1/* 2 * TAK decoder 3 * Copyright (c) 2012 Paul B Mahol 4 * 5 * This file is part of FFmpeg. 6 * 7 * FFmpeg is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU Lesser General Public 9 * License as published by the Free Software Foundation; either 10 * version 2.1 of the License, or (at your option) any later version. 11 * 12 * FFmpeg is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * Lesser General Public License for more details. 16 * 17 * You should have received a copy of the GNU Lesser General Public 18 * License along with FFmpeg; if not, write to the Free Software 19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 20 */ 21 22/** 23 * @file 24 * TAK (Tom's lossless Audio Kompressor) decoder 25 * @author Paul B Mahol 26 */ 27 28#include "libavutil/internal.h" 29#include "libavutil/mem_internal.h" 30#include "libavutil/samplefmt.h" 31 32#define BITSTREAM_READER_LE 33#include "audiodsp.h" 34#include "thread.h" 35#include "avcodec.h" 36#include "codec_internal.h" 37#include "unary.h" 38#include "tak.h" 39#include "takdsp.h" 40 41#define MAX_SUBFRAMES 8 ///< max number of subframes per channel 42#define MAX_PREDICTORS 256 43 44typedef struct MCDParam { 45 int8_t present; ///< decorrelation parameter availability for this channel 46 int8_t index; ///< index into array of decorrelation types 47 int8_t chan1; 48 int8_t chan2; 49} MCDParam; 50 51typedef struct TAKDecContext { 52 AVCodecContext *avctx; ///< parent AVCodecContext 53 AudioDSPContext adsp; 54 TAKDSPContext tdsp; 55 TAKStreamInfo ti; 56 GetBitContext gb; ///< bitstream reader initialized to start at the current frame 57 58 int uval; 59 int nb_samples; ///< number of samples in the current frame 60 uint8_t *decode_buffer; 61 unsigned int decode_buffer_size; 62 int32_t *decoded[TAK_MAX_CHANNELS]; ///< decoded samples for each channel 63 64 int8_t lpc_mode[TAK_MAX_CHANNELS]; 65 int8_t sample_shift[TAK_MAX_CHANNELS]; ///< shift applied to every sample in the channel 66 int16_t predictors[MAX_PREDICTORS]; 67 int nb_subframes; ///< number of subframes in the current frame 68 int16_t subframe_len[MAX_SUBFRAMES]; ///< subframe length in samples 69 int subframe_scale; 70 71 int8_t dmode; ///< channel decorrelation type in the current frame 72 73 MCDParam mcdparams[TAK_MAX_CHANNELS]; ///< multichannel decorrelation parameters 74 75 int8_t coding_mode[128]; 76 DECLARE_ALIGNED(16, int16_t, filter)[MAX_PREDICTORS]; 77 DECLARE_ALIGNED(16, int16_t, residues)[544]; 78} TAKDecContext; 79 80static const int8_t mc_dmodes[] = { 1, 3, 4, 6, }; 81 82static const uint16_t predictor_sizes[] = { 83 4, 8, 12, 16, 24, 32, 48, 64, 80, 96, 128, 160, 192, 224, 256, 0, 84}; 85 86static const struct CParam { 87 int init; 88 int escape; 89 int scale; 90 int aescape; 91 int bias; 92} xcodes[50] = { 93 { 0x01, 0x0000001, 0x0000001, 0x0000003, 0x0000008 }, 94 { 0x02, 0x0000003, 0x0000001, 0x0000007, 0x0000006 }, 95 { 0x03, 0x0000005, 0x0000002, 0x000000E, 0x000000D }, 96 { 0x03, 0x0000003, 0x0000003, 0x000000D, 0x0000018 }, 97 { 0x04, 0x000000B, 0x0000004, 0x000001C, 0x0000019 }, 98 { 0x04, 0x0000006, 0x0000006, 0x000001A, 0x0000030 }, 99 { 0x05, 0x0000016, 0x0000008, 0x0000038, 0x0000032 }, 100 { 0x05, 0x000000C, 0x000000C, 0x0000034, 0x0000060 }, 101 { 0x06, 0x000002C, 0x0000010, 0x0000070, 0x0000064 }, 102 { 0x06, 0x0000018, 0x0000018, 0x0000068, 0x00000C0 }, 103 { 0x07, 0x0000058, 0x0000020, 0x00000E0, 0x00000C8 }, 104 { 0x07, 0x0000030, 0x0000030, 0x00000D0, 0x0000180 }, 105 { 0x08, 0x00000B0, 0x0000040, 0x00001C0, 0x0000190 }, 106 { 0x08, 0x0000060, 0x0000060, 0x00001A0, 0x0000300 }, 107 { 0x09, 0x0000160, 0x0000080, 0x0000380, 0x0000320 }, 108 { 0x09, 0x00000C0, 0x00000C0, 0x0000340, 0x0000600 }, 109 { 0x0A, 0x00002C0, 0x0000100, 0x0000700, 0x0000640 }, 110 { 0x0A, 0x0000180, 0x0000180, 0x0000680, 0x0000C00 }, 111 { 0x0B, 0x0000580, 0x0000200, 0x0000E00, 0x0000C80 }, 112 { 0x0B, 0x0000300, 0x0000300, 0x0000D00, 0x0001800 }, 113 { 0x0C, 0x0000B00, 0x0000400, 0x0001C00, 0x0001900 }, 114 { 0x0C, 0x0000600, 0x0000600, 0x0001A00, 0x0003000 }, 115 { 0x0D, 0x0001600, 0x0000800, 0x0003800, 0x0003200 }, 116 { 0x0D, 0x0000C00, 0x0000C00, 0x0003400, 0x0006000 }, 117 { 0x0E, 0x0002C00, 0x0001000, 0x0007000, 0x0006400 }, 118 { 0x0E, 0x0001800, 0x0001800, 0x0006800, 0x000C000 }, 119 { 0x0F, 0x0005800, 0x0002000, 0x000E000, 0x000C800 }, 120 { 0x0F, 0x0003000, 0x0003000, 0x000D000, 0x0018000 }, 121 { 0x10, 0x000B000, 0x0004000, 0x001C000, 0x0019000 }, 122 { 0x10, 0x0006000, 0x0006000, 0x001A000, 0x0030000 }, 123 { 0x11, 0x0016000, 0x0008000, 0x0038000, 0x0032000 }, 124 { 0x11, 0x000C000, 0x000C000, 0x0034000, 0x0060000 }, 125 { 0x12, 0x002C000, 0x0010000, 0x0070000, 0x0064000 }, 126 { 0x12, 0x0018000, 0x0018000, 0x0068000, 0x00C0000 }, 127 { 0x13, 0x0058000, 0x0020000, 0x00E0000, 0x00C8000 }, 128 { 0x13, 0x0030000, 0x0030000, 0x00D0000, 0x0180000 }, 129 { 0x14, 0x00B0000, 0x0040000, 0x01C0000, 0x0190000 }, 130 { 0x14, 0x0060000, 0x0060000, 0x01A0000, 0x0300000 }, 131 { 0x15, 0x0160000, 0x0080000, 0x0380000, 0x0320000 }, 132 { 0x15, 0x00C0000, 0x00C0000, 0x0340000, 0x0600000 }, 133 { 0x16, 0x02C0000, 0x0100000, 0x0700000, 0x0640000 }, 134 { 0x16, 0x0180000, 0x0180000, 0x0680000, 0x0C00000 }, 135 { 0x17, 0x0580000, 0x0200000, 0x0E00000, 0x0C80000 }, 136 { 0x17, 0x0300000, 0x0300000, 0x0D00000, 0x1800000 }, 137 { 0x18, 0x0B00000, 0x0400000, 0x1C00000, 0x1900000 }, 138 { 0x18, 0x0600000, 0x0600000, 0x1A00000, 0x3000000 }, 139 { 0x19, 0x1600000, 0x0800000, 0x3800000, 0x3200000 }, 140 { 0x19, 0x0C00000, 0x0C00000, 0x3400000, 0x6000000 }, 141 { 0x1A, 0x2C00000, 0x1000000, 0x7000000, 0x6400000 }, 142 { 0x1A, 0x1800000, 0x1800000, 0x6800000, 0xC000000 }, 143}; 144 145static int set_bps_params(AVCodecContext *avctx) 146{ 147 switch (avctx->bits_per_raw_sample) { 148 case 8: 149 avctx->sample_fmt = AV_SAMPLE_FMT_U8P; 150 break; 151 case 16: 152 avctx->sample_fmt = AV_SAMPLE_FMT_S16P; 153 break; 154 case 24: 155 avctx->sample_fmt = AV_SAMPLE_FMT_S32P; 156 break; 157 default: 158 av_log(avctx, AV_LOG_ERROR, "invalid/unsupported bits per sample: %d\n", 159 avctx->bits_per_raw_sample); 160 return AVERROR_INVALIDDATA; 161 } 162 163 return 0; 164} 165 166static void set_sample_rate_params(AVCodecContext *avctx) 167{ 168 TAKDecContext *s = avctx->priv_data; 169 int shift; 170 171 if (avctx->sample_rate < 11025) { 172 shift = 3; 173 } else if (avctx->sample_rate < 22050) { 174 shift = 2; 175 } else if (avctx->sample_rate < 44100) { 176 shift = 1; 177 } else { 178 shift = 0; 179 } 180 s->uval = FFALIGN(avctx->sample_rate + 511LL >> 9, 4) << shift; 181 s->subframe_scale = FFALIGN(avctx->sample_rate + 511LL >> 9, 4) << 1; 182} 183 184static av_cold int tak_decode_init(AVCodecContext *avctx) 185{ 186 TAKDecContext *s = avctx->priv_data; 187 188 ff_audiodsp_init(&s->adsp); 189 ff_takdsp_init(&s->tdsp); 190 191 s->avctx = avctx; 192 avctx->bits_per_raw_sample = avctx->bits_per_coded_sample; 193 194 set_sample_rate_params(avctx); 195 196 return set_bps_params(avctx); 197} 198 199static void decode_lpc(int32_t *coeffs, int mode, int length) 200{ 201 int i; 202 203 if (length < 2) 204 return; 205 206 if (mode == 1) { 207 unsigned a1 = *coeffs++; 208 for (i = 0; i < length - 1 >> 1; i++) { 209 *coeffs += a1; 210 coeffs[1] += (unsigned)*coeffs; 211 a1 = coeffs[1]; 212 coeffs += 2; 213 } 214 if (length - 1 & 1) 215 *coeffs += a1; 216 } else if (mode == 2) { 217 unsigned a1 = coeffs[1]; 218 unsigned a2 = a1 + *coeffs; 219 coeffs[1] = a2; 220 if (length > 2) { 221 coeffs += 2; 222 for (i = 0; i < length - 2 >> 1; i++) { 223 unsigned a3 = *coeffs + a1; 224 unsigned a4 = a3 + a2; 225 *coeffs = a4; 226 a1 = coeffs[1] + a3; 227 a2 = a1 + a4; 228 coeffs[1] = a2; 229 coeffs += 2; 230 } 231 if (length & 1) 232 *coeffs += a1 + a2; 233 } 234 } else if (mode == 3) { 235 unsigned a1 = coeffs[1]; 236 unsigned a2 = a1 + *coeffs; 237 coeffs[1] = a2; 238 if (length > 2) { 239 unsigned a3 = coeffs[2]; 240 unsigned a4 = a3 + a1; 241 unsigned a5 = a4 + a2; 242 coeffs[2] = a5; 243 coeffs += 3; 244 for (i = 0; i < length - 3; i++) { 245 a3 += *coeffs; 246 a4 += a3; 247 a5 += a4; 248 *coeffs = a5; 249 coeffs++; 250 } 251 } 252 } 253} 254 255static int decode_segment(TAKDecContext *s, int8_t mode, int32_t *decoded, int len) 256{ 257 struct CParam code; 258 GetBitContext *gb = &s->gb; 259 int i; 260 261 if (!mode) { 262 memset(decoded, 0, len * sizeof(*decoded)); 263 return 0; 264 } 265 266 if (mode > FF_ARRAY_ELEMS(xcodes)) 267 return AVERROR_INVALIDDATA; 268 code = xcodes[mode - 1]; 269 270 for (i = 0; i < len; i++) { 271 unsigned x = get_bits_long(gb, code.init); 272 if (x >= code.escape && get_bits1(gb)) { 273 x |= 1 << code.init; 274 if (x >= code.aescape) { 275 unsigned scale = get_unary(gb, 1, 9); 276 if (scale == 9) { 277 int scale_bits = get_bits(gb, 3); 278 if (scale_bits > 0) { 279 if (scale_bits == 7) { 280 scale_bits += get_bits(gb, 5); 281 if (scale_bits > 29) 282 return AVERROR_INVALIDDATA; 283 } 284 scale = get_bits_long(gb, scale_bits) + 1; 285 x += code.scale * scale; 286 } 287 x += code.bias; 288 } else 289 x += code.scale * scale - code.escape; 290 } else 291 x -= code.escape; 292 } 293 decoded[i] = (x >> 1) ^ -(x & 1); 294 } 295 296 return 0; 297} 298 299static int decode_residues(TAKDecContext *s, int32_t *decoded, int length) 300{ 301 GetBitContext *gb = &s->gb; 302 int i, mode, ret; 303 304 if (length > s->nb_samples) 305 return AVERROR_INVALIDDATA; 306 307 if (get_bits1(gb)) { 308 int wlength, rval; 309 310 wlength = length / s->uval; 311 312 rval = length - (wlength * s->uval); 313 314 if (rval < s->uval / 2) 315 rval += s->uval; 316 else 317 wlength++; 318 319 if (wlength <= 1 || wlength > 128) 320 return AVERROR_INVALIDDATA; 321 322 s->coding_mode[0] = mode = get_bits(gb, 6); 323 324 for (i = 1; i < wlength; i++) { 325 int c = get_unary(gb, 1, 6); 326 327 switch (c) { 328 case 6: 329 mode = get_bits(gb, 6); 330 break; 331 case 5: 332 case 4: 333 case 3: { 334 /* mode += sign ? (1 - c) : (c - 1) */ 335 int sign = get_bits1(gb); 336 mode += (-sign ^ (c - 1)) + sign; 337 break; 338 } 339 case 2: 340 mode++; 341 break; 342 case 1: 343 mode--; 344 break; 345 } 346 s->coding_mode[i] = mode; 347 } 348 349 i = 0; 350 while (i < wlength) { 351 int len = 0; 352 353 mode = s->coding_mode[i]; 354 do { 355 if (i >= wlength - 1) 356 len += rval; 357 else 358 len += s->uval; 359 i++; 360 361 if (i == wlength) 362 break; 363 } while (s->coding_mode[i] == mode); 364 365 if ((ret = decode_segment(s, mode, decoded, len)) < 0) 366 return ret; 367 decoded += len; 368 } 369 } else { 370 mode = get_bits(gb, 6); 371 if ((ret = decode_segment(s, mode, decoded, length)) < 0) 372 return ret; 373 } 374 375 return 0; 376} 377 378static int get_bits_esc4(GetBitContext *gb) 379{ 380 if (get_bits1(gb)) 381 return get_bits(gb, 4) + 1; 382 else 383 return 0; 384} 385 386static int decode_subframe(TAKDecContext *s, int32_t *decoded, 387 int subframe_size, int prev_subframe_size) 388{ 389 GetBitContext *gb = &s->gb; 390 int x, y, i, j, ret = 0; 391 int dshift, size, filter_quant, filter_order; 392 int tfilter[MAX_PREDICTORS]; 393 394 if (!get_bits1(gb)) 395 return decode_residues(s, decoded, subframe_size); 396 397 filter_order = predictor_sizes[get_bits(gb, 4)]; 398 399 if (prev_subframe_size > 0 && get_bits1(gb)) { 400 if (filter_order > prev_subframe_size) 401 return AVERROR_INVALIDDATA; 402 403 decoded -= filter_order; 404 subframe_size += filter_order; 405 406 if (filter_order > subframe_size) 407 return AVERROR_INVALIDDATA; 408 } else { 409 int lpc_mode; 410 411 if (filter_order > subframe_size) 412 return AVERROR_INVALIDDATA; 413 414 lpc_mode = get_bits(gb, 2); 415 if (lpc_mode > 2) 416 return AVERROR_INVALIDDATA; 417 418 if ((ret = decode_residues(s, decoded, filter_order)) < 0) 419 return ret; 420 421 if (lpc_mode) 422 decode_lpc(decoded, lpc_mode, filter_order); 423 } 424 425 dshift = get_bits_esc4(gb); 426 size = get_bits1(gb) + 6; 427 428 filter_quant = 10; 429 if (get_bits1(gb)) { 430 filter_quant -= get_bits(gb, 3) + 1; 431 if (filter_quant < 3) 432 return AVERROR_INVALIDDATA; 433 } 434 435 s->predictors[0] = get_sbits(gb, 10); 436 s->predictors[1] = get_sbits(gb, 10); 437 s->predictors[2] = get_sbits(gb, size) * (1 << (10 - size)); 438 s->predictors[3] = get_sbits(gb, size) * (1 << (10 - size)); 439 if (filter_order > 4) { 440 int tmp = size - get_bits1(gb); 441 442 for (i = 4; i < filter_order; i++) { 443 if (!(i & 3)) 444 x = tmp - get_bits(gb, 2); 445 s->predictors[i] = get_sbits(gb, x) * (1 << (10 - size)); 446 } 447 } 448 449 tfilter[0] = s->predictors[0] * 64; 450 for (i = 1; i < filter_order; i++) { 451 uint32_t *p1 = &tfilter[0]; 452 uint32_t *p2 = &tfilter[i - 1]; 453 454 for (j = 0; j < (i + 1) / 2; j++) { 455 x = *p1 + ((int32_t)(s->predictors[i] * *p2 + 256) >> 9); 456 *p2 += (int32_t)(s->predictors[i] * *p1 + 256) >> 9; 457 *p1++ = x; 458 p2--; 459 } 460 461 tfilter[i] = s->predictors[i] * 64; 462 } 463 464 x = 1 << (32 - (15 - filter_quant)); 465 y = 1 << ((15 - filter_quant) - 1); 466 for (i = 0, j = filter_order - 1; i < filter_order / 2; i++, j--) { 467 s->filter[j] = x - ((tfilter[i] + y) >> (15 - filter_quant)); 468 s->filter[i] = x - ((tfilter[j] + y) >> (15 - filter_quant)); 469 } 470 471 if ((ret = decode_residues(s, &decoded[filter_order], 472 subframe_size - filter_order)) < 0) 473 return ret; 474 475 for (i = 0; i < filter_order; i++) 476 s->residues[i] = *decoded++ >> dshift; 477 478 y = FF_ARRAY_ELEMS(s->residues) - filter_order; 479 x = subframe_size - filter_order; 480 while (x > 0) { 481 int tmp = FFMIN(y, x); 482 483 for (i = 0; i < tmp; i++) { 484 int v = 1 << (filter_quant - 1); 485 486 if (filter_order & -16) 487 v += (unsigned)s->adsp.scalarproduct_int16(&s->residues[i], s->filter, 488 filter_order & -16); 489 for (j = filter_order & -16; j < filter_order; j += 4) { 490 v += s->residues[i + j + 3] * (unsigned)s->filter[j + 3] + 491 s->residues[i + j + 2] * (unsigned)s->filter[j + 2] + 492 s->residues[i + j + 1] * (unsigned)s->filter[j + 1] + 493 s->residues[i + j ] * (unsigned)s->filter[j ]; 494 } 495 v = (av_clip_intp2(v >> filter_quant, 13) * (1 << dshift)) - (unsigned)*decoded; 496 *decoded++ = v; 497 s->residues[filter_order + i] = v >> dshift; 498 } 499 500 x -= tmp; 501 if (x > 0) 502 memcpy(s->residues, &s->residues[y], 2 * filter_order); 503 } 504 505 emms_c(); 506 507 return 0; 508} 509 510static int decode_channel(TAKDecContext *s, int chan) 511{ 512 AVCodecContext *avctx = s->avctx; 513 GetBitContext *gb = &s->gb; 514 int32_t *decoded = s->decoded[chan]; 515 int left = s->nb_samples - 1; 516 int i = 0, ret, prev = 0; 517 518 s->sample_shift[chan] = get_bits_esc4(gb); 519 if (s->sample_shift[chan] >= avctx->bits_per_raw_sample) 520 return AVERROR_INVALIDDATA; 521 522 *decoded++ = get_sbits(gb, avctx->bits_per_raw_sample - s->sample_shift[chan]); 523 s->lpc_mode[chan] = get_bits(gb, 2); 524 s->nb_subframes = get_bits(gb, 3) + 1; 525 526 if (s->nb_subframes > 1) { 527 if (get_bits_left(gb) < (s->nb_subframes - 1) * 6) 528 return AVERROR_INVALIDDATA; 529 530 for (; i < s->nb_subframes - 1; i++) { 531 int v = get_bits(gb, 6); 532 533 s->subframe_len[i] = (v - prev) * s->subframe_scale; 534 if (s->subframe_len[i] <= 0) 535 return AVERROR_INVALIDDATA; 536 537 left -= s->subframe_len[i]; 538 prev = v; 539 } 540 541 if (left <= 0) 542 return AVERROR_INVALIDDATA; 543 } 544 s->subframe_len[i] = left; 545 546 prev = 0; 547 for (i = 0; i < s->nb_subframes; i++) { 548 if ((ret = decode_subframe(s, decoded, s->subframe_len[i], prev)) < 0) 549 return ret; 550 decoded += s->subframe_len[i]; 551 prev = s->subframe_len[i]; 552 } 553 554 return 0; 555} 556 557static int decorrelate(TAKDecContext *s, int c1, int c2, int length) 558{ 559 GetBitContext *gb = &s->gb; 560 int32_t *p1 = s->decoded[c1] + (s->dmode > 5); 561 int32_t *p2 = s->decoded[c2] + (s->dmode > 5); 562 int32_t bp1 = p1[0]; 563 int32_t bp2 = p2[0]; 564 int i; 565 int dshift, dfactor; 566 567 length += s->dmode < 6; 568 569 switch (s->dmode) { 570 case 1: /* left/side */ 571 s->tdsp.decorrelate_ls(p1, p2, length); 572 break; 573 case 2: /* side/right */ 574 s->tdsp.decorrelate_sr(p1, p2, length); 575 break; 576 case 3: /* side/mid */ 577 s->tdsp.decorrelate_sm(p1, p2, length); 578 break; 579 case 4: /* side/left with scale factor */ 580 FFSWAP(int32_t*, p1, p2); 581 FFSWAP(int32_t, bp1, bp2); 582 case 5: /* side/right with scale factor */ 583 dshift = get_bits_esc4(gb); 584 dfactor = get_sbits(gb, 10); 585 s->tdsp.decorrelate_sf(p1, p2, length, dshift, dfactor); 586 break; 587 case 6: 588 FFSWAP(int32_t*, p1, p2); 589 case 7: { 590 int length2, order_half, filter_order, dval1, dval2; 591 int tmp, x, code_size; 592 593 if (length < 256) 594 return AVERROR_INVALIDDATA; 595 596 dshift = get_bits_esc4(gb); 597 filter_order = 8 << get_bits1(gb); 598 dval1 = get_bits1(gb); 599 dval2 = get_bits1(gb); 600 601 for (i = 0; i < filter_order; i++) { 602 if (!(i & 3)) 603 code_size = 14 - get_bits(gb, 3); 604 s->filter[i] = get_sbits(gb, code_size); 605 } 606 607 order_half = filter_order / 2; 608 length2 = length - (filter_order - 1); 609 610 /* decorrelate beginning samples */ 611 if (dval1) { 612 for (i = 0; i < order_half; i++) { 613 int32_t a = p1[i]; 614 int32_t b = p2[i]; 615 p1[i] = a + b; 616 } 617 } 618 619 /* decorrelate ending samples */ 620 if (dval2) { 621 for (i = length2 + order_half; i < length; i++) { 622 int32_t a = p1[i]; 623 int32_t b = p2[i]; 624 p1[i] = a + b; 625 } 626 } 627 628 629 for (i = 0; i < filter_order; i++) 630 s->residues[i] = *p2++ >> dshift; 631 632 p1 += order_half; 633 x = FF_ARRAY_ELEMS(s->residues) - filter_order; 634 for (; length2 > 0; length2 -= tmp) { 635 tmp = FFMIN(length2, x); 636 637 for (i = 0; i < tmp - (tmp == length2); i++) 638 s->residues[filter_order + i] = *p2++ >> dshift; 639 640 for (i = 0; i < tmp; i++) { 641 int v = 1 << 9; 642 643 if (filter_order == 16) { 644 v += s->adsp.scalarproduct_int16(&s->residues[i], s->filter, 645 filter_order); 646 } else { 647 v += s->residues[i + 7] * s->filter[7] + 648 s->residues[i + 6] * s->filter[6] + 649 s->residues[i + 5] * s->filter[5] + 650 s->residues[i + 4] * s->filter[4] + 651 s->residues[i + 3] * s->filter[3] + 652 s->residues[i + 2] * s->filter[2] + 653 s->residues[i + 1] * s->filter[1] + 654 s->residues[i ] * s->filter[0]; 655 } 656 657 v = av_clip_intp2(v >> 10, 13) * (1U << dshift) - *p1; 658 *p1++ = v; 659 } 660 661 memmove(s->residues, &s->residues[tmp], 2 * filter_order); 662 } 663 664 emms_c(); 665 break; 666 } 667 } 668 669 if (s->dmode > 0 && s->dmode < 6) { 670 p1[0] = bp1; 671 p2[0] = bp2; 672 } 673 674 return 0; 675} 676 677static int tak_decode_frame(AVCodecContext *avctx, AVFrame *frame, 678 int *got_frame_ptr, AVPacket *pkt) 679{ 680 TAKDecContext *s = avctx->priv_data; 681 GetBitContext *gb = &s->gb; 682 int chan, i, ret, hsize; 683 684 if (pkt->size < TAK_MIN_FRAME_HEADER_BYTES) 685 return AVERROR_INVALIDDATA; 686 687 if ((ret = init_get_bits8(gb, pkt->data, pkt->size)) < 0) 688 return ret; 689 690 if ((ret = ff_tak_decode_frame_header(avctx, gb, &s->ti, 0)) < 0) 691 return ret; 692 693 hsize = get_bits_count(gb) / 8; 694 if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_COMPLIANT)) { 695 if (ff_tak_check_crc(pkt->data, hsize)) { 696 av_log(avctx, AV_LOG_ERROR, "CRC error\n"); 697 if (avctx->err_recognition & AV_EF_EXPLODE) 698 return AVERROR_INVALIDDATA; 699 } 700 } 701 702 if (s->ti.codec != TAK_CODEC_MONO_STEREO && 703 s->ti.codec != TAK_CODEC_MULTICHANNEL) { 704 avpriv_report_missing_feature(avctx, "TAK codec type %d", s->ti.codec); 705 return AVERROR_PATCHWELCOME; 706 } 707 if (s->ti.data_type) { 708 av_log(avctx, AV_LOG_ERROR, 709 "unsupported data type: %d\n", s->ti.data_type); 710 return AVERROR_INVALIDDATA; 711 } 712 if (s->ti.codec == TAK_CODEC_MONO_STEREO && s->ti.channels > 2) { 713 av_log(avctx, AV_LOG_ERROR, 714 "invalid number of channels: %d\n", s->ti.channels); 715 return AVERROR_INVALIDDATA; 716 } 717 if (s->ti.channels > 6) { 718 av_log(avctx, AV_LOG_ERROR, 719 "unsupported number of channels: %d\n", s->ti.channels); 720 return AVERROR_INVALIDDATA; 721 } 722 723 if (s->ti.frame_samples <= 0) { 724 av_log(avctx, AV_LOG_ERROR, "unsupported/invalid number of samples\n"); 725 return AVERROR_INVALIDDATA; 726 } 727 728 avctx->bits_per_raw_sample = s->ti.bps; 729 if ((ret = set_bps_params(avctx)) < 0) 730 return ret; 731 if (s->ti.sample_rate != avctx->sample_rate) { 732 avctx->sample_rate = s->ti.sample_rate; 733 set_sample_rate_params(avctx); 734 } 735 736 av_channel_layout_uninit(&avctx->ch_layout); 737 if (s->ti.ch_layout) { 738 av_channel_layout_from_mask(&avctx->ch_layout, s->ti.ch_layout); 739 } else { 740 avctx->ch_layout.order = AV_CHANNEL_ORDER_UNSPEC; 741 avctx->ch_layout.nb_channels = s->ti.channels; 742 } 743 744 s->nb_samples = s->ti.last_frame_samples ? s->ti.last_frame_samples 745 : s->ti.frame_samples; 746 747 frame->nb_samples = s->nb_samples; 748 if ((ret = ff_thread_get_buffer(avctx, frame, 0)) < 0) 749 return ret; 750 ff_thread_finish_setup(avctx); 751 752 if (avctx->bits_per_raw_sample <= 16) { 753 int buf_size = av_samples_get_buffer_size(NULL, avctx->ch_layout.nb_channels, 754 s->nb_samples, 755 AV_SAMPLE_FMT_S32P, 0); 756 if (buf_size < 0) 757 return buf_size; 758 av_fast_malloc(&s->decode_buffer, &s->decode_buffer_size, buf_size); 759 if (!s->decode_buffer) 760 return AVERROR(ENOMEM); 761 ret = av_samples_fill_arrays((uint8_t **)s->decoded, NULL, 762 s->decode_buffer, avctx->ch_layout.nb_channels, 763 s->nb_samples, AV_SAMPLE_FMT_S32P, 0); 764 if (ret < 0) 765 return ret; 766 } else { 767 for (chan = 0; chan < avctx->ch_layout.nb_channels; chan++) 768 s->decoded[chan] = (int32_t *)frame->extended_data[chan]; 769 } 770 771 if (s->nb_samples < 16) { 772 for (chan = 0; chan < avctx->ch_layout.nb_channels; chan++) { 773 int32_t *decoded = s->decoded[chan]; 774 for (i = 0; i < s->nb_samples; i++) 775 decoded[i] = get_sbits(gb, avctx->bits_per_raw_sample); 776 } 777 } else { 778 if (s->ti.codec == TAK_CODEC_MONO_STEREO) { 779 for (chan = 0; chan < avctx->ch_layout.nb_channels; chan++) 780 if (ret = decode_channel(s, chan)) 781 return ret; 782 783 if (avctx->ch_layout.nb_channels == 2) { 784 s->nb_subframes = get_bits(gb, 1) + 1; 785 if (s->nb_subframes > 1) { 786 s->subframe_len[1] = get_bits(gb, 6); 787 } 788 789 s->dmode = get_bits(gb, 3); 790 if (ret = decorrelate(s, 0, 1, s->nb_samples - 1)) 791 return ret; 792 } 793 } else if (s->ti.codec == TAK_CODEC_MULTICHANNEL) { 794 if (get_bits1(gb)) { 795 int ch_mask = 0; 796 797 chan = get_bits(gb, 4) + 1; 798 if (chan > avctx->ch_layout.nb_channels) 799 return AVERROR_INVALIDDATA; 800 801 for (i = 0; i < chan; i++) { 802 int nbit = get_bits(gb, 4); 803 804 if (nbit >= avctx->ch_layout.nb_channels) 805 return AVERROR_INVALIDDATA; 806 807 if (ch_mask & 1 << nbit) 808 return AVERROR_INVALIDDATA; 809 810 s->mcdparams[i].present = get_bits1(gb); 811 if (s->mcdparams[i].present) { 812 s->mcdparams[i].index = get_bits(gb, 2); 813 s->mcdparams[i].chan2 = get_bits(gb, 4); 814 if (s->mcdparams[i].chan2 >= avctx->ch_layout.nb_channels) { 815 av_log(avctx, AV_LOG_ERROR, 816 "invalid channel 2 (%d) for %d channel(s)\n", 817 s->mcdparams[i].chan2, avctx->ch_layout.nb_channels); 818 return AVERROR_INVALIDDATA; 819 } 820 if (s->mcdparams[i].index == 1) { 821 if ((nbit == s->mcdparams[i].chan2) || 822 (ch_mask & 1 << s->mcdparams[i].chan2)) 823 return AVERROR_INVALIDDATA; 824 825 ch_mask |= 1 << s->mcdparams[i].chan2; 826 } else if (!(ch_mask & 1 << s->mcdparams[i].chan2)) { 827 return AVERROR_INVALIDDATA; 828 } 829 } 830 s->mcdparams[i].chan1 = nbit; 831 832 ch_mask |= 1 << nbit; 833 } 834 } else { 835 chan = avctx->ch_layout.nb_channels; 836 for (i = 0; i < chan; i++) { 837 s->mcdparams[i].present = 0; 838 s->mcdparams[i].chan1 = i; 839 } 840 } 841 842 for (i = 0; i < chan; i++) { 843 if (s->mcdparams[i].present && s->mcdparams[i].index == 1) 844 if (ret = decode_channel(s, s->mcdparams[i].chan2)) 845 return ret; 846 847 if (ret = decode_channel(s, s->mcdparams[i].chan1)) 848 return ret; 849 850 if (s->mcdparams[i].present) { 851 s->dmode = mc_dmodes[s->mcdparams[i].index]; 852 if (ret = decorrelate(s, 853 s->mcdparams[i].chan2, 854 s->mcdparams[i].chan1, 855 s->nb_samples - 1)) 856 return ret; 857 } 858 } 859 } 860 861 for (chan = 0; chan < avctx->ch_layout.nb_channels; chan++) { 862 int32_t *decoded = s->decoded[chan]; 863 864 if (s->lpc_mode[chan]) 865 decode_lpc(decoded, s->lpc_mode[chan], s->nb_samples); 866 867 if (s->sample_shift[chan] > 0) 868 for (i = 0; i < s->nb_samples; i++) 869 decoded[i] *= 1U << s->sample_shift[chan]; 870 } 871 } 872 873 align_get_bits(gb); 874 skip_bits(gb, 24); 875 if (get_bits_left(gb) < 0) 876 av_log(avctx, AV_LOG_DEBUG, "overread\n"); 877 else if (get_bits_left(gb) > 0) 878 av_log(avctx, AV_LOG_DEBUG, "underread\n"); 879 880 if (avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_COMPLIANT)) { 881 if (ff_tak_check_crc(pkt->data + hsize, 882 get_bits_count(gb) / 8 - hsize)) { 883 av_log(avctx, AV_LOG_ERROR, "CRC error\n"); 884 if (avctx->err_recognition & AV_EF_EXPLODE) 885 return AVERROR_INVALIDDATA; 886 } 887 } 888 889 /* convert to output buffer */ 890 switch (avctx->sample_fmt) { 891 case AV_SAMPLE_FMT_U8P: 892 for (chan = 0; chan < avctx->ch_layout.nb_channels; chan++) { 893 uint8_t *samples = (uint8_t *)frame->extended_data[chan]; 894 int32_t *decoded = s->decoded[chan]; 895 for (i = 0; i < s->nb_samples; i++) 896 samples[i] = decoded[i] + 0x80U; 897 } 898 break; 899 case AV_SAMPLE_FMT_S16P: 900 for (chan = 0; chan < avctx->ch_layout.nb_channels; chan++) { 901 int16_t *samples = (int16_t *)frame->extended_data[chan]; 902 int32_t *decoded = s->decoded[chan]; 903 for (i = 0; i < s->nb_samples; i++) 904 samples[i] = decoded[i]; 905 } 906 break; 907 case AV_SAMPLE_FMT_S32P: 908 for (chan = 0; chan < avctx->ch_layout.nb_channels; chan++) { 909 int32_t *samples = (int32_t *)frame->extended_data[chan]; 910 for (i = 0; i < s->nb_samples; i++) 911 samples[i] *= 1U << 8; 912 } 913 break; 914 } 915 916 *got_frame_ptr = 1; 917 918 return pkt->size; 919} 920 921#if HAVE_THREADS 922static int update_thread_context(AVCodecContext *dst, 923 const AVCodecContext *src) 924{ 925 TAKDecContext *tsrc = src->priv_data; 926 TAKDecContext *tdst = dst->priv_data; 927 928 if (dst == src) 929 return 0; 930 memcpy(&tdst->ti, &tsrc->ti, sizeof(TAKStreamInfo)); 931 return 0; 932} 933#endif 934 935static av_cold int tak_decode_close(AVCodecContext *avctx) 936{ 937 TAKDecContext *s = avctx->priv_data; 938 939 av_freep(&s->decode_buffer); 940 941 return 0; 942} 943 944const FFCodec ff_tak_decoder = { 945 .p.name = "tak", 946 .p.long_name = NULL_IF_CONFIG_SMALL("TAK (Tom's lossless Audio Kompressor)"), 947 .p.type = AVMEDIA_TYPE_AUDIO, 948 .p.id = AV_CODEC_ID_TAK, 949 .priv_data_size = sizeof(TAKDecContext), 950 .init = tak_decode_init, 951 .close = tak_decode_close, 952 FF_CODEC_DECODE_CB(tak_decode_frame), 953 .update_thread_context = ONLY_IF_THREADS_ENABLED(update_thread_context), 954 .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS | AV_CODEC_CAP_CHANNEL_CONF, 955 .p.sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_U8P, 956 AV_SAMPLE_FMT_S16P, 957 AV_SAMPLE_FMT_S32P, 958 AV_SAMPLE_FMT_NONE }, 959 .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE, 960}; 961