_ELEMS(s->coeff_vlc); i++) { 2441 ret = ff_init_vlc_from_lengths(&s->coeff_vlc[i], 11, 32, 2442 &bias_tabs[i][0][1], 2, 2443 &bias_tabs[i][0][0], 2, 1, 2444 0, 0, avctx); 2445 if (ret < 0) 2446 return ret; 2447 } 2448 } else { 2449 for (i = 0; i < FF_ARRAY_ELEMS(s->coeff_vlc); i++) { 2450 const HuffTable *tab = &s->huffman_table[i]; 2451 2452 ret = ff_init_vlc_from_lengths(&s->coeff_vlc[i], 11, tab->nb_entries, 2453 &tab->entries[0].len, sizeof(*tab->entries), 2454 &tab->entries[0].sym, sizeof(*tab->entries), 1, 2455 0, 0, avctx); 2456 if (ret < 0) 2457 return ret; 2458 } 2459 } 2460 2461 ret = ff_init_vlc_from_lengths(&s->superblock_run_length_vlc, SUPERBLOCK_VLC_BITS, 34, 2462 superblock_run_length_vlc_lens, 1, 2463 NULL, 0, 0, 1, 0, avctx); 2464 if (ret < 0) 2465 return ret; 2466 2467 ret = ff_init_vlc_from_lengths(&s->fragment_run_length_vlc, 5, 30, 2468 fragment_run_length_vlc_len, 1, 2469 NULL, 0, 0, 0, 0, avctx); 2470 if (ret < 0) 2471 return ret; 2472 2473 ret = ff_init_vlc_from_lengths(&s->mode_code_vlc, 3, 8, 2474 mode_code_vlc_len, 1, 2475 NULL, 0, 0, 0, 0, avctx); 2476 if (ret < 0) 2477 return ret; 2478 2479 ret = ff_init_vlc_from_lengths(&s->motion_vector_vlc, VP3_MV_VLC_BITS, 63, 2480 &motion_vector_vlc_table[0][1], 2, 2481 &motion_vector_vlc_table[0][0], 2, 1, 2482 -31, 0, avctx); 2483 if (ret < 0) 2484 return ret; 2485 2486#if CONFIG_VP4_DECODER 2487 for (j = 0; j < 2; j++) 2488 for (i = 0; i < 7; i++) { 2489 ret = ff_init_vlc_from_lengths(&s->vp4_mv_vlc[j][i], VP4_MV_VLC_BITS, 63, 2490 &vp4_mv_vlc[j][i][0][1], 2, 2491 &vp4_mv_vlc[j][i][0][0], 2, 1, -31, 2492 0, avctx); 2493 if (ret < 0) 2494 return ret; 2495 } 2496 2497 /* version >= 2 */ 2498 for (i = 0; i < 2; i++) 2499 if ((ret = init_vlc(&s->block_pattern_vlc[i], 3, 14, 2500 &vp4_block_pattern_vlc[i][0][1], 2, 1, 2501 &vp4_block_pattern_vlc[i][0][0], 2, 1, 0)) < 0) 2502 return ret; 2503#endif 2504 2505 return allocate_tables(avctx); 2506} 2507 2508/// Release and shuffle frames after decode finishes 2509static int update_frames(AVCodecContext *avctx) 2510{ 2511 Vp3DecodeContext *s = avctx->priv_data; 2512 int ret = 0; 2513 2514 /* shuffle frames (last = current) */ 2515 ff_thread_release_ext_buffer(avctx, &s->last_frame); 2516 ret = ff_thread_ref_frame(&s->last_frame, &s->current_frame); 2517 if (ret < 0) 2518 goto fail; 2519 2520 if (s->keyframe) { 2521 ff_thread_release_ext_buffer(avctx, &s->golden_frame); 2522 ret = ff_thread_ref_frame(&s->golden_frame, &s->current_frame); 2523 } 2524 2525fail: 2526 ff_thread_release_ext_buffer(avctx, &s->current_frame); 2527 return ret; 2528} 2529 2530#if HAVE_THREADS 2531static int ref_frame(Vp3DecodeContext *s, ThreadFrame *dst, ThreadFrame *src) 2532{ 2533 ff_thread_release_ext_buffer(s->avctx, dst); 2534 if (src->f->data[0]) 2535 return ff_thread_ref_frame(dst, src); 2536 return 0; 2537} 2538 2539static int ref_frames(Vp3DecodeContext *dst, Vp3DecodeContext *src) 2540{ 2541 int ret; 2542 if ((ret = ref_frame(dst, &dst->current_frame, &src->current_frame)) < 0 || 2543 (ret = ref_frame(dst, &dst->golden_frame, &src->golden_frame)) < 0 || 2544 (ret = ref_frame(dst, &dst->last_frame, &src->last_frame)) < 0) 2545 return ret; 2546 return 0; 2547} 2548 2549static int vp3_update_thread_context(AVCodecContext *dst, const AVCodecContext *src) 2550{ 2551 Vp3DecodeContext *s = dst->priv_data, *s1 = src->priv_data; 2552 int qps_changed = 0, i, err; 2553 2554 if (!s1->current_frame.f->data[0] || 2555 s->width != s1->width || s->height != s1->height) { 2556 if (s != s1) 2557 ref_frames(s, s1); 2558 return -1; 2559 } 2560 2561 if (s != s1) { 2562 // copy previous frame data 2563 if ((err = ref_frames(s, s1)) < 0) 2564 return err; 2565 2566 s->keyframe = s1->keyframe; 2567 2568 // copy qscale data if necessary 2569 for (i = 0; i < 3; i++) { 2570 if (s->qps[i] != s1->qps[1]) { 2571 qps_changed = 1; 2572 memcpy(&s->qmat[i], &s1->qmat[i], sizeof(s->qmat[i])); 2573 } 2574 } 2575 2576 if (s->qps[0] != s1->qps[0]) 2577 memcpy(&s->bounding_values_array, &s1->bounding_values_array, 2578 sizeof(s->bounding_values_array)); 2579 2580 if (qps_changed) { 2581 memcpy(s->qps, s1->qps, sizeof(s->qps)); 2582 memcpy(s->last_qps, s1->last_qps, sizeof(s->last_qps)); 2583 s->nqps = s1->nqps; 2584 } 2585 } 2586 2587 return update_frames(dst); 2588} 2589#endif 2590 2591static int vp3_decode_frame(AVCodecContext *avctx, AVFrame *frame, 2592 int *got_frame, AVPacket *avpkt) 2593{ 2594 const uint8_t *buf = avpkt->data; 2595 int buf_size = avpkt->size; 2596 Vp3DecodeContext *s = avctx->priv_data; 2597 GetBitContext gb; 2598 int i, ret; 2599 2600 if ((ret = init_get_bits8(&gb, buf, buf_size)) < 0) 2601 return ret; 2602 2603#if CONFIG_THEORA_DECODER 2604 if (s->theora && get_bits1(&gb)) { 2605 int type = get_bits(&gb, 7); 2606 skip_bits_long(&gb, 6*8); /* "theora" */ 2607 2608 if (s->avctx->active_thread_type&FF_THREAD_FRAME) { 2609 av_log(avctx, AV_LOG_ERROR, "midstream reconfiguration with multithreading is unsupported, try -threads 1\n"); 2610 return AVERROR_PATCHWELCOME; 2611 } 2612 if (type == 0) { 2613 vp3_decode_end(avctx); 2614 ret = theora_decode_header(avctx, &gb); 2615 2616 if (ret >= 0) 2617 ret = vp3_decode_init(avctx); 2618 if (ret < 0) { 2619 vp3_decode_end(avctx); 2620 return ret; 2621 } 2622 return buf_size; 2623 } else if (type == 2) { 2624 vp3_decode_end(avctx); 2625 ret = theora_decode_tables(avctx, &gb); 2626 if (ret >= 0) 2627 ret = vp3_decode_init(avctx); 2628 if (ret < 0) { 2629 vp3_decode_end(avctx); 2630 return ret; 2631 } 2632 return buf_size; 2633 } 2634 2635 av_log(avctx, AV_LOG_ERROR, 2636 "Header packet passed to frame decoder, skipping\n"); 2637 return -1; 2638 } 2639#endif 2640 2641 s->keyframe = !get_bits1(&gb); 2642 if (!s->all_fragments) { 2643 av_log(avctx, AV_LOG_ERROR, "Data packet without prior valid headers\n"); 2644 return -1; 2645 } 2646 if (!s->theora) 2647 skip_bits(&gb, 1); 2648 for (i = 0; i < 3; i++) 2649 s->last_qps[i] = s->qps[i]; 2650 2651 s->nqps = 0; 2652 do { 2653 s->qps[s->nqps++] = get_bits(&gb, 6); 2654 } while (s->theora >= 0x030200 && s->nqps < 3 && get_bits1(&gb)); 2655 for (i = s->nqps; i < 3; i++) 2656 s->qps[i] = -1; 2657 2658 if (s->avctx->debug & FF_DEBUG_PICT_INFO) 2659 av_log(s->avctx, AV_LOG_INFO, " VP3 %sframe #%d: Q index = %d\n", 2660 s->keyframe ? "key" : "", avctx->frame_number + 1, s->qps[0]); 2661 2662 s->skip_loop_filter = !s->filter_limit_values[s->qps[0]] || 2663 avctx->skip_loop_filter >= (s->keyframe ? AVDISCARD_ALL 2664 : AVDISCARD_NONKEY); 2665 2666 if (s->qps[0] != s->last_qps[0]) 2667 init_loop_filter(s); 2668 2669 for (i = 0; i < s->nqps; i++) 2670 // reinit all dequantizers if the first one changed, because 2671 // the DC of the first quantizer must be used for all matrices 2672 if (s->qps[i] != s->last_qps[i] || s->qps[0] != s->last_qps[0]) 2673 init_dequantizer(s, i); 2674 2675 if (avctx->skip_frame >= AVDISCARD_NONKEY && !s->keyframe) 2676 return buf_size; 2677 2678 s->current_frame.f->pict_type = s->keyframe ? AV_PICTURE_TYPE_I 2679 : AV_PICTURE_TYPE_P; 2680 s->current_frame.f->key_frame = s->keyframe; 2681 if ((ret = ff_thread_get_ext_buffer(avctx, &s->current_frame, 2682 AV_GET_BUFFER_FLAG_REF)) < 0) 2683 goto error; 2684 2685 if (!s->edge_emu_buffer) { 2686 s->edge_emu_buffer = av_malloc(9 * FFABS(s->current_frame.f->linesize[0])); 2687 if (!s->edge_emu_buffer) { 2688 ret = AVERROR(ENOMEM); 2689 goto error; 2690 } 2691 } 2692 2693 if (s->keyframe) { 2694 if (!s->theora) { 2695 skip_bits(&gb, 4); /* width code */ 2696 skip_bits(&gb, 4); /* height code */ 2697 if (s->version) { 2698 int version = get_bits(&gb, 5); 2699#if !CONFIG_VP4_DECODER 2700 if (version >= 2) { 2701 av_log(avctx, AV_LOG_ERROR, "This build does not support decoding VP4.\n"); 2702 return AVERROR_DECODER_NOT_FOUND; 2703 } 2704#endif 2705 s->version = version; 2706 if (avctx->frame_number == 0) 2707 av_log(s->avctx, AV_LOG_DEBUG, 2708 "VP version: %d\n", s->version); 2709 } 2710 } 2711 if (s->version || s->theora) { 2712 if (get_bits1(&gb)) 2713 av_log(s->avctx, AV_LOG_ERROR, 2714 "Warning, unsupported keyframe coding type?!\n"); 2715 skip_bits(&gb, 2); /* reserved? */ 2716 2717#if CONFIG_VP4_DECODER 2718 if (s->version >= 2) { 2719 int mb_height, mb_width; 2720 int mb_width_mul, mb_width_div, mb_height_mul, mb_height_div; 2721 2722 mb_height = get_bits(&gb, 8); 2723 mb_width = get_bits(&gb, 8); 2724 if (mb_height != s->macroblock_height || 2725 mb_width != s->macroblock_width) 2726 avpriv_request_sample(s->avctx, "macroblock dimension mismatch"); 2727 2728 mb_width_mul = get_bits(&gb, 5); 2729 mb_width_div = get_bits(&gb, 3); 2730 mb_height_mul = get_bits(&gb, 5); 2731 mb_height_div = get_bits(&gb, 3); 2732 if (mb_width_mul != 1 || mb_width_div != 1 || mb_height_mul != 1 || mb_height_div != 1) 2733 avpriv_request_sample(s->avctx, "unexpected macroblock dimension multipler/divider"); 2734 2735 if (get_bits(&gb, 2)) 2736 avpriv_request_sample(s->avctx, "unknown bits"); 2737 } 2738#endif 2739 } 2740 } else { 2741 if (!s->golden_frame.f->data[0]) { 2742 av_log(s->avctx, AV_LOG_WARNING, 2743 "vp3: first frame not a keyframe\n"); 2744 2745 s->golden_frame.f->pict_type = AV_PICTURE_TYPE_I; 2746 if ((ret = ff_thread_get_ext_buffer(avctx, &s->golden_frame, 2747 AV_GET_BUFFER_FLAG_REF)) < 0) 2748 goto error; 2749 ff_thread_release_ext_buffer(avctx, &s->last_frame); 2750 if ((ret = ff_thread_ref_frame(&s->last_frame, 2751 &s->golden_frame)) < 0) 2752 goto error; 2753 ff_thread_report_progress(&s->last_frame, INT_MAX, 0); 2754 } 2755 } 2756 2757 memset(s->all_fragments, 0, s->fragment_count * sizeof(Vp3Fragment)); 2758 ff_thread_finish_setup(avctx); 2759 2760 if (s->version < 2) { 2761 if ((ret = unpack_superblocks(s, &gb)) < 0) { 2762 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_superblocks\n"); 2763 goto error; 2764 } 2765#if CONFIG_VP4_DECODER 2766 } else { 2767 if ((ret = vp4_unpack_macroblocks(s, &gb)) < 0) { 2768 av_log(s->avctx, AV_LOG_ERROR, "error in vp4_unpack_macroblocks\n"); 2769 goto error; 2770 } 2771#endif 2772 } 2773 if ((ret = unpack_modes(s, &gb)) < 0) { 2774 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_modes\n"); 2775 goto error; 2776 } 2777 if (ret = unpack_vectors(s, &gb)) { 2778 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_vectors\n"); 2779 goto error; 2780 } 2781 if ((ret = unpack_block_qpis(s, &gb)) < 0) { 2782 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_block_qpis\n"); 2783 goto error; 2784 } 2785 2786 if (s->version < 2) { 2787 if ((ret = unpack_dct_coeffs(s, &gb)) < 0) { 2788 av_log(s->avctx, AV_LOG_ERROR, "error in unpack_dct_coeffs\n"); 2789 goto error; 2790 } 2791#if CONFIG_VP4_DECODER 2792 } else { 2793 if ((ret = vp4_unpack_dct_coeffs(s, &gb)) < 0) { 2794 av_log(s->avctx, AV_LOG_ERROR, "error in vp4_unpack_dct_coeffs\n"); 2795 goto error; 2796 } 2797#endif 2798 } 2799 2800 for (i = 0; i < 3; i++) { 2801 int height = s->height >> (i && s->chroma_y_shift); 2802 if (s->flipped_image) 2803 s->data_offset[i] = 0; 2804 else 2805 s->data_offset[i] = (height - 1) * s->current_frame.f->linesize[i]; 2806 } 2807 2808 s->last_slice_end = 0; 2809 for (i = 0; i < s->c_superblock_height; i++) 2810 render_slice(s, i); 2811 2812 // filter the last row 2813 if (s->version < 2) 2814 for (i = 0; i < 3; i++) { 2815 int row = (s->height >> (3 + (i && s->chroma_y_shift))) - 1; 2816 apply_loop_filter(s, i, row, row + 1); 2817 } 2818 vp3_draw_horiz_band(s, s->height); 2819 2820 /* output frame, offset as needed */ 2821 if ((ret = av_frame_ref(frame, s->current_frame.f)) < 0) 2822 return ret; 2823 2824 frame->crop_left = s->offset_x; 2825 frame->crop_right = avctx->coded_width - avctx->width - s->offset_x; 2826 frame->crop_top = s->offset_y; 2827 frame->crop_bottom = avctx->coded_height - avctx->height - s->offset_y; 2828 2829 *got_frame = 1; 2830 2831 if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME)) { 2832 ret = update_frames(avctx); 2833 if (ret < 0) 2834 return ret; 2835 } 2836 2837 return buf_size; 2838 2839error: 2840 ff_thread_report_progress(&s->current_frame, INT_MAX, 0); 2841 2842 if (!HAVE_THREADS || !(s->avctx->active_thread_type & FF_THREAD_FRAME)) 2843 av_frame_unref(s->current_frame.f); 2844 2845 return ret; 2846} 2847 2848static int read_huffman_tree(HuffTable *huff, GetBitContext *gb, int length, 2849 AVCodecContext *avctx) 2850{ 2851 if (get_bits1(gb)) { 2852 int token; 2853 if (huff->nb_entries >= 32) { /* overflow */ 2854 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n"); 2855 return -1; 2856 } 2857 token = get_bits(gb, 5); 2858 ff_dlog(avctx, "code length %d, curr entry %d, token %d\n", 2859 length, huff->nb_entries, token); 2860 huff->entries[huff->nb_entries++] = (HuffEntry){ length, token }; 2861 } else { 2862 /* The following bound follows from the fact that nb_entries <= 32. */ 2863 if (length >= 31) { /* overflow */ 2864 av_log(avctx, AV_LOG_ERROR, "huffman tree overflow\n"); 2865 return -1; 2866 } 2867 length++; 2868 if (read_huffman_tree(huff, gb, length, avctx)) 2869 return -1; 2870 if (read_huffman_tree(huff, gb, length, avctx)) 2871 return -1; 2872 } 2873 return 0; 2874} 2875 2876#if CONFIG_THEORA_DECODER 2877static const enum AVPixelFormat theora_pix_fmts[4] = { 2878 AV_PIX_FMT_YUV420P, AV_PIX_FMT_NONE, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P 2879}; 2880 2881static int theora_decode_header(AVCodecContext *avctx, GetBitContext *gb) 2882{ 2883 Vp3DecodeContext *s = avctx->priv_data; 2884 int visible_width, visible_height, colorspace; 2885 uint8_t offset_x = 0, offset_y = 0; 2886 int ret; 2887 AVRational fps, aspect; 2888 2889 if (get_bits_left(gb) < 206) 2890 return AVERROR_INVALIDDATA; 2891 2892 s->theora_header = 0; 2893 s->theora = get_bits(gb, 24); 2894 av_log(avctx, AV_LOG_DEBUG, "Theora bitstream version %X\n", s->theora); 2895 if (!s->theora) { 2896 s->theora = 1; 2897 avpriv_request_sample(s->avctx, "theora 0"); 2898 } 2899 2900 /* 3.2.0 aka alpha3 has the same frame orientation as original vp3 2901 * but previous versions have the image flipped relative to vp3 */ 2902 if (s->theora < 0x030200) { 2903 s->flipped_image = 1; 2904 av_log(avctx, AV_LOG_DEBUG, 2905 "Old (<alpha3) Theora bitstream, flipped image\n"); 2906 } 2907 2908 visible_width = 2909 s->width = get_bits(gb, 16) << 4; 2910 visible_height = 2911 s->height = get_bits(gb, 16) << 4; 2912 2913 if (s->theora >= 0x030200) { 2914 visible_width = get_bits(gb, 24); 2915 visible_height = get_bits(gb, 24); 2916 2917 offset_x = get_bits(gb, 8); /* offset x */ 2918 offset_y = get_bits(gb, 8); /* offset y, from bottom */ 2919 } 2920 2921 /* sanity check */ 2922 if (av_image_check_size(visible_width, visible_height, 0, avctx) < 0 || 2923 visible_width + offset_x > s->width || 2924 visible_height + offset_y > s->height || 2925 visible_width < 18 2926 ) { 2927 av_log(avctx, AV_LOG_ERROR, 2928 "Invalid frame dimensions - w:%d h:%d x:%d y:%d (%dx%d).\n", 2929 visible_width, visible_height, offset_x, offset_y, 2930 s->width, s->height); 2931 return AVERROR_INVALIDDATA; 2932 } 2933 2934 fps.num = get_bits_long(gb, 32); 2935 fps.den = get_bits_long(gb, 32); 2936 if (fps.num && fps.den) { 2937 if (fps.num < 0 || fps.den < 0) { 2938 av_log(avctx, AV_LOG_ERROR, "Invalid framerate\n"); 2939 return AVERROR_INVALIDDATA; 2940 } 2941 av_reduce(&avctx->framerate.den, &avctx->framerate.num, 2942 fps.den, fps.num, 1 << 30); 2943 } 2944 2945 aspect.num = get_bits(gb, 24); 2946 aspect.den = get_bits(gb, 24); 2947 if (aspect.num && aspect.den) { 2948 av_reduce(&avctx->sample_aspect_ratio.num, 2949 &avctx->sample_aspect_ratio.den, 2950 aspect.num, aspect.den, 1 << 30); 2951 ff_set_sar(avctx, avctx->sample_aspect_ratio); 2952 } 2953 2954 if (s->theora < 0x030200) 2955 skip_bits(gb, 5); /* keyframe frequency force */ 2956 colorspace = get_bits(gb, 8); 2957 skip_bits(gb, 24); /* bitrate */ 2958 2959 skip_bits(gb, 6); /* quality hint */ 2960 2961 if (s->theora >= 0x030200) { 2962 skip_bits(gb, 5); /* keyframe frequency force */ 2963 avctx->pix_fmt = theora_pix_fmts[get_bits(gb, 2)]; 2964 if (avctx->pix_fmt == AV_PIX_FMT_NONE) { 2965 av_log(avctx, AV_LOG_ERROR, "Invalid pixel format\n"); 2966 return AVERROR_INVALIDDATA; 2967 } 2968 skip_bits(gb, 3); /* reserved */ 2969 } else 2970 avctx->pix_fmt = AV_PIX_FMT_YUV420P; 2971 2972 if (s->width < 18) 2973 return AVERROR_PATCHWELCOME; 2974 ret = ff_set_dimensions(avctx, s->width, s->height); 2975 if (ret < 0) 2976 return ret; 2977 if (!(avctx->flags2 & AV_CODEC_FLAG2_IGNORE_CROP)) { 2978 avctx->width = visible_width; 2979 avctx->height = visible_height; 2980 // translate offsets from theora axis ([0,0] lower left) 2981 // to normal axis ([0,0] upper left) 2982 s->offset_x = offset_x; 2983 s->offset_y = s->height - visible_height - offset_y; 2984 } 2985 2986 if (colorspace == 1) 2987 avctx->color_primaries = AVCOL_PRI_BT470M; 2988 else if (colorspace == 2) 2989 avctx->color_primaries = AVCOL_PRI_BT470BG; 2990 2991 if (colorspace == 1 || colorspace == 2) { 2992 avctx->colorspace = AVCOL_SPC_BT470BG; 2993 avctx->color_trc = AVCOL_TRC_BT709; 2994 } 2995 2996 s->theora_header = 1; 2997 return 0; 2998} 2999 3000static int theora_decode_tables(AVCodecContext *avctx, GetBitContext *gb) 3001{ 3002 Vp3DecodeContext *s = avctx->priv_data; 3003 int i, n, matrices, inter, plane, ret; 3004 3005 if (!s->theora_header) 3006 return AVERROR_INVALIDDATA; 3007 3008 if (s->theora >= 0x030200) { 3009 n = get_bits(gb, 3); 3010 /* loop filter limit values table */ 3011 if (n) 3012 for (i = 0; i < 64; i++) 3013 s->filter_limit_values[i] = get_bits(gb, n); 3014 } 3015 3016 if (s->theora >= 0x030200) 3017 n = get_bits(gb, 4) + 1; 3018 else 3019 n = 16; 3020 /* quality threshold table */ 3021 for (i = 0; i < 64; i++) 3022 s->coded_ac_scale_factor[i] = get_bits(gb, n); 3023 3024 if (s->theora >= 0x030200) 3025 n = get_bits(gb, 4) + 1; 3026 else 3027 n = 16; 3028 /* dc scale factor table */ 3029 for (i = 0; i < 64; i++) 3030 s->coded_dc_scale_factor[0][i] = 3031 s->coded_dc_scale_factor[1][i] = get_bits(gb, n); 3032 3033 if (s->theora >= 0x030200) 3034 matrices = get_bits(gb, 9) + 1; 3035 else 3036 matrices = 3; 3037 3038 if (matrices > 384) { 3039 av_log(avctx, AV_LOG_ERROR, "invalid number of base matrixes\n"); 3040 return -1; 3041 } 3042 3043 for (n = 0; n < matrices; n++) 3044 for (i = 0; i < 64; i++) 3045 s->base_matrix[n][i] = get_bits(gb, 8); 3046 3047 for (inter = 0; inter <= 1; inter++) { 3048 for (plane = 0; plane <= 2; plane++) { 3049 int newqr = 1; 3050 if (inter || plane > 0) 3051 newqr = get_bits1(gb); 3052 if (!newqr) { 3053 int qtj, plj; 3054 if (inter && get_bits1(gb)) { 3055 qtj = 0; 3056 plj = plane; 3057 } else { 3058 qtj = (3 * inter + plane - 1) / 3; 3059 plj = (plane + 2) % 3; 3060 } 3061 s->qr_count[inter][plane] = s->qr_count[qtj][plj]; 3062 memcpy(s->qr_size[inter][plane], s->qr_size[qtj][plj], 3063 sizeof(s->qr_size[0][0])); 3064 memcpy(s->qr_base[inter][plane], s->qr_base[qtj][plj], 3065 sizeof(s->qr_base[0][0])); 3066 } else { 3067 int qri = 0; 3068 int qi = 0; 3069 3070 for (;;) { 3071 i = get_bits(gb, av_log2(matrices - 1) + 1); 3072 if (i >= matrices) { 3073 av_log(avctx, AV_LOG_ERROR, 3074 "invalid base matrix index\n"); 3075 return -1; 3076 } 3077 s->qr_base[inter][plane][qri] = i; 3078 if (qi >= 63) 3079 break; 3080 i = get_bits(gb, av_log2(63 - qi) + 1) + 1; 3081 s->qr_size[inter][plane][qri++] = i; 3082 qi += i; 3083 } 3084 3085 if (qi > 63) { 3086 av_log(avctx, AV_LOG_ERROR, "invalid qi %d > 63\n", qi); 3087 return -1; 3088 } 3089 s->qr_count[inter][plane] = qri; 3090 } 3091 } 3092 } 3093 3094 /* Huffman tables */ 3095 for (int i = 0; i < FF_ARRAY_ELEMS(s->huffman_table); i++) { 3096 s->huffman_table[i].nb_entries = 0; 3097 if ((ret = read_huffman_tree(&s->huffman_table[i], gb, 0, avctx)) < 0) 3098 return ret; 3099 } 3100 3101 s->theora_tables = 1; 3102 3103 return 0; 3104} 3105 3106static av_cold int theora_decode_init(AVCodecContext *avctx) 3107{ 3108 Vp3DecodeContext *s = avctx->priv_data; 3109 GetBitContext gb; 3110 int ptype; 3111 const uint8_t *header_start[3]; 3112 int header_len[3]; 3113 int i; 3114 int ret; 3115 3116 avctx->pix_fmt = AV_PIX_FMT_YUV420P; 3117 3118 s->theora = 1; 3119 3120 if (!avctx->extradata_size) { 3121 av_log(avctx, AV_LOG_ERROR, "Missing extradata!\n"); 3122 return -1; 3123 } 3124 3125 if (avpriv_split_xiph_headers(avctx->extradata, avctx->extradata_size, 3126 42, header_start, header_len) < 0) { 3127 av_log(avctx, AV_LOG_ERROR, "Corrupt extradata\n"); 3128 return -1; 3129 } 3130 3131 for (i = 0; i < 3; i++) { 3132 if (header_len[i] <= 0) 3133 continue; 3134 ret = init_get_bits8(&gb, header_start[i], header_len[i]); 3135 if (ret < 0) 3136 return ret; 3137 3138 ptype = get_bits(&gb, 8); 3139 3140 if (!(ptype & 0x80)) { 3141 av_log(avctx, AV_LOG_ERROR, "Invalid extradata!\n"); 3142// return -1; 3143 } 3144 3145 // FIXME: Check for this as well. 3146 skip_bits_long(&gb, 6 * 8); /* "theora" */ 3147 3148 switch (ptype) { 3149 case 0x80: 3150 if (theora_decode_header(avctx, &gb) < 0) 3151 return -1; 3152 break; 3153 case 0x81: 3154// FIXME: is this needed? it breaks sometimes 3155// theora_decode_comments(avctx, gb); 3156 break; 3157 case 0x82: 3158 if (theora_decode_tables(avctx, &gb)) 3159 return -1; 3160 break; 3161 default: 3162 av_log(avctx, AV_LOG_ERROR, 3163 "Unknown Theora config packet: %d\n", ptype & ~0x80); 3164 break; 3165 } 3166 if (ptype != 0x81 && get_bits_left(&gb) >= 8U) 3167 av_log(avctx, AV_LOG_WARNING, 3168 "%d bits left in packet %X\n", 3169 get_bits_left(&gb), ptype); 3170 if (s->theora < 0x030200) 3171 break; 3172 } 3173 3174 return vp3_decode_init(avctx); 3175} 3176 3177const FFCodec ff_theora_decoder = { 3178 .p.name = "theora", 3179 .p.long_name = NULL_IF_CONFIG_SMALL("Theora"), 3180 .p.type = AVMEDIA_TYPE_VIDEO, 3181 .p.id = AV_CODEC_ID_THEORA, 3182 .priv_data_size = sizeof(Vp3DecodeContext), 3183 .init = theora_decode_init, 3184 .close = vp3_decode_end, 3185 FF_CODEC_DECODE_CB(vp3_decode_frame), 3186 .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DRAW_HORIZ_BAND | 3187 AV_CODEC_CAP_FRAME_THREADS, 3188 .flush = vp3_decode_flush, 3189 .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context), 3190 .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP | 3191 FF_CODEC_CAP_EXPORTS_CROPPING | FF_CODEC_CAP_ALLOCATE_PROGRESS, 3192}; 3193#endif 3194 3195const FFCodec ff_vp3_decoder = { 3196 .p.name = "vp3", 3197 .p.long_name = NULL_IF_CONFIG_SMALL("On2 VP3"), 3198 .p.type = AVMEDIA_TYPE_VIDEO, 3199 .p.id = AV_CODEC_ID_VP3, 3200 .priv_data_size = sizeof(Vp3DecodeContext), 3201 .init = vp3_decode_init, 3202 .close = vp3_decode_end, 3203 FF_CODEC_DECODE_CB(vp3_decode_frame), 3204 .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DRAW_HORIZ_BAND | 3205 AV_CODEC_CAP_FRAME_THREADS, 3206 .flush = vp3_decode_flush, 3207 .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context), 3208 .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP | 3209 FF_CODEC_CAP_ALLOCATE_PROGRESS, 3210}; 3211 3212#if CONFIG_VP4_DECODER 3213const FFCodec ff_vp4_decoder = { 3214 .p.name = "vp4", 3215 .p.long_name = NULL_IF_CONFIG_SMALL("On2 VP4"), 3216 .p.type = AVMEDIA_TYPE_VIDEO, 3217 .p.id = AV_CODEC_ID_VP4, 3218 .priv_data_size = sizeof(Vp3DecodeContext), 3219 .init = vp3_decode_init, 3220 .close = vp3_decode_end, 3221 FF_CODEC_DECODE_CB(vp3_decode_frame), 3222 .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DRAW_HORIZ_BAND | 3223 AV_CODEC_CAP_FRAME_THREADS, 3224 .flush = vp3_decode_flush, 3225 .update_thread_context = ONLY_IF_THREADS_ENABLED(vp3_update_thread_context), 3226 .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP | 3227 FF_CODEC_CAP_ALLOCATE_PROGRESS, 3228}; 3229#endif 3230