xref: /third_party/ffmpeg/libavcodec/sipr.c (revision cabdff1a)
1/*
2 * SIPR / ACELP.NET decoder
3 *
4 * Copyright (c) 2008 Vladimir Voroshilov
5 * Copyright (c) 2009 Vitor Sessak
6 *
7 * This file is part of FFmpeg.
8 *
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24#include <math.h>
25#include <stdint.h>
26#include <string.h>
27
28#include "libavutil/channel_layout.h"
29#include "libavutil/float_dsp.h"
30#include "libavutil/mathematics.h"
31
32#define BITSTREAM_READER_LE
33#include "avcodec.h"
34#include "codec_internal.h"
35#include "get_bits.h"
36#include "internal.h"
37#include "lsp.h"
38#include "acelp_vectors.h"
39#include "acelp_pitch_delay.h"
40#include "acelp_filters.h"
41#include "celp_filters.h"
42
43#define MAX_SUBFRAME_COUNT   5
44
45#include "sipr.h"
46#include "siprdata.h"
47
48typedef struct SiprModeParam {
49    const char *mode_name;
50    uint16_t bits_per_frame;
51    uint8_t subframe_count;
52    uint8_t frames_per_packet;
53    float pitch_sharp_factor;
54
55    /* bitstream parameters */
56    uint8_t number_of_fc_indexes;
57    uint8_t ma_predictor_bits;  ///< size in bits of the switched MA predictor
58
59    /** size in bits of the i-th stage vector of quantizer */
60    uint8_t vq_indexes_bits[5];
61
62    /** size in bits of the adaptive-codebook index for every subframe */
63    uint8_t pitch_delay_bits[5];
64
65    uint8_t gp_index_bits;
66    uint8_t fc_index_bits[10]; ///< size in bits of the fixed codebook indexes
67    uint8_t gc_index_bits;     ///< size in bits of the gain  codebook indexes
68} SiprModeParam;
69
70static const SiprModeParam modes[MODE_COUNT] = {
71    [MODE_16k] = {
72        .mode_name          = "16k",
73        .bits_per_frame     = 160,
74        .subframe_count     = SUBFRAME_COUNT_16k,
75        .frames_per_packet  = 1,
76        .pitch_sharp_factor = 0.00,
77
78        .number_of_fc_indexes = 10,
79        .ma_predictor_bits    = 1,
80        .vq_indexes_bits      = {7, 8, 7, 7, 7},
81        .pitch_delay_bits     = {9, 6},
82        .gp_index_bits        = 4,
83        .fc_index_bits        = {4, 5, 4, 5, 4, 5, 4, 5, 4, 5},
84        .gc_index_bits        = 5
85    },
86
87    [MODE_8k5] = {
88        .mode_name          = "8k5",
89        .bits_per_frame     = 152,
90        .subframe_count     = 3,
91        .frames_per_packet  = 1,
92        .pitch_sharp_factor = 0.8,
93
94        .number_of_fc_indexes = 3,
95        .ma_predictor_bits    = 0,
96        .vq_indexes_bits      = {6, 7, 7, 7, 5},
97        .pitch_delay_bits     = {8, 5, 5},
98        .gp_index_bits        = 0,
99        .fc_index_bits        = {9, 9, 9},
100        .gc_index_bits        = 7
101    },
102
103    [MODE_6k5] = {
104        .mode_name          = "6k5",
105        .bits_per_frame     = 232,
106        .subframe_count     = 3,
107        .frames_per_packet  = 2,
108        .pitch_sharp_factor = 0.8,
109
110        .number_of_fc_indexes = 3,
111        .ma_predictor_bits    = 0,
112        .vq_indexes_bits      = {6, 7, 7, 7, 5},
113        .pitch_delay_bits     = {8, 5, 5},
114        .gp_index_bits        = 0,
115        .fc_index_bits        = {5, 5, 5},
116        .gc_index_bits        = 7
117    },
118
119    [MODE_5k0] = {
120        .mode_name          = "5k0",
121        .bits_per_frame     = 296,
122        .subframe_count     = 5,
123        .frames_per_packet  = 2,
124        .pitch_sharp_factor = 0.85,
125
126        .number_of_fc_indexes = 1,
127        .ma_predictor_bits    = 0,
128        .vq_indexes_bits      = {6, 7, 7, 7, 5},
129        .pitch_delay_bits     = {8, 5, 8, 5, 5},
130        .gp_index_bits        = 0,
131        .fc_index_bits        = {10},
132        .gc_index_bits        = 7
133    }
134};
135
136const float ff_pow_0_5[] = {
137    1.0/(1 <<  1), 1.0/(1 <<  2), 1.0/(1 <<  3), 1.0/(1 <<  4),
138    1.0/(1 <<  5), 1.0/(1 <<  6), 1.0/(1 <<  7), 1.0/(1 <<  8),
139    1.0/(1 <<  9), 1.0/(1 << 10), 1.0/(1 << 11), 1.0/(1 << 12),
140    1.0/(1 << 13), 1.0/(1 << 14), 1.0/(1 << 15), 1.0/(1 << 16)
141};
142
143static void dequant(float *out, const int *idx, const float * const cbs[])
144{
145    int i;
146    int stride  = 2;
147    int num_vec = 5;
148
149    for (i = 0; i < num_vec; i++)
150        memcpy(out + stride*i, cbs[i] + stride*idx[i], stride*sizeof(float));
151
152}
153
154static void lsf_decode_fp(float *lsfnew, float *lsf_history,
155                          const SiprParameters *parm)
156{
157    int i;
158    float lsf_tmp[LP_FILTER_ORDER];
159
160    dequant(lsf_tmp, parm->vq_indexes, lsf_codebooks);
161
162    for (i = 0; i < LP_FILTER_ORDER; i++)
163        lsfnew[i] = lsf_history[i] * 0.33 + lsf_tmp[i] + mean_lsf[i];
164
165    ff_sort_nearly_sorted_floats(lsfnew, LP_FILTER_ORDER - 1);
166
167    /* Note that a minimum distance is not enforced between the last value and
168       the previous one, contrary to what is done in ff_acelp_reorder_lsf() */
169    ff_set_min_dist_lsf(lsfnew, LSFQ_DIFF_MIN, LP_FILTER_ORDER - 1);
170    lsfnew[9] = FFMIN(lsfnew[LP_FILTER_ORDER - 1], 1.3 * M_PI);
171
172    memcpy(lsf_history, lsf_tmp, LP_FILTER_ORDER * sizeof(*lsf_history));
173
174    for (i = 0; i < LP_FILTER_ORDER - 1; i++)
175        lsfnew[i] = cos(lsfnew[i]);
176    lsfnew[LP_FILTER_ORDER - 1] *= 6.153848 / M_PI;
177}
178
179/** Apply pitch lag to the fixed vector (AMR section 6.1.2). */
180static void pitch_sharpening(int pitch_lag_int, float beta,
181                             float *fixed_vector)
182{
183    int i;
184
185    for (i = pitch_lag_int; i < SUBFR_SIZE; i++)
186        fixed_vector[i] += beta * fixed_vector[i - pitch_lag_int];
187}
188
189/**
190 * Extract decoding parameters from the input bitstream.
191 * @param parms          parameters structure
192 * @param pgb            pointer to initialized GetBitContext structure
193 */
194static void decode_parameters(SiprParameters* parms, GetBitContext *pgb,
195                              const SiprModeParam *p)
196{
197    int i, j;
198
199    if (p->ma_predictor_bits)
200        parms->ma_pred_switch       = get_bits(pgb, p->ma_predictor_bits);
201
202    for (i = 0; i < 5; i++)
203        parms->vq_indexes[i]        = get_bits(pgb, p->vq_indexes_bits[i]);
204
205    for (i = 0; i < p->subframe_count; i++) {
206        parms->pitch_delay[i]       = get_bits(pgb, p->pitch_delay_bits[i]);
207        if (p->gp_index_bits)
208            parms->gp_index[i]      = get_bits(pgb, p->gp_index_bits);
209
210        for (j = 0; j < p->number_of_fc_indexes; j++)
211            parms->fc_indexes[i][j] = get_bits(pgb, p->fc_index_bits[j]);
212
213        parms->gc_index[i]          = get_bits(pgb, p->gc_index_bits);
214    }
215}
216
217static void sipr_decode_lp(float *lsfnew, const float *lsfold, float *Az,
218                           int num_subfr)
219{
220    double lsfint[LP_FILTER_ORDER];
221    int i,j;
222    float t, t0 = 1.0 / num_subfr;
223
224    t = t0 * 0.5;
225    for (i = 0; i < num_subfr; i++) {
226        for (j = 0; j < LP_FILTER_ORDER; j++)
227            lsfint[j] = lsfold[j] * (1 - t) + t * lsfnew[j];
228
229        ff_amrwb_lsp2lpc(lsfint, Az, LP_FILTER_ORDER);
230        Az += LP_FILTER_ORDER;
231        t += t0;
232    }
233}
234
235/**
236 * Evaluate the adaptive impulse response.
237 */
238static void eval_ir(const float *Az, int pitch_lag, float *freq,
239                    float pitch_sharp_factor)
240{
241    float tmp1[SUBFR_SIZE+1], tmp2[LP_FILTER_ORDER+1];
242    int i;
243
244    tmp1[0] = 1.0;
245    for (i = 0; i < LP_FILTER_ORDER; i++) {
246        tmp1[i+1] = Az[i] * ff_pow_0_55[i];
247        tmp2[i  ] = Az[i] * ff_pow_0_7 [i];
248    }
249    memset(tmp1 + 11, 0, 37 * sizeof(float));
250
251    ff_celp_lp_synthesis_filterf(freq, tmp2, tmp1, SUBFR_SIZE,
252                                 LP_FILTER_ORDER);
253
254    pitch_sharpening(pitch_lag, pitch_sharp_factor, freq);
255}
256
257/**
258 * Evaluate the convolution of a vector with a sparse vector.
259 */
260static void convolute_with_sparse(float *out, const AMRFixed *pulses,
261                                  const float *shape, int length)
262{
263    int i, j;
264
265    memset(out, 0, length*sizeof(float));
266    for (i = 0; i < pulses->n; i++)
267        for (j = pulses->x[i]; j < length; j++)
268            out[j] += pulses->y[i] * shape[j - pulses->x[i]];
269}
270
271/**
272 * Apply postfilter, very similar to AMR one.
273 */
274static void postfilter_5k0(SiprContext *ctx, const float *lpc, float *samples)
275{
276    float buf[SUBFR_SIZE + LP_FILTER_ORDER];
277    float *pole_out = buf + LP_FILTER_ORDER;
278    float lpc_n[LP_FILTER_ORDER];
279    float lpc_d[LP_FILTER_ORDER];
280    int i;
281
282    for (i = 0; i < LP_FILTER_ORDER; i++) {
283        lpc_d[i] = lpc[i] * ff_pow_0_75[i];
284        lpc_n[i] = lpc[i] * ff_pow_0_5 [i];
285    };
286
287    memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem,
288           LP_FILTER_ORDER*sizeof(float));
289
290    ff_celp_lp_synthesis_filterf(pole_out, lpc_d, samples, SUBFR_SIZE,
291                                 LP_FILTER_ORDER);
292
293    memcpy(ctx->postfilter_mem, pole_out + SUBFR_SIZE - LP_FILTER_ORDER,
294           LP_FILTER_ORDER*sizeof(float));
295
296    ff_tilt_compensation(&ctx->tilt_mem, 0.4, pole_out, SUBFR_SIZE);
297
298    memcpy(pole_out - LP_FILTER_ORDER, ctx->postfilter_mem5k0,
299           LP_FILTER_ORDER*sizeof(*pole_out));
300
301    memcpy(ctx->postfilter_mem5k0, pole_out + SUBFR_SIZE - LP_FILTER_ORDER,
302           LP_FILTER_ORDER*sizeof(*pole_out));
303
304    ff_celp_lp_zero_synthesis_filterf(samples, lpc_n, pole_out, SUBFR_SIZE,
305                                      LP_FILTER_ORDER);
306
307}
308
309static void decode_fixed_sparse(AMRFixed *fixed_sparse, const int16_t *pulses,
310                                SiprMode mode, int low_gain)
311{
312    int i;
313
314    switch (mode) {
315    case MODE_6k5:
316        for (i = 0; i < 3; i++) {
317            fixed_sparse->x[i] = 3 * (pulses[i] & 0xf) + i;
318            fixed_sparse->y[i] = pulses[i] & 0x10 ? -1 : 1;
319        }
320        fixed_sparse->n = 3;
321        break;
322    case MODE_8k5:
323        for (i = 0; i < 3; i++) {
324            fixed_sparse->x[2*i    ] = 3 * ((pulses[i] >> 4) & 0xf) + i;
325            fixed_sparse->x[2*i + 1] = 3 * ( pulses[i]       & 0xf) + i;
326
327            fixed_sparse->y[2*i    ] = (pulses[i] & 0x100) ? -1.0: 1.0;
328
329            fixed_sparse->y[2*i + 1] =
330                (fixed_sparse->x[2*i + 1] < fixed_sparse->x[2*i]) ?
331                -fixed_sparse->y[2*i    ] : fixed_sparse->y[2*i];
332        }
333
334        fixed_sparse->n = 6;
335        break;
336    case MODE_5k0:
337    default:
338        if (low_gain) {
339            int offset = (pulses[0] & 0x200) ? 2 : 0;
340            int val = pulses[0];
341
342            for (i = 0; i < 3; i++) {
343                int index = (val & 0x7) * 6 + 4 - i*2;
344
345                fixed_sparse->y[i] = (offset + index) & 0x3 ? -1 : 1;
346                fixed_sparse->x[i] = index;
347
348                val >>= 3;
349            }
350            fixed_sparse->n = 3;
351        } else {
352            int pulse_subset = (pulses[0] >> 8) & 1;
353
354            fixed_sparse->x[0] = ((pulses[0] >> 4) & 15) * 3 + pulse_subset;
355            fixed_sparse->x[1] = ( pulses[0]       & 15) * 3 + pulse_subset + 1;
356
357            fixed_sparse->y[0] = pulses[0] & 0x200 ? -1 : 1;
358            fixed_sparse->y[1] = -fixed_sparse->y[0];
359            fixed_sparse->n = 2;
360        }
361        break;
362    }
363}
364
365static void decode_frame(SiprContext *ctx, SiprParameters *params,
366                         float *out_data)
367{
368    int i, j;
369    int subframe_count = modes[ctx->mode].subframe_count;
370    int frame_size = subframe_count * SUBFR_SIZE;
371    float Az[LP_FILTER_ORDER * MAX_SUBFRAME_COUNT];
372    float *excitation;
373    float ir_buf[SUBFR_SIZE + LP_FILTER_ORDER];
374    float lsf_new[LP_FILTER_ORDER];
375    float *impulse_response = ir_buf + LP_FILTER_ORDER;
376    float *synth = ctx->synth_buf + 16; // 16 instead of LP_FILTER_ORDER for
377                                        // memory alignment
378    int t0_first = 0;
379    AMRFixed fixed_cb;
380
381    memset(ir_buf, 0, LP_FILTER_ORDER * sizeof(float));
382    lsf_decode_fp(lsf_new, ctx->lsf_history, params);
383
384    sipr_decode_lp(lsf_new, ctx->lsp_history, Az, subframe_count);
385
386    memcpy(ctx->lsp_history, lsf_new, LP_FILTER_ORDER * sizeof(float));
387
388    excitation = ctx->excitation + PITCH_DELAY_MAX + L_INTERPOL;
389
390    for (i = 0; i < subframe_count; i++) {
391        float *pAz = Az + i*LP_FILTER_ORDER;
392        float fixed_vector[SUBFR_SIZE];
393        int T0,T0_frac;
394        float pitch_gain, gain_code, avg_energy;
395
396        ff_decode_pitch_lag(&T0, &T0_frac, params->pitch_delay[i], t0_first, i,
397                            ctx->mode == MODE_5k0, 6);
398
399        if (i == 0 || (i == 2 && ctx->mode == MODE_5k0))
400            t0_first = T0;
401
402        ff_acelp_interpolatef(excitation, excitation - T0 + (T0_frac <= 0),
403                              ff_b60_sinc, 6,
404                              2 * ((2 + T0_frac)%3 + 1), LP_FILTER_ORDER,
405                              SUBFR_SIZE);
406
407        decode_fixed_sparse(&fixed_cb, params->fc_indexes[i], ctx->mode,
408                            ctx->past_pitch_gain < 0.8);
409
410        eval_ir(pAz, T0, impulse_response, modes[ctx->mode].pitch_sharp_factor);
411
412        convolute_with_sparse(fixed_vector, &fixed_cb, impulse_response,
413                              SUBFR_SIZE);
414
415        avg_energy = (0.01 + avpriv_scalarproduct_float_c(fixed_vector,
416                                                          fixed_vector,
417                                                          SUBFR_SIZE)) /
418                     SUBFR_SIZE;
419
420        ctx->past_pitch_gain = pitch_gain = gain_cb[params->gc_index[i]][0];
421
422        gain_code = ff_amr_set_fixed_gain(gain_cb[params->gc_index[i]][1],
423                                          avg_energy, ctx->energy_history,
424                                          34 - 15.0/(0.05*M_LN10/M_LN2),
425                                          pred);
426
427        ff_weighted_vector_sumf(excitation, excitation, fixed_vector,
428                                pitch_gain, gain_code, SUBFR_SIZE);
429
430        pitch_gain *= 0.5 * pitch_gain;
431        pitch_gain = FFMIN(pitch_gain, 0.4);
432
433        ctx->gain_mem = 0.7 * ctx->gain_mem + 0.3 * pitch_gain;
434        ctx->gain_mem = FFMIN(ctx->gain_mem, pitch_gain);
435        gain_code *= ctx->gain_mem;
436
437        for (j = 0; j < SUBFR_SIZE; j++)
438            fixed_vector[j] = excitation[j] - gain_code * fixed_vector[j];
439
440        if (ctx->mode == MODE_5k0) {
441            postfilter_5k0(ctx, pAz, fixed_vector);
442
443            ff_celp_lp_synthesis_filterf(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i*SUBFR_SIZE,
444                                         pAz, excitation, SUBFR_SIZE,
445                                         LP_FILTER_ORDER);
446        }
447
448        ff_celp_lp_synthesis_filterf(synth + i*SUBFR_SIZE, pAz, fixed_vector,
449                                     SUBFR_SIZE, LP_FILTER_ORDER);
450
451        excitation += SUBFR_SIZE;
452    }
453
454    memcpy(synth - LP_FILTER_ORDER, synth + frame_size - LP_FILTER_ORDER,
455           LP_FILTER_ORDER * sizeof(float));
456
457    if (ctx->mode == MODE_5k0) {
458        for (i = 0; i < subframe_count; i++) {
459            float energy = avpriv_scalarproduct_float_c(ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i * SUBFR_SIZE,
460                                                        ctx->postfilter_syn5k0 + LP_FILTER_ORDER + i * SUBFR_SIZE,
461                                                        SUBFR_SIZE);
462            ff_adaptive_gain_control(&synth[i * SUBFR_SIZE],
463                                     &synth[i * SUBFR_SIZE], energy,
464                                     SUBFR_SIZE, 0.9, &ctx->postfilter_agc);
465        }
466
467        memcpy(ctx->postfilter_syn5k0, ctx->postfilter_syn5k0 + frame_size,
468               LP_FILTER_ORDER*sizeof(float));
469    }
470    memmove(ctx->excitation, excitation - PITCH_DELAY_MAX - L_INTERPOL,
471           (PITCH_DELAY_MAX + L_INTERPOL) * sizeof(float));
472
473    ff_acelp_apply_order_2_transfer_function(out_data, synth,
474                                             (const float[2]) {-1.99997   , 1.000000000},
475                                             (const float[2]) {-1.93307352, 0.935891986},
476                                             0.939805806,
477                                             ctx->highpass_filt_mem,
478                                             frame_size);
479}
480
481static av_cold int sipr_decoder_init(AVCodecContext * avctx)
482{
483    SiprContext *ctx = avctx->priv_data;
484    int i;
485
486    switch (avctx->block_align) {
487    case 20: ctx->mode = MODE_16k; break;
488    case 19: ctx->mode = MODE_8k5; break;
489    case 29: ctx->mode = MODE_6k5; break;
490    case 37: ctx->mode = MODE_5k0; break;
491    default:
492        if      (avctx->bit_rate > 12200) ctx->mode = MODE_16k;
493        else if (avctx->bit_rate > 7500 ) ctx->mode = MODE_8k5;
494        else if (avctx->bit_rate > 5750 ) ctx->mode = MODE_6k5;
495        else                              ctx->mode = MODE_5k0;
496        av_log(avctx, AV_LOG_WARNING,
497               "Invalid block_align: %d. Mode %s guessed based on bitrate: %"PRId64"\n",
498               avctx->block_align, modes[ctx->mode].mode_name, avctx->bit_rate);
499    }
500
501    av_log(avctx, AV_LOG_DEBUG, "Mode: %s\n", modes[ctx->mode].mode_name);
502
503    if (ctx->mode == MODE_16k) {
504        ff_sipr_init_16k(ctx);
505        ctx->decode_frame = ff_sipr_decode_frame_16k;
506    } else {
507        ctx->decode_frame = decode_frame;
508    }
509
510    for (i = 0; i < LP_FILTER_ORDER; i++)
511        ctx->lsp_history[i] = cos((i+1) * M_PI / (LP_FILTER_ORDER + 1));
512
513    for (i = 0; i < 4; i++)
514        ctx->energy_history[i] = -14;
515
516    av_channel_layout_uninit(&avctx->ch_layout);
517    avctx->ch_layout      = (AVChannelLayout)AV_CHANNEL_LAYOUT_MONO;
518    avctx->sample_fmt     = AV_SAMPLE_FMT_FLT;
519
520    return 0;
521}
522
523static int sipr_decode_frame(AVCodecContext *avctx, AVFrame *frame,
524                             int *got_frame_ptr, AVPacket *avpkt)
525{
526    SiprContext *ctx = avctx->priv_data;
527    const uint8_t *buf=avpkt->data;
528    SiprParameters parm;
529    const SiprModeParam *mode_par = &modes[ctx->mode];
530    GetBitContext gb;
531    float *samples;
532    int subframe_size = ctx->mode == MODE_16k ? L_SUBFR_16k : SUBFR_SIZE;
533    int i, ret;
534
535    ctx->avctx = avctx;
536    if (avpkt->size < (mode_par->bits_per_frame >> 3)) {
537        av_log(avctx, AV_LOG_ERROR,
538               "Error processing packet: packet size (%d) too small\n",
539               avpkt->size);
540        return AVERROR_INVALIDDATA;
541    }
542
543    /* get output buffer */
544    frame->nb_samples = mode_par->frames_per_packet * subframe_size *
545                        mode_par->subframe_count;
546    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
547        return ret;
548    samples = (float *)frame->data[0];
549
550    init_get_bits(&gb, buf, mode_par->bits_per_frame);
551
552    for (i = 0; i < mode_par->frames_per_packet; i++) {
553        decode_parameters(&parm, &gb, mode_par);
554
555        ctx->decode_frame(ctx, &parm, samples);
556
557        samples += subframe_size * mode_par->subframe_count;
558    }
559
560    *got_frame_ptr = 1;
561
562    return mode_par->bits_per_frame >> 3;
563}
564
565const FFCodec ff_sipr_decoder = {
566    .p.name         = "sipr",
567    .p.long_name    = NULL_IF_CONFIG_SMALL("RealAudio SIPR / ACELP.NET"),
568    .p.type         = AVMEDIA_TYPE_AUDIO,
569    .p.id           = AV_CODEC_ID_SIPR,
570    .priv_data_size = sizeof(SiprContext),
571    .init           = sipr_decoder_init,
572    FF_CODEC_DECODE_CB(sipr_decode_frame),
573    .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF,
574    .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
575};
576