1/*
2 * Ut Video decoder
3 * Copyright (c) 2011 Konstantin Shishkov
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * Ut Video decoder
25 */
26
27#include <inttypes.h>
28#include <stdlib.h>
29
30#define CACHED_BITSTREAM_READER !ARCH_X86_32
31#define UNCHECKED_BITSTREAM_READER 1
32
33#include "libavutil/intreadwrite.h"
34#include "libavutil/pixdesc.h"
35#include "avcodec.h"
36#include "bswapdsp.h"
37#include "bytestream.h"
38#include "codec_internal.h"
39#include "get_bits.h"
40#include "thread.h"
41#include "utvideo.h"
42
43typedef struct HuffEntry {
44    uint8_t len;
45    uint16_t sym;
46} HuffEntry;
47
48static int build_huff(UtvideoContext *c, const uint8_t *src, VLC *vlc,
49                      int *fsym, unsigned nb_elems)
50{
51    int i;
52    HuffEntry he[1024];
53    uint8_t bits[1024];
54    uint16_t codes_count[33] = { 0 };
55
56    *fsym = -1;
57    for (i = 0; i < nb_elems; i++) {
58        if (src[i] == 0) {
59            *fsym = i;
60            return 0;
61        } else if (src[i] == 255) {
62            bits[i] = 0;
63        } else if (src[i] <= 32) {
64            bits[i] = src[i];
65        } else
66            return AVERROR_INVALIDDATA;
67
68        codes_count[bits[i]]++;
69    }
70    if (codes_count[0] == nb_elems)
71        return AVERROR_INVALIDDATA;
72
73    /* For Ut Video, longer codes are to the left of the tree and
74     * for codes with the same length the symbol is descending from
75     * left to right. So after the next loop --codes_count[i] will
76     * be the index of the first (lowest) symbol of length i when
77     * indexed by the position in the tree with left nodes being first. */
78    for (int i = 31; i >= 0; i--)
79        codes_count[i] += codes_count[i + 1];
80
81    for (unsigned i = 0; i < nb_elems; i++)
82        he[--codes_count[bits[i]]] = (HuffEntry) { bits[i], i };
83
84#define VLC_BITS 11
85    return ff_init_vlc_from_lengths(vlc, VLC_BITS, codes_count[0],
86                                    &he[0].len, sizeof(*he),
87                                    &he[0].sym, sizeof(*he), 2, 0, 0, c->avctx);
88}
89
90static int decode_plane10(UtvideoContext *c, int plane_no,
91                          uint16_t *dst, ptrdiff_t stride,
92                          int width, int height,
93                          const uint8_t *src, const uint8_t *huff,
94                          int use_pred)
95{
96    int i, j, slice, pix, ret;
97    int sstart, send;
98    VLC vlc;
99    GetBitContext gb;
100    int prev, fsym;
101
102    if ((ret = build_huff(c, huff, &vlc, &fsym, 1024)) < 0) {
103        av_log(c->avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n");
104        return ret;
105    }
106    if (fsym >= 0) { // build_huff reported a symbol to fill slices with
107        send = 0;
108        for (slice = 0; slice < c->slices; slice++) {
109            uint16_t *dest;
110
111            sstart = send;
112            send   = (height * (slice + 1) / c->slices);
113            dest   = dst + sstart * stride;
114
115            prev = 0x200;
116            for (j = sstart; j < send; j++) {
117                for (i = 0; i < width; i++) {
118                    pix = fsym;
119                    if (use_pred) {
120                        prev += pix;
121                        prev &= 0x3FF;
122                        pix   = prev;
123                    }
124                    dest[i] = pix;
125                }
126                dest += stride;
127            }
128        }
129        return 0;
130    }
131
132    send = 0;
133    for (slice = 0; slice < c->slices; slice++) {
134        uint16_t *dest;
135        int slice_data_start, slice_data_end, slice_size;
136
137        sstart = send;
138        send   = (height * (slice + 1) / c->slices);
139        dest   = dst + sstart * stride;
140
141        // slice offset and size validation was done earlier
142        slice_data_start = slice ? AV_RL32(src + slice * 4 - 4) : 0;
143        slice_data_end   = AV_RL32(src + slice * 4);
144        slice_size       = slice_data_end - slice_data_start;
145
146        if (!slice_size) {
147            av_log(c->avctx, AV_LOG_ERROR, "Plane has more than one symbol "
148                   "yet a slice has a length of zero.\n");
149            goto fail;
150        }
151
152        memset(c->slice_bits + slice_size, 0, AV_INPUT_BUFFER_PADDING_SIZE);
153        c->bdsp.bswap_buf((uint32_t *) c->slice_bits,
154                          (uint32_t *)(src + slice_data_start + c->slices * 4),
155                          (slice_data_end - slice_data_start + 3) >> 2);
156        init_get_bits(&gb, c->slice_bits, slice_size * 8);
157
158        prev = 0x200;
159        for (j = sstart; j < send; j++) {
160            for (i = 0; i < width; i++) {
161                pix = get_vlc2(&gb, vlc.table, VLC_BITS, 3);
162                if (pix < 0) {
163                    av_log(c->avctx, AV_LOG_ERROR, "Decoding error\n");
164                    goto fail;
165                }
166                if (use_pred) {
167                    prev += pix;
168                    prev &= 0x3FF;
169                    pix   = prev;
170                }
171                dest[i] = pix;
172            }
173            dest += stride;
174            if (get_bits_left(&gb) < 0) {
175                av_log(c->avctx, AV_LOG_ERROR,
176                        "Slice decoding ran out of bits\n");
177                goto fail;
178            }
179        }
180        if (get_bits_left(&gb) > 32)
181            av_log(c->avctx, AV_LOG_WARNING,
182                   "%d bits left after decoding slice\n", get_bits_left(&gb));
183    }
184
185    ff_free_vlc(&vlc);
186
187    return 0;
188fail:
189    ff_free_vlc(&vlc);
190    return AVERROR_INVALIDDATA;
191}
192
193static int compute_cmask(int plane_no, int interlaced, enum AVPixelFormat pix_fmt)
194{
195    const int is_luma = (pix_fmt == AV_PIX_FMT_YUV420P) && !plane_no;
196
197    if (interlaced)
198        return ~(1 + 2 * is_luma);
199
200    return ~is_luma;
201}
202
203static int decode_plane(UtvideoContext *c, int plane_no,
204                        uint8_t *dst, ptrdiff_t stride,
205                        int width, int height,
206                        const uint8_t *src, int use_pred)
207{
208    int i, j, slice, pix;
209    int sstart, send;
210    VLC vlc;
211    GetBitContext gb;
212    int ret, prev, fsym;
213    const int cmask = compute_cmask(plane_no, c->interlaced, c->avctx->pix_fmt);
214
215    if (c->pack) {
216        send = 0;
217        for (slice = 0; slice < c->slices; slice++) {
218            GetBitContext cbit, pbit;
219            uint8_t *dest, *p;
220
221            ret = init_get_bits8_le(&cbit, c->control_stream[plane_no][slice], c->control_stream_size[plane_no][slice]);
222            if (ret < 0)
223                return ret;
224
225            ret = init_get_bits8_le(&pbit, c->packed_stream[plane_no][slice], c->packed_stream_size[plane_no][slice]);
226            if (ret < 0)
227                return ret;
228
229            sstart = send;
230            send   = (height * (slice + 1) / c->slices) & cmask;
231            dest   = dst + sstart * stride;
232
233            if (3 * ((dst + send * stride - dest + 7)/8) > get_bits_left(&cbit))
234                return AVERROR_INVALIDDATA;
235
236            for (p = dest; p < dst + send * stride; p += 8) {
237                int bits = get_bits_le(&cbit, 3);
238
239                if (bits == 0) {
240                    *(uint64_t *) p = 0;
241                } else {
242                    uint32_t sub = 0x80 >> (8 - (bits + 1)), add;
243                    int k;
244
245                    if ((bits + 1) * 8 > get_bits_left(&pbit))
246                        return AVERROR_INVALIDDATA;
247
248                    for (k = 0; k < 8; k++) {
249
250                        p[k] = get_bits_le(&pbit, bits + 1);
251                        add = (~p[k] & sub) << (8 - bits);
252                        p[k] -= sub;
253                        p[k] += add;
254                    }
255                }
256            }
257        }
258
259        return 0;
260    }
261
262    if (build_huff(c, src, &vlc, &fsym, 256)) {
263        av_log(c->avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n");
264        return AVERROR_INVALIDDATA;
265    }
266    if (fsym >= 0) { // build_huff reported a symbol to fill slices with
267        send = 0;
268        for (slice = 0; slice < c->slices; slice++) {
269            uint8_t *dest;
270
271            sstart = send;
272            send   = (height * (slice + 1) / c->slices) & cmask;
273            dest   = dst + sstart * stride;
274
275            prev = 0x80;
276            for (j = sstart; j < send; j++) {
277                for (i = 0; i < width; i++) {
278                    pix = fsym;
279                    if (use_pred) {
280                        prev += (unsigned)pix;
281                        pix   = prev;
282                    }
283                    dest[i] = pix;
284                }
285                dest += stride;
286            }
287        }
288        return 0;
289    }
290
291    src      += 256;
292
293    send = 0;
294    for (slice = 0; slice < c->slices; slice++) {
295        uint8_t *dest;
296        int slice_data_start, slice_data_end, slice_size;
297
298        sstart = send;
299        send   = (height * (slice + 1) / c->slices) & cmask;
300        dest   = dst + sstart * stride;
301
302        // slice offset and size validation was done earlier
303        slice_data_start = slice ? AV_RL32(src + slice * 4 - 4) : 0;
304        slice_data_end   = AV_RL32(src + slice * 4);
305        slice_size       = slice_data_end - slice_data_start;
306
307        if (!slice_size) {
308            av_log(c->avctx, AV_LOG_ERROR, "Plane has more than one symbol "
309                   "yet a slice has a length of zero.\n");
310            goto fail;
311        }
312
313        memset(c->slice_bits + slice_size, 0, AV_INPUT_BUFFER_PADDING_SIZE);
314        c->bdsp.bswap_buf((uint32_t *) c->slice_bits,
315                          (uint32_t *)(src + slice_data_start + c->slices * 4),
316                          (slice_data_end - slice_data_start + 3) >> 2);
317        init_get_bits(&gb, c->slice_bits, slice_size * 8);
318
319        prev = 0x80;
320        for (j = sstart; j < send; j++) {
321            for (i = 0; i < width; i++) {
322                pix = get_vlc2(&gb, vlc.table, VLC_BITS, 3);
323                if (pix < 0) {
324                    av_log(c->avctx, AV_LOG_ERROR, "Decoding error\n");
325                    goto fail;
326                }
327                if (use_pred) {
328                    prev += pix;
329                    pix   = prev;
330                }
331                dest[i] = pix;
332            }
333            if (get_bits_left(&gb) < 0) {
334                av_log(c->avctx, AV_LOG_ERROR,
335                        "Slice decoding ran out of bits\n");
336                goto fail;
337            }
338            dest += stride;
339        }
340        if (get_bits_left(&gb) > 32)
341            av_log(c->avctx, AV_LOG_WARNING,
342                   "%d bits left after decoding slice\n", get_bits_left(&gb));
343    }
344
345    ff_free_vlc(&vlc);
346
347    return 0;
348fail:
349    ff_free_vlc(&vlc);
350    return AVERROR_INVALIDDATA;
351}
352
353#undef A
354#undef B
355#undef C
356
357static void restore_median_planar(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
358                                  int width, int height, int slices, int rmode)
359{
360    int i, j, slice;
361    int A, B, C;
362    uint8_t *bsrc;
363    int slice_start, slice_height;
364    const int cmask = ~rmode;
365
366    for (slice = 0; slice < slices; slice++) {
367        slice_start  = ((slice * height) / slices) & cmask;
368        slice_height = ((((slice + 1) * height) / slices) & cmask) -
369                       slice_start;
370
371        if (!slice_height)
372            continue;
373        bsrc = src + slice_start * stride;
374
375        // first line - left neighbour prediction
376        bsrc[0] += 0x80;
377        c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
378        bsrc += stride;
379        if (slice_height <= 1)
380            continue;
381        // second line - first element has top prediction, the rest uses median
382        C        = bsrc[-stride];
383        bsrc[0] += C;
384        A        = bsrc[0];
385        for (i = 1; i < FFMIN(width, 16); i++) { /* scalar loop (DSP need align 16) */
386            B        = bsrc[i - stride];
387            bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
388            C        = B;
389            A        = bsrc[i];
390        }
391        if (width > 16)
392            c->llviddsp.add_median_pred(bsrc + 16, bsrc - stride + 16,
393                                        bsrc + 16, width - 16, &A, &B);
394
395        bsrc += stride;
396        // the rest of lines use continuous median prediction
397        for (j = 2; j < slice_height; j++) {
398            c->llviddsp.add_median_pred(bsrc, bsrc - stride,
399                                            bsrc, width, &A, &B);
400            bsrc += stride;
401        }
402    }
403}
404
405/* UtVideo interlaced mode treats every two lines as a single one,
406 * so restoring function should take care of possible padding between
407 * two parts of the same "line".
408 */
409static void restore_median_planar_il(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
410                                     int width, int height, int slices, int rmode)
411{
412    int i, j, slice;
413    int A, B, C;
414    uint8_t *bsrc;
415    int slice_start, slice_height;
416    const int cmask   = ~(rmode ? 3 : 1);
417    const ptrdiff_t stride2 = stride << 1;
418
419    for (slice = 0; slice < slices; slice++) {
420        slice_start    = ((slice * height) / slices) & cmask;
421        slice_height   = ((((slice + 1) * height) / slices) & cmask) -
422                         slice_start;
423        slice_height >>= 1;
424        if (!slice_height)
425            continue;
426
427        bsrc = src + slice_start * stride;
428
429        // first line - left neighbour prediction
430        bsrc[0] += 0x80;
431        A = c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
432        c->llviddsp.add_left_pred(bsrc + stride, bsrc + stride, width, A);
433        bsrc += stride2;
434        if (slice_height <= 1)
435            continue;
436        // second line - first element has top prediction, the rest uses median
437        C        = bsrc[-stride2];
438        bsrc[0] += C;
439        A        = bsrc[0];
440        for (i = 1; i < FFMIN(width, 16); i++) { /* scalar loop (DSP need align 16) */
441            B        = bsrc[i - stride2];
442            bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
443            C        = B;
444            A        = bsrc[i];
445        }
446        if (width > 16)
447            c->llviddsp.add_median_pred(bsrc + 16, bsrc - stride2 + 16,
448                                        bsrc + 16, width - 16, &A, &B);
449
450        c->llviddsp.add_median_pred(bsrc + stride, bsrc - stride,
451                                        bsrc + stride, width, &A, &B);
452        bsrc += stride2;
453        // the rest of lines use continuous median prediction
454        for (j = 2; j < slice_height; j++) {
455            c->llviddsp.add_median_pred(bsrc, bsrc - stride2,
456                                            bsrc, width, &A, &B);
457            c->llviddsp.add_median_pred(bsrc + stride, bsrc - stride,
458                                            bsrc + stride, width, &A, &B);
459            bsrc += stride2;
460        }
461    }
462}
463
464static void restore_gradient_planar(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
465                                    int width, int height, int slices, int rmode)
466{
467    int i, j, slice;
468    int A, B, C;
469    uint8_t *bsrc;
470    int slice_start, slice_height;
471    const int cmask = ~rmode;
472    int min_width = FFMIN(width, 32);
473
474    for (slice = 0; slice < slices; slice++) {
475        slice_start  = ((slice * height) / slices) & cmask;
476        slice_height = ((((slice + 1) * height) / slices) & cmask) -
477                       slice_start;
478
479        if (!slice_height)
480            continue;
481        bsrc = src + slice_start * stride;
482
483        // first line - left neighbour prediction
484        bsrc[0] += 0x80;
485        c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
486        bsrc += stride;
487        if (slice_height <= 1)
488            continue;
489        for (j = 1; j < slice_height; j++) {
490            // second line - first element has top prediction, the rest uses gradient
491            bsrc[0] = (bsrc[0] + bsrc[-stride]) & 0xFF;
492            for (i = 1; i < min_width; i++) { /* dsp need align 32 */
493                A = bsrc[i - stride];
494                B = bsrc[i - (stride + 1)];
495                C = bsrc[i - 1];
496                bsrc[i] = (A - B + C + bsrc[i]) & 0xFF;
497            }
498            if (width > 32)
499                c->llviddsp.add_gradient_pred(bsrc + 32, stride, width - 32);
500            bsrc += stride;
501        }
502    }
503}
504
505static void restore_gradient_planar_il(UtvideoContext *c, uint8_t *src, ptrdiff_t stride,
506                                      int width, int height, int slices, int rmode)
507{
508    int i, j, slice;
509    int A, B, C;
510    uint8_t *bsrc;
511    int slice_start, slice_height;
512    const int cmask   = ~(rmode ? 3 : 1);
513    const ptrdiff_t stride2 = stride << 1;
514    int min_width = FFMIN(width, 32);
515
516    for (slice = 0; slice < slices; slice++) {
517        slice_start    = ((slice * height) / slices) & cmask;
518        slice_height   = ((((slice + 1) * height) / slices) & cmask) -
519                         slice_start;
520        slice_height >>= 1;
521        if (!slice_height)
522            continue;
523
524        bsrc = src + slice_start * stride;
525
526        // first line - left neighbour prediction
527        bsrc[0] += 0x80;
528        A = c->llviddsp.add_left_pred(bsrc, bsrc, width, 0);
529        c->llviddsp.add_left_pred(bsrc + stride, bsrc + stride, width, A);
530        bsrc += stride2;
531        if (slice_height <= 1)
532            continue;
533        for (j = 1; j < slice_height; j++) {
534            // second line - first element has top prediction, the rest uses gradient
535            bsrc[0] = (bsrc[0] + bsrc[-stride2]) & 0xFF;
536            for (i = 1; i < min_width; i++) { /* dsp need align 32 */
537                A = bsrc[i - stride2];
538                B = bsrc[i - (stride2 + 1)];
539                C = bsrc[i - 1];
540                bsrc[i] = (A - B + C + bsrc[i]) & 0xFF;
541            }
542            if (width > 32)
543                c->llviddsp.add_gradient_pred(bsrc + 32, stride2, width - 32);
544
545            A = bsrc[-stride];
546            B = bsrc[-(1 + stride + stride - width)];
547            C = bsrc[width - 1];
548            bsrc[stride] = (A - B + C + bsrc[stride]) & 0xFF;
549            for (i = 1; i < width; i++) {
550                A = bsrc[i - stride];
551                B = bsrc[i - (1 + stride)];
552                C = bsrc[i - 1 + stride];
553                bsrc[i + stride] = (A - B + C + bsrc[i + stride]) & 0xFF;
554            }
555            bsrc += stride2;
556        }
557    }
558}
559
560static int decode_frame(AVCodecContext *avctx, AVFrame *frame,
561                        int *got_frame, AVPacket *avpkt)
562{
563    const uint8_t *buf = avpkt->data;
564    int buf_size = avpkt->size;
565    UtvideoContext *c = avctx->priv_data;
566    int i, j;
567    const uint8_t *plane_start[5];
568    int plane_size, max_slice_size = 0, slice_start, slice_end, slice_size;
569    int ret;
570    GetByteContext gb;
571
572    if ((ret = ff_thread_get_buffer(avctx, frame, 0)) < 0)
573        return ret;
574
575    /* parse plane structure to get frame flags and validate slice offsets */
576    bytestream2_init(&gb, buf, buf_size);
577
578    if (c->pack) {
579        const uint8_t *packed_stream;
580        const uint8_t *control_stream;
581        GetByteContext pb;
582        uint32_t nb_cbs;
583        int left;
584
585        c->frame_info = PRED_GRADIENT << 8;
586
587        if (bytestream2_get_byte(&gb) != 1)
588            return AVERROR_INVALIDDATA;
589        bytestream2_skip(&gb, 3);
590        c->offset = bytestream2_get_le32(&gb);
591
592        if (buf_size <= c->offset + 8LL)
593            return AVERROR_INVALIDDATA;
594
595        bytestream2_init(&pb, buf + 8 + c->offset, buf_size - 8 - c->offset);
596
597        nb_cbs = bytestream2_get_le32(&pb);
598        if (nb_cbs > c->offset)
599            return AVERROR_INVALIDDATA;
600
601        packed_stream = buf + 8;
602        control_stream = packed_stream + (c->offset - nb_cbs);
603        left = control_stream - packed_stream;
604
605        for (i = 0; i < c->planes; i++) {
606            for (j = 0; j < c->slices; j++) {
607                c->packed_stream[i][j] = packed_stream;
608                c->packed_stream_size[i][j] = bytestream2_get_le32(&pb);
609                if (c->packed_stream_size[i][j] > left)
610                    return AVERROR_INVALIDDATA;
611                left -= c->packed_stream_size[i][j];
612                packed_stream += c->packed_stream_size[i][j];
613            }
614        }
615
616        left = buf + buf_size - control_stream;
617
618        for (i = 0; i < c->planes; i++) {
619            for (j = 0; j < c->slices; j++) {
620                c->control_stream[i][j] = control_stream;
621                c->control_stream_size[i][j] = bytestream2_get_le32(&pb);
622                if (c->control_stream_size[i][j] > left)
623                    return AVERROR_INVALIDDATA;
624                left -= c->control_stream_size[i][j];
625                control_stream += c->control_stream_size[i][j];
626            }
627        }
628    } else if (c->pro) {
629        if (bytestream2_get_bytes_left(&gb) < c->frame_info_size) {
630            av_log(avctx, AV_LOG_ERROR, "Not enough data for frame information\n");
631            return AVERROR_INVALIDDATA;
632        }
633        c->frame_info = bytestream2_get_le32u(&gb);
634        c->slices = ((c->frame_info >> 16) & 0xff) + 1;
635        for (i = 0; i < c->planes; i++) {
636            plane_start[i] = gb.buffer;
637            if (bytestream2_get_bytes_left(&gb) < 1024 + 4 * c->slices) {
638                av_log(avctx, AV_LOG_ERROR, "Insufficient data for a plane\n");
639                return AVERROR_INVALIDDATA;
640            }
641            slice_start = 0;
642            slice_end   = 0;
643            for (j = 0; j < c->slices; j++) {
644                slice_end   = bytestream2_get_le32u(&gb);
645                if (slice_end < 0 || slice_end < slice_start ||
646                    bytestream2_get_bytes_left(&gb) < slice_end + 1024LL) {
647                    av_log(avctx, AV_LOG_ERROR, "Incorrect slice size\n");
648                    return AVERROR_INVALIDDATA;
649                }
650                slice_size  = slice_end - slice_start;
651                slice_start = slice_end;
652                max_slice_size = FFMAX(max_slice_size, slice_size);
653            }
654            plane_size = slice_end;
655            bytestream2_skipu(&gb, plane_size);
656            bytestream2_skipu(&gb, 1024);
657        }
658        plane_start[c->planes] = gb.buffer;
659    } else {
660        for (i = 0; i < c->planes; i++) {
661            plane_start[i] = gb.buffer;
662            if (bytestream2_get_bytes_left(&gb) < 256 + 4 * c->slices) {
663                av_log(avctx, AV_LOG_ERROR, "Insufficient data for a plane\n");
664                return AVERROR_INVALIDDATA;
665            }
666            bytestream2_skipu(&gb, 256);
667            slice_start = 0;
668            slice_end   = 0;
669            for (j = 0; j < c->slices; j++) {
670                slice_end   = bytestream2_get_le32u(&gb);
671                if (slice_end < 0 || slice_end < slice_start ||
672                    bytestream2_get_bytes_left(&gb) < slice_end) {
673                    av_log(avctx, AV_LOG_ERROR, "Incorrect slice size\n");
674                    return AVERROR_INVALIDDATA;
675                }
676                slice_size  = slice_end - slice_start;
677                slice_start = slice_end;
678                max_slice_size = FFMAX(max_slice_size, slice_size);
679            }
680            plane_size = slice_end;
681            bytestream2_skipu(&gb, plane_size);
682        }
683        plane_start[c->planes] = gb.buffer;
684        if (bytestream2_get_bytes_left(&gb) < c->frame_info_size) {
685            av_log(avctx, AV_LOG_ERROR, "Not enough data for frame information\n");
686            return AVERROR_INVALIDDATA;
687        }
688        c->frame_info = bytestream2_get_le32u(&gb);
689    }
690    av_log(avctx, AV_LOG_DEBUG, "frame information flags %"PRIX32"\n",
691           c->frame_info);
692
693    c->frame_pred = (c->frame_info >> 8) & 3;
694
695    max_slice_size += 4*avctx->width;
696
697    if (!c->pack) {
698        av_fast_malloc(&c->slice_bits, &c->slice_bits_size,
699                       max_slice_size + AV_INPUT_BUFFER_PADDING_SIZE);
700
701        if (!c->slice_bits) {
702            av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer\n");
703            return AVERROR(ENOMEM);
704        }
705    }
706
707    switch (c->avctx->pix_fmt) {
708    case AV_PIX_FMT_GBRP:
709    case AV_PIX_FMT_GBRAP:
710        for (i = 0; i < c->planes; i++) {
711            ret = decode_plane(c, i, frame->data[i],
712                               frame->linesize[i], avctx->width,
713                               avctx->height, plane_start[i],
714                               c->frame_pred == PRED_LEFT);
715            if (ret)
716                return ret;
717            if (c->frame_pred == PRED_MEDIAN) {
718                if (!c->interlaced) {
719                    restore_median_planar(c, frame->data[i],
720                                          frame->linesize[i], avctx->width,
721                                          avctx->height, c->slices, 0);
722                } else {
723                    restore_median_planar_il(c, frame->data[i],
724                                             frame->linesize[i],
725                                             avctx->width, avctx->height, c->slices,
726                                             0);
727                }
728            } else if (c->frame_pred == PRED_GRADIENT) {
729                if (!c->interlaced) {
730                    restore_gradient_planar(c, frame->data[i],
731                                            frame->linesize[i], avctx->width,
732                                            avctx->height, c->slices, 0);
733                } else {
734                    restore_gradient_planar_il(c, frame->data[i],
735                                               frame->linesize[i],
736                                               avctx->width, avctx->height, c->slices,
737                                               0);
738                }
739            }
740        }
741        c->utdsp.restore_rgb_planes(frame->data[2], frame->data[0], frame->data[1],
742                                    frame->linesize[2], frame->linesize[0], frame->linesize[1],
743                                    avctx->width, avctx->height);
744        break;
745    case AV_PIX_FMT_GBRAP10:
746    case AV_PIX_FMT_GBRP10:
747        for (i = 0; i < c->planes; i++) {
748            ret = decode_plane10(c, i, (uint16_t *)frame->data[i],
749                                 frame->linesize[i] / 2, avctx->width,
750                                 avctx->height, plane_start[i],
751                                 plane_start[i + 1] - 1024,
752                                 c->frame_pred == PRED_LEFT);
753            if (ret)
754                return ret;
755        }
756        c->utdsp.restore_rgb_planes10((uint16_t *)frame->data[2], (uint16_t *)frame->data[0], (uint16_t *)frame->data[1],
757                                      frame->linesize[2] / 2, frame->linesize[0] / 2, frame->linesize[1] / 2,
758                                      avctx->width, avctx->height);
759        break;
760    case AV_PIX_FMT_YUV420P:
761        for (i = 0; i < 3; i++) {
762            ret = decode_plane(c, i, frame->data[i], frame->linesize[i],
763                               avctx->width >> !!i, avctx->height >> !!i,
764                               plane_start[i], c->frame_pred == PRED_LEFT);
765            if (ret)
766                return ret;
767            if (c->frame_pred == PRED_MEDIAN) {
768                if (!c->interlaced) {
769                    restore_median_planar(c, frame->data[i], frame->linesize[i],
770                                          avctx->width >> !!i, avctx->height >> !!i,
771                                          c->slices, !i);
772                } else {
773                    restore_median_planar_il(c, frame->data[i], frame->linesize[i],
774                                             avctx->width  >> !!i,
775                                             avctx->height >> !!i,
776                                             c->slices, !i);
777                }
778            } else if (c->frame_pred == PRED_GRADIENT) {
779                if (!c->interlaced) {
780                    restore_gradient_planar(c, frame->data[i], frame->linesize[i],
781                                            avctx->width >> !!i, avctx->height >> !!i,
782                                            c->slices, !i);
783                } else {
784                    restore_gradient_planar_il(c, frame->data[i], frame->linesize[i],
785                                               avctx->width  >> !!i,
786                                               avctx->height >> !!i,
787                                               c->slices, !i);
788                }
789            }
790        }
791        break;
792    case AV_PIX_FMT_YUV422P:
793        for (i = 0; i < 3; i++) {
794            ret = decode_plane(c, i, frame->data[i], frame->linesize[i],
795                               avctx->width >> !!i, avctx->height,
796                               plane_start[i], c->frame_pred == PRED_LEFT);
797            if (ret)
798                return ret;
799            if (c->frame_pred == PRED_MEDIAN) {
800                if (!c->interlaced) {
801                    restore_median_planar(c, frame->data[i], frame->linesize[i],
802                                          avctx->width >> !!i, avctx->height,
803                                          c->slices, 0);
804                } else {
805                    restore_median_planar_il(c, frame->data[i], frame->linesize[i],
806                                             avctx->width >> !!i, avctx->height,
807                                             c->slices, 0);
808                }
809            } else if (c->frame_pred == PRED_GRADIENT) {
810                if (!c->interlaced) {
811                    restore_gradient_planar(c, frame->data[i], frame->linesize[i],
812                                            avctx->width >> !!i, avctx->height,
813                                            c->slices, 0);
814                } else {
815                    restore_gradient_planar_il(c, frame->data[i], frame->linesize[i],
816                                               avctx->width  >> !!i, avctx->height,
817                                               c->slices, 0);
818                }
819            }
820        }
821        break;
822    case AV_PIX_FMT_YUV444P:
823        for (i = 0; i < 3; i++) {
824            ret = decode_plane(c, i, frame->data[i], frame->linesize[i],
825                               avctx->width, avctx->height,
826                               plane_start[i], c->frame_pred == PRED_LEFT);
827            if (ret)
828                return ret;
829            if (c->frame_pred == PRED_MEDIAN) {
830                if (!c->interlaced) {
831                    restore_median_planar(c, frame->data[i], frame->linesize[i],
832                                          avctx->width, avctx->height,
833                                          c->slices, 0);
834                } else {
835                    restore_median_planar_il(c, frame->data[i], frame->linesize[i],
836                                             avctx->width, avctx->height,
837                                             c->slices, 0);
838                }
839            } else if (c->frame_pred == PRED_GRADIENT) {
840                if (!c->interlaced) {
841                    restore_gradient_planar(c, frame->data[i], frame->linesize[i],
842                                            avctx->width, avctx->height,
843                                            c->slices, 0);
844                } else {
845                    restore_gradient_planar_il(c, frame->data[i], frame->linesize[i],
846                                               avctx->width, avctx->height,
847                                               c->slices, 0);
848                }
849            }
850        }
851        break;
852    case AV_PIX_FMT_YUV420P10:
853        for (i = 0; i < 3; i++) {
854            ret = decode_plane10(c, i, (uint16_t *)frame->data[i], frame->linesize[i] / 2,
855                                 avctx->width >> !!i, avctx->height >> !!i,
856                                 plane_start[i], plane_start[i + 1] - 1024, c->frame_pred == PRED_LEFT);
857            if (ret)
858                return ret;
859        }
860        break;
861    case AV_PIX_FMT_YUV422P10:
862        for (i = 0; i < 3; i++) {
863            ret = decode_plane10(c, i, (uint16_t *)frame->data[i], frame->linesize[i] / 2,
864                                 avctx->width >> !!i, avctx->height,
865                                 plane_start[i], plane_start[i + 1] - 1024, c->frame_pred == PRED_LEFT);
866            if (ret)
867                return ret;
868        }
869        break;
870    }
871
872    frame->key_frame = 1;
873    frame->pict_type = AV_PICTURE_TYPE_I;
874    frame->interlaced_frame = !!c->interlaced;
875
876    *got_frame = 1;
877
878    /* always report that the buffer was completely consumed */
879    return buf_size;
880}
881
882static av_cold int decode_init(AVCodecContext *avctx)
883{
884    UtvideoContext * const c = avctx->priv_data;
885    int h_shift, v_shift;
886
887    c->avctx = avctx;
888
889    ff_utvideodsp_init(&c->utdsp);
890    ff_bswapdsp_init(&c->bdsp);
891    ff_llviddsp_init(&c->llviddsp);
892
893    c->slice_bits_size = 0;
894
895    switch (avctx->codec_tag) {
896    case MKTAG('U', 'L', 'R', 'G'):
897        c->planes      = 3;
898        avctx->pix_fmt = AV_PIX_FMT_GBRP;
899        break;
900    case MKTAG('U', 'L', 'R', 'A'):
901        c->planes      = 4;
902        avctx->pix_fmt = AV_PIX_FMT_GBRAP;
903        break;
904    case MKTAG('U', 'L', 'Y', '0'):
905        c->planes      = 3;
906        avctx->pix_fmt = AV_PIX_FMT_YUV420P;
907        avctx->colorspace = AVCOL_SPC_BT470BG;
908        break;
909    case MKTAG('U', 'L', 'Y', '2'):
910        c->planes      = 3;
911        avctx->pix_fmt = AV_PIX_FMT_YUV422P;
912        avctx->colorspace = AVCOL_SPC_BT470BG;
913        break;
914    case MKTAG('U', 'L', 'Y', '4'):
915        c->planes      = 3;
916        avctx->pix_fmt = AV_PIX_FMT_YUV444P;
917        avctx->colorspace = AVCOL_SPC_BT470BG;
918        break;
919    case MKTAG('U', 'Q', 'Y', '0'):
920        c->planes      = 3;
921        c->pro         = 1;
922        avctx->pix_fmt = AV_PIX_FMT_YUV420P10;
923        break;
924    case MKTAG('U', 'Q', 'Y', '2'):
925        c->planes      = 3;
926        c->pro         = 1;
927        avctx->pix_fmt = AV_PIX_FMT_YUV422P10;
928        break;
929    case MKTAG('U', 'Q', 'R', 'G'):
930        c->planes      = 3;
931        c->pro         = 1;
932        avctx->pix_fmt = AV_PIX_FMT_GBRP10;
933        break;
934    case MKTAG('U', 'Q', 'R', 'A'):
935        c->planes      = 4;
936        c->pro         = 1;
937        avctx->pix_fmt = AV_PIX_FMT_GBRAP10;
938        break;
939    case MKTAG('U', 'L', 'H', '0'):
940        c->planes      = 3;
941        avctx->pix_fmt = AV_PIX_FMT_YUV420P;
942        avctx->colorspace = AVCOL_SPC_BT709;
943        break;
944    case MKTAG('U', 'L', 'H', '2'):
945        c->planes      = 3;
946        avctx->pix_fmt = AV_PIX_FMT_YUV422P;
947        avctx->colorspace = AVCOL_SPC_BT709;
948        break;
949    case MKTAG('U', 'L', 'H', '4'):
950        c->planes      = 3;
951        avctx->pix_fmt = AV_PIX_FMT_YUV444P;
952        avctx->colorspace = AVCOL_SPC_BT709;
953        break;
954    case MKTAG('U', 'M', 'Y', '2'):
955        c->planes      = 3;
956        c->pack        = 1;
957        avctx->pix_fmt = AV_PIX_FMT_YUV422P;
958        avctx->colorspace = AVCOL_SPC_BT470BG;
959        break;
960    case MKTAG('U', 'M', 'H', '2'):
961        c->planes      = 3;
962        c->pack        = 1;
963        avctx->pix_fmt = AV_PIX_FMT_YUV422P;
964        avctx->colorspace = AVCOL_SPC_BT709;
965        break;
966    case MKTAG('U', 'M', 'Y', '4'):
967        c->planes      = 3;
968        c->pack        = 1;
969        avctx->pix_fmt = AV_PIX_FMT_YUV444P;
970        avctx->colorspace = AVCOL_SPC_BT470BG;
971        break;
972    case MKTAG('U', 'M', 'H', '4'):
973        c->planes      = 3;
974        c->pack        = 1;
975        avctx->pix_fmt = AV_PIX_FMT_YUV444P;
976        avctx->colorspace = AVCOL_SPC_BT709;
977        break;
978    case MKTAG('U', 'M', 'R', 'G'):
979        c->planes      = 3;
980        c->pack        = 1;
981        avctx->pix_fmt = AV_PIX_FMT_GBRP;
982        break;
983    case MKTAG('U', 'M', 'R', 'A'):
984        c->planes      = 4;
985        c->pack        = 1;
986        avctx->pix_fmt = AV_PIX_FMT_GBRAP;
987        break;
988    default:
989        av_log(avctx, AV_LOG_ERROR, "Unknown Ut Video FOURCC provided (%08X)\n",
990               avctx->codec_tag);
991        return AVERROR_INVALIDDATA;
992    }
993
994    av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &h_shift, &v_shift);
995    if ((avctx->width  & ((1<<h_shift)-1)) ||
996        (avctx->height & ((1<<v_shift)-1))) {
997        avpriv_request_sample(avctx, "Odd dimensions");
998        return AVERROR_PATCHWELCOME;
999    }
1000
1001    if (c->pack && avctx->extradata_size >= 16) {
1002        av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n",
1003               avctx->extradata[3], avctx->extradata[2],
1004               avctx->extradata[1], avctx->extradata[0]);
1005        av_log(avctx, AV_LOG_DEBUG, "Original format %"PRIX32"\n",
1006               AV_RB32(avctx->extradata + 4));
1007        c->compression = avctx->extradata[8];
1008        if (c->compression != 2)
1009            avpriv_request_sample(avctx, "Unknown compression type");
1010        c->slices      = avctx->extradata[9] + 1;
1011    } else if (!c->pro && avctx->extradata_size >= 16) {
1012        av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n",
1013               avctx->extradata[3], avctx->extradata[2],
1014               avctx->extradata[1], avctx->extradata[0]);
1015        av_log(avctx, AV_LOG_DEBUG, "Original format %"PRIX32"\n",
1016               AV_RB32(avctx->extradata + 4));
1017        c->frame_info_size = AV_RL32(avctx->extradata + 8);
1018        c->flags           = AV_RL32(avctx->extradata + 12);
1019
1020        if (c->frame_info_size != 4)
1021            avpriv_request_sample(avctx, "Frame info not 4 bytes");
1022        av_log(avctx, AV_LOG_DEBUG, "Encoding parameters %08"PRIX32"\n", c->flags);
1023        c->slices      = (c->flags >> 24) + 1;
1024        c->compression = c->flags & 1;
1025        c->interlaced  = c->flags & 0x800;
1026    } else if (c->pro && avctx->extradata_size == 8) {
1027        av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n",
1028               avctx->extradata[3], avctx->extradata[2],
1029               avctx->extradata[1], avctx->extradata[0]);
1030        av_log(avctx, AV_LOG_DEBUG, "Original format %"PRIX32"\n",
1031               AV_RB32(avctx->extradata + 4));
1032        c->interlaced  = 0;
1033        c->frame_info_size = 4;
1034    } else {
1035        av_log(avctx, AV_LOG_ERROR,
1036               "Insufficient extradata size %d, should be at least 16\n",
1037               avctx->extradata_size);
1038        return AVERROR_INVALIDDATA;
1039    }
1040
1041    return 0;
1042}
1043
1044static av_cold int decode_end(AVCodecContext *avctx)
1045{
1046    UtvideoContext * const c = avctx->priv_data;
1047
1048    av_freep(&c->slice_bits);
1049
1050    return 0;
1051}
1052
1053const FFCodec ff_utvideo_decoder = {
1054    .p.name         = "utvideo",
1055    .p.long_name    = NULL_IF_CONFIG_SMALL("Ut Video"),
1056    .p.type         = AVMEDIA_TYPE_VIDEO,
1057    .p.id           = AV_CODEC_ID_UTVIDEO,
1058    .priv_data_size = sizeof(UtvideoContext),
1059    .init           = decode_init,
1060    .close          = decode_end,
1061    FF_CODEC_DECODE_CB(decode_frame),
1062    .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
1063    .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
1064};
1065