1/*
2 * The simplest mpeg audio layer 2 encoder
3 * Copyright (c) 2000, 2001 Fabrice Bellard
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * The simplest mpeg audio layer 2 encoder.
25 */
26
27#include "libavutil/channel_layout.h"
28
29#include "avcodec.h"
30#include "encode.h"
31#include "internal.h"
32#include "put_bits.h"
33
34#define FRAC_BITS   15   /* fractional bits for sb_samples and dct */
35#define WFRAC_BITS  14   /* fractional bits for window */
36
37#include "mpegaudio.h"
38#include "mpegaudiodsp.h"
39#include "mpegaudiodata.h"
40#include "mpegaudiotab.h"
41
42/* currently, cannot change these constants (need to modify
43   quantization stage) */
44#define MUL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
45
46#define SAMPLES_BUF_SIZE 4096
47
48typedef struct MpegAudioContext {
49    PutBitContext pb;
50    int nb_channels;
51    int lsf;           /* 1 if mpeg2 low bitrate selected */
52    int bitrate_index; /* bit rate */
53    int freq_index;
54    int frame_size; /* frame size, in bits, without padding */
55    /* padding computation */
56    int frame_frac, frame_frac_incr, do_padding;
57    short samples_buf[MPA_MAX_CHANNELS][SAMPLES_BUF_SIZE]; /* buffer for filter */
58    int samples_offset[MPA_MAX_CHANNELS];       /* offset in samples_buf */
59    int sb_samples[MPA_MAX_CHANNELS][3][12][SBLIMIT];
60    unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3]; /* scale factors */
61    /* code to group 3 scale factors */
62    unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
63    int sblimit; /* number of used subbands */
64    const unsigned char *alloc_table;
65    int16_t filter_bank[512];
66    int scale_factor_table[64];
67    unsigned char scale_diff_table[128];
68#if USE_FLOATS
69    float scale_factor_inv_table[64];
70#else
71    int8_t scale_factor_shift[64];
72    unsigned short scale_factor_mult[64];
73#endif
74    unsigned short total_quant_bits[17]; /* total number of bits per allocation group */
75} MpegAudioContext;
76
77static av_cold int MPA_encode_init(AVCodecContext *avctx)
78{
79    MpegAudioContext *s = avctx->priv_data;
80    int freq = avctx->sample_rate;
81    int bitrate = avctx->bit_rate;
82    int channels = avctx->ch_layout.nb_channels;
83    int i, v, table;
84    float a;
85
86    if (channels <= 0 || channels > 2){
87        av_log(avctx, AV_LOG_ERROR, "encoding %d channel(s) is not allowed in mp2\n", channels);
88        return AVERROR(EINVAL);
89    }
90    bitrate = bitrate / 1000;
91    s->nb_channels = channels;
92    avctx->frame_size = MPA_FRAME_SIZE;
93    avctx->initial_padding = 512 - 32 + 1;
94
95    /* encoding freq */
96    s->lsf = 0;
97    for(i=0;i<3;i++) {
98        if (ff_mpa_freq_tab[i] == freq)
99            break;
100        if ((ff_mpa_freq_tab[i] / 2) == freq) {
101            s->lsf = 1;
102            break;
103        }
104    }
105    if (i == 3){
106        av_log(avctx, AV_LOG_ERROR, "Sampling rate %d is not allowed in mp2\n", freq);
107        return AVERROR(EINVAL);
108    }
109    s->freq_index = i;
110
111    /* encoding bitrate & frequency */
112    for(i=1;i<15;i++) {
113        if (ff_mpa_bitrate_tab[s->lsf][1][i] == bitrate)
114            break;
115    }
116    if (i == 15 && !avctx->bit_rate) {
117        i = 14;
118        bitrate = ff_mpa_bitrate_tab[s->lsf][1][i];
119        avctx->bit_rate = bitrate * 1000;
120    }
121    if (i == 15){
122        av_log(avctx, AV_LOG_ERROR, "bitrate %d is not allowed in mp2\n", bitrate);
123        return AVERROR(EINVAL);
124    }
125    s->bitrate_index = i;
126
127    /* compute total header size & pad bit */
128
129    a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0);
130    s->frame_size = ((int)a) * 8;
131
132    /* frame fractional size to compute padding */
133    s->frame_frac = 0;
134    s->frame_frac_incr = (int)((a - floor(a)) * 65536.0);
135
136    /* select the right allocation table */
137    table = ff_mpa_l2_select_table(bitrate, s->nb_channels, freq, s->lsf);
138
139    /* number of used subbands */
140    s->sblimit = ff_mpa_sblimit_table[table];
141    s->alloc_table = ff_mpa_alloc_tables[table];
142
143    ff_dlog(avctx, "%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n",
144            bitrate, freq, s->frame_size, table, s->frame_frac_incr);
145
146    for(i=0;i<s->nb_channels;i++)
147        s->samples_offset[i] = 0;
148
149    for(i=0;i<257;i++) {
150        int v;
151        v = ff_mpa_enwindow[i];
152#if WFRAC_BITS != 16
153        v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
154#endif
155        s->filter_bank[i] = v;
156        if ((i & 63) != 0)
157            v = -v;
158        if (i != 0)
159            s->filter_bank[512 - i] = v;
160    }
161
162    for(i=0;i<64;i++) {
163        v = (int)(exp2((3 - i) / 3.0) * (1 << 20));
164        if (v <= 0)
165            v = 1;
166        s->scale_factor_table[i] = v;
167#if USE_FLOATS
168        s->scale_factor_inv_table[i] = exp2(-(3 - i) / 3.0) / (float)(1 << 20);
169#else
170#define P 15
171        s->scale_factor_shift[i] = 21 - P - (i / 3);
172        s->scale_factor_mult[i] = (1 << P) * exp2((i % 3) / 3.0);
173#endif
174    }
175    for(i=0;i<128;i++) {
176        v = i - 64;
177        if (v <= -3)
178            v = 0;
179        else if (v < 0)
180            v = 1;
181        else if (v == 0)
182            v = 2;
183        else if (v < 3)
184            v = 3;
185        else
186            v = 4;
187        s->scale_diff_table[i] = v;
188    }
189
190    for(i=0;i<17;i++) {
191        v = ff_mpa_quant_bits[i];
192        if (v < 0)
193            v = -v;
194        else
195            v = v * 3;
196        s->total_quant_bits[i] = 12 * v;
197    }
198
199    return 0;
200}
201
202/* 32 point floating point IDCT without 1/sqrt(2) coef zero scaling */
203static void idct32(int *out, int *tab)
204{
205    int i, j;
206    int *t, *t1, xr;
207    const int *xp = costab32;
208
209    for(j=31;j>=3;j-=2) tab[j] += tab[j - 2];
210
211    t = tab + 30;
212    t1 = tab + 2;
213    do {
214        t[0] += t[-4];
215        t[1] += t[1 - 4];
216        t -= 4;
217    } while (t != t1);
218
219    t = tab + 28;
220    t1 = tab + 4;
221    do {
222        t[0] += t[-8];
223        t[1] += t[1-8];
224        t[2] += t[2-8];
225        t[3] += t[3-8];
226        t -= 8;
227    } while (t != t1);
228
229    t = tab;
230    t1 = tab + 32;
231    do {
232        t[ 3] = -t[ 3];
233        t[ 6] = -t[ 6];
234
235        t[11] = -t[11];
236        t[12] = -t[12];
237        t[13] = -t[13];
238        t[15] = -t[15];
239        t += 16;
240    } while (t != t1);
241
242
243    t = tab;
244    t1 = tab + 8;
245    do {
246        int x1, x2, x3, x4;
247
248        x3 = MUL(t[16], FIX(M_SQRT2*0.5));
249        x4 = t[0] - x3;
250        x3 = t[0] + x3;
251
252        x2 = MUL(-(t[24] + t[8]), FIX(M_SQRT2*0.5));
253        x1 = MUL((t[8] - x2), xp[0]);
254        x2 = MUL((t[8] + x2), xp[1]);
255
256        t[ 0] = x3 + x1;
257        t[ 8] = x4 - x2;
258        t[16] = x4 + x2;
259        t[24] = x3 - x1;
260        t++;
261    } while (t != t1);
262
263    xp += 2;
264    t = tab;
265    t1 = tab + 4;
266    do {
267        xr = MUL(t[28],xp[0]);
268        t[28] = (t[0] - xr);
269        t[0] = (t[0] + xr);
270
271        xr = MUL(t[4],xp[1]);
272        t[ 4] = (t[24] - xr);
273        t[24] = (t[24] + xr);
274
275        xr = MUL(t[20],xp[2]);
276        t[20] = (t[8] - xr);
277        t[ 8] = (t[8] + xr);
278
279        xr = MUL(t[12],xp[3]);
280        t[12] = (t[16] - xr);
281        t[16] = (t[16] + xr);
282        t++;
283    } while (t != t1);
284    xp += 4;
285
286    for (i = 0; i < 4; i++) {
287        xr = MUL(tab[30-i*4],xp[0]);
288        tab[30-i*4] = (tab[i*4] - xr);
289        tab[   i*4] = (tab[i*4] + xr);
290
291        xr = MUL(tab[ 2+i*4],xp[1]);
292        tab[ 2+i*4] = (tab[28-i*4] - xr);
293        tab[28-i*4] = (tab[28-i*4] + xr);
294
295        xr = MUL(tab[31-i*4],xp[0]);
296        tab[31-i*4] = (tab[1+i*4] - xr);
297        tab[ 1+i*4] = (tab[1+i*4] + xr);
298
299        xr = MUL(tab[ 3+i*4],xp[1]);
300        tab[ 3+i*4] = (tab[29-i*4] - xr);
301        tab[29-i*4] = (tab[29-i*4] + xr);
302
303        xp += 2;
304    }
305
306    t = tab + 30;
307    t1 = tab + 1;
308    do {
309        xr = MUL(t1[0], *xp);
310        t1[0] = (t[0] - xr);
311        t[0] = (t[0] + xr);
312        t -= 2;
313        t1 += 2;
314        xp++;
315    } while (t >= tab);
316
317    for(i=0;i<32;i++) {
318        out[i] = tab[bitinv32[i]];
319    }
320}
321
322#define WSHIFT (WFRAC_BITS + 15 - FRAC_BITS)
323
324static void filter(MpegAudioContext *s, int ch, const short *samples, int incr)
325{
326    short *p, *q;
327    int sum, offset, i, j;
328    int tmp[64];
329    int tmp1[32];
330    int *out;
331
332    offset = s->samples_offset[ch];
333    out = &s->sb_samples[ch][0][0][0];
334    for(j=0;j<36;j++) {
335        /* 32 samples at once */
336        for(i=0;i<32;i++) {
337            s->samples_buf[ch][offset + (31 - i)] = samples[0];
338            samples += incr;
339        }
340
341        /* filter */
342        p = s->samples_buf[ch] + offset;
343        q = s->filter_bank;
344        /* maxsum = 23169 */
345        for(i=0;i<64;i++) {
346            sum = p[0*64] * q[0*64];
347            sum += p[1*64] * q[1*64];
348            sum += p[2*64] * q[2*64];
349            sum += p[3*64] * q[3*64];
350            sum += p[4*64] * q[4*64];
351            sum += p[5*64] * q[5*64];
352            sum += p[6*64] * q[6*64];
353            sum += p[7*64] * q[7*64];
354            tmp[i] = sum;
355            p++;
356            q++;
357        }
358        tmp1[0] = tmp[16] >> WSHIFT;
359        for( i=1; i<=16; i++ ) tmp1[i] = (tmp[i+16]+tmp[16-i]) >> WSHIFT;
360        for( i=17; i<=31; i++ ) tmp1[i] = (tmp[i+16]-tmp[80-i]) >> WSHIFT;
361
362        idct32(out, tmp1);
363
364        /* advance of 32 samples */
365        offset -= 32;
366        out += 32;
367        /* handle the wrap around */
368        if (offset < 0) {
369            memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32),
370                    s->samples_buf[ch], (512 - 32) * 2);
371            offset = SAMPLES_BUF_SIZE - 512;
372        }
373    }
374    s->samples_offset[ch] = offset;
375}
376
377static void compute_scale_factors(MpegAudioContext *s,
378                                  unsigned char scale_code[SBLIMIT],
379                                  unsigned char scale_factors[SBLIMIT][3],
380                                  int sb_samples[3][12][SBLIMIT],
381                                  int sblimit)
382{
383    int *p, vmax, v, n, i, j, k, code;
384    int index, d1, d2;
385    unsigned char *sf = &scale_factors[0][0];
386
387    for(j=0;j<sblimit;j++) {
388        for(i=0;i<3;i++) {
389            /* find the max absolute value */
390            p = &sb_samples[i][0][j];
391            vmax = abs(*p);
392            for(k=1;k<12;k++) {
393                p += SBLIMIT;
394                v = abs(*p);
395                if (v > vmax)
396                    vmax = v;
397            }
398            /* compute the scale factor index using log 2 computations */
399            if (vmax > 1) {
400                n = av_log2(vmax);
401                /* n is the position of the MSB of vmax. now
402                   use at most 2 compares to find the index */
403                index = (21 - n) * 3 - 3;
404                if (index >= 0) {
405                    while (vmax <= s->scale_factor_table[index+1])
406                        index++;
407                } else {
408                    index = 0; /* very unlikely case of overflow */
409                }
410            } else {
411                index = 62; /* value 63 is not allowed */
412            }
413
414            ff_dlog(NULL, "%2d:%d in=%x %x %d\n",
415                    j, i, vmax, s->scale_factor_table[index], index);
416            /* store the scale factor */
417            av_assert2(index >=0 && index <= 63);
418            sf[i] = index;
419        }
420
421        /* compute the transmission factor : look if the scale factors
422           are close enough to each other */
423        d1 = s->scale_diff_table[sf[0] - sf[1] + 64];
424        d2 = s->scale_diff_table[sf[1] - sf[2] + 64];
425
426        /* handle the 25 cases */
427        switch(d1 * 5 + d2) {
428        case 0*5+0:
429        case 0*5+4:
430        case 3*5+4:
431        case 4*5+0:
432        case 4*5+4:
433            code = 0;
434            break;
435        case 0*5+1:
436        case 0*5+2:
437        case 4*5+1:
438        case 4*5+2:
439            code = 3;
440            sf[2] = sf[1];
441            break;
442        case 0*5+3:
443        case 4*5+3:
444            code = 3;
445            sf[1] = sf[2];
446            break;
447        case 1*5+0:
448        case 1*5+4:
449        case 2*5+4:
450            code = 1;
451            sf[1] = sf[0];
452            break;
453        case 1*5+1:
454        case 1*5+2:
455        case 2*5+0:
456        case 2*5+1:
457        case 2*5+2:
458            code = 2;
459            sf[1] = sf[2] = sf[0];
460            break;
461        case 2*5+3:
462        case 3*5+3:
463            code = 2;
464            sf[0] = sf[1] = sf[2];
465            break;
466        case 3*5+0:
467        case 3*5+1:
468        case 3*5+2:
469            code = 2;
470            sf[0] = sf[2] = sf[1];
471            break;
472        case 1*5+3:
473            code = 2;
474            if (sf[0] > sf[2])
475              sf[0] = sf[2];
476            sf[1] = sf[2] = sf[0];
477            break;
478        default:
479            av_assert2(0); //cannot happen
480            code = 0;           /* kill warning */
481        }
482
483        ff_dlog(NULL, "%d: %2d %2d %2d %d %d -> %d\n", j,
484                sf[0], sf[1], sf[2], d1, d2, code);
485        scale_code[j] = code;
486        sf += 3;
487    }
488}
489
490/* The most important function : psycho acoustic module. In this
491   encoder there is basically none, so this is the worst you can do,
492   but also this is the simpler. */
493static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT])
494{
495    int i;
496
497    for(i=0;i<s->sblimit;i++) {
498        smr[i] = (int)(fixed_smr[i] * 10);
499    }
500}
501
502
503#define SB_NOTALLOCATED  0
504#define SB_ALLOCATED     1
505#define SB_NOMORE        2
506
507/* Try to maximize the smr while using a number of bits inferior to
508   the frame size. I tried to make the code simpler, faster and
509   smaller than other encoders :-) */
510static void compute_bit_allocation(MpegAudioContext *s,
511                                   short smr1[MPA_MAX_CHANNELS][SBLIMIT],
512                                   unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
513                                   int *padding)
514{
515    int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size;
516    int incr;
517    short smr[MPA_MAX_CHANNELS][SBLIMIT];
518    unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT];
519    const unsigned char *alloc;
520
521    memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT);
522    memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT);
523    memset(bit_alloc, 0, s->nb_channels * SBLIMIT);
524
525    /* compute frame size and padding */
526    max_frame_size = s->frame_size;
527    s->frame_frac += s->frame_frac_incr;
528    if (s->frame_frac >= 65536) {
529        s->frame_frac -= 65536;
530        s->do_padding = 1;
531        max_frame_size += 8;
532    } else {
533        s->do_padding = 0;
534    }
535
536    /* compute the header + bit alloc size */
537    current_frame_size = 32;
538    alloc = s->alloc_table;
539    for(i=0;i<s->sblimit;i++) {
540        incr = alloc[0];
541        current_frame_size += incr * s->nb_channels;
542        alloc += 1 << incr;
543    }
544    for(;;) {
545        /* look for the subband with the largest signal to mask ratio */
546        max_sb = -1;
547        max_ch = -1;
548        max_smr = INT_MIN;
549        for(ch=0;ch<s->nb_channels;ch++) {
550            for(i=0;i<s->sblimit;i++) {
551                if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) {
552                    max_smr = smr[ch][i];
553                    max_sb = i;
554                    max_ch = ch;
555                }
556            }
557        }
558        if (max_sb < 0)
559            break;
560        ff_dlog(NULL, "current=%d max=%d max_sb=%d max_ch=%d alloc=%d\n",
561                current_frame_size, max_frame_size, max_sb, max_ch,
562                bit_alloc[max_ch][max_sb]);
563
564        /* find alloc table entry (XXX: not optimal, should use
565           pointer table) */
566        alloc = s->alloc_table;
567        for(i=0;i<max_sb;i++) {
568            alloc += 1 << alloc[0];
569        }
570
571        if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) {
572            /* nothing was coded for this band: add the necessary bits */
573            incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6;
574            incr += s->total_quant_bits[alloc[1]];
575        } else {
576            /* increments bit allocation */
577            b = bit_alloc[max_ch][max_sb];
578            incr = s->total_quant_bits[alloc[b + 1]] -
579                s->total_quant_bits[alloc[b]];
580        }
581
582        if (current_frame_size + incr <= max_frame_size) {
583            /* can increase size */
584            b = ++bit_alloc[max_ch][max_sb];
585            current_frame_size += incr;
586            /* decrease smr by the resolution we added */
587            smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]];
588            /* max allocation size reached ? */
589            if (b == ((1 << alloc[0]) - 1))
590                subband_status[max_ch][max_sb] = SB_NOMORE;
591            else
592                subband_status[max_ch][max_sb] = SB_ALLOCATED;
593        } else {
594            /* cannot increase the size of this subband */
595            subband_status[max_ch][max_sb] = SB_NOMORE;
596        }
597    }
598    *padding = max_frame_size - current_frame_size;
599    av_assert0(*padding >= 0);
600}
601
602/*
603 * Output the MPEG audio layer 2 frame. Note how the code is small
604 * compared to other encoders :-)
605 */
606static void encode_frame(MpegAudioContext *s,
607                         unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
608                         int padding)
609{
610    int i, j, k, l, bit_alloc_bits, b, ch;
611    unsigned char *sf;
612    int q[3];
613    PutBitContext *p = &s->pb;
614
615    /* header */
616
617    put_bits(p, 12, 0xfff);
618    put_bits(p, 1, 1 - s->lsf); /* 1 = MPEG-1 ID, 0 = MPEG-2 lsf ID */
619    put_bits(p, 2, 4-2);  /* layer 2 */
620    put_bits(p, 1, 1); /* no error protection */
621    put_bits(p, 4, s->bitrate_index);
622    put_bits(p, 2, s->freq_index);
623    put_bits(p, 1, s->do_padding); /* use padding */
624    put_bits(p, 1, 0);             /* private_bit */
625    put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO);
626    put_bits(p, 2, 0); /* mode_ext */
627    put_bits(p, 1, 0); /* no copyright */
628    put_bits(p, 1, 1); /* original */
629    put_bits(p, 2, 0); /* no emphasis */
630
631    /* bit allocation */
632    j = 0;
633    for(i=0;i<s->sblimit;i++) {
634        bit_alloc_bits = s->alloc_table[j];
635        for(ch=0;ch<s->nb_channels;ch++) {
636            put_bits(p, bit_alloc_bits, bit_alloc[ch][i]);
637        }
638        j += 1 << bit_alloc_bits;
639    }
640
641    /* scale codes */
642    for(i=0;i<s->sblimit;i++) {
643        for(ch=0;ch<s->nb_channels;ch++) {
644            if (bit_alloc[ch][i])
645                put_bits(p, 2, s->scale_code[ch][i]);
646        }
647    }
648
649    /* scale factors */
650    for(i=0;i<s->sblimit;i++) {
651        for(ch=0;ch<s->nb_channels;ch++) {
652            if (bit_alloc[ch][i]) {
653                sf = &s->scale_factors[ch][i][0];
654                switch(s->scale_code[ch][i]) {
655                case 0:
656                    put_bits(p, 6, sf[0]);
657                    put_bits(p, 6, sf[1]);
658                    put_bits(p, 6, sf[2]);
659                    break;
660                case 3:
661                case 1:
662                    put_bits(p, 6, sf[0]);
663                    put_bits(p, 6, sf[2]);
664                    break;
665                case 2:
666                    put_bits(p, 6, sf[0]);
667                    break;
668                }
669            }
670        }
671    }
672
673    /* quantization & write sub band samples */
674
675    for(k=0;k<3;k++) {
676        for(l=0;l<12;l+=3) {
677            j = 0;
678            for(i=0;i<s->sblimit;i++) {
679                bit_alloc_bits = s->alloc_table[j];
680                for(ch=0;ch<s->nb_channels;ch++) {
681                    b = bit_alloc[ch][i];
682                    if (b) {
683                        int qindex, steps, m, sample, bits;
684                        /* we encode 3 sub band samples of the same sub band at a time */
685                        qindex = s->alloc_table[j+b];
686                        steps = ff_mpa_quant_steps[qindex];
687                        for(m=0;m<3;m++) {
688                            sample = s->sb_samples[ch][k][l + m][i];
689                            /* divide by scale factor */
690#if USE_FLOATS
691                            {
692                                float a;
693                                a = (float)sample * s->scale_factor_inv_table[s->scale_factors[ch][i][k]];
694                                q[m] = (int)((a + 1.0) * steps * 0.5);
695                            }
696#else
697                            {
698                                int q1, e, shift, mult;
699                                e = s->scale_factors[ch][i][k];
700                                shift = s->scale_factor_shift[e];
701                                mult = s->scale_factor_mult[e];
702
703                                /* normalize to P bits */
704                                if (shift < 0)
705                                    q1 = sample * (1 << -shift);
706                                else
707                                    q1 = sample >> shift;
708                                q1 = (q1 * mult) >> P;
709                                q1 += 1 << P;
710                                if (q1 < 0)
711                                    q1 = 0;
712                                q[m] = (q1 * (unsigned)steps) >> (P + 1);
713                            }
714#endif
715                            if (q[m] >= steps)
716                                q[m] = steps - 1;
717                            av_assert2(q[m] >= 0 && q[m] < steps);
718                        }
719                        bits = ff_mpa_quant_bits[qindex];
720                        if (bits < 0) {
721                            /* group the 3 values to save bits */
722                            put_bits(p, -bits,
723                                     q[0] + steps * (q[1] + steps * q[2]));
724                        } else {
725                            put_bits(p, bits, q[0]);
726                            put_bits(p, bits, q[1]);
727                            put_bits(p, bits, q[2]);
728                        }
729                    }
730                }
731                /* next subband in alloc table */
732                j += 1 << bit_alloc_bits;
733            }
734        }
735    }
736
737    /* padding */
738    for(i=0;i<padding;i++)
739        put_bits(p, 1, 0);
740}
741
742static int MPA_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
743                            const AVFrame *frame, int *got_packet_ptr)
744{
745    MpegAudioContext *s = avctx->priv_data;
746    const int16_t *samples = (const int16_t *)frame->data[0];
747    short smr[MPA_MAX_CHANNELS][SBLIMIT];
748    unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
749    int padding, i, ret;
750
751    for(i=0;i<s->nb_channels;i++) {
752        filter(s, i, samples + i, s->nb_channels);
753    }
754
755    for(i=0;i<s->nb_channels;i++) {
756        compute_scale_factors(s, s->scale_code[i], s->scale_factors[i],
757                              s->sb_samples[i], s->sblimit);
758    }
759    for(i=0;i<s->nb_channels;i++) {
760        psycho_acoustic_model(s, smr[i]);
761    }
762    compute_bit_allocation(s, smr, bit_alloc, &padding);
763
764    if ((ret = ff_alloc_packet(avctx, avpkt, MPA_MAX_CODED_FRAME_SIZE)) < 0)
765        return ret;
766
767    init_put_bits(&s->pb, avpkt->data, avpkt->size);
768
769    encode_frame(s, bit_alloc, padding);
770
771    /* flush */
772    flush_put_bits(&s->pb);
773    avpkt->size = put_bytes_output(&s->pb);
774
775    if (frame->pts != AV_NOPTS_VALUE)
776        avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->initial_padding);
777
778    *got_packet_ptr = 1;
779    return 0;
780}
781
782static const FFCodecDefault mp2_defaults[] = {
783    { "b", "0" },
784    { NULL },
785};
786
787