1/* 2 * Copyright (C) 2016 Open Broadcast Systems Ltd. 3 * Author 2016 Rostislav Pehlivanov <atomnuker@gmail.com> 4 * 5 * This file is part of FFmpeg. 6 * 7 * FFmpeg is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU Lesser General Public 9 * License as published by the Free Software Foundation; either 10 * version 2.1 of the License, or (at your option) any later version. 11 * 12 * FFmpeg is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * Lesser General Public License for more details. 16 * 17 * You should have received a copy of the GNU Lesser General Public 18 * License along with FFmpeg; if not, write to the Free Software 19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 20 */ 21 22#include "libavutil/pixdesc.h" 23#include "libavutil/opt.h" 24#include "libavutil/version.h" 25#include "codec_internal.h" 26#include "dirac.h" 27#include "encode.h" 28#include "put_bits.h" 29#include "version.h" 30 31#include "vc2enc_dwt.h" 32#include "diractab.h" 33 34/* The limited size resolution of each slice forces us to do this */ 35#define SSIZE_ROUND(b) (FFALIGN((b), s->size_scaler) + 4 + s->prefix_bytes) 36 37/* Decides the cutoff point in # of slices to distribute the leftover bytes */ 38#define SLICE_REDIST_TOTAL 150 39 40typedef struct VC2BaseVideoFormat { 41 enum AVPixelFormat pix_fmt; 42 AVRational time_base; 43 int width, height, interlaced, level; 44 const char *name; 45} VC2BaseVideoFormat; 46 47static const VC2BaseVideoFormat base_video_fmts[] = { 48 { 0 }, /* Custom format, here just to make indexing equal to base_vf */ 49 { AV_PIX_FMT_YUV420P, { 1001, 15000 }, 176, 120, 0, 1, "QSIF525" }, 50 { AV_PIX_FMT_YUV420P, { 2, 25 }, 176, 144, 0, 1, "QCIF" }, 51 { AV_PIX_FMT_YUV420P, { 1001, 15000 }, 352, 240, 0, 1, "SIF525" }, 52 { AV_PIX_FMT_YUV420P, { 2, 25 }, 352, 288, 0, 1, "CIF" }, 53 { AV_PIX_FMT_YUV420P, { 1001, 15000 }, 704, 480, 0, 1, "4SIF525" }, 54 { AV_PIX_FMT_YUV420P, { 2, 25 }, 704, 576, 0, 1, "4CIF" }, 55 56 { AV_PIX_FMT_YUV422P10, { 1001, 30000 }, 720, 480, 1, 2, "SD480I-60" }, 57 { AV_PIX_FMT_YUV422P10, { 1, 25 }, 720, 576, 1, 2, "SD576I-50" }, 58 59 { AV_PIX_FMT_YUV422P10, { 1001, 60000 }, 1280, 720, 0, 3, "HD720P-60" }, 60 { AV_PIX_FMT_YUV422P10, { 1, 50 }, 1280, 720, 0, 3, "HD720P-50" }, 61 { AV_PIX_FMT_YUV422P10, { 1001, 30000 }, 1920, 1080, 1, 3, "HD1080I-60" }, 62 { AV_PIX_FMT_YUV422P10, { 1, 25 }, 1920, 1080, 1, 3, "HD1080I-50" }, 63 { AV_PIX_FMT_YUV422P10, { 1001, 60000 }, 1920, 1080, 0, 3, "HD1080P-60" }, 64 { AV_PIX_FMT_YUV422P10, { 1, 50 }, 1920, 1080, 0, 3, "HD1080P-50" }, 65 66 { AV_PIX_FMT_YUV444P12, { 1, 24 }, 2048, 1080, 0, 4, "DC2K" }, 67 { AV_PIX_FMT_YUV444P12, { 1, 24 }, 4096, 2160, 0, 5, "DC4K" }, 68 69 { AV_PIX_FMT_YUV422P10, { 1001, 60000 }, 3840, 2160, 0, 6, "UHDTV 4K-60" }, 70 { AV_PIX_FMT_YUV422P10, { 1, 50 }, 3840, 2160, 0, 6, "UHDTV 4K-50" }, 71 72 { AV_PIX_FMT_YUV422P10, { 1001, 60000 }, 7680, 4320, 0, 7, "UHDTV 8K-60" }, 73 { AV_PIX_FMT_YUV422P10, { 1, 50 }, 7680, 4320, 0, 7, "UHDTV 8K-50" }, 74 75 { AV_PIX_FMT_YUV422P10, { 1001, 24000 }, 1920, 1080, 0, 3, "HD1080P-24" }, 76 { AV_PIX_FMT_YUV422P10, { 1001, 30000 }, 720, 486, 1, 2, "SD Pro486" }, 77}; 78static const int base_video_fmts_len = FF_ARRAY_ELEMS(base_video_fmts); 79 80enum VC2_QM { 81 VC2_QM_DEF = 0, 82 VC2_QM_COL, 83 VC2_QM_FLAT, 84 85 VC2_QM_NB 86}; 87 88typedef struct SubBand { 89 dwtcoef *buf; 90 ptrdiff_t stride; 91 int width; 92 int height; 93} SubBand; 94 95typedef struct Plane { 96 SubBand band[MAX_DWT_LEVELS][4]; 97 dwtcoef *coef_buf; 98 int width; 99 int height; 100 int dwt_width; 101 int dwt_height; 102 ptrdiff_t coef_stride; 103} Plane; 104 105typedef struct SliceArgs { 106 PutBitContext pb; 107 int cache[DIRAC_MAX_QUANT_INDEX]; 108 void *ctx; 109 int x; 110 int y; 111 int quant_idx; 112 int bits_ceil; 113 int bits_floor; 114 int bytes; 115} SliceArgs; 116 117typedef struct TransformArgs { 118 void *ctx; 119 Plane *plane; 120 void *idata; 121 ptrdiff_t istride; 122 int field; 123 VC2TransformContext t; 124} TransformArgs; 125 126typedef struct VC2EncContext { 127 AVClass *av_class; 128 PutBitContext pb; 129 Plane plane[3]; 130 AVCodecContext *avctx; 131 DiracVersionInfo ver; 132 133 SliceArgs *slice_args; 134 TransformArgs transform_args[3]; 135 136 /* For conversion from unsigned pixel values to signed */ 137 int diff_offset; 138 int bpp; 139 int bpp_idx; 140 141 /* Picture number */ 142 uint32_t picture_number; 143 144 /* Base video format */ 145 int base_vf; 146 int level; 147 int profile; 148 149 /* Quantization matrix */ 150 uint8_t quant[MAX_DWT_LEVELS][4]; 151 int custom_quant_matrix; 152 153 /* Division LUT */ 154 uint32_t qmagic_lut[116][2]; 155 156 int num_x; /* #slices horizontally */ 157 int num_y; /* #slices vertically */ 158 int prefix_bytes; 159 int size_scaler; 160 int chroma_x_shift; 161 int chroma_y_shift; 162 163 /* Rate control stuff */ 164 int frame_max_bytes; 165 int slice_max_bytes; 166 int slice_min_bytes; 167 int q_ceil; 168 int q_avg; 169 170 /* Options */ 171 double tolerance; 172 int wavelet_idx; 173 int wavelet_depth; 174 int strict_compliance; 175 int slice_height; 176 int slice_width; 177 int interlaced; 178 enum VC2_QM quant_matrix; 179 180 /* Parse code state */ 181 uint32_t next_parse_offset; 182 enum DiracParseCodes last_parse_code; 183} VC2EncContext; 184 185static av_always_inline void put_vc2_ue_uint(PutBitContext *pb, uint32_t val) 186{ 187 int i; 188 int pbits = 0, bits = 0, topbit = 1, maxval = 1; 189 190 if (!val++) { 191 put_bits(pb, 1, 1); 192 return; 193 } 194 195 while (val > maxval) { 196 topbit <<= 1; 197 maxval <<= 1; 198 maxval |= 1; 199 } 200 201 bits = ff_log2(topbit); 202 203 for (i = 0; i < bits; i++) { 204 topbit >>= 1; 205 pbits <<= 2; 206 if (val & topbit) 207 pbits |= 0x1; 208 } 209 210 put_bits(pb, bits*2 + 1, (pbits << 1) | 1); 211} 212 213static av_always_inline int count_vc2_ue_uint(uint32_t val) 214{ 215 int topbit = 1, maxval = 1; 216 217 if (!val++) 218 return 1; 219 220 while (val > maxval) { 221 topbit <<= 1; 222 maxval <<= 1; 223 maxval |= 1; 224 } 225 226 return ff_log2(topbit)*2 + 1; 227} 228 229/* VC-2 10.4 - parse_info() */ 230static void encode_parse_info(VC2EncContext *s, enum DiracParseCodes pcode) 231{ 232 uint32_t cur_pos, dist; 233 234 align_put_bits(&s->pb); 235 236 cur_pos = put_bits_count(&s->pb) >> 3; 237 238 /* Magic string */ 239 ff_put_string(&s->pb, "BBCD", 0); 240 241 /* Parse code */ 242 put_bits(&s->pb, 8, pcode); 243 244 /* Next parse offset */ 245 dist = cur_pos - s->next_parse_offset; 246 AV_WB32(s->pb.buf + s->next_parse_offset + 5, dist); 247 s->next_parse_offset = cur_pos; 248 put_bits32(&s->pb, pcode == DIRAC_PCODE_END_SEQ ? 13 : 0); 249 250 /* Last parse offset */ 251 put_bits32(&s->pb, s->last_parse_code == DIRAC_PCODE_END_SEQ ? 13 : dist); 252 253 s->last_parse_code = pcode; 254} 255 256/* VC-2 11.1 - parse_parameters() 257 * The level dictates what the decoder should expect in terms of resolution 258 * and allows it to quickly reject whatever it can't support. Remember, 259 * this codec kinda targets cheapo FPGAs without much memory. Unfortunately 260 * it also limits us greatly in our choice of formats, hence the flag to disable 261 * strict_compliance */ 262static void encode_parse_params(VC2EncContext *s) 263{ 264 put_vc2_ue_uint(&s->pb, s->ver.major); /* VC-2 demands this to be 2 */ 265 put_vc2_ue_uint(&s->pb, s->ver.minor); /* ^^ and this to be 0 */ 266 put_vc2_ue_uint(&s->pb, s->profile); /* 3 to signal HQ profile */ 267 put_vc2_ue_uint(&s->pb, s->level); /* 3 - 1080/720, 6 - 4K */ 268} 269 270/* VC-2 11.3 - frame_size() */ 271static void encode_frame_size(VC2EncContext *s) 272{ 273 put_bits(&s->pb, 1, !s->strict_compliance); 274 if (!s->strict_compliance) { 275 AVCodecContext *avctx = s->avctx; 276 put_vc2_ue_uint(&s->pb, avctx->width); 277 put_vc2_ue_uint(&s->pb, avctx->height); 278 } 279} 280 281/* VC-2 11.3.3 - color_diff_sampling_format() */ 282static void encode_sample_fmt(VC2EncContext *s) 283{ 284 put_bits(&s->pb, 1, !s->strict_compliance); 285 if (!s->strict_compliance) { 286 int idx; 287 if (s->chroma_x_shift == 1 && s->chroma_y_shift == 0) 288 idx = 1; /* 422 */ 289 else if (s->chroma_x_shift == 1 && s->chroma_y_shift == 1) 290 idx = 2; /* 420 */ 291 else 292 idx = 0; /* 444 */ 293 put_vc2_ue_uint(&s->pb, idx); 294 } 295} 296 297/* VC-2 11.3.4 - scan_format() */ 298static void encode_scan_format(VC2EncContext *s) 299{ 300 put_bits(&s->pb, 1, !s->strict_compliance); 301 if (!s->strict_compliance) 302 put_vc2_ue_uint(&s->pb, s->interlaced); 303} 304 305/* VC-2 11.3.5 - frame_rate() */ 306static void encode_frame_rate(VC2EncContext *s) 307{ 308 put_bits(&s->pb, 1, !s->strict_compliance); 309 if (!s->strict_compliance) { 310 AVCodecContext *avctx = s->avctx; 311 put_vc2_ue_uint(&s->pb, 0); 312 put_vc2_ue_uint(&s->pb, avctx->time_base.den); 313 put_vc2_ue_uint(&s->pb, avctx->time_base.num); 314 } 315} 316 317/* VC-2 11.3.6 - aspect_ratio() */ 318static void encode_aspect_ratio(VC2EncContext *s) 319{ 320 put_bits(&s->pb, 1, !s->strict_compliance); 321 if (!s->strict_compliance) { 322 AVCodecContext *avctx = s->avctx; 323 put_vc2_ue_uint(&s->pb, 0); 324 put_vc2_ue_uint(&s->pb, avctx->sample_aspect_ratio.num); 325 put_vc2_ue_uint(&s->pb, avctx->sample_aspect_ratio.den); 326 } 327} 328 329/* VC-2 11.3.7 - clean_area() */ 330static void encode_clean_area(VC2EncContext *s) 331{ 332 put_bits(&s->pb, 1, 0); 333} 334 335/* VC-2 11.3.8 - signal_range() */ 336static void encode_signal_range(VC2EncContext *s) 337{ 338 put_bits(&s->pb, 1, !s->strict_compliance); 339 if (!s->strict_compliance) 340 put_vc2_ue_uint(&s->pb, s->bpp_idx); 341} 342 343/* VC-2 11.3.9 - color_spec() */ 344static void encode_color_spec(VC2EncContext *s) 345{ 346 AVCodecContext *avctx = s->avctx; 347 put_bits(&s->pb, 1, !s->strict_compliance); 348 if (!s->strict_compliance) { 349 int val; 350 put_vc2_ue_uint(&s->pb, 0); 351 352 /* primaries */ 353 put_bits(&s->pb, 1, 1); 354 if (avctx->color_primaries == AVCOL_PRI_BT470BG) 355 val = 2; 356 else if (avctx->color_primaries == AVCOL_PRI_SMPTE170M) 357 val = 1; 358 else if (avctx->color_primaries == AVCOL_PRI_SMPTE240M) 359 val = 1; 360 else 361 val = 0; 362 put_vc2_ue_uint(&s->pb, val); 363 364 /* color matrix */ 365 put_bits(&s->pb, 1, 1); 366 if (avctx->colorspace == AVCOL_SPC_RGB) 367 val = 3; 368 else if (avctx->colorspace == AVCOL_SPC_YCOCG) 369 val = 2; 370 else if (avctx->colorspace == AVCOL_SPC_BT470BG) 371 val = 1; 372 else 373 val = 0; 374 put_vc2_ue_uint(&s->pb, val); 375 376 /* transfer function */ 377 put_bits(&s->pb, 1, 1); 378 if (avctx->color_trc == AVCOL_TRC_LINEAR) 379 val = 2; 380 else if (avctx->color_trc == AVCOL_TRC_BT1361_ECG) 381 val = 1; 382 else 383 val = 0; 384 put_vc2_ue_uint(&s->pb, val); 385 } 386} 387 388/* VC-2 11.3 - source_parameters() */ 389static void encode_source_params(VC2EncContext *s) 390{ 391 encode_frame_size(s); 392 encode_sample_fmt(s); 393 encode_scan_format(s); 394 encode_frame_rate(s); 395 encode_aspect_ratio(s); 396 encode_clean_area(s); 397 encode_signal_range(s); 398 encode_color_spec(s); 399} 400 401/* VC-2 11 - sequence_header() */ 402static void encode_seq_header(VC2EncContext *s) 403{ 404 align_put_bits(&s->pb); 405 encode_parse_params(s); 406 put_vc2_ue_uint(&s->pb, s->base_vf); 407 encode_source_params(s); 408 put_vc2_ue_uint(&s->pb, s->interlaced); /* Frames or fields coding */ 409} 410 411/* VC-2 12.1 - picture_header() */ 412static void encode_picture_header(VC2EncContext *s) 413{ 414 align_put_bits(&s->pb); 415 put_bits32(&s->pb, s->picture_number++); 416} 417 418/* VC-2 12.3.4.1 - slice_parameters() */ 419static void encode_slice_params(VC2EncContext *s) 420{ 421 put_vc2_ue_uint(&s->pb, s->num_x); 422 put_vc2_ue_uint(&s->pb, s->num_y); 423 put_vc2_ue_uint(&s->pb, s->prefix_bytes); 424 put_vc2_ue_uint(&s->pb, s->size_scaler); 425} 426 427/* 1st idx = LL, second - vertical, third - horizontal, fourth - total */ 428static const uint8_t vc2_qm_col_tab[][4] = { 429 {20, 9, 15, 4}, 430 { 0, 6, 6, 4}, 431 { 0, 3, 3, 5}, 432 { 0, 3, 5, 1}, 433 { 0, 11, 10, 11} 434}; 435 436static const uint8_t vc2_qm_flat_tab[][4] = { 437 { 0, 0, 0, 0}, 438 { 0, 0, 0, 0}, 439 { 0, 0, 0, 0}, 440 { 0, 0, 0, 0}, 441 { 0, 0, 0, 0} 442}; 443 444static void init_quant_matrix(VC2EncContext *s) 445{ 446 int level, orientation; 447 448 if (s->wavelet_depth <= 4 && s->quant_matrix == VC2_QM_DEF) { 449 s->custom_quant_matrix = 0; 450 for (level = 0; level < s->wavelet_depth; level++) { 451 s->quant[level][0] = ff_dirac_default_qmat[s->wavelet_idx][level][0]; 452 s->quant[level][1] = ff_dirac_default_qmat[s->wavelet_idx][level][1]; 453 s->quant[level][2] = ff_dirac_default_qmat[s->wavelet_idx][level][2]; 454 s->quant[level][3] = ff_dirac_default_qmat[s->wavelet_idx][level][3]; 455 } 456 return; 457 } 458 459 s->custom_quant_matrix = 1; 460 461 if (s->quant_matrix == VC2_QM_DEF) { 462 for (level = 0; level < s->wavelet_depth; level++) { 463 for (orientation = 0; orientation < 4; orientation++) { 464 if (level <= 3) 465 s->quant[level][orientation] = ff_dirac_default_qmat[s->wavelet_idx][level][orientation]; 466 else 467 s->quant[level][orientation] = vc2_qm_col_tab[level][orientation]; 468 } 469 } 470 } else if (s->quant_matrix == VC2_QM_COL) { 471 for (level = 0; level < s->wavelet_depth; level++) { 472 for (orientation = 0; orientation < 4; orientation++) { 473 s->quant[level][orientation] = vc2_qm_col_tab[level][orientation]; 474 } 475 } 476 } else { 477 for (level = 0; level < s->wavelet_depth; level++) { 478 for (orientation = 0; orientation < 4; orientation++) { 479 s->quant[level][orientation] = vc2_qm_flat_tab[level][orientation]; 480 } 481 } 482 } 483} 484 485/* VC-2 12.3.4.2 - quant_matrix() */ 486static void encode_quant_matrix(VC2EncContext *s) 487{ 488 int level; 489 put_bits(&s->pb, 1, s->custom_quant_matrix); 490 if (s->custom_quant_matrix) { 491 put_vc2_ue_uint(&s->pb, s->quant[0][0]); 492 for (level = 0; level < s->wavelet_depth; level++) { 493 put_vc2_ue_uint(&s->pb, s->quant[level][1]); 494 put_vc2_ue_uint(&s->pb, s->quant[level][2]); 495 put_vc2_ue_uint(&s->pb, s->quant[level][3]); 496 } 497 } 498} 499 500/* VC-2 12.3 - transform_parameters() */ 501static void encode_transform_params(VC2EncContext *s) 502{ 503 put_vc2_ue_uint(&s->pb, s->wavelet_idx); 504 put_vc2_ue_uint(&s->pb, s->wavelet_depth); 505 506 encode_slice_params(s); 507 encode_quant_matrix(s); 508} 509 510/* VC-2 12.2 - wavelet_transform() */ 511static void encode_wavelet_transform(VC2EncContext *s) 512{ 513 encode_transform_params(s); 514 align_put_bits(&s->pb); 515} 516 517/* VC-2 12 - picture_parse() */ 518static void encode_picture_start(VC2EncContext *s) 519{ 520 align_put_bits(&s->pb); 521 encode_picture_header(s); 522 align_put_bits(&s->pb); 523 encode_wavelet_transform(s); 524} 525 526#define QUANT(c, mul, add, shift) (((mul) * (c) + (add)) >> (shift)) 527 528/* VC-2 13.5.5.2 - slice_band() */ 529static void encode_subband(VC2EncContext *s, PutBitContext *pb, int sx, int sy, 530 SubBand *b, int quant) 531{ 532 int x, y; 533 534 const int left = b->width * (sx+0) / s->num_x; 535 const int right = b->width * (sx+1) / s->num_x; 536 const int top = b->height * (sy+0) / s->num_y; 537 const int bottom = b->height * (sy+1) / s->num_y; 538 539 dwtcoef *coeff = b->buf + top * b->stride; 540 const uint64_t q_m = ((uint64_t)(s->qmagic_lut[quant][0])) << 2; 541 const uint64_t q_a = s->qmagic_lut[quant][1]; 542 const int q_s = av_log2(ff_dirac_qscale_tab[quant]) + 32; 543 544 for (y = top; y < bottom; y++) { 545 for (x = left; x < right; x++) { 546 uint32_t c_abs = QUANT(FFABS(coeff[x]), q_m, q_a, q_s); 547 put_vc2_ue_uint(pb, c_abs); 548 if (c_abs) 549 put_bits(pb, 1, coeff[x] < 0); 550 } 551 coeff += b->stride; 552 } 553} 554 555static int count_hq_slice(SliceArgs *slice, int quant_idx) 556{ 557 int x, y; 558 uint8_t quants[MAX_DWT_LEVELS][4]; 559 int bits = 0, p, level, orientation; 560 VC2EncContext *s = slice->ctx; 561 562 if (slice->cache[quant_idx]) 563 return slice->cache[quant_idx]; 564 565 bits += 8*s->prefix_bytes; 566 bits += 8; /* quant_idx */ 567 568 for (level = 0; level < s->wavelet_depth; level++) 569 for (orientation = !!level; orientation < 4; orientation++) 570 quants[level][orientation] = FFMAX(quant_idx - s->quant[level][orientation], 0); 571 572 for (p = 0; p < 3; p++) { 573 int bytes_start, bytes_len, pad_s, pad_c; 574 bytes_start = bits >> 3; 575 bits += 8; 576 for (level = 0; level < s->wavelet_depth; level++) { 577 for (orientation = !!level; orientation < 4; orientation++) { 578 SubBand *b = &s->plane[p].band[level][orientation]; 579 580 const int q_idx = quants[level][orientation]; 581 const uint64_t q_m = ((uint64_t)s->qmagic_lut[q_idx][0]) << 2; 582 const uint64_t q_a = s->qmagic_lut[q_idx][1]; 583 const int q_s = av_log2(ff_dirac_qscale_tab[q_idx]) + 32; 584 585 const int left = b->width * slice->x / s->num_x; 586 const int right = b->width *(slice->x+1) / s->num_x; 587 const int top = b->height * slice->y / s->num_y; 588 const int bottom = b->height *(slice->y+1) / s->num_y; 589 590 dwtcoef *buf = b->buf + top * b->stride; 591 592 for (y = top; y < bottom; y++) { 593 for (x = left; x < right; x++) { 594 uint32_t c_abs = QUANT(FFABS(buf[x]), q_m, q_a, q_s); 595 bits += count_vc2_ue_uint(c_abs); 596 bits += !!c_abs; 597 } 598 buf += b->stride; 599 } 600 } 601 } 602 bits += FFALIGN(bits, 8) - bits; 603 bytes_len = (bits >> 3) - bytes_start - 1; 604 pad_s = FFALIGN(bytes_len, s->size_scaler)/s->size_scaler; 605 pad_c = (pad_s*s->size_scaler) - bytes_len; 606 bits += pad_c*8; 607 } 608 609 slice->cache[quant_idx] = bits; 610 611 return bits; 612} 613 614/* Approaches the best possible quantizer asymptotically, its kinda exaustive 615 * but we have a LUT to get the coefficient size in bits. Guaranteed to never 616 * overshoot, which is apparently very important when streaming */ 617static int rate_control(AVCodecContext *avctx, void *arg) 618{ 619 SliceArgs *slice_dat = arg; 620 VC2EncContext *s = slice_dat->ctx; 621 const int top = slice_dat->bits_ceil; 622 const int bottom = slice_dat->bits_floor; 623 int quant_buf[2] = {-1, -1}; 624 int quant = slice_dat->quant_idx, step = 1; 625 int bits_last, bits = count_hq_slice(slice_dat, quant); 626 while ((bits > top) || (bits < bottom)) { 627 const int signed_step = bits > top ? +step : -step; 628 quant = av_clip(quant + signed_step, 0, s->q_ceil-1); 629 bits = count_hq_slice(slice_dat, quant); 630 if (quant_buf[1] == quant) { 631 quant = FFMAX(quant_buf[0], quant); 632 bits = quant == quant_buf[0] ? bits_last : bits; 633 break; 634 } 635 step = av_clip(step/2, 1, (s->q_ceil-1)/2); 636 quant_buf[1] = quant_buf[0]; 637 quant_buf[0] = quant; 638 bits_last = bits; 639 } 640 slice_dat->quant_idx = av_clip(quant, 0, s->q_ceil-1); 641 slice_dat->bytes = SSIZE_ROUND(bits >> 3); 642 return 0; 643} 644 645static int calc_slice_sizes(VC2EncContext *s) 646{ 647 int i, j, slice_x, slice_y, bytes_left = 0; 648 int bytes_top[SLICE_REDIST_TOTAL] = {0}; 649 int64_t total_bytes_needed = 0; 650 int slice_redist_range = FFMIN(SLICE_REDIST_TOTAL, s->num_x*s->num_y); 651 SliceArgs *enc_args = s->slice_args; 652 SliceArgs *top_loc[SLICE_REDIST_TOTAL] = {NULL}; 653 654 init_quant_matrix(s); 655 656 for (slice_y = 0; slice_y < s->num_y; slice_y++) { 657 for (slice_x = 0; slice_x < s->num_x; slice_x++) { 658 SliceArgs *args = &enc_args[s->num_x*slice_y + slice_x]; 659 args->ctx = s; 660 args->x = slice_x; 661 args->y = slice_y; 662 args->bits_ceil = s->slice_max_bytes << 3; 663 args->bits_floor = s->slice_min_bytes << 3; 664 memset(args->cache, 0, s->q_ceil*sizeof(*args->cache)); 665 } 666 } 667 668 /* First pass - determine baseline slice sizes w.r.t. max_slice_size */ 669 s->avctx->execute(s->avctx, rate_control, enc_args, NULL, s->num_x*s->num_y, 670 sizeof(SliceArgs)); 671 672 for (i = 0; i < s->num_x*s->num_y; i++) { 673 SliceArgs *args = &enc_args[i]; 674 bytes_left += args->bytes; 675 for (j = 0; j < slice_redist_range; j++) { 676 if (args->bytes > bytes_top[j]) { 677 bytes_top[j] = args->bytes; 678 top_loc[j] = args; 679 break; 680 } 681 } 682 } 683 684 bytes_left = s->frame_max_bytes - bytes_left; 685 686 /* Second pass - distribute leftover bytes */ 687 while (bytes_left > 0) { 688 int distributed = 0; 689 for (i = 0; i < slice_redist_range; i++) { 690 SliceArgs *args; 691 int bits, bytes, diff, prev_bytes, new_idx; 692 if (bytes_left <= 0) 693 break; 694 if (!top_loc[i] || !top_loc[i]->quant_idx) 695 break; 696 args = top_loc[i]; 697 prev_bytes = args->bytes; 698 new_idx = FFMAX(args->quant_idx - 1, 0); 699 bits = count_hq_slice(args, new_idx); 700 bytes = SSIZE_ROUND(bits >> 3); 701 diff = bytes - prev_bytes; 702 if ((bytes_left - diff) > 0) { 703 args->quant_idx = new_idx; 704 args->bytes = bytes; 705 bytes_left -= diff; 706 distributed++; 707 } 708 } 709 if (!distributed) 710 break; 711 } 712 713 for (i = 0; i < s->num_x*s->num_y; i++) { 714 SliceArgs *args = &enc_args[i]; 715 total_bytes_needed += args->bytes; 716 s->q_avg = (s->q_avg + args->quant_idx)/2; 717 } 718 719 return total_bytes_needed; 720} 721 722/* VC-2 13.5.3 - hq_slice */ 723static int encode_hq_slice(AVCodecContext *avctx, void *arg) 724{ 725 SliceArgs *slice_dat = arg; 726 VC2EncContext *s = slice_dat->ctx; 727 PutBitContext *pb = &slice_dat->pb; 728 const int slice_x = slice_dat->x; 729 const int slice_y = slice_dat->y; 730 const int quant_idx = slice_dat->quant_idx; 731 const int slice_bytes_max = slice_dat->bytes; 732 uint8_t quants[MAX_DWT_LEVELS][4]; 733 int p, level, orientation; 734 735 /* The reference decoder ignores it, and its typical length is 0 */ 736 memset(put_bits_ptr(pb), 0, s->prefix_bytes); 737 skip_put_bytes(pb, s->prefix_bytes); 738 739 put_bits(pb, 8, quant_idx); 740 741 /* Slice quantization (slice_quantizers() in the specs) */ 742 for (level = 0; level < s->wavelet_depth; level++) 743 for (orientation = !!level; orientation < 4; orientation++) 744 quants[level][orientation] = FFMAX(quant_idx - s->quant[level][orientation], 0); 745 746 /* Luma + 2 Chroma planes */ 747 for (p = 0; p < 3; p++) { 748 int bytes_start, bytes_len, pad_s, pad_c; 749 bytes_start = put_bits_count(pb) >> 3; 750 put_bits(pb, 8, 0); 751 for (level = 0; level < s->wavelet_depth; level++) { 752 for (orientation = !!level; orientation < 4; orientation++) { 753 encode_subband(s, pb, slice_x, slice_y, 754 &s->plane[p].band[level][orientation], 755 quants[level][orientation]); 756 } 757 } 758 align_put_bits(pb); 759 bytes_len = (put_bits_count(pb) >> 3) - bytes_start - 1; 760 if (p == 2) { 761 int len_diff = slice_bytes_max - (put_bits_count(pb) >> 3); 762 pad_s = FFALIGN((bytes_len + len_diff), s->size_scaler)/s->size_scaler; 763 pad_c = (pad_s*s->size_scaler) - bytes_len; 764 } else { 765 pad_s = FFALIGN(bytes_len, s->size_scaler)/s->size_scaler; 766 pad_c = (pad_s*s->size_scaler) - bytes_len; 767 } 768 pb->buf[bytes_start] = pad_s; 769 flush_put_bits(pb); 770 /* vc2-reference uses that padding that decodes to '0' coeffs */ 771 memset(put_bits_ptr(pb), 0xFF, pad_c); 772 skip_put_bytes(pb, pad_c); 773 } 774 775 return 0; 776} 777 778/* VC-2 13.5.1 - low_delay_transform_data() */ 779static int encode_slices(VC2EncContext *s) 780{ 781 uint8_t *buf; 782 int slice_x, slice_y, skip = 0; 783 SliceArgs *enc_args = s->slice_args; 784 785 flush_put_bits(&s->pb); 786 buf = put_bits_ptr(&s->pb); 787 788 for (slice_y = 0; slice_y < s->num_y; slice_y++) { 789 for (slice_x = 0; slice_x < s->num_x; slice_x++) { 790 SliceArgs *args = &enc_args[s->num_x*slice_y + slice_x]; 791 init_put_bits(&args->pb, buf + skip, args->bytes+s->prefix_bytes); 792 skip += args->bytes; 793 } 794 } 795 796 s->avctx->execute(s->avctx, encode_hq_slice, enc_args, NULL, s->num_x*s->num_y, 797 sizeof(SliceArgs)); 798 799 skip_put_bytes(&s->pb, skip); 800 801 return 0; 802} 803 804/* 805 * Transform basics for a 3 level transform 806 * |---------------------------------------------------------------------| 807 * | LL-0 | HL-0 | | | 808 * |--------|-------| HL-1 | | 809 * | LH-0 | HH-0 | | | 810 * |----------------|-----------------| HL-2 | 811 * | | | | 812 * | LH-1 | HH-1 | | 813 * | | | | 814 * |----------------------------------|----------------------------------| 815 * | | | 816 * | | | 817 * | | | 818 * | LH-2 | HH-2 | 819 * | | | 820 * | | | 821 * | | | 822 * |---------------------------------------------------------------------| 823 * 824 * DWT transforms are generally applied by splitting the image in two vertically 825 * and applying a low pass transform on the left part and a corresponding high 826 * pass transform on the right hand side. This is known as the horizontal filter 827 * stage. 828 * After that, the same operation is performed except the image is divided 829 * horizontally, with the high pass on the lower and the low pass on the higher 830 * side. 831 * Therefore, you're left with 4 subdivisions - known as low-low, low-high, 832 * high-low and high-high. They're referred to as orientations in the decoder 833 * and encoder. 834 * 835 * The LL (low-low) area contains the original image downsampled by the amount 836 * of levels. The rest of the areas can be thought as the details needed 837 * to restore the image perfectly to its original size. 838 */ 839static int dwt_plane(AVCodecContext *avctx, void *arg) 840{ 841 TransformArgs *transform_dat = arg; 842 VC2EncContext *s = transform_dat->ctx; 843 const void *frame_data = transform_dat->idata; 844 const ptrdiff_t linesize = transform_dat->istride; 845 const int field = transform_dat->field; 846 const Plane *p = transform_dat->plane; 847 VC2TransformContext *t = &transform_dat->t; 848 dwtcoef *buf = p->coef_buf; 849 const int idx = s->wavelet_idx; 850 const int skip = 1 + s->interlaced; 851 852 int x, y, level, offset; 853 ptrdiff_t pix_stride = linesize >> (s->bpp - 1); 854 855 if (field == 1) { 856 offset = 0; 857 pix_stride <<= 1; 858 } else if (field == 2) { 859 offset = pix_stride; 860 pix_stride <<= 1; 861 } else { 862 offset = 0; 863 } 864 865 if (s->bpp == 1) { 866 const uint8_t *pix = (const uint8_t *)frame_data + offset; 867 for (y = 0; y < p->height*skip; y+=skip) { 868 for (x = 0; x < p->width; x++) { 869 buf[x] = pix[x] - s->diff_offset; 870 } 871 memset(&buf[x], 0, (p->coef_stride - p->width)*sizeof(dwtcoef)); 872 buf += p->coef_stride; 873 pix += pix_stride; 874 } 875 } else { 876 const uint16_t *pix = (const uint16_t *)frame_data + offset; 877 for (y = 0; y < p->height*skip; y+=skip) { 878 for (x = 0; x < p->width; x++) { 879 buf[x] = pix[x] - s->diff_offset; 880 } 881 memset(&buf[x], 0, (p->coef_stride - p->width)*sizeof(dwtcoef)); 882 buf += p->coef_stride; 883 pix += pix_stride; 884 } 885 } 886 887 memset(buf, 0, p->coef_stride * (p->dwt_height - p->height) * sizeof(dwtcoef)); 888 889 for (level = s->wavelet_depth-1; level >= 0; level--) { 890 const SubBand *b = &p->band[level][0]; 891 t->vc2_subband_dwt[idx](t, p->coef_buf, p->coef_stride, 892 b->width, b->height); 893 } 894 895 return 0; 896} 897 898static int encode_frame(VC2EncContext *s, AVPacket *avpkt, const AVFrame *frame, 899 const char *aux_data, const int header_size, int field) 900{ 901 int i, ret; 902 int64_t max_frame_bytes; 903 904 /* Threaded DWT transform */ 905 for (i = 0; i < 3; i++) { 906 s->transform_args[i].ctx = s; 907 s->transform_args[i].field = field; 908 s->transform_args[i].plane = &s->plane[i]; 909 s->transform_args[i].idata = frame->data[i]; 910 s->transform_args[i].istride = frame->linesize[i]; 911 } 912 s->avctx->execute(s->avctx, dwt_plane, s->transform_args, NULL, 3, 913 sizeof(TransformArgs)); 914 915 /* Calculate per-slice quantizers and sizes */ 916 max_frame_bytes = header_size + calc_slice_sizes(s); 917 918 if (field < 2) { 919 ret = ff_get_encode_buffer(s->avctx, avpkt, 920 max_frame_bytes << s->interlaced, 0); 921 if (ret) { 922 av_log(s->avctx, AV_LOG_ERROR, "Error getting output packet.\n"); 923 return ret; 924 } 925 init_put_bits(&s->pb, avpkt->data, avpkt->size); 926 } 927 928 /* Sequence header */ 929 encode_parse_info(s, DIRAC_PCODE_SEQ_HEADER); 930 encode_seq_header(s); 931 932 /* Encoder version */ 933 if (aux_data) { 934 encode_parse_info(s, DIRAC_PCODE_AUX); 935 ff_put_string(&s->pb, aux_data, 1); 936 } 937 938 /* Picture header */ 939 encode_parse_info(s, DIRAC_PCODE_PICTURE_HQ); 940 encode_picture_start(s); 941 942 /* Encode slices */ 943 encode_slices(s); 944 945 /* End sequence */ 946 encode_parse_info(s, DIRAC_PCODE_END_SEQ); 947 948 return 0; 949} 950 951static av_cold int vc2_encode_frame(AVCodecContext *avctx, AVPacket *avpkt, 952 const AVFrame *frame, int *got_packet) 953{ 954 int ret = 0; 955 int slice_ceil, sig_size = 256; 956 VC2EncContext *s = avctx->priv_data; 957 const int bitexact = avctx->flags & AV_CODEC_FLAG_BITEXACT; 958 const char *aux_data = bitexact ? "Lavc" : LIBAVCODEC_IDENT; 959 const int aux_data_size = bitexact ? sizeof("Lavc") : sizeof(LIBAVCODEC_IDENT); 960 const int header_size = 100 + aux_data_size; 961 int64_t r_bitrate = avctx->bit_rate >> (s->interlaced); 962 963 s->avctx = avctx; 964 s->size_scaler = 2; 965 s->prefix_bytes = 0; 966 s->last_parse_code = 0; 967 s->next_parse_offset = 0; 968 969 /* Rate control */ 970 s->frame_max_bytes = (av_rescale(r_bitrate, s->avctx->time_base.num, 971 s->avctx->time_base.den) >> 3) - header_size; 972 s->slice_max_bytes = slice_ceil = av_rescale(s->frame_max_bytes, 1, s->num_x*s->num_y); 973 974 /* Find an appropriate size scaler */ 975 while (sig_size > 255) { 976 int r_size = SSIZE_ROUND(s->slice_max_bytes); 977 if (r_size > slice_ceil) { 978 s->slice_max_bytes -= r_size - slice_ceil; 979 r_size = SSIZE_ROUND(s->slice_max_bytes); 980 } 981 sig_size = r_size/s->size_scaler; /* Signalled slize size */ 982 s->size_scaler <<= 1; 983 } 984 985 s->slice_min_bytes = s->slice_max_bytes - s->slice_max_bytes*(s->tolerance/100.0f); 986 if (s->slice_min_bytes < 0) 987 return AVERROR(EINVAL); 988 989 ret = encode_frame(s, avpkt, frame, aux_data, header_size, s->interlaced); 990 if (ret) 991 return ret; 992 if (s->interlaced) { 993 ret = encode_frame(s, avpkt, frame, aux_data, header_size, 2); 994 if (ret) 995 return ret; 996 } 997 998 flush_put_bits(&s->pb); 999 av_shrink_packet(avpkt, put_bytes_output(&s->pb)); 1000 1001 *got_packet = 1; 1002 1003 return 0; 1004} 1005 1006static av_cold int vc2_encode_end(AVCodecContext *avctx) 1007{ 1008 int i; 1009 VC2EncContext *s = avctx->priv_data; 1010 1011 av_log(avctx, AV_LOG_INFO, "Qavg: %i\n", s->q_avg); 1012 1013 for (i = 0; i < 3; i++) { 1014 ff_vc2enc_free_transforms(&s->transform_args[i].t); 1015 av_freep(&s->plane[i].coef_buf); 1016 } 1017 1018 av_freep(&s->slice_args); 1019 1020 return 0; 1021} 1022 1023static av_cold int vc2_encode_init(AVCodecContext *avctx) 1024{ 1025 Plane *p; 1026 SubBand *b; 1027 int i, level, o, shift, ret; 1028 const AVPixFmtDescriptor *fmt = av_pix_fmt_desc_get(avctx->pix_fmt); 1029 const int depth = fmt->comp[0].depth; 1030 VC2EncContext *s = avctx->priv_data; 1031 1032 s->picture_number = 0; 1033 1034 /* Total allowed quantization range */ 1035 s->q_ceil = DIRAC_MAX_QUANT_INDEX; 1036 1037 s->ver.major = 2; 1038 s->ver.minor = 0; 1039 s->profile = 3; 1040 s->level = 3; 1041 1042 s->base_vf = -1; 1043 s->strict_compliance = 1; 1044 1045 s->q_avg = 0; 1046 s->slice_max_bytes = 0; 1047 s->slice_min_bytes = 0; 1048 1049 /* Mark unknown as progressive */ 1050 s->interlaced = !((avctx->field_order == AV_FIELD_UNKNOWN) || 1051 (avctx->field_order == AV_FIELD_PROGRESSIVE)); 1052 1053 for (i = 0; i < base_video_fmts_len; i++) { 1054 const VC2BaseVideoFormat *fmt = &base_video_fmts[i]; 1055 if (avctx->pix_fmt != fmt->pix_fmt) 1056 continue; 1057 if (avctx->time_base.num != fmt->time_base.num) 1058 continue; 1059 if (avctx->time_base.den != fmt->time_base.den) 1060 continue; 1061 if (avctx->width != fmt->width) 1062 continue; 1063 if (avctx->height != fmt->height) 1064 continue; 1065 if (s->interlaced != fmt->interlaced) 1066 continue; 1067 s->base_vf = i; 1068 s->level = base_video_fmts[i].level; 1069 break; 1070 } 1071 1072 if (s->interlaced) 1073 av_log(avctx, AV_LOG_WARNING, "Interlacing enabled!\n"); 1074 1075 if ((s->slice_width & (s->slice_width - 1)) || 1076 (s->slice_height & (s->slice_height - 1))) { 1077 av_log(avctx, AV_LOG_ERROR, "Slice size is not a power of two!\n"); 1078 return AVERROR_UNKNOWN; 1079 } 1080 1081 if ((s->slice_width > avctx->width) || 1082 (s->slice_height > avctx->height)) { 1083 av_log(avctx, AV_LOG_ERROR, "Slice size is bigger than the image!\n"); 1084 return AVERROR_UNKNOWN; 1085 } 1086 1087 if (s->base_vf <= 0) { 1088 if (avctx->strict_std_compliance < FF_COMPLIANCE_STRICT) { 1089 s->strict_compliance = s->base_vf = 0; 1090 av_log(avctx, AV_LOG_WARNING, "Format does not strictly comply with VC2 specs\n"); 1091 } else { 1092 av_log(avctx, AV_LOG_WARNING, "Given format does not strictly comply with " 1093 "the specifications, decrease strictness to use it.\n"); 1094 return AVERROR_UNKNOWN; 1095 } 1096 } else { 1097 av_log(avctx, AV_LOG_INFO, "Selected base video format = %i (%s)\n", 1098 s->base_vf, base_video_fmts[s->base_vf].name); 1099 } 1100 1101 /* Chroma subsampling */ 1102 ret = av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift); 1103 if (ret) 1104 return ret; 1105 1106 /* Bit depth and color range index */ 1107 if (depth == 8 && avctx->color_range == AVCOL_RANGE_JPEG) { 1108 s->bpp = 1; 1109 s->bpp_idx = 1; 1110 s->diff_offset = 128; 1111 } else if (depth == 8 && (avctx->color_range == AVCOL_RANGE_MPEG || 1112 avctx->color_range == AVCOL_RANGE_UNSPECIFIED)) { 1113 s->bpp = 1; 1114 s->bpp_idx = 2; 1115 s->diff_offset = 128; 1116 } else if (depth == 10) { 1117 s->bpp = 2; 1118 s->bpp_idx = 3; 1119 s->diff_offset = 512; 1120 } else { 1121 s->bpp = 2; 1122 s->bpp_idx = 4; 1123 s->diff_offset = 2048; 1124 } 1125 1126 /* Planes initialization */ 1127 for (i = 0; i < 3; i++) { 1128 int w, h; 1129 p = &s->plane[i]; 1130 p->width = avctx->width >> (i ? s->chroma_x_shift : 0); 1131 p->height = avctx->height >> (i ? s->chroma_y_shift : 0); 1132 if (s->interlaced) 1133 p->height >>= 1; 1134 p->dwt_width = w = FFALIGN(p->width, (1 << s->wavelet_depth)); 1135 p->dwt_height = h = FFALIGN(p->height, (1 << s->wavelet_depth)); 1136 p->coef_stride = FFALIGN(p->dwt_width, 32); 1137 p->coef_buf = av_mallocz(p->coef_stride*p->dwt_height*sizeof(dwtcoef)); 1138 if (!p->coef_buf) 1139 return AVERROR(ENOMEM); 1140 for (level = s->wavelet_depth-1; level >= 0; level--) { 1141 w = w >> 1; 1142 h = h >> 1; 1143 for (o = 0; o < 4; o++) { 1144 b = &p->band[level][o]; 1145 b->width = w; 1146 b->height = h; 1147 b->stride = p->coef_stride; 1148 shift = (o > 1)*b->height*b->stride + (o & 1)*b->width; 1149 b->buf = p->coef_buf + shift; 1150 } 1151 } 1152 1153 /* DWT init */ 1154 if (ff_vc2enc_init_transforms(&s->transform_args[i].t, 1155 s->plane[i].coef_stride, 1156 s->plane[i].dwt_height, 1157 s->slice_width, s->slice_height)) 1158 return AVERROR(ENOMEM); 1159 } 1160 1161 /* Slices */ 1162 s->num_x = s->plane[0].dwt_width/s->slice_width; 1163 s->num_y = s->plane[0].dwt_height/s->slice_height; 1164 1165 s->slice_args = av_calloc(s->num_x*s->num_y, sizeof(SliceArgs)); 1166 if (!s->slice_args) 1167 return AVERROR(ENOMEM); 1168 1169 for (i = 0; i < 116; i++) { 1170 const uint64_t qf = ff_dirac_qscale_tab[i]; 1171 const uint32_t m = av_log2(qf); 1172 const uint32_t t = (1ULL << (m + 32)) / qf; 1173 const uint32_t r = (t*qf + qf) & UINT32_MAX; 1174 if (!(qf & (qf - 1))) { 1175 s->qmagic_lut[i][0] = 0xFFFFFFFF; 1176 s->qmagic_lut[i][1] = 0xFFFFFFFF; 1177 } else if (r <= 1 << m) { 1178 s->qmagic_lut[i][0] = t + 1; 1179 s->qmagic_lut[i][1] = 0; 1180 } else { 1181 s->qmagic_lut[i][0] = t; 1182 s->qmagic_lut[i][1] = t; 1183 } 1184 } 1185 1186 return 0; 1187} 1188 1189#define VC2ENC_FLAGS (AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM) 1190static const AVOption vc2enc_options[] = { 1191 {"tolerance", "Max undershoot in percent", offsetof(VC2EncContext, tolerance), AV_OPT_TYPE_DOUBLE, {.dbl = 5.0f}, 0.0f, 45.0f, VC2ENC_FLAGS, "tolerance"}, 1192 {"slice_width", "Slice width", offsetof(VC2EncContext, slice_width), AV_OPT_TYPE_INT, {.i64 = 32}, 32, 1024, VC2ENC_FLAGS, "slice_width"}, 1193 {"slice_height", "Slice height", offsetof(VC2EncContext, slice_height), AV_OPT_TYPE_INT, {.i64 = 16}, 8, 1024, VC2ENC_FLAGS, "slice_height"}, 1194 {"wavelet_depth", "Transform depth", offsetof(VC2EncContext, wavelet_depth), AV_OPT_TYPE_INT, {.i64 = 4}, 1, 5, VC2ENC_FLAGS, "wavelet_depth"}, 1195 {"wavelet_type", "Transform type", offsetof(VC2EncContext, wavelet_idx), AV_OPT_TYPE_INT, {.i64 = VC2_TRANSFORM_9_7}, 0, VC2_TRANSFORMS_NB, VC2ENC_FLAGS, "wavelet_idx"}, 1196 {"9_7", "Deslauriers-Dubuc (9,7)", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_9_7}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "wavelet_idx"}, 1197 {"5_3", "LeGall (5,3)", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_5_3}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "wavelet_idx"}, 1198 {"haar", "Haar (with shift)", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_HAAR_S}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "wavelet_idx"}, 1199 {"haar_noshift", "Haar (without shift)", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_TRANSFORM_HAAR}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "wavelet_idx"}, 1200 {"qm", "Custom quantization matrix", offsetof(VC2EncContext, quant_matrix), AV_OPT_TYPE_INT, {.i64 = VC2_QM_DEF}, 0, VC2_QM_NB, VC2ENC_FLAGS, "quant_matrix"}, 1201 {"default", "Default from the specifications", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_QM_DEF}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "quant_matrix"}, 1202 {"color", "Prevents low bitrate discoloration", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_QM_COL}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "quant_matrix"}, 1203 {"flat", "Optimize for PSNR", 0, AV_OPT_TYPE_CONST, {.i64 = VC2_QM_FLAT}, INT_MIN, INT_MAX, VC2ENC_FLAGS, "quant_matrix"}, 1204 {NULL} 1205}; 1206 1207static const AVClass vc2enc_class = { 1208 .class_name = "SMPTE VC-2 encoder", 1209 .category = AV_CLASS_CATEGORY_ENCODER, 1210 .option = vc2enc_options, 1211 .item_name = av_default_item_name, 1212 .version = LIBAVUTIL_VERSION_INT 1213}; 1214 1215static const FFCodecDefault vc2enc_defaults[] = { 1216 { "b", "600000000" }, 1217 { NULL }, 1218}; 1219 1220static const enum AVPixelFormat allowed_pix_fmts[] = { 1221 AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, 1222 AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10, 1223 AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12, 1224 AV_PIX_FMT_NONE 1225}; 1226 1227const FFCodec ff_vc2_encoder = { 1228 .p.name = "vc2", 1229 .p.long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-2"), 1230 .p.type = AVMEDIA_TYPE_VIDEO, 1231 .p.id = AV_CODEC_ID_DIRAC, 1232 .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_SLICE_THREADS, 1233 .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP, 1234 .priv_data_size = sizeof(VC2EncContext), 1235 .init = vc2_encode_init, 1236 .close = vc2_encode_end, 1237 FF_CODEC_ENCODE_CB(vc2_encode_frame), 1238 .p.priv_class = &vc2enc_class, 1239 .defaults = vc2enc_defaults, 1240 .p.pix_fmts = allowed_pix_fmts 1241}; 1242