1/* 2 * Opus encoder 3 * Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com> 4 * 5 * This file is part of FFmpeg. 6 * 7 * FFmpeg is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU Lesser General Public 9 * License as published by the Free Software Foundation; either 10 * version 2.1 of the License, or (at your option) any later version. 11 * 12 * FFmpeg is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * Lesser General Public License for more details. 16 * 17 * You should have received a copy of the GNU Lesser General Public 18 * License along with FFmpeg; if not, write to the Free Software 19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 20 */ 21 22#include "opusenc_psy.h" 23#include "opus_pvq.h" 24#include "opustab.h" 25#include "mdct15.h" 26#include "libavutil/qsort.h" 27 28static float pvq_band_cost(CeltPVQ *pvq, CeltFrame *f, OpusRangeCoder *rc, int band, 29 float *bits, float lambda) 30{ 31 int i, b = 0; 32 uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 }; 33 const int band_size = ff_celt_freq_range[band] << f->size; 34 float buf[176 * 2], lowband_scratch[176], norm1[176], norm2[176]; 35 float dist, cost, err_x = 0.0f, err_y = 0.0f; 36 float *X = buf; 37 float *X_orig = f->block[0].coeffs + (ff_celt_freq_bands[band] << f->size); 38 float *Y = (f->channels == 2) ? &buf[176] : NULL; 39 float *Y_orig = f->block[1].coeffs + (ff_celt_freq_bands[band] << f->size); 40 OPUS_RC_CHECKPOINT_SPAWN(rc); 41 42 memcpy(X, X_orig, band_size*sizeof(float)); 43 if (Y) 44 memcpy(Y, Y_orig, band_size*sizeof(float)); 45 46 f->remaining2 = ((f->framebits << 3) - f->anticollapse_needed) - opus_rc_tell_frac(rc) - 1; 47 if (band <= f->coded_bands - 1) { 48 int curr_balance = f->remaining / FFMIN(3, f->coded_bands - band); 49 b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[band] + curr_balance), 14); 50 } 51 52 if (f->dual_stereo) { 53 pvq->quant_band(pvq, f, rc, band, X, NULL, band_size, b / 2, f->blocks, NULL, 54 f->size, norm1, 0, 1.0f, lowband_scratch, cm[0]); 55 56 pvq->quant_band(pvq, f, rc, band, Y, NULL, band_size, b / 2, f->blocks, NULL, 57 f->size, norm2, 0, 1.0f, lowband_scratch, cm[1]); 58 } else { 59 pvq->quant_band(pvq, f, rc, band, X, Y, band_size, b, f->blocks, NULL, f->size, 60 norm1, 0, 1.0f, lowband_scratch, cm[0] | cm[1]); 61 } 62 63 for (i = 0; i < band_size; i++) { 64 err_x += (X[i] - X_orig[i])*(X[i] - X_orig[i]); 65 if (Y) 66 err_y += (Y[i] - Y_orig[i])*(Y[i] - Y_orig[i]); 67 } 68 69 dist = sqrtf(err_x) + sqrtf(err_y); 70 cost = OPUS_RC_CHECKPOINT_BITS(rc)/8.0f; 71 *bits += cost; 72 73 OPUS_RC_CHECKPOINT_ROLLBACK(rc); 74 75 return lambda*dist*cost; 76} 77 78/* Populate metrics without taking into consideration neighbouring steps */ 79static void step_collect_psy_metrics(OpusPsyContext *s, int index) 80{ 81 int silence = 0, ch, i, j; 82 OpusPsyStep *st = s->steps[index]; 83 84 st->index = index; 85 86 for (ch = 0; ch < s->avctx->ch_layout.nb_channels; ch++) { 87 const int lap_size = (1 << s->bsize_analysis); 88 for (i = 1; i <= FFMIN(lap_size, index); i++) { 89 const int offset = i*120; 90 AVFrame *cur = ff_bufqueue_peek(s->bufqueue, index - i); 91 memcpy(&s->scratch[offset], cur->extended_data[ch], cur->nb_samples*sizeof(float)); 92 } 93 for (i = 0; i < lap_size; i++) { 94 const int offset = i*120 + lap_size; 95 AVFrame *cur = ff_bufqueue_peek(s->bufqueue, index + i); 96 memcpy(&s->scratch[offset], cur->extended_data[ch], cur->nb_samples*sizeof(float)); 97 } 98 99 s->dsp->vector_fmul(s->scratch, s->scratch, s->window[s->bsize_analysis], 100 (OPUS_BLOCK_SIZE(s->bsize_analysis) << 1)); 101 102 s->mdct[s->bsize_analysis]->mdct(s->mdct[s->bsize_analysis], st->coeffs[ch], s->scratch, 1); 103 104 for (i = 0; i < CELT_MAX_BANDS; i++) 105 st->bands[ch][i] = &st->coeffs[ch][ff_celt_freq_bands[i] << s->bsize_analysis]; 106 } 107 108 for (ch = 0; ch < s->avctx->ch_layout.nb_channels; ch++) { 109 for (i = 0; i < CELT_MAX_BANDS; i++) { 110 float avg_c_s, energy = 0.0f, dist_dev = 0.0f; 111 const int range = ff_celt_freq_range[i] << s->bsize_analysis; 112 const float *coeffs = st->bands[ch][i]; 113 for (j = 0; j < range; j++) 114 energy += coeffs[j]*coeffs[j]; 115 116 st->energy[ch][i] += sqrtf(energy); 117 silence |= !!st->energy[ch][i]; 118 avg_c_s = energy / range; 119 120 for (j = 0; j < range; j++) { 121 const float c_s = coeffs[j]*coeffs[j]; 122 dist_dev += (avg_c_s - c_s)*(avg_c_s - c_s); 123 } 124 125 st->tone[ch][i] += sqrtf(dist_dev); 126 } 127 } 128 129 st->silence = !silence; 130 131 if (s->avctx->ch_layout.nb_channels > 1) { 132 for (i = 0; i < CELT_MAX_BANDS; i++) { 133 float incompat = 0.0f; 134 const float *coeffs1 = st->bands[0][i]; 135 const float *coeffs2 = st->bands[1][i]; 136 const int range = ff_celt_freq_range[i] << s->bsize_analysis; 137 for (j = 0; j < range; j++) 138 incompat += (coeffs1[j] - coeffs2[j])*(coeffs1[j] - coeffs2[j]); 139 st->stereo[i] = sqrtf(incompat); 140 } 141 } 142 143 for (ch = 0; ch < s->avctx->ch_layout.nb_channels; ch++) { 144 for (i = 0; i < CELT_MAX_BANDS; i++) { 145 OpusBandExcitation *ex = &s->ex[ch][i]; 146 float bp_e = bessel_filter(&s->bfilter_lo[ch][i], st->energy[ch][i]); 147 bp_e = bessel_filter(&s->bfilter_hi[ch][i], bp_e); 148 bp_e *= bp_e; 149 if (bp_e > ex->excitation) { 150 st->change_amp[ch][i] = bp_e - ex->excitation; 151 st->total_change += st->change_amp[ch][i]; 152 ex->excitation = ex->excitation_init = bp_e; 153 ex->excitation_dist = 0.0f; 154 } 155 if (ex->excitation > 0.0f) { 156 ex->excitation -= av_clipf((1/expf(ex->excitation_dist)), ex->excitation_init/20, ex->excitation_init/1.09); 157 ex->excitation = FFMAX(ex->excitation, 0.0f); 158 ex->excitation_dist += 1.0f; 159 } 160 } 161 } 162} 163 164static void search_for_change_points(OpusPsyContext *s, float tgt_change, 165 int offset_s, int offset_e, int resolution, 166 int level) 167{ 168 int i; 169 float c_change = 0.0f; 170 if ((offset_e - offset_s) <= resolution) 171 return; 172 for (i = offset_s; i < offset_e; i++) { 173 c_change += s->steps[i]->total_change; 174 if (c_change > tgt_change) 175 break; 176 } 177 if (i == offset_e) 178 return; 179 search_for_change_points(s, tgt_change / 2.0f, offset_s, i + 0, resolution, level + 1); 180 s->inflection_points[s->inflection_points_count++] = i; 181 search_for_change_points(s, tgt_change / 2.0f, i + 1, offset_e, resolution, level + 1); 182} 183 184static int flush_silent_frames(OpusPsyContext *s) 185{ 186 int fsize, silent_frames; 187 188 for (silent_frames = 0; silent_frames < s->buffered_steps; silent_frames++) 189 if (!s->steps[silent_frames]->silence) 190 break; 191 if (--silent_frames < 0) 192 return 0; 193 194 for (fsize = CELT_BLOCK_960; fsize > CELT_BLOCK_120; fsize--) { 195 if ((1 << fsize) > silent_frames) 196 continue; 197 s->p.frames = FFMIN(silent_frames / (1 << fsize), 48 >> fsize); 198 s->p.framesize = fsize; 199 return 1; 200 } 201 202 return 0; 203} 204 205/* Main function which decides frame size and frames per current packet */ 206static void psy_output_groups(OpusPsyContext *s) 207{ 208 int max_delay_samples = (s->options->max_delay_ms*s->avctx->sample_rate)/1000; 209 int max_bsize = FFMIN(OPUS_SAMPLES_TO_BLOCK_SIZE(max_delay_samples), CELT_BLOCK_960); 210 211 /* These don't change for now */ 212 s->p.mode = OPUS_MODE_CELT; 213 s->p.bandwidth = OPUS_BANDWIDTH_FULLBAND; 214 215 /* Flush silent frames ASAP */ 216 if (s->steps[0]->silence && flush_silent_frames(s)) 217 return; 218 219 s->p.framesize = FFMIN(max_bsize, CELT_BLOCK_960); 220 s->p.frames = 1; 221} 222 223int ff_opus_psy_process(OpusPsyContext *s, OpusPacketInfo *p) 224{ 225 int i; 226 float total_energy_change = 0.0f; 227 228 if (s->buffered_steps < s->max_steps && !s->eof) { 229 const int awin = (1 << s->bsize_analysis); 230 if (++s->steps_to_process >= awin) { 231 step_collect_psy_metrics(s, s->buffered_steps - awin + 1); 232 s->steps_to_process = 0; 233 } 234 if ((++s->buffered_steps) < s->max_steps) 235 return 1; 236 } 237 238 for (i = 0; i < s->buffered_steps; i++) 239 total_energy_change += s->steps[i]->total_change; 240 241 search_for_change_points(s, total_energy_change / 2.0f, 0, 242 s->buffered_steps, 1, 0); 243 244 psy_output_groups(s); 245 246 p->frames = s->p.frames; 247 p->framesize = s->p.framesize; 248 p->mode = s->p.mode; 249 p->bandwidth = s->p.bandwidth; 250 251 return 0; 252} 253 254void ff_opus_psy_celt_frame_init(OpusPsyContext *s, CeltFrame *f, int index) 255{ 256 int i, neighbouring_points = 0, start_offset = 0; 257 int radius = (1 << s->p.framesize), step_offset = radius*index; 258 int silence = 1; 259 260 f->start_band = (s->p.mode == OPUS_MODE_HYBRID) ? 17 : 0; 261 f->end_band = ff_celt_band_end[s->p.bandwidth]; 262 f->channels = s->avctx->ch_layout.nb_channels; 263 f->size = s->p.framesize; 264 265 for (i = 0; i < (1 << f->size); i++) 266 silence &= s->steps[index*(1 << f->size) + i]->silence; 267 268 f->silence = silence; 269 if (f->silence) { 270 f->framebits = 0; /* Otherwise the silence flag eats up 16(!) bits */ 271 return; 272 } 273 274 for (i = 0; i < s->inflection_points_count; i++) { 275 if (s->inflection_points[i] >= step_offset) { 276 start_offset = i; 277 break; 278 } 279 } 280 281 for (i = start_offset; i < FFMIN(radius, s->inflection_points_count - start_offset); i++) { 282 if (s->inflection_points[i] < (step_offset + radius)) { 283 neighbouring_points++; 284 } 285 } 286 287 /* Transient flagging */ 288 f->transient = neighbouring_points > 0; 289 f->blocks = f->transient ? OPUS_BLOCK_SIZE(s->p.framesize)/CELT_OVERLAP : 1; 290 291 /* Some sane defaults */ 292 f->pfilter = 0; 293 f->pf_gain = 0.5f; 294 f->pf_octave = 2; 295 f->pf_period = 1; 296 f->pf_tapset = 2; 297 298 /* More sane defaults */ 299 f->tf_select = 0; 300 f->anticollapse = 1; 301 f->alloc_trim = 5; 302 f->skip_band_floor = f->end_band; 303 f->intensity_stereo = f->end_band; 304 f->dual_stereo = 0; 305 f->spread = CELT_SPREAD_NORMAL; 306 memset(f->tf_change, 0, sizeof(int)*CELT_MAX_BANDS); 307 memset(f->alloc_boost, 0, sizeof(int)*CELT_MAX_BANDS); 308} 309 310static void celt_gauge_psy_weight(OpusPsyContext *s, OpusPsyStep **start, 311 CeltFrame *f_out) 312{ 313 int i, f, ch; 314 int frame_size = OPUS_BLOCK_SIZE(s->p.framesize); 315 float rate, frame_bits = 0; 316 317 /* Used for the global ROTATE flag */ 318 float tonal = 0.0f; 319 320 /* Pseudo-weights */ 321 float band_score[CELT_MAX_BANDS] = { 0 }; 322 float max_score = 1.0f; 323 324 /* Pass one - one loop around each band, computing unquant stuff */ 325 for (i = 0; i < CELT_MAX_BANDS; i++) { 326 float weight = 0.0f; 327 float tonal_contrib = 0.0f; 328 for (f = 0; f < (1 << s->p.framesize); f++) { 329 weight = start[f]->stereo[i]; 330 for (ch = 0; ch < s->avctx->ch_layout.nb_channels; ch++) { 331 weight += start[f]->change_amp[ch][i] + start[f]->tone[ch][i] + start[f]->energy[ch][i]; 332 tonal_contrib += start[f]->tone[ch][i]; 333 } 334 } 335 tonal += tonal_contrib; 336 band_score[i] = weight; 337 } 338 339 tonal /= (float)CELT_MAX_BANDS; 340 341 for (i = 0; i < CELT_MAX_BANDS; i++) { 342 if (band_score[i] > max_score) 343 max_score = band_score[i]; 344 } 345 346 for (i = 0; i < CELT_MAX_BANDS; i++) { 347 f_out->alloc_boost[i] = (int)((band_score[i]/max_score)*3.0f); 348 frame_bits += band_score[i]*8.0f; 349 } 350 351 tonal /= 1333136.0f; 352 f_out->spread = av_clip_uintp2(lrintf(tonal), 2); 353 354 rate = ((float)s->avctx->bit_rate) + frame_bits*frame_size*16; 355 rate *= s->lambda; 356 rate /= s->avctx->sample_rate/frame_size; 357 358 f_out->framebits = lrintf(rate); 359 f_out->framebits = FFMIN(f_out->framebits, OPUS_MAX_PACKET_SIZE*8); 360 f_out->framebits = FFALIGN(f_out->framebits, 8); 361} 362 363static int bands_dist(OpusPsyContext *s, CeltFrame *f, float *total_dist) 364{ 365 int i, tdist = 0.0f; 366 OpusRangeCoder dump; 367 368 ff_opus_rc_enc_init(&dump); 369 ff_celt_bitalloc(f, &dump, 1); 370 371 for (i = 0; i < CELT_MAX_BANDS; i++) { 372 float bits = 0.0f; 373 float dist = pvq_band_cost(f->pvq, f, &dump, i, &bits, s->lambda); 374 tdist += dist; 375 } 376 377 *total_dist = tdist; 378 379 return 0; 380} 381 382static void celt_search_for_dual_stereo(OpusPsyContext *s, CeltFrame *f) 383{ 384 float td1, td2; 385 f->dual_stereo = 0; 386 387 if (s->avctx->ch_layout.nb_channels < 2) 388 return; 389 390 bands_dist(s, f, &td1); 391 f->dual_stereo = 1; 392 bands_dist(s, f, &td2); 393 394 f->dual_stereo = td2 < td1; 395 s->dual_stereo_used += td2 < td1; 396} 397 398static void celt_search_for_intensity(OpusPsyContext *s, CeltFrame *f) 399{ 400 int i, best_band = CELT_MAX_BANDS - 1; 401 float dist, best_dist = FLT_MAX; 402 /* TODO: fix, make some heuristic up here using the lambda value */ 403 float end_band = 0; 404 405 if (s->avctx->ch_layout.nb_channels < 2) 406 return; 407 408 for (i = f->end_band; i >= end_band; i--) { 409 f->intensity_stereo = i; 410 bands_dist(s, f, &dist); 411 if (best_dist > dist) { 412 best_dist = dist; 413 best_band = i; 414 } 415 } 416 417 f->intensity_stereo = best_band; 418 s->avg_is_band = (s->avg_is_band + f->intensity_stereo)/2.0f; 419} 420 421static int celt_search_for_tf(OpusPsyContext *s, OpusPsyStep **start, CeltFrame *f) 422{ 423 int i, j, k, cway, config[2][CELT_MAX_BANDS] = { { 0 } }; 424 float score[2] = { 0 }; 425 426 for (cway = 0; cway < 2; cway++) { 427 int mag[2]; 428 int base = f->transient ? 120 : 960; 429 430 for (i = 0; i < 2; i++) { 431 int c = ff_celt_tf_select[f->size][f->transient][cway][i]; 432 mag[i] = c < 0 ? base >> FFABS(c) : base << FFABS(c); 433 } 434 435 for (i = 0; i < CELT_MAX_BANDS; i++) { 436 float iscore0 = 0.0f; 437 float iscore1 = 0.0f; 438 for (j = 0; j < (1 << f->size); j++) { 439 for (k = 0; k < s->avctx->ch_layout.nb_channels; k++) { 440 iscore0 += start[j]->tone[k][i]*start[j]->change_amp[k][i]/mag[0]; 441 iscore1 += start[j]->tone[k][i]*start[j]->change_amp[k][i]/mag[1]; 442 } 443 } 444 config[cway][i] = FFABS(iscore0 - 1.0f) < FFABS(iscore1 - 1.0f); 445 score[cway] += config[cway][i] ? iscore1 : iscore0; 446 } 447 } 448 449 f->tf_select = score[0] < score[1]; 450 memcpy(f->tf_change, config[f->tf_select], sizeof(int)*CELT_MAX_BANDS); 451 452 return 0; 453} 454 455int ff_opus_psy_celt_frame_process(OpusPsyContext *s, CeltFrame *f, int index) 456{ 457 int start_transient_flag = f->transient; 458 OpusPsyStep **start = &s->steps[index * (1 << s->p.framesize)]; 459 460 if (f->silence) 461 return 0; 462 463 celt_gauge_psy_weight(s, start, f); 464 celt_search_for_intensity(s, f); 465 celt_search_for_dual_stereo(s, f); 466 celt_search_for_tf(s, start, f); 467 468 if (f->transient != start_transient_flag) { 469 f->blocks = f->transient ? OPUS_BLOCK_SIZE(s->p.framesize)/CELT_OVERLAP : 1; 470 s->redo_analysis = 1; 471 return 1; 472 } 473 474 s->redo_analysis = 0; 475 476 return 0; 477} 478 479void ff_opus_psy_postencode_update(OpusPsyContext *s, CeltFrame *f, OpusRangeCoder *rc) 480{ 481 int i, frame_size = OPUS_BLOCK_SIZE(s->p.framesize); 482 int steps_out = s->p.frames*(frame_size/120); 483 void *tmp[FF_BUFQUEUE_SIZE]; 484 float ideal_fbits; 485 486 for (i = 0; i < steps_out; i++) 487 memset(s->steps[i], 0, sizeof(OpusPsyStep)); 488 489 for (i = 0; i < s->max_steps; i++) 490 tmp[i] = s->steps[i]; 491 492 for (i = 0; i < s->max_steps; i++) { 493 const int i_new = i - steps_out; 494 s->steps[i_new < 0 ? s->max_steps + i_new : i_new] = tmp[i]; 495 } 496 497 for (i = steps_out; i < s->buffered_steps; i++) 498 s->steps[i]->index -= steps_out; 499 500 ideal_fbits = s->avctx->bit_rate/(s->avctx->sample_rate/frame_size); 501 502 for (i = 0; i < s->p.frames; i++) { 503 s->avg_is_band += f[i].intensity_stereo; 504 s->lambda *= ideal_fbits / f[i].framebits; 505 } 506 507 s->avg_is_band /= (s->p.frames + 1); 508 509 s->cs_num = 0; 510 s->steps_to_process = 0; 511 s->buffered_steps -= steps_out; 512 s->total_packets_out += s->p.frames; 513 s->inflection_points_count = 0; 514} 515 516av_cold int ff_opus_psy_init(OpusPsyContext *s, AVCodecContext *avctx, 517 struct FFBufQueue *bufqueue, OpusEncOptions *options) 518{ 519 int i, ch, ret; 520 521 s->redo_analysis = 0; 522 s->lambda = 1.0f; 523 s->options = options; 524 s->avctx = avctx; 525 s->bufqueue = bufqueue; 526 s->max_steps = ceilf(s->options->max_delay_ms/2.5f); 527 s->bsize_analysis = CELT_BLOCK_960; 528 s->avg_is_band = CELT_MAX_BANDS - 1; 529 s->inflection_points_count = 0; 530 531 s->inflection_points = av_mallocz(sizeof(*s->inflection_points)*s->max_steps); 532 if (!s->inflection_points) { 533 ret = AVERROR(ENOMEM); 534 goto fail; 535 } 536 537 s->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT); 538 if (!s->dsp) { 539 ret = AVERROR(ENOMEM); 540 goto fail; 541 } 542 543 for (ch = 0; ch < s->avctx->ch_layout.nb_channels; ch++) { 544 for (i = 0; i < CELT_MAX_BANDS; i++) { 545 bessel_init(&s->bfilter_hi[ch][i], 1.0f, 19.0f, 100.0f, 1); 546 bessel_init(&s->bfilter_lo[ch][i], 1.0f, 20.0f, 100.0f, 0); 547 } 548 } 549 550 for (i = 0; i < s->max_steps; i++) { 551 s->steps[i] = av_mallocz(sizeof(OpusPsyStep)); 552 if (!s->steps[i]) { 553 ret = AVERROR(ENOMEM); 554 goto fail; 555 } 556 } 557 558 for (i = 0; i < CELT_BLOCK_NB; i++) { 559 float tmp; 560 const int len = OPUS_BLOCK_SIZE(i); 561 s->window[i] = av_malloc(2*len*sizeof(float)); 562 if (!s->window[i]) { 563 ret = AVERROR(ENOMEM); 564 goto fail; 565 } 566 generate_window_func(s->window[i], 2*len, WFUNC_SINE, &tmp); 567 if ((ret = ff_mdct15_init(&s->mdct[i], 0, i + 3, 68 << (CELT_BLOCK_NB - 1 - i)))) 568 goto fail; 569 } 570 571 return 0; 572 573fail: 574 av_freep(&s->inflection_points); 575 av_freep(&s->dsp); 576 577 for (i = 0; i < CELT_BLOCK_NB; i++) { 578 ff_mdct15_uninit(&s->mdct[i]); 579 av_freep(&s->window[i]); 580 } 581 582 for (i = 0; i < s->max_steps; i++) 583 av_freep(&s->steps[i]); 584 585 return ret; 586} 587 588void ff_opus_psy_signal_eof(OpusPsyContext *s) 589{ 590 s->eof = 1; 591} 592 593av_cold int ff_opus_psy_end(OpusPsyContext *s) 594{ 595 int i; 596 597 av_freep(&s->inflection_points); 598 av_freep(&s->dsp); 599 600 for (i = 0; i < CELT_BLOCK_NB; i++) { 601 ff_mdct15_uninit(&s->mdct[i]); 602 av_freep(&s->window[i]); 603 } 604 605 for (i = 0; i < s->max_steps; i++) 606 av_freep(&s->steps[i]); 607 608 av_log(s->avctx, AV_LOG_INFO, "Average Intensity Stereo band: %0.1f\n", s->avg_is_band); 609 av_log(s->avctx, AV_LOG_INFO, "Dual Stereo used: %0.2f%%\n", ((float)s->dual_stereo_used/s->total_packets_out)*100.0f); 610 611 return 0; 612} 613