xref: /third_party/ffmpeg/libavcodec/lpc.c (revision cabdff1a)
1/*
2 * LPC utility code
3 * Copyright (c) 2006  Justin Ruggles <justin.ruggles@gmail.com>
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22#include "libavutil/common.h"
23#include "libavutil/lls.h"
24#include "libavutil/mem_internal.h"
25
26#define LPC_USE_DOUBLE
27#include "lpc.h"
28#include "libavutil/avassert.h"
29
30
31/**
32 * Apply Welch window function to audio block
33 */
34static void lpc_apply_welch_window_c(const int32_t *data, int len,
35                                     double *w_data)
36{
37    int i, n2;
38    double w;
39    double c;
40
41    n2 = (len >> 1);
42    c = 2.0 / (len - 1.0);
43
44    if (len & 1) {
45        for(i=0; i<n2; i++) {
46            w = c - i - 1.0;
47            w = 1.0 - (w * w);
48            w_data[i] = data[i] * w;
49            w_data[len-1-i] = data[len-1-i] * w;
50        }
51        return;
52    }
53
54    w_data+=n2;
55      data+=n2;
56    for(i=0; i<n2; i++) {
57        w = c - n2 + i;
58        w = 1.0 - (w * w);
59        w_data[-i-1] = data[-i-1] * w;
60        w_data[+i  ] = data[+i  ] * w;
61    }
62}
63
64/**
65 * Calculate autocorrelation data from audio samples
66 * A Welch window function is applied before calculation.
67 */
68static void lpc_compute_autocorr_c(const double *data, int len, int lag,
69                                   double *autoc)
70{
71    int i, j;
72
73    for(j=0; j<lag; j+=2){
74        double sum0 = 1.0, sum1 = 1.0;
75        for(i=j; i<len; i++){
76            sum0 += data[i] * data[i-j];
77            sum1 += data[i] * data[i-j-1];
78        }
79        autoc[j  ] = sum0;
80        autoc[j+1] = sum1;
81    }
82
83    if(j==lag){
84        double sum = 1.0;
85        for(i=j-1; i<len; i+=2){
86            sum += data[i  ] * data[i-j  ]
87                 + data[i+1] * data[i-j+1];
88        }
89        autoc[j] = sum;
90    }
91}
92
93/**
94 * Quantize LPC coefficients
95 */
96static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
97                               int32_t *lpc_out, int *shift, int min_shift,
98                               int max_shift, int zero_shift)
99{
100    int i;
101    double cmax, error;
102    int32_t qmax;
103    int sh;
104
105    /* define maximum levels */
106    qmax = (1 << (precision - 1)) - 1;
107
108    /* find maximum coefficient value */
109    cmax = 0.0;
110    for(i=0; i<order; i++) {
111        cmax= FFMAX(cmax, fabs(lpc_in[i]));
112    }
113
114    /* if maximum value quantizes to zero, return all zeros */
115    if(cmax * (1 << max_shift) < 1.0) {
116        *shift = zero_shift;
117        memset(lpc_out, 0, sizeof(int32_t) * order);
118        return;
119    }
120
121    /* calculate level shift which scales max coeff to available bits */
122    sh = max_shift;
123    while((cmax * (1 << sh) > qmax) && (sh > min_shift)) {
124        sh--;
125    }
126
127    /* since negative shift values are unsupported in decoder, scale down
128       coefficients instead */
129    if(sh == 0 && cmax > qmax) {
130        double scale = ((double)qmax) / cmax;
131        for(i=0; i<order; i++) {
132            lpc_in[i] *= scale;
133        }
134    }
135
136    /* output quantized coefficients and level shift */
137    error=0;
138    for(i=0; i<order; i++) {
139        error -= lpc_in[i] * (1 << sh);
140        lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
141        error -= lpc_out[i];
142    }
143    *shift = sh;
144}
145
146static int estimate_best_order(double *ref, int min_order, int max_order)
147{
148    int i, est;
149
150    est = min_order;
151    for(i=max_order-1; i>=min_order-1; i--) {
152        if(ref[i] > 0.10) {
153            est = i+1;
154            break;
155        }
156    }
157    return est;
158}
159
160int ff_lpc_calc_ref_coefs(LPCContext *s,
161                          const int32_t *samples, int order, double *ref)
162{
163    double autoc[MAX_LPC_ORDER + 1];
164
165    s->lpc_apply_welch_window(samples, s->blocksize, s->windowed_samples);
166    s->lpc_compute_autocorr(s->windowed_samples, s->blocksize, order, autoc);
167    compute_ref_coefs(autoc, order, ref, NULL);
168
169    return order;
170}
171
172double ff_lpc_calc_ref_coefs_f(LPCContext *s, const float *samples, int len,
173                               int order, double *ref)
174{
175    int i;
176    double signal = 0.0f, avg_err = 0.0f;
177    double autoc[MAX_LPC_ORDER+1] = {0}, error[MAX_LPC_ORDER+1] = {0};
178    const double a = 0.5f, b = 1.0f - a;
179
180    /* Apply windowing */
181    for (i = 0; i <= len / 2; i++) {
182        double weight = a - b*cos((2*M_PI*i)/(len - 1));
183        s->windowed_samples[i] = weight*samples[i];
184        s->windowed_samples[len-1-i] = weight*samples[len-1-i];
185    }
186
187    s->lpc_compute_autocorr(s->windowed_samples, len, order, autoc);
188    signal = autoc[0];
189    compute_ref_coefs(autoc, order, ref, error);
190    for (i = 0; i < order; i++)
191        avg_err = (avg_err + error[i])/2.0f;
192    return avg_err ? signal/avg_err : NAN;
193}
194
195/**
196 * Calculate LPC coefficients for multiple orders
197 *
198 * @param lpc_type LPC method for determining coefficients,
199 *                 see #FFLPCType for details
200 */
201int ff_lpc_calc_coefs(LPCContext *s,
202                      const int32_t *samples, int blocksize, int min_order,
203                      int max_order, int precision,
204                      int32_t coefs[][MAX_LPC_ORDER], int *shift,
205                      enum FFLPCType lpc_type, int lpc_passes,
206                      int omethod, int min_shift, int max_shift, int zero_shift)
207{
208    double autoc[MAX_LPC_ORDER+1];
209    double ref[MAX_LPC_ORDER] = { 0 };
210    double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
211    int i, j, pass = 0;
212    int opt_order;
213
214    av_assert2(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER &&
215           lpc_type > FF_LPC_TYPE_FIXED);
216    av_assert0(lpc_type == FF_LPC_TYPE_CHOLESKY || lpc_type == FF_LPC_TYPE_LEVINSON);
217
218    /* reinit LPC context if parameters have changed */
219    if (blocksize != s->blocksize || max_order != s->max_order ||
220        lpc_type  != s->lpc_type) {
221        ff_lpc_end(s);
222        ff_lpc_init(s, blocksize, max_order, lpc_type);
223    }
224
225    if(lpc_passes <= 0)
226        lpc_passes = 2;
227
228    if (lpc_type == FF_LPC_TYPE_LEVINSON || (lpc_type == FF_LPC_TYPE_CHOLESKY && lpc_passes > 1)) {
229        s->lpc_apply_welch_window(samples, blocksize, s->windowed_samples);
230
231        s->lpc_compute_autocorr(s->windowed_samples, blocksize, max_order, autoc);
232
233        compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1);
234
235        for(i=0; i<max_order; i++)
236            ref[i] = fabs(lpc[i][i]);
237
238        pass++;
239    }
240
241    if (lpc_type == FF_LPC_TYPE_CHOLESKY) {
242        LLSModel *m = s->lls_models;
243        LOCAL_ALIGNED(32, double, var, [FFALIGN(MAX_LPC_ORDER+1,4)]);
244        double av_uninit(weight);
245        memset(var, 0, FFALIGN(MAX_LPC_ORDER+1,4)*sizeof(*var));
246
247        for(j=0; j<max_order; j++)
248            m[0].coeff[max_order-1][j] = -lpc[max_order-1][j];
249
250        for(; pass<lpc_passes; pass++){
251            avpriv_init_lls(&m[pass&1], max_order);
252
253            weight=0;
254            for(i=max_order; i<blocksize; i++){
255                for(j=0; j<=max_order; j++)
256                    var[j]= samples[i-j];
257
258                if(pass){
259                    double eval, inv, rinv;
260                    eval= m[pass&1].evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
261                    eval= (512>>pass) + fabs(eval - var[0]);
262                    inv = 1/eval;
263                    rinv = sqrt(inv);
264                    for(j=0; j<=max_order; j++)
265                        var[j] *= rinv;
266                    weight += inv;
267                }else
268                    weight++;
269
270                m[pass&1].update_lls(&m[pass&1], var);
271            }
272            avpriv_solve_lls(&m[pass&1], 0.001, 0);
273        }
274
275        for(i=0; i<max_order; i++){
276            for(j=0; j<max_order; j++)
277                lpc[i][j]=-m[(pass-1)&1].coeff[i][j];
278            ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
279        }
280        for(i=max_order-1; i>0; i--)
281            ref[i] = ref[i-1] - ref[i];
282    }
283
284    opt_order = max_order;
285
286    if(omethod == ORDER_METHOD_EST) {
287        opt_order = estimate_best_order(ref, min_order, max_order);
288        i = opt_order-1;
289        quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i],
290                           min_shift, max_shift, zero_shift);
291    } else {
292        for(i=min_order-1; i<max_order; i++) {
293            quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i],
294                               min_shift, max_shift, zero_shift);
295        }
296    }
297
298    return opt_order;
299}
300
301av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order,
302                        enum FFLPCType lpc_type)
303{
304    s->blocksize = blocksize;
305    s->max_order = max_order;
306    s->lpc_type  = lpc_type;
307
308    s->windowed_buffer = av_mallocz((blocksize + 2 + FFALIGN(max_order, 4)) *
309                                    sizeof(*s->windowed_samples));
310    if (!s->windowed_buffer)
311        return AVERROR(ENOMEM);
312    s->windowed_samples = s->windowed_buffer + FFALIGN(max_order, 4);
313
314    s->lpc_apply_welch_window = lpc_apply_welch_window_c;
315    s->lpc_compute_autocorr   = lpc_compute_autocorr_c;
316
317#if ARCH_X86
318    ff_lpc_init_x86(s);
319#endif
320
321    return 0;
322}
323
324av_cold void ff_lpc_end(LPCContext *s)
325{
326    av_freep(&s->windowed_buffer);
327}
328