xref: /third_party/ffmpeg/libavcodec/opus_pvq.c (revision cabdff1a)
1cabdff1aSopenharmony_ci/*
2cabdff1aSopenharmony_ci * Copyright (c) 2007-2008 CSIRO
3cabdff1aSopenharmony_ci * Copyright (c) 2007-2009 Xiph.Org Foundation
4cabdff1aSopenharmony_ci * Copyright (c) 2008-2009 Gregory Maxwell
5cabdff1aSopenharmony_ci * Copyright (c) 2012 Andrew D'Addesio
6cabdff1aSopenharmony_ci * Copyright (c) 2013-2014 Mozilla Corporation
7cabdff1aSopenharmony_ci * Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com>
8cabdff1aSopenharmony_ci *
9cabdff1aSopenharmony_ci * This file is part of FFmpeg.
10cabdff1aSopenharmony_ci *
11cabdff1aSopenharmony_ci * FFmpeg is free software; you can redistribute it and/or
12cabdff1aSopenharmony_ci * modify it under the terms of the GNU Lesser General Public
13cabdff1aSopenharmony_ci * License as published by the Free Software Foundation; either
14cabdff1aSopenharmony_ci * version 2.1 of the License, or (at your option) any later version.
15cabdff1aSopenharmony_ci *
16cabdff1aSopenharmony_ci * FFmpeg is distributed in the hope that it will be useful,
17cabdff1aSopenharmony_ci * but WITHOUT ANY WARRANTY; without even the implied warranty of
18cabdff1aSopenharmony_ci * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19cabdff1aSopenharmony_ci * Lesser General Public License for more details.
20cabdff1aSopenharmony_ci *
21cabdff1aSopenharmony_ci * You should have received a copy of the GNU Lesser General Public
22cabdff1aSopenharmony_ci * License along with FFmpeg; if not, write to the Free Software
23cabdff1aSopenharmony_ci * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24cabdff1aSopenharmony_ci */
25cabdff1aSopenharmony_ci
26cabdff1aSopenharmony_ci#include "config_components.h"
27cabdff1aSopenharmony_ci
28cabdff1aSopenharmony_ci#include "opustab.h"
29cabdff1aSopenharmony_ci#include "opus_pvq.h"
30cabdff1aSopenharmony_ci
31cabdff1aSopenharmony_ci#define CELT_PVQ_U(n, k) (ff_celt_pvq_u_row[FFMIN(n, k)][FFMAX(n, k)])
32cabdff1aSopenharmony_ci#define CELT_PVQ_V(n, k) (CELT_PVQ_U(n, k) + CELT_PVQ_U(n, (k) + 1))
33cabdff1aSopenharmony_ci
34cabdff1aSopenharmony_cistatic inline int16_t celt_cos(int16_t x)
35cabdff1aSopenharmony_ci{
36cabdff1aSopenharmony_ci    x = (MUL16(x, x) + 4096) >> 13;
37cabdff1aSopenharmony_ci    x = (32767-x) + ROUND_MUL16(x, (-7651 + ROUND_MUL16(x, (8277 + ROUND_MUL16(-626, x)))));
38cabdff1aSopenharmony_ci    return x + 1;
39cabdff1aSopenharmony_ci}
40cabdff1aSopenharmony_ci
41cabdff1aSopenharmony_cistatic inline int celt_log2tan(int isin, int icos)
42cabdff1aSopenharmony_ci{
43cabdff1aSopenharmony_ci    int lc, ls;
44cabdff1aSopenharmony_ci    lc = opus_ilog(icos);
45cabdff1aSopenharmony_ci    ls = opus_ilog(isin);
46cabdff1aSopenharmony_ci    icos <<= 15 - lc;
47cabdff1aSopenharmony_ci    isin <<= 15 - ls;
48cabdff1aSopenharmony_ci    return (ls << 11) - (lc << 11) +
49cabdff1aSopenharmony_ci           ROUND_MUL16(isin, ROUND_MUL16(isin, -2597) + 7932) -
50cabdff1aSopenharmony_ci           ROUND_MUL16(icos, ROUND_MUL16(icos, -2597) + 7932);
51cabdff1aSopenharmony_ci}
52cabdff1aSopenharmony_ci
53cabdff1aSopenharmony_cistatic inline int celt_bits2pulses(const uint8_t *cache, int bits)
54cabdff1aSopenharmony_ci{
55cabdff1aSopenharmony_ci    // TODO: Find the size of cache and make it into an array in the parameters list
56cabdff1aSopenharmony_ci    int i, low = 0, high;
57cabdff1aSopenharmony_ci
58cabdff1aSopenharmony_ci    high = cache[0];
59cabdff1aSopenharmony_ci    bits--;
60cabdff1aSopenharmony_ci
61cabdff1aSopenharmony_ci    for (i = 0; i < 6; i++) {
62cabdff1aSopenharmony_ci        int center = (low + high + 1) >> 1;
63cabdff1aSopenharmony_ci        if (cache[center] >= bits)
64cabdff1aSopenharmony_ci            high = center;
65cabdff1aSopenharmony_ci        else
66cabdff1aSopenharmony_ci            low = center;
67cabdff1aSopenharmony_ci    }
68cabdff1aSopenharmony_ci
69cabdff1aSopenharmony_ci    return (bits - (low == 0 ? -1 : cache[low]) <= cache[high] - bits) ? low : high;
70cabdff1aSopenharmony_ci}
71cabdff1aSopenharmony_ci
72cabdff1aSopenharmony_cistatic inline int celt_pulses2bits(const uint8_t *cache, int pulses)
73cabdff1aSopenharmony_ci{
74cabdff1aSopenharmony_ci    // TODO: Find the size of cache and make it into an array in the parameters list
75cabdff1aSopenharmony_ci   return (pulses == 0) ? 0 : cache[pulses] + 1;
76cabdff1aSopenharmony_ci}
77cabdff1aSopenharmony_ci
78cabdff1aSopenharmony_cistatic inline void celt_normalize_residual(const int * av_restrict iy, float * av_restrict X,
79cabdff1aSopenharmony_ci                                           int N, float g)
80cabdff1aSopenharmony_ci{
81cabdff1aSopenharmony_ci    int i;
82cabdff1aSopenharmony_ci    for (i = 0; i < N; i++)
83cabdff1aSopenharmony_ci        X[i] = g * iy[i];
84cabdff1aSopenharmony_ci}
85cabdff1aSopenharmony_ci
86cabdff1aSopenharmony_cistatic void celt_exp_rotation_impl(float *X, uint32_t len, uint32_t stride,
87cabdff1aSopenharmony_ci                                   float c, float s)
88cabdff1aSopenharmony_ci{
89cabdff1aSopenharmony_ci    float *Xptr;
90cabdff1aSopenharmony_ci    int i;
91cabdff1aSopenharmony_ci
92cabdff1aSopenharmony_ci    Xptr = X;
93cabdff1aSopenharmony_ci    for (i = 0; i < len - stride; i++) {
94cabdff1aSopenharmony_ci        float x1     = Xptr[0];
95cabdff1aSopenharmony_ci        float x2     = Xptr[stride];
96cabdff1aSopenharmony_ci        Xptr[stride] = c * x2 + s * x1;
97cabdff1aSopenharmony_ci        *Xptr++      = c * x1 - s * x2;
98cabdff1aSopenharmony_ci    }
99cabdff1aSopenharmony_ci
100cabdff1aSopenharmony_ci    Xptr = &X[len - 2 * stride - 1];
101cabdff1aSopenharmony_ci    for (i = len - 2 * stride - 1; i >= 0; i--) {
102cabdff1aSopenharmony_ci        float x1     = Xptr[0];
103cabdff1aSopenharmony_ci        float x2     = Xptr[stride];
104cabdff1aSopenharmony_ci        Xptr[stride] = c * x2 + s * x1;
105cabdff1aSopenharmony_ci        *Xptr--      = c * x1 - s * x2;
106cabdff1aSopenharmony_ci    }
107cabdff1aSopenharmony_ci}
108cabdff1aSopenharmony_ci
109cabdff1aSopenharmony_cistatic inline void celt_exp_rotation(float *X, uint32_t len,
110cabdff1aSopenharmony_ci                                     uint32_t stride, uint32_t K,
111cabdff1aSopenharmony_ci                                     enum CeltSpread spread, const int encode)
112cabdff1aSopenharmony_ci{
113cabdff1aSopenharmony_ci    uint32_t stride2 = 0;
114cabdff1aSopenharmony_ci    float c, s;
115cabdff1aSopenharmony_ci    float gain, theta;
116cabdff1aSopenharmony_ci    int i;
117cabdff1aSopenharmony_ci
118cabdff1aSopenharmony_ci    if (2*K >= len || spread == CELT_SPREAD_NONE)
119cabdff1aSopenharmony_ci        return;
120cabdff1aSopenharmony_ci
121cabdff1aSopenharmony_ci    gain = (float)len / (len + (20 - 5*spread) * K);
122cabdff1aSopenharmony_ci    theta = M_PI * gain * gain / 4;
123cabdff1aSopenharmony_ci
124cabdff1aSopenharmony_ci    c = cosf(theta);
125cabdff1aSopenharmony_ci    s = sinf(theta);
126cabdff1aSopenharmony_ci
127cabdff1aSopenharmony_ci    if (len >= stride << 3) {
128cabdff1aSopenharmony_ci        stride2 = 1;
129cabdff1aSopenharmony_ci        /* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding.
130cabdff1aSopenharmony_ci        It's basically incrementing long as (stride2+0.5)^2 < len/stride. */
131cabdff1aSopenharmony_ci        while ((stride2 * stride2 + stride2) * stride + (stride >> 2) < len)
132cabdff1aSopenharmony_ci            stride2++;
133cabdff1aSopenharmony_ci    }
134cabdff1aSopenharmony_ci
135cabdff1aSopenharmony_ci    len /= stride;
136cabdff1aSopenharmony_ci    for (i = 0; i < stride; i++) {
137cabdff1aSopenharmony_ci        if (encode) {
138cabdff1aSopenharmony_ci            celt_exp_rotation_impl(X + i * len, len, 1, c, -s);
139cabdff1aSopenharmony_ci            if (stride2)
140cabdff1aSopenharmony_ci                celt_exp_rotation_impl(X + i * len, len, stride2, s, -c);
141cabdff1aSopenharmony_ci        } else {
142cabdff1aSopenharmony_ci            if (stride2)
143cabdff1aSopenharmony_ci                celt_exp_rotation_impl(X + i * len, len, stride2, s, c);
144cabdff1aSopenharmony_ci            celt_exp_rotation_impl(X + i * len, len, 1, c, s);
145cabdff1aSopenharmony_ci        }
146cabdff1aSopenharmony_ci    }
147cabdff1aSopenharmony_ci}
148cabdff1aSopenharmony_ci
149cabdff1aSopenharmony_cistatic inline uint32_t celt_extract_collapse_mask(const int *iy, uint32_t N, uint32_t B)
150cabdff1aSopenharmony_ci{
151cabdff1aSopenharmony_ci    int i, j, N0 = N / B;
152cabdff1aSopenharmony_ci    uint32_t collapse_mask = 0;
153cabdff1aSopenharmony_ci
154cabdff1aSopenharmony_ci    if (B <= 1)
155cabdff1aSopenharmony_ci        return 1;
156cabdff1aSopenharmony_ci
157cabdff1aSopenharmony_ci    for (i = 0; i < B; i++)
158cabdff1aSopenharmony_ci        for (j = 0; j < N0; j++)
159cabdff1aSopenharmony_ci            collapse_mask |= (!!iy[i*N0+j]) << i;
160cabdff1aSopenharmony_ci    return collapse_mask;
161cabdff1aSopenharmony_ci}
162cabdff1aSopenharmony_ci
163cabdff1aSopenharmony_cistatic inline void celt_stereo_merge(float *X, float *Y, float mid, int N)
164cabdff1aSopenharmony_ci{
165cabdff1aSopenharmony_ci    int i;
166cabdff1aSopenharmony_ci    float xp = 0, side = 0;
167cabdff1aSopenharmony_ci    float E[2];
168cabdff1aSopenharmony_ci    float mid2;
169cabdff1aSopenharmony_ci    float gain[2];
170cabdff1aSopenharmony_ci
171cabdff1aSopenharmony_ci    /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */
172cabdff1aSopenharmony_ci    for (i = 0; i < N; i++) {
173cabdff1aSopenharmony_ci        xp   += X[i] * Y[i];
174cabdff1aSopenharmony_ci        side += Y[i] * Y[i];
175cabdff1aSopenharmony_ci    }
176cabdff1aSopenharmony_ci
177cabdff1aSopenharmony_ci    /* Compensating for the mid normalization */
178cabdff1aSopenharmony_ci    xp *= mid;
179cabdff1aSopenharmony_ci    mid2 = mid;
180cabdff1aSopenharmony_ci    E[0] = mid2 * mid2 + side - 2 * xp;
181cabdff1aSopenharmony_ci    E[1] = mid2 * mid2 + side + 2 * xp;
182cabdff1aSopenharmony_ci    if (E[0] < 6e-4f || E[1] < 6e-4f) {
183cabdff1aSopenharmony_ci        for (i = 0; i < N; i++)
184cabdff1aSopenharmony_ci            Y[i] = X[i];
185cabdff1aSopenharmony_ci        return;
186cabdff1aSopenharmony_ci    }
187cabdff1aSopenharmony_ci
188cabdff1aSopenharmony_ci    gain[0] = 1.0f / sqrtf(E[0]);
189cabdff1aSopenharmony_ci    gain[1] = 1.0f / sqrtf(E[1]);
190cabdff1aSopenharmony_ci
191cabdff1aSopenharmony_ci    for (i = 0; i < N; i++) {
192cabdff1aSopenharmony_ci        float value[2];
193cabdff1aSopenharmony_ci        /* Apply mid scaling (side is already scaled) */
194cabdff1aSopenharmony_ci        value[0] = mid * X[i];
195cabdff1aSopenharmony_ci        value[1] = Y[i];
196cabdff1aSopenharmony_ci        X[i] = gain[0] * (value[0] - value[1]);
197cabdff1aSopenharmony_ci        Y[i] = gain[1] * (value[0] + value[1]);
198cabdff1aSopenharmony_ci    }
199cabdff1aSopenharmony_ci}
200cabdff1aSopenharmony_ci
201cabdff1aSopenharmony_cistatic void celt_interleave_hadamard(float *tmp, float *X, int N0,
202cabdff1aSopenharmony_ci                                     int stride, int hadamard)
203cabdff1aSopenharmony_ci{
204cabdff1aSopenharmony_ci    int i, j, N = N0*stride;
205cabdff1aSopenharmony_ci    const uint8_t *order = &ff_celt_hadamard_order[hadamard ? stride - 2 : 30];
206cabdff1aSopenharmony_ci
207cabdff1aSopenharmony_ci    for (i = 0; i < stride; i++)
208cabdff1aSopenharmony_ci        for (j = 0; j < N0; j++)
209cabdff1aSopenharmony_ci            tmp[j*stride+i] = X[order[i]*N0+j];
210cabdff1aSopenharmony_ci
211cabdff1aSopenharmony_ci    memcpy(X, tmp, N*sizeof(float));
212cabdff1aSopenharmony_ci}
213cabdff1aSopenharmony_ci
214cabdff1aSopenharmony_cistatic void celt_deinterleave_hadamard(float *tmp, float *X, int N0,
215cabdff1aSopenharmony_ci                                       int stride, int hadamard)
216cabdff1aSopenharmony_ci{
217cabdff1aSopenharmony_ci    int i, j, N = N0*stride;
218cabdff1aSopenharmony_ci    const uint8_t *order = &ff_celt_hadamard_order[hadamard ? stride - 2 : 30];
219cabdff1aSopenharmony_ci
220cabdff1aSopenharmony_ci    for (i = 0; i < stride; i++)
221cabdff1aSopenharmony_ci        for (j = 0; j < N0; j++)
222cabdff1aSopenharmony_ci            tmp[order[i]*N0+j] = X[j*stride+i];
223cabdff1aSopenharmony_ci
224cabdff1aSopenharmony_ci    memcpy(X, tmp, N*sizeof(float));
225cabdff1aSopenharmony_ci}
226cabdff1aSopenharmony_ci
227cabdff1aSopenharmony_cistatic void celt_haar1(float *X, int N0, int stride)
228cabdff1aSopenharmony_ci{
229cabdff1aSopenharmony_ci    int i, j;
230cabdff1aSopenharmony_ci    N0 >>= 1;
231cabdff1aSopenharmony_ci    for (i = 0; i < stride; i++) {
232cabdff1aSopenharmony_ci        for (j = 0; j < N0; j++) {
233cabdff1aSopenharmony_ci            float x0 = X[stride * (2 * j + 0) + i];
234cabdff1aSopenharmony_ci            float x1 = X[stride * (2 * j + 1) + i];
235cabdff1aSopenharmony_ci            X[stride * (2 * j + 0) + i] = (x0 + x1) * M_SQRT1_2;
236cabdff1aSopenharmony_ci            X[stride * (2 * j + 1) + i] = (x0 - x1) * M_SQRT1_2;
237cabdff1aSopenharmony_ci        }
238cabdff1aSopenharmony_ci    }
239cabdff1aSopenharmony_ci}
240cabdff1aSopenharmony_ci
241cabdff1aSopenharmony_cistatic inline int celt_compute_qn(int N, int b, int offset, int pulse_cap,
242cabdff1aSopenharmony_ci                                  int stereo)
243cabdff1aSopenharmony_ci{
244cabdff1aSopenharmony_ci    int qn, qb;
245cabdff1aSopenharmony_ci    int N2 = 2 * N - 1;
246cabdff1aSopenharmony_ci    if (stereo && N == 2)
247cabdff1aSopenharmony_ci        N2--;
248cabdff1aSopenharmony_ci
249cabdff1aSopenharmony_ci    /* The upper limit ensures that in a stereo split with itheta==16384, we'll
250cabdff1aSopenharmony_ci     * always have enough bits left over to code at least one pulse in the
251cabdff1aSopenharmony_ci     * side; otherwise it would collapse, since it doesn't get folded. */
252cabdff1aSopenharmony_ci    qb = FFMIN3(b - pulse_cap - (4 << 3), (b + N2 * offset) / N2, 8 << 3);
253cabdff1aSopenharmony_ci    qn = (qb < (1 << 3 >> 1)) ? 1 : ((ff_celt_qn_exp2[qb & 0x7] >> (14 - (qb >> 3))) + 1) >> 1 << 1;
254cabdff1aSopenharmony_ci    return qn;
255cabdff1aSopenharmony_ci}
256cabdff1aSopenharmony_ci
257cabdff1aSopenharmony_ci/* Convert the quantized vector to an index */
258cabdff1aSopenharmony_cistatic inline uint32_t celt_icwrsi(uint32_t N, uint32_t K, const int *y)
259cabdff1aSopenharmony_ci{
260cabdff1aSopenharmony_ci    int i, idx = 0, sum = 0;
261cabdff1aSopenharmony_ci    for (i = N - 1; i >= 0; i--) {
262cabdff1aSopenharmony_ci        const uint32_t i_s = CELT_PVQ_U(N - i, sum + FFABS(y[i]) + 1);
263cabdff1aSopenharmony_ci        idx += CELT_PVQ_U(N - i, sum) + (y[i] < 0)*i_s;
264cabdff1aSopenharmony_ci        sum += FFABS(y[i]);
265cabdff1aSopenharmony_ci    }
266cabdff1aSopenharmony_ci    return idx;
267cabdff1aSopenharmony_ci}
268cabdff1aSopenharmony_ci
269cabdff1aSopenharmony_ci// this code was adapted from libopus
270cabdff1aSopenharmony_cistatic inline uint64_t celt_cwrsi(uint32_t N, uint32_t K, uint32_t i, int *y)
271cabdff1aSopenharmony_ci{
272cabdff1aSopenharmony_ci    uint64_t norm = 0;
273cabdff1aSopenharmony_ci    uint32_t q, p;
274cabdff1aSopenharmony_ci    int s, val;
275cabdff1aSopenharmony_ci    int k0;
276cabdff1aSopenharmony_ci
277cabdff1aSopenharmony_ci    while (N > 2) {
278cabdff1aSopenharmony_ci        /*Lots of pulses case:*/
279cabdff1aSopenharmony_ci        if (K >= N) {
280cabdff1aSopenharmony_ci            const uint32_t *row = ff_celt_pvq_u_row[N];
281cabdff1aSopenharmony_ci
282cabdff1aSopenharmony_ci            /* Are the pulses in this dimension negative? */
283cabdff1aSopenharmony_ci            p  = row[K + 1];
284cabdff1aSopenharmony_ci            s  = -(i >= p);
285cabdff1aSopenharmony_ci            i -= p & s;
286cabdff1aSopenharmony_ci
287cabdff1aSopenharmony_ci            /*Count how many pulses were placed in this dimension.*/
288cabdff1aSopenharmony_ci            k0 = K;
289cabdff1aSopenharmony_ci            q = row[N];
290cabdff1aSopenharmony_ci            if (q > i) {
291cabdff1aSopenharmony_ci                K = N;
292cabdff1aSopenharmony_ci                do {
293cabdff1aSopenharmony_ci                    p = ff_celt_pvq_u_row[--K][N];
294cabdff1aSopenharmony_ci                } while (p > i);
295cabdff1aSopenharmony_ci            } else
296cabdff1aSopenharmony_ci                for (p = row[K]; p > i; p = row[K])
297cabdff1aSopenharmony_ci                    K--;
298cabdff1aSopenharmony_ci
299cabdff1aSopenharmony_ci            i    -= p;
300cabdff1aSopenharmony_ci            val   = (k0 - K + s) ^ s;
301cabdff1aSopenharmony_ci            norm += val * val;
302cabdff1aSopenharmony_ci            *y++  = val;
303cabdff1aSopenharmony_ci        } else { /*Lots of dimensions case:*/
304cabdff1aSopenharmony_ci            /*Are there any pulses in this dimension at all?*/
305cabdff1aSopenharmony_ci            p = ff_celt_pvq_u_row[K    ][N];
306cabdff1aSopenharmony_ci            q = ff_celt_pvq_u_row[K + 1][N];
307cabdff1aSopenharmony_ci
308cabdff1aSopenharmony_ci            if (p <= i && i < q) {
309cabdff1aSopenharmony_ci                i -= p;
310cabdff1aSopenharmony_ci                *y++ = 0;
311cabdff1aSopenharmony_ci            } else {
312cabdff1aSopenharmony_ci                /*Are the pulses in this dimension negative?*/
313cabdff1aSopenharmony_ci                s  = -(i >= q);
314cabdff1aSopenharmony_ci                i -= q & s;
315cabdff1aSopenharmony_ci
316cabdff1aSopenharmony_ci                /*Count how many pulses were placed in this dimension.*/
317cabdff1aSopenharmony_ci                k0 = K;
318cabdff1aSopenharmony_ci                do p = ff_celt_pvq_u_row[--K][N];
319cabdff1aSopenharmony_ci                while (p > i);
320cabdff1aSopenharmony_ci
321cabdff1aSopenharmony_ci                i    -= p;
322cabdff1aSopenharmony_ci                val   = (k0 - K + s) ^ s;
323cabdff1aSopenharmony_ci                norm += val * val;
324cabdff1aSopenharmony_ci                *y++  = val;
325cabdff1aSopenharmony_ci            }
326cabdff1aSopenharmony_ci        }
327cabdff1aSopenharmony_ci        N--;
328cabdff1aSopenharmony_ci    }
329cabdff1aSopenharmony_ci
330cabdff1aSopenharmony_ci    /* N == 2 */
331cabdff1aSopenharmony_ci    p  = 2 * K + 1;
332cabdff1aSopenharmony_ci    s  = -(i >= p);
333cabdff1aSopenharmony_ci    i -= p & s;
334cabdff1aSopenharmony_ci    k0 = K;
335cabdff1aSopenharmony_ci    K  = (i + 1) / 2;
336cabdff1aSopenharmony_ci
337cabdff1aSopenharmony_ci    if (K)
338cabdff1aSopenharmony_ci        i -= 2 * K - 1;
339cabdff1aSopenharmony_ci
340cabdff1aSopenharmony_ci    val   = (k0 - K + s) ^ s;
341cabdff1aSopenharmony_ci    norm += val * val;
342cabdff1aSopenharmony_ci    *y++  = val;
343cabdff1aSopenharmony_ci
344cabdff1aSopenharmony_ci    /* N==1 */
345cabdff1aSopenharmony_ci    s     = -i;
346cabdff1aSopenharmony_ci    val   = (K + s) ^ s;
347cabdff1aSopenharmony_ci    norm += val * val;
348cabdff1aSopenharmony_ci    *y    = val;
349cabdff1aSopenharmony_ci
350cabdff1aSopenharmony_ci    return norm;
351cabdff1aSopenharmony_ci}
352cabdff1aSopenharmony_ci
353cabdff1aSopenharmony_cistatic inline void celt_encode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, uint32_t K)
354cabdff1aSopenharmony_ci{
355cabdff1aSopenharmony_ci    ff_opus_rc_enc_uint(rc, celt_icwrsi(N, K, y), CELT_PVQ_V(N, K));
356cabdff1aSopenharmony_ci}
357cabdff1aSopenharmony_ci
358cabdff1aSopenharmony_cistatic inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, uint32_t K)
359cabdff1aSopenharmony_ci{
360cabdff1aSopenharmony_ci    const uint32_t idx = ff_opus_rc_dec_uint(rc, CELT_PVQ_V(N, K));
361cabdff1aSopenharmony_ci    return celt_cwrsi(N, K, idx, y);
362cabdff1aSopenharmony_ci}
363cabdff1aSopenharmony_ci
364cabdff1aSopenharmony_ci/*
365cabdff1aSopenharmony_ci * Faster than libopus's search, operates entirely in the signed domain.
366cabdff1aSopenharmony_ci * Slightly worse/better depending on N, K and the input vector.
367cabdff1aSopenharmony_ci */
368cabdff1aSopenharmony_cistatic float ppp_pvq_search_c(float *X, int *y, int K, int N)
369cabdff1aSopenharmony_ci{
370cabdff1aSopenharmony_ci    int i, y_norm = 0;
371cabdff1aSopenharmony_ci    float res = 0.0f, xy_norm = 0.0f;
372cabdff1aSopenharmony_ci
373cabdff1aSopenharmony_ci    for (i = 0; i < N; i++)
374cabdff1aSopenharmony_ci        res += FFABS(X[i]);
375cabdff1aSopenharmony_ci
376cabdff1aSopenharmony_ci    res = K/(res + FLT_EPSILON);
377cabdff1aSopenharmony_ci
378cabdff1aSopenharmony_ci    for (i = 0; i < N; i++) {
379cabdff1aSopenharmony_ci        y[i] = lrintf(res*X[i]);
380cabdff1aSopenharmony_ci        y_norm  += y[i]*y[i];
381cabdff1aSopenharmony_ci        xy_norm += y[i]*X[i];
382cabdff1aSopenharmony_ci        K -= FFABS(y[i]);
383cabdff1aSopenharmony_ci    }
384cabdff1aSopenharmony_ci
385cabdff1aSopenharmony_ci    while (K) {
386cabdff1aSopenharmony_ci        int max_idx = 0, phase = FFSIGN(K);
387cabdff1aSopenharmony_ci        float max_num = 0.0f;
388cabdff1aSopenharmony_ci        float max_den = 1.0f;
389cabdff1aSopenharmony_ci        y_norm += 1.0f;
390cabdff1aSopenharmony_ci
391cabdff1aSopenharmony_ci        for (i = 0; i < N; i++) {
392cabdff1aSopenharmony_ci            /* If the sum has been overshot and the best place has 0 pulses allocated
393cabdff1aSopenharmony_ci             * to it, attempting to decrease it further will actually increase the
394cabdff1aSopenharmony_ci             * sum. Prevent this by disregarding any 0 positions when decrementing. */
395cabdff1aSopenharmony_ci            const int ca = 1 ^ ((y[i] == 0) & (phase < 0));
396cabdff1aSopenharmony_ci            const int y_new = y_norm  + 2*phase*FFABS(y[i]);
397cabdff1aSopenharmony_ci            float xy_new = xy_norm + 1*phase*FFABS(X[i]);
398cabdff1aSopenharmony_ci            xy_new = xy_new * xy_new;
399cabdff1aSopenharmony_ci            if (ca && (max_den*xy_new) > (y_new*max_num)) {
400cabdff1aSopenharmony_ci                max_den = y_new;
401cabdff1aSopenharmony_ci                max_num = xy_new;
402cabdff1aSopenharmony_ci                max_idx = i;
403cabdff1aSopenharmony_ci            }
404cabdff1aSopenharmony_ci        }
405cabdff1aSopenharmony_ci
406cabdff1aSopenharmony_ci        K -= phase;
407cabdff1aSopenharmony_ci
408cabdff1aSopenharmony_ci        phase *= FFSIGN(X[max_idx]);
409cabdff1aSopenharmony_ci        xy_norm += 1*phase*X[max_idx];
410cabdff1aSopenharmony_ci        y_norm  += 2*phase*y[max_idx];
411cabdff1aSopenharmony_ci        y[max_idx] += phase;
412cabdff1aSopenharmony_ci    }
413cabdff1aSopenharmony_ci
414cabdff1aSopenharmony_ci    return (float)y_norm;
415cabdff1aSopenharmony_ci}
416cabdff1aSopenharmony_ci
417cabdff1aSopenharmony_cistatic uint32_t celt_alg_quant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K,
418cabdff1aSopenharmony_ci                               enum CeltSpread spread, uint32_t blocks, float gain,
419cabdff1aSopenharmony_ci                               CeltPVQ *pvq)
420cabdff1aSopenharmony_ci{
421cabdff1aSopenharmony_ci    int *y = pvq->qcoeff;
422cabdff1aSopenharmony_ci
423cabdff1aSopenharmony_ci    celt_exp_rotation(X, N, blocks, K, spread, 1);
424cabdff1aSopenharmony_ci    gain /= sqrtf(pvq->pvq_search(X, y, K, N));
425cabdff1aSopenharmony_ci    celt_encode_pulses(rc, y,  N, K);
426cabdff1aSopenharmony_ci    celt_normalize_residual(y, X, N, gain);
427cabdff1aSopenharmony_ci    celt_exp_rotation(X, N, blocks, K, spread, 0);
428cabdff1aSopenharmony_ci    return celt_extract_collapse_mask(y, N, blocks);
429cabdff1aSopenharmony_ci}
430cabdff1aSopenharmony_ci
431cabdff1aSopenharmony_ci/** Decode pulse vector and combine the result with the pitch vector to produce
432cabdff1aSopenharmony_ci    the final normalised signal in the current band. */
433cabdff1aSopenharmony_cistatic uint32_t celt_alg_unquant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K,
434cabdff1aSopenharmony_ci                                 enum CeltSpread spread, uint32_t blocks, float gain,
435cabdff1aSopenharmony_ci                                 CeltPVQ *pvq)
436cabdff1aSopenharmony_ci{
437cabdff1aSopenharmony_ci    int *y = pvq->qcoeff;
438cabdff1aSopenharmony_ci
439cabdff1aSopenharmony_ci    gain /= sqrtf(celt_decode_pulses(rc, y, N, K));
440cabdff1aSopenharmony_ci    celt_normalize_residual(y, X, N, gain);
441cabdff1aSopenharmony_ci    celt_exp_rotation(X, N, blocks, K, spread, 0);
442cabdff1aSopenharmony_ci    return celt_extract_collapse_mask(y, N, blocks);
443cabdff1aSopenharmony_ci}
444cabdff1aSopenharmony_ci
445cabdff1aSopenharmony_cistatic int celt_calc_theta(const float *X, const float *Y, int coupling, int N)
446cabdff1aSopenharmony_ci{
447cabdff1aSopenharmony_ci    int i;
448cabdff1aSopenharmony_ci    float e[2] = { 0.0f, 0.0f };
449cabdff1aSopenharmony_ci    if (coupling) { /* Coupling case */
450cabdff1aSopenharmony_ci        for (i = 0; i < N; i++) {
451cabdff1aSopenharmony_ci            e[0] += (X[i] + Y[i])*(X[i] + Y[i]);
452cabdff1aSopenharmony_ci            e[1] += (X[i] - Y[i])*(X[i] - Y[i]);
453cabdff1aSopenharmony_ci        }
454cabdff1aSopenharmony_ci    } else {
455cabdff1aSopenharmony_ci        for (i = 0; i < N; i++) {
456cabdff1aSopenharmony_ci            e[0] += X[i]*X[i];
457cabdff1aSopenharmony_ci            e[1] += Y[i]*Y[i];
458cabdff1aSopenharmony_ci        }
459cabdff1aSopenharmony_ci    }
460cabdff1aSopenharmony_ci    return lrintf(32768.0f*atan2f(sqrtf(e[1]), sqrtf(e[0]))/M_PI);
461cabdff1aSopenharmony_ci}
462cabdff1aSopenharmony_ci
463cabdff1aSopenharmony_cistatic void celt_stereo_is_decouple(float *X, float *Y, float e_l, float e_r, int N)
464cabdff1aSopenharmony_ci{
465cabdff1aSopenharmony_ci    int i;
466cabdff1aSopenharmony_ci    const float energy_n = 1.0f/(sqrtf(e_l*e_l + e_r*e_r) + FLT_EPSILON);
467cabdff1aSopenharmony_ci    e_l *= energy_n;
468cabdff1aSopenharmony_ci    e_r *= energy_n;
469cabdff1aSopenharmony_ci    for (i = 0; i < N; i++)
470cabdff1aSopenharmony_ci        X[i] = e_l*X[i] + e_r*Y[i];
471cabdff1aSopenharmony_ci}
472cabdff1aSopenharmony_ci
473cabdff1aSopenharmony_cistatic void celt_stereo_ms_decouple(float *X, float *Y, int N)
474cabdff1aSopenharmony_ci{
475cabdff1aSopenharmony_ci    int i;
476cabdff1aSopenharmony_ci    for (i = 0; i < N; i++) {
477cabdff1aSopenharmony_ci        const float Xret = X[i];
478cabdff1aSopenharmony_ci        X[i] = (X[i] + Y[i])*M_SQRT1_2;
479cabdff1aSopenharmony_ci        Y[i] = (Y[i] - Xret)*M_SQRT1_2;
480cabdff1aSopenharmony_ci    }
481cabdff1aSopenharmony_ci}
482cabdff1aSopenharmony_ci
483cabdff1aSopenharmony_cistatic av_always_inline uint32_t quant_band_template(CeltPVQ *pvq, CeltFrame *f,
484cabdff1aSopenharmony_ci                                                     OpusRangeCoder *rc,
485cabdff1aSopenharmony_ci                                                     const int band, float *X,
486cabdff1aSopenharmony_ci                                                     float *Y, int N, int b,
487cabdff1aSopenharmony_ci                                                     uint32_t blocks, float *lowband,
488cabdff1aSopenharmony_ci                                                     int duration, float *lowband_out,
489cabdff1aSopenharmony_ci                                                     int level, float gain,
490cabdff1aSopenharmony_ci                                                     float *lowband_scratch,
491cabdff1aSopenharmony_ci                                                     int fill, int quant)
492cabdff1aSopenharmony_ci{
493cabdff1aSopenharmony_ci    int i;
494cabdff1aSopenharmony_ci    const uint8_t *cache;
495cabdff1aSopenharmony_ci    int stereo = !!Y, split = stereo;
496cabdff1aSopenharmony_ci    int imid = 0, iside = 0;
497cabdff1aSopenharmony_ci    uint32_t N0 = N;
498cabdff1aSopenharmony_ci    int N_B = N / blocks;
499cabdff1aSopenharmony_ci    int N_B0 = N_B;
500cabdff1aSopenharmony_ci    int B0 = blocks;
501cabdff1aSopenharmony_ci    int time_divide = 0;
502cabdff1aSopenharmony_ci    int recombine = 0;
503cabdff1aSopenharmony_ci    int inv = 0;
504cabdff1aSopenharmony_ci    float mid = 0, side = 0;
505cabdff1aSopenharmony_ci    int longblocks = (B0 == 1);
506cabdff1aSopenharmony_ci    uint32_t cm = 0;
507cabdff1aSopenharmony_ci
508cabdff1aSopenharmony_ci    if (N == 1) {
509cabdff1aSopenharmony_ci        float *x = X;
510cabdff1aSopenharmony_ci        for (i = 0; i <= stereo; i++) {
511cabdff1aSopenharmony_ci            int sign = 0;
512cabdff1aSopenharmony_ci            if (f->remaining2 >= 1 << 3) {
513cabdff1aSopenharmony_ci                if (quant) {
514cabdff1aSopenharmony_ci                    sign = x[0] < 0;
515cabdff1aSopenharmony_ci                    ff_opus_rc_put_raw(rc, sign, 1);
516cabdff1aSopenharmony_ci                } else {
517cabdff1aSopenharmony_ci                    sign = ff_opus_rc_get_raw(rc, 1);
518cabdff1aSopenharmony_ci                }
519cabdff1aSopenharmony_ci                f->remaining2 -= 1 << 3;
520cabdff1aSopenharmony_ci            }
521cabdff1aSopenharmony_ci            x[0] = 1.0f - 2.0f*sign;
522cabdff1aSopenharmony_ci            x = Y;
523cabdff1aSopenharmony_ci        }
524cabdff1aSopenharmony_ci        if (lowband_out)
525cabdff1aSopenharmony_ci            lowband_out[0] = X[0];
526cabdff1aSopenharmony_ci        return 1;
527cabdff1aSopenharmony_ci    }
528cabdff1aSopenharmony_ci
529cabdff1aSopenharmony_ci    if (!stereo && level == 0) {
530cabdff1aSopenharmony_ci        int tf_change = f->tf_change[band];
531cabdff1aSopenharmony_ci        int k;
532cabdff1aSopenharmony_ci        if (tf_change > 0)
533cabdff1aSopenharmony_ci            recombine = tf_change;
534cabdff1aSopenharmony_ci        /* Band recombining to increase frequency resolution */
535cabdff1aSopenharmony_ci
536cabdff1aSopenharmony_ci        if (lowband &&
537cabdff1aSopenharmony_ci            (recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) {
538cabdff1aSopenharmony_ci            for (i = 0; i < N; i++)
539cabdff1aSopenharmony_ci                lowband_scratch[i] = lowband[i];
540cabdff1aSopenharmony_ci            lowband = lowband_scratch;
541cabdff1aSopenharmony_ci        }
542cabdff1aSopenharmony_ci
543cabdff1aSopenharmony_ci        for (k = 0; k < recombine; k++) {
544cabdff1aSopenharmony_ci            if (quant || lowband)
545cabdff1aSopenharmony_ci                celt_haar1(quant ? X : lowband, N >> k, 1 << k);
546cabdff1aSopenharmony_ci            fill = ff_celt_bit_interleave[fill & 0xF] | ff_celt_bit_interleave[fill >> 4] << 2;
547cabdff1aSopenharmony_ci        }
548cabdff1aSopenharmony_ci        blocks >>= recombine;
549cabdff1aSopenharmony_ci        N_B <<= recombine;
550cabdff1aSopenharmony_ci
551cabdff1aSopenharmony_ci        /* Increasing the time resolution */
552cabdff1aSopenharmony_ci        while ((N_B & 1) == 0 && tf_change < 0) {
553cabdff1aSopenharmony_ci            if (quant || lowband)
554cabdff1aSopenharmony_ci                celt_haar1(quant ? X : lowband, N_B, blocks);
555cabdff1aSopenharmony_ci            fill |= fill << blocks;
556cabdff1aSopenharmony_ci            blocks <<= 1;
557cabdff1aSopenharmony_ci            N_B >>= 1;
558cabdff1aSopenharmony_ci            time_divide++;
559cabdff1aSopenharmony_ci            tf_change++;
560cabdff1aSopenharmony_ci        }
561cabdff1aSopenharmony_ci        B0 = blocks;
562cabdff1aSopenharmony_ci        N_B0 = N_B;
563cabdff1aSopenharmony_ci
564cabdff1aSopenharmony_ci        /* Reorganize the samples in time order instead of frequency order */
565cabdff1aSopenharmony_ci        if (B0 > 1 && (quant || lowband))
566cabdff1aSopenharmony_ci            celt_deinterleave_hadamard(pvq->hadamard_tmp, quant ? X : lowband,
567cabdff1aSopenharmony_ci                                       N_B >> recombine, B0 << recombine,
568cabdff1aSopenharmony_ci                                       longblocks);
569cabdff1aSopenharmony_ci    }
570cabdff1aSopenharmony_ci
571cabdff1aSopenharmony_ci    /* If we need 1.5 more bit than we can produce, split the band in two. */
572cabdff1aSopenharmony_ci    cache = ff_celt_cache_bits +
573cabdff1aSopenharmony_ci            ff_celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band];
574cabdff1aSopenharmony_ci    if (!stereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) {
575cabdff1aSopenharmony_ci        N >>= 1;
576cabdff1aSopenharmony_ci        Y = X + N;
577cabdff1aSopenharmony_ci        split = 1;
578cabdff1aSopenharmony_ci        duration -= 1;
579cabdff1aSopenharmony_ci        if (blocks == 1)
580cabdff1aSopenharmony_ci            fill = (fill & 1) | (fill << 1);
581cabdff1aSopenharmony_ci        blocks = (blocks + 1) >> 1;
582cabdff1aSopenharmony_ci    }
583cabdff1aSopenharmony_ci
584cabdff1aSopenharmony_ci    if (split) {
585cabdff1aSopenharmony_ci        int qn;
586cabdff1aSopenharmony_ci        int itheta = quant ? celt_calc_theta(X, Y, stereo, N) : 0;
587cabdff1aSopenharmony_ci        int mbits, sbits, delta;
588cabdff1aSopenharmony_ci        int qalloc;
589cabdff1aSopenharmony_ci        int pulse_cap;
590cabdff1aSopenharmony_ci        int offset;
591cabdff1aSopenharmony_ci        int orig_fill;
592cabdff1aSopenharmony_ci        int tell;
593cabdff1aSopenharmony_ci
594cabdff1aSopenharmony_ci        /* Decide on the resolution to give to the split parameter theta */
595cabdff1aSopenharmony_ci        pulse_cap = ff_celt_log_freq_range[band] + duration * 8;
596cabdff1aSopenharmony_ci        offset = (pulse_cap >> 1) - (stereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE :
597cabdff1aSopenharmony_ci                                                          CELT_QTHETA_OFFSET);
598cabdff1aSopenharmony_ci        qn = (stereo && band >= f->intensity_stereo) ? 1 :
599cabdff1aSopenharmony_ci             celt_compute_qn(N, b, offset, pulse_cap, stereo);
600cabdff1aSopenharmony_ci        tell = opus_rc_tell_frac(rc);
601cabdff1aSopenharmony_ci        if (qn != 1) {
602cabdff1aSopenharmony_ci            if (quant)
603cabdff1aSopenharmony_ci                itheta = (itheta*qn + 8192) >> 14;
604cabdff1aSopenharmony_ci            /* Entropy coding of the angle. We use a uniform pdf for the
605cabdff1aSopenharmony_ci             * time split, a step for stereo, and a triangular one for the rest. */
606cabdff1aSopenharmony_ci            if (quant) {
607cabdff1aSopenharmony_ci                if (stereo && N > 2)
608cabdff1aSopenharmony_ci                    ff_opus_rc_enc_uint_step(rc, itheta, qn / 2);
609cabdff1aSopenharmony_ci                else if (stereo || B0 > 1)
610cabdff1aSopenharmony_ci                    ff_opus_rc_enc_uint(rc, itheta, qn + 1);
611cabdff1aSopenharmony_ci                else
612cabdff1aSopenharmony_ci                    ff_opus_rc_enc_uint_tri(rc, itheta, qn);
613cabdff1aSopenharmony_ci                itheta = itheta * 16384 / qn;
614cabdff1aSopenharmony_ci                if (stereo) {
615cabdff1aSopenharmony_ci                    if (itheta == 0)
616cabdff1aSopenharmony_ci                        celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band],
617cabdff1aSopenharmony_ci                                                f->block[1].lin_energy[band], N);
618cabdff1aSopenharmony_ci                    else
619cabdff1aSopenharmony_ci                        celt_stereo_ms_decouple(X, Y, N);
620cabdff1aSopenharmony_ci                }
621cabdff1aSopenharmony_ci            } else {
622cabdff1aSopenharmony_ci                if (stereo && N > 2)
623cabdff1aSopenharmony_ci                    itheta = ff_opus_rc_dec_uint_step(rc, qn / 2);
624cabdff1aSopenharmony_ci                else if (stereo || B0 > 1)
625cabdff1aSopenharmony_ci                    itheta = ff_opus_rc_dec_uint(rc, qn+1);
626cabdff1aSopenharmony_ci                else
627cabdff1aSopenharmony_ci                    itheta = ff_opus_rc_dec_uint_tri(rc, qn);
628cabdff1aSopenharmony_ci                itheta = itheta * 16384 / qn;
629cabdff1aSopenharmony_ci            }
630cabdff1aSopenharmony_ci        } else if (stereo) {
631cabdff1aSopenharmony_ci            if (quant) {
632cabdff1aSopenharmony_ci                inv = f->apply_phase_inv ? itheta > 8192 : 0;
633cabdff1aSopenharmony_ci                 if (inv) {
634cabdff1aSopenharmony_ci                    for (i = 0; i < N; i++)
635cabdff1aSopenharmony_ci                       Y[i] *= -1;
636cabdff1aSopenharmony_ci                 }
637cabdff1aSopenharmony_ci                 celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band],
638cabdff1aSopenharmony_ci                                         f->block[1].lin_energy[band], N);
639cabdff1aSopenharmony_ci
640cabdff1aSopenharmony_ci                if (b > 2 << 3 && f->remaining2 > 2 << 3) {
641cabdff1aSopenharmony_ci                    ff_opus_rc_enc_log(rc, inv, 2);
642cabdff1aSopenharmony_ci                } else {
643cabdff1aSopenharmony_ci                    inv = 0;
644cabdff1aSopenharmony_ci                }
645cabdff1aSopenharmony_ci            } else {
646cabdff1aSopenharmony_ci                inv = (b > 2 << 3 && f->remaining2 > 2 << 3) ? ff_opus_rc_dec_log(rc, 2) : 0;
647cabdff1aSopenharmony_ci                inv = f->apply_phase_inv ? inv : 0;
648cabdff1aSopenharmony_ci            }
649cabdff1aSopenharmony_ci            itheta = 0;
650cabdff1aSopenharmony_ci        }
651cabdff1aSopenharmony_ci        qalloc = opus_rc_tell_frac(rc) - tell;
652cabdff1aSopenharmony_ci        b -= qalloc;
653cabdff1aSopenharmony_ci
654cabdff1aSopenharmony_ci        orig_fill = fill;
655cabdff1aSopenharmony_ci        if (itheta == 0) {
656cabdff1aSopenharmony_ci            imid = 32767;
657cabdff1aSopenharmony_ci            iside = 0;
658cabdff1aSopenharmony_ci            fill = av_mod_uintp2(fill, blocks);
659cabdff1aSopenharmony_ci            delta = -16384;
660cabdff1aSopenharmony_ci        } else if (itheta == 16384) {
661cabdff1aSopenharmony_ci            imid = 0;
662cabdff1aSopenharmony_ci            iside = 32767;
663cabdff1aSopenharmony_ci            fill &= ((1 << blocks) - 1) << blocks;
664cabdff1aSopenharmony_ci            delta = 16384;
665cabdff1aSopenharmony_ci        } else {
666cabdff1aSopenharmony_ci            imid = celt_cos(itheta);
667cabdff1aSopenharmony_ci            iside = celt_cos(16384-itheta);
668cabdff1aSopenharmony_ci            /* This is the mid vs side allocation that minimizes squared error
669cabdff1aSopenharmony_ci            in that band. */
670cabdff1aSopenharmony_ci            delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid));
671cabdff1aSopenharmony_ci        }
672cabdff1aSopenharmony_ci
673cabdff1aSopenharmony_ci        mid  = imid  / 32768.0f;
674cabdff1aSopenharmony_ci        side = iside / 32768.0f;
675cabdff1aSopenharmony_ci
676cabdff1aSopenharmony_ci        /* This is a special case for N=2 that only works for stereo and takes
677cabdff1aSopenharmony_ci        advantage of the fact that mid and side are orthogonal to encode
678cabdff1aSopenharmony_ci        the side with just one bit. */
679cabdff1aSopenharmony_ci        if (N == 2 && stereo) {
680cabdff1aSopenharmony_ci            int c;
681cabdff1aSopenharmony_ci            int sign = 0;
682cabdff1aSopenharmony_ci            float tmp;
683cabdff1aSopenharmony_ci            float *x2, *y2;
684cabdff1aSopenharmony_ci            mbits = b;
685cabdff1aSopenharmony_ci            /* Only need one bit for the side */
686cabdff1aSopenharmony_ci            sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0;
687cabdff1aSopenharmony_ci            mbits -= sbits;
688cabdff1aSopenharmony_ci            c = (itheta > 8192);
689cabdff1aSopenharmony_ci            f->remaining2 -= qalloc+sbits;
690cabdff1aSopenharmony_ci
691cabdff1aSopenharmony_ci            x2 = c ? Y : X;
692cabdff1aSopenharmony_ci            y2 = c ? X : Y;
693cabdff1aSopenharmony_ci            if (sbits) {
694cabdff1aSopenharmony_ci                if (quant) {
695cabdff1aSopenharmony_ci                    sign = x2[0]*y2[1] - x2[1]*y2[0] < 0;
696cabdff1aSopenharmony_ci                    ff_opus_rc_put_raw(rc, sign, 1);
697cabdff1aSopenharmony_ci                } else {
698cabdff1aSopenharmony_ci                    sign = ff_opus_rc_get_raw(rc, 1);
699cabdff1aSopenharmony_ci                }
700cabdff1aSopenharmony_ci            }
701cabdff1aSopenharmony_ci            sign = 1 - 2 * sign;
702cabdff1aSopenharmony_ci            /* We use orig_fill here because we want to fold the side, but if
703cabdff1aSopenharmony_ci            itheta==16384, we'll have cleared the low bits of fill. */
704cabdff1aSopenharmony_ci            cm = pvq->quant_band(pvq, f, rc, band, x2, NULL, N, mbits, blocks, lowband, duration,
705cabdff1aSopenharmony_ci                                 lowband_out, level, gain, lowband_scratch, orig_fill);
706cabdff1aSopenharmony_ci            /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
707cabdff1aSopenharmony_ci            and there's no need to worry about mixing with the other channel. */
708cabdff1aSopenharmony_ci            y2[0] = -sign * x2[1];
709cabdff1aSopenharmony_ci            y2[1] =  sign * x2[0];
710cabdff1aSopenharmony_ci            X[0] *= mid;
711cabdff1aSopenharmony_ci            X[1] *= mid;
712cabdff1aSopenharmony_ci            Y[0] *= side;
713cabdff1aSopenharmony_ci            Y[1] *= side;
714cabdff1aSopenharmony_ci            tmp = X[0];
715cabdff1aSopenharmony_ci            X[0] = tmp - Y[0];
716cabdff1aSopenharmony_ci            Y[0] = tmp + Y[0];
717cabdff1aSopenharmony_ci            tmp = X[1];
718cabdff1aSopenharmony_ci            X[1] = tmp - Y[1];
719cabdff1aSopenharmony_ci            Y[1] = tmp + Y[1];
720cabdff1aSopenharmony_ci        } else {
721cabdff1aSopenharmony_ci            /* "Normal" split code */
722cabdff1aSopenharmony_ci            float *next_lowband2     = NULL;
723cabdff1aSopenharmony_ci            float *next_lowband_out1 = NULL;
724cabdff1aSopenharmony_ci            int next_level = 0;
725cabdff1aSopenharmony_ci            int rebalance;
726cabdff1aSopenharmony_ci            uint32_t cmt;
727cabdff1aSopenharmony_ci
728cabdff1aSopenharmony_ci            /* Give more bits to low-energy MDCTs than they would
729cabdff1aSopenharmony_ci             * otherwise deserve */
730cabdff1aSopenharmony_ci            if (B0 > 1 && !stereo && (itheta & 0x3fff)) {
731cabdff1aSopenharmony_ci                if (itheta > 8192)
732cabdff1aSopenharmony_ci                    /* Rough approximation for pre-echo masking */
733cabdff1aSopenharmony_ci                    delta -= delta >> (4 - duration);
734cabdff1aSopenharmony_ci                else
735cabdff1aSopenharmony_ci                    /* Corresponds to a forward-masking slope of
736cabdff1aSopenharmony_ci                     * 1.5 dB per 10 ms */
737cabdff1aSopenharmony_ci                    delta = FFMIN(0, delta + (N << 3 >> (5 - duration)));
738cabdff1aSopenharmony_ci            }
739cabdff1aSopenharmony_ci            mbits = av_clip((b - delta) / 2, 0, b);
740cabdff1aSopenharmony_ci            sbits = b - mbits;
741cabdff1aSopenharmony_ci            f->remaining2 -= qalloc;
742cabdff1aSopenharmony_ci
743cabdff1aSopenharmony_ci            if (lowband && !stereo)
744cabdff1aSopenharmony_ci                next_lowband2 = lowband + N; /* >32-bit split case */
745cabdff1aSopenharmony_ci
746cabdff1aSopenharmony_ci            /* Only stereo needs to pass on lowband_out.
747cabdff1aSopenharmony_ci             * Otherwise, it's handled at the end */
748cabdff1aSopenharmony_ci            if (stereo)
749cabdff1aSopenharmony_ci                next_lowband_out1 = lowband_out;
750cabdff1aSopenharmony_ci            else
751cabdff1aSopenharmony_ci                next_level = level + 1;
752cabdff1aSopenharmony_ci
753cabdff1aSopenharmony_ci            rebalance = f->remaining2;
754cabdff1aSopenharmony_ci            if (mbits >= sbits) {
755cabdff1aSopenharmony_ci                /* In stereo mode, we do not apply a scaling to the mid
756cabdff1aSopenharmony_ci                 * because we need the normalized mid for folding later */
757cabdff1aSopenharmony_ci                cm = pvq->quant_band(pvq, f, rc, band, X, NULL, N, mbits, blocks,
758cabdff1aSopenharmony_ci                                     lowband, duration, next_lowband_out1, next_level,
759cabdff1aSopenharmony_ci                                     stereo ? 1.0f : (gain * mid), lowband_scratch, fill);
760cabdff1aSopenharmony_ci                rebalance = mbits - (rebalance - f->remaining2);
761cabdff1aSopenharmony_ci                if (rebalance > 3 << 3 && itheta != 0)
762cabdff1aSopenharmony_ci                    sbits += rebalance - (3 << 3);
763cabdff1aSopenharmony_ci
764cabdff1aSopenharmony_ci                /* For a stereo split, the high bits of fill are always zero,
765cabdff1aSopenharmony_ci                 * so no folding will be done to the side. */
766cabdff1aSopenharmony_ci                cmt = pvq->quant_band(pvq, f, rc, band, Y, NULL, N, sbits, blocks,
767cabdff1aSopenharmony_ci                                      next_lowband2, duration, NULL, next_level,
768cabdff1aSopenharmony_ci                                      gain * side, NULL, fill >> blocks);
769cabdff1aSopenharmony_ci                cm |= cmt << ((B0 >> 1) & (stereo - 1));
770cabdff1aSopenharmony_ci            } else {
771cabdff1aSopenharmony_ci                /* For a stereo split, the high bits of fill are always zero,
772cabdff1aSopenharmony_ci                 * so no folding will be done to the side. */
773cabdff1aSopenharmony_ci                cm = pvq->quant_band(pvq, f, rc, band, Y, NULL, N, sbits, blocks,
774cabdff1aSopenharmony_ci                                     next_lowband2, duration, NULL, next_level,
775cabdff1aSopenharmony_ci                                     gain * side, NULL, fill >> blocks);
776cabdff1aSopenharmony_ci                cm <<= ((B0 >> 1) & (stereo - 1));
777cabdff1aSopenharmony_ci                rebalance = sbits - (rebalance - f->remaining2);
778cabdff1aSopenharmony_ci                if (rebalance > 3 << 3 && itheta != 16384)
779cabdff1aSopenharmony_ci                    mbits += rebalance - (3 << 3);
780cabdff1aSopenharmony_ci
781cabdff1aSopenharmony_ci                /* In stereo mode, we do not apply a scaling to the mid because
782cabdff1aSopenharmony_ci                 * we need the normalized mid for folding later */
783cabdff1aSopenharmony_ci                cm |= pvq->quant_band(pvq, f, rc, band, X, NULL, N, mbits, blocks,
784cabdff1aSopenharmony_ci                                      lowband, duration, next_lowband_out1, next_level,
785cabdff1aSopenharmony_ci                                      stereo ? 1.0f : (gain * mid), lowband_scratch, fill);
786cabdff1aSopenharmony_ci            }
787cabdff1aSopenharmony_ci        }
788cabdff1aSopenharmony_ci    } else {
789cabdff1aSopenharmony_ci        /* This is the basic no-split case */
790cabdff1aSopenharmony_ci        uint32_t q         = celt_bits2pulses(cache, b);
791cabdff1aSopenharmony_ci        uint32_t curr_bits = celt_pulses2bits(cache, q);
792cabdff1aSopenharmony_ci        f->remaining2 -= curr_bits;
793cabdff1aSopenharmony_ci
794cabdff1aSopenharmony_ci        /* Ensures we can never bust the budget */
795cabdff1aSopenharmony_ci        while (f->remaining2 < 0 && q > 0) {
796cabdff1aSopenharmony_ci            f->remaining2 += curr_bits;
797cabdff1aSopenharmony_ci            curr_bits      = celt_pulses2bits(cache, --q);
798cabdff1aSopenharmony_ci            f->remaining2 -= curr_bits;
799cabdff1aSopenharmony_ci        }
800cabdff1aSopenharmony_ci
801cabdff1aSopenharmony_ci        if (q != 0) {
802cabdff1aSopenharmony_ci            /* Finally do the actual (de)quantization */
803cabdff1aSopenharmony_ci            if (quant) {
804cabdff1aSopenharmony_ci                cm = celt_alg_quant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
805cabdff1aSopenharmony_ci                                    f->spread, blocks, gain, pvq);
806cabdff1aSopenharmony_ci            } else {
807cabdff1aSopenharmony_ci                cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
808cabdff1aSopenharmony_ci                                      f->spread, blocks, gain, pvq);
809cabdff1aSopenharmony_ci            }
810cabdff1aSopenharmony_ci        } else {
811cabdff1aSopenharmony_ci            /* If there's no pulse, fill the band anyway */
812cabdff1aSopenharmony_ci            uint32_t cm_mask = (1 << blocks) - 1;
813cabdff1aSopenharmony_ci            fill &= cm_mask;
814cabdff1aSopenharmony_ci            if (fill) {
815cabdff1aSopenharmony_ci                if (!lowband) {
816cabdff1aSopenharmony_ci                    /* Noise */
817cabdff1aSopenharmony_ci                    for (i = 0; i < N; i++)
818cabdff1aSopenharmony_ci                        X[i] = (((int32_t)celt_rng(f)) >> 20);
819cabdff1aSopenharmony_ci                    cm = cm_mask;
820cabdff1aSopenharmony_ci                } else {
821cabdff1aSopenharmony_ci                    /* Folded spectrum */
822cabdff1aSopenharmony_ci                    for (i = 0; i < N; i++) {
823cabdff1aSopenharmony_ci                        /* About 48 dB below the "normal" folding level */
824cabdff1aSopenharmony_ci                        X[i] = lowband[i] + (((celt_rng(f)) & 0x8000) ? 1.0f / 256 : -1.0f / 256);
825cabdff1aSopenharmony_ci                    }
826cabdff1aSopenharmony_ci                    cm = fill;
827cabdff1aSopenharmony_ci                }
828cabdff1aSopenharmony_ci                celt_renormalize_vector(X, N, gain);
829cabdff1aSopenharmony_ci            } else {
830cabdff1aSopenharmony_ci                memset(X, 0, N*sizeof(float));
831cabdff1aSopenharmony_ci            }
832cabdff1aSopenharmony_ci        }
833cabdff1aSopenharmony_ci    }
834cabdff1aSopenharmony_ci
835cabdff1aSopenharmony_ci    /* This code is used by the decoder and by the resynthesis-enabled encoder */
836cabdff1aSopenharmony_ci    if (stereo) {
837cabdff1aSopenharmony_ci        if (N > 2)
838cabdff1aSopenharmony_ci            celt_stereo_merge(X, Y, mid, N);
839cabdff1aSopenharmony_ci        if (inv) {
840cabdff1aSopenharmony_ci            for (i = 0; i < N; i++)
841cabdff1aSopenharmony_ci                Y[i] *= -1;
842cabdff1aSopenharmony_ci        }
843cabdff1aSopenharmony_ci    } else if (level == 0) {
844cabdff1aSopenharmony_ci        int k;
845cabdff1aSopenharmony_ci
846cabdff1aSopenharmony_ci        /* Undo the sample reorganization going from time order to frequency order */
847cabdff1aSopenharmony_ci        if (B0 > 1)
848cabdff1aSopenharmony_ci            celt_interleave_hadamard(pvq->hadamard_tmp, X, N_B >> recombine,
849cabdff1aSopenharmony_ci                                     B0 << recombine, longblocks);
850cabdff1aSopenharmony_ci
851cabdff1aSopenharmony_ci        /* Undo time-freq changes that we did earlier */
852cabdff1aSopenharmony_ci        N_B = N_B0;
853cabdff1aSopenharmony_ci        blocks = B0;
854cabdff1aSopenharmony_ci        for (k = 0; k < time_divide; k++) {
855cabdff1aSopenharmony_ci            blocks >>= 1;
856cabdff1aSopenharmony_ci            N_B <<= 1;
857cabdff1aSopenharmony_ci            cm |= cm >> blocks;
858cabdff1aSopenharmony_ci            celt_haar1(X, N_B, blocks);
859cabdff1aSopenharmony_ci        }
860cabdff1aSopenharmony_ci
861cabdff1aSopenharmony_ci        for (k = 0; k < recombine; k++) {
862cabdff1aSopenharmony_ci            cm = ff_celt_bit_deinterleave[cm];
863cabdff1aSopenharmony_ci            celt_haar1(X, N0>>k, 1<<k);
864cabdff1aSopenharmony_ci        }
865cabdff1aSopenharmony_ci        blocks <<= recombine;
866cabdff1aSopenharmony_ci
867cabdff1aSopenharmony_ci        /* Scale output for later folding */
868cabdff1aSopenharmony_ci        if (lowband_out) {
869cabdff1aSopenharmony_ci            float n = sqrtf(N0);
870cabdff1aSopenharmony_ci            for (i = 0; i < N0; i++)
871cabdff1aSopenharmony_ci                lowband_out[i] = n * X[i];
872cabdff1aSopenharmony_ci        }
873cabdff1aSopenharmony_ci        cm = av_mod_uintp2(cm, blocks);
874cabdff1aSopenharmony_ci    }
875cabdff1aSopenharmony_ci
876cabdff1aSopenharmony_ci    return cm;
877cabdff1aSopenharmony_ci}
878cabdff1aSopenharmony_ci
879cabdff1aSopenharmony_cistatic QUANT_FN(pvq_decode_band)
880cabdff1aSopenharmony_ci{
881cabdff1aSopenharmony_ci#if CONFIG_OPUS_DECODER
882cabdff1aSopenharmony_ci    return quant_band_template(pvq, f, rc, band, X, Y, N, b, blocks, lowband, duration,
883cabdff1aSopenharmony_ci                               lowband_out, level, gain, lowband_scratch, fill, 0);
884cabdff1aSopenharmony_ci#else
885cabdff1aSopenharmony_ci    return 0;
886cabdff1aSopenharmony_ci#endif
887cabdff1aSopenharmony_ci}
888cabdff1aSopenharmony_ci
889cabdff1aSopenharmony_cistatic QUANT_FN(pvq_encode_band)
890cabdff1aSopenharmony_ci{
891cabdff1aSopenharmony_ci#if CONFIG_OPUS_ENCODER
892cabdff1aSopenharmony_ci    return quant_band_template(pvq, f, rc, band, X, Y, N, b, blocks, lowband, duration,
893cabdff1aSopenharmony_ci                               lowband_out, level, gain, lowband_scratch, fill, 1);
894cabdff1aSopenharmony_ci#else
895cabdff1aSopenharmony_ci    return 0;
896cabdff1aSopenharmony_ci#endif
897cabdff1aSopenharmony_ci}
898cabdff1aSopenharmony_ci
899cabdff1aSopenharmony_ciint av_cold ff_celt_pvq_init(CeltPVQ **pvq, int encode)
900cabdff1aSopenharmony_ci{
901cabdff1aSopenharmony_ci    CeltPVQ *s = av_malloc(sizeof(CeltPVQ));
902cabdff1aSopenharmony_ci    if (!s)
903cabdff1aSopenharmony_ci        return AVERROR(ENOMEM);
904cabdff1aSopenharmony_ci
905cabdff1aSopenharmony_ci    s->pvq_search = ppp_pvq_search_c;
906cabdff1aSopenharmony_ci    s->quant_band = encode ? pvq_encode_band : pvq_decode_band;
907cabdff1aSopenharmony_ci
908cabdff1aSopenharmony_ci#if CONFIG_OPUS_ENCODER && ARCH_X86
909cabdff1aSopenharmony_ci    ff_celt_pvq_init_x86(s);
910cabdff1aSopenharmony_ci#endif
911cabdff1aSopenharmony_ci
912cabdff1aSopenharmony_ci    *pvq = s;
913cabdff1aSopenharmony_ci
914cabdff1aSopenharmony_ci    return 0;
915cabdff1aSopenharmony_ci}
916cabdff1aSopenharmony_ci
917cabdff1aSopenharmony_civoid av_cold ff_celt_pvq_uninit(CeltPVQ **pvq)
918cabdff1aSopenharmony_ci{
919cabdff1aSopenharmony_ci    av_freep(pvq);
920cabdff1aSopenharmony_ci}
921