xref: /third_party/ffmpeg/libavcodec/jrevdct.c (revision cabdff1a)
1/*
2 * This file is part of the Independent JPEG Group's software.
3 *
4 * The authors make NO WARRANTY or representation, either express or implied,
5 * with respect to this software, its quality, accuracy, merchantability, or
6 * fitness for a particular purpose.  This software is provided "AS IS", and
7 * you, its user, assume the entire risk as to its quality and accuracy.
8 *
9 * This software is copyright (C) 1991, 1992, Thomas G. Lane.
10 * All Rights Reserved except as specified below.
11 *
12 * Permission is hereby granted to use, copy, modify, and distribute this
13 * software (or portions thereof) for any purpose, without fee, subject to
14 * these conditions:
15 * (1) If any part of the source code for this software is distributed, then
16 * this README file must be included, with this copyright and no-warranty
17 * notice unaltered; and any additions, deletions, or changes to the original
18 * files must be clearly indicated in accompanying documentation.
19 * (2) If only executable code is distributed, then the accompanying
20 * documentation must state that "this software is based in part on the work
21 * of the Independent JPEG Group".
22 * (3) Permission for use of this software is granted only if the user accepts
23 * full responsibility for any undesirable consequences; the authors accept
24 * NO LIABILITY for damages of any kind.
25 *
26 * These conditions apply to any software derived from or based on the IJG
27 * code, not just to the unmodified library.  If you use our work, you ought
28 * to acknowledge us.
29 *
30 * Permission is NOT granted for the use of any IJG author's name or company
31 * name in advertising or publicity relating to this software or products
32 * derived from it.  This software may be referred to only as "the Independent
33 * JPEG Group's software".
34 *
35 * We specifically permit and encourage the use of this software as the basis
36 * of commercial products, provided that all warranty or liability claims are
37 * assumed by the product vendor.
38 *
39 * This file contains the basic inverse-DCT transformation subroutine.
40 *
41 * This implementation is based on an algorithm described in
42 *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
43 *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
44 *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
45 * The primary algorithm described there uses 11 multiplies and 29 adds.
46 * We use their alternate method with 12 multiplies and 32 adds.
47 * The advantage of this method is that no data path contains more than one
48 * multiplication; this allows a very simple and accurate implementation in
49 * scaled fixed-point arithmetic, with a minimal number of shifts.
50 *
51 * I've made lots of modifications to attempt to take advantage of the
52 * sparse nature of the DCT matrices we're getting.  Although the logic
53 * is cumbersome, it's straightforward and the resulting code is much
54 * faster.
55 *
56 * A better way to do this would be to pass in the DCT block as a sparse
57 * matrix, perhaps with the difference cases encoded.
58 */
59
60/**
61 * @file
62 * Independent JPEG Group's LLM idct.
63 */
64
65#include <stddef.h>
66#include <stdint.h>
67
68#include "libavutil/intreadwrite.h"
69
70#include "dct.h"
71#include "idctdsp.h"
72
73#define EIGHT_BIT_SAMPLES
74
75#define DCTSIZE 8
76#define DCTSIZE2 64
77
78#define GLOBAL
79
80#define RIGHT_SHIFT(x, n) ((x) >> (n))
81
82typedef int16_t DCTBLOCK[DCTSIZE2];
83
84#define CONST_BITS 13
85
86/*
87 * This routine is specialized to the case DCTSIZE = 8.
88 */
89
90#if DCTSIZE != 8
91  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
92#endif
93
94
95/*
96 * A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT
97 * on each column.  Direct algorithms are also available, but they are
98 * much more complex and seem not to be any faster when reduced to code.
99 *
100 * The poop on this scaling stuff is as follows:
101 *
102 * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
103 * larger than the true IDCT outputs.  The final outputs are therefore
104 * a factor of N larger than desired; since N=8 this can be cured by
105 * a simple right shift at the end of the algorithm.  The advantage of
106 * this arrangement is that we save two multiplications per 1-D IDCT,
107 * because the y0 and y4 inputs need not be divided by sqrt(N).
108 *
109 * We have to do addition and subtraction of the integer inputs, which
110 * is no problem, and multiplication by fractional constants, which is
111 * a problem to do in integer arithmetic.  We multiply all the constants
112 * by CONST_SCALE and convert them to integer constants (thus retaining
113 * CONST_BITS bits of precision in the constants).  After doing a
114 * multiplication we have to divide the product by CONST_SCALE, with proper
115 * rounding, to produce the correct output.  This division can be done
116 * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
117 * as long as possible so that partial sums can be added together with
118 * full fractional precision.
119 *
120 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
121 * they are represented to better-than-integral precision.  These outputs
122 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
123 * with the recommended scaling.  (To scale up 12-bit sample data further, an
124 * intermediate int32 array would be needed.)
125 *
126 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
127 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
128 * shows that the values given below are the most effective.
129 */
130
131#ifdef EIGHT_BIT_SAMPLES
132#define PASS1_BITS  2
133#else
134#define PASS1_BITS  1   /* lose a little precision to avoid overflow */
135#endif
136
137#define ONE         ((int32_t) 1)
138
139#define CONST_SCALE (ONE << CONST_BITS)
140
141/* Convert a positive real constant to an integer scaled by CONST_SCALE.
142 * IMPORTANT: if your compiler doesn't do this arithmetic at compile time,
143 * you will pay a significant penalty in run time.  In that case, figure
144 * the correct integer constant values and insert them by hand.
145 */
146
147/* Actually FIX is no longer used, we precomputed them all */
148#define FIX(x)  ((int32_t) ((x) * CONST_SCALE + 0.5))
149
150/* Descale and correctly round an int32_t value that's scaled by N bits.
151 * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
152 * the fudge factor is correct for either sign of X.
153 */
154
155#define DESCALE(x,n)  RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
156
157/* Multiply an int32_t variable by an int32_t constant to yield an int32_t result.
158 * For 8-bit samples with the recommended scaling, all the variable
159 * and constant values involved are no more than 16 bits wide, so a
160 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply;
161 * this provides a useful speedup on many machines.
162 * There is no way to specify a 16x16->32 multiply in portable C, but
163 * some C compilers will do the right thing if you provide the correct
164 * combination of casts.
165 * NB: for 12-bit samples, a full 32-bit multiplication will be needed.
166 */
167
168#ifdef EIGHT_BIT_SAMPLES
169#ifdef SHORTxSHORT_32           /* may work if 'int' is 32 bits */
170#define MULTIPLY(var,const)  (((int16_t) (var)) * ((int16_t) (const)))
171#endif
172#ifdef SHORTxLCONST_32          /* known to work with Microsoft C 6.0 */
173#define MULTIPLY(var,const)  (((int16_t) (var)) * ((int32_t) (const)))
174#endif
175#endif
176
177#ifndef MULTIPLY                /* default definition */
178#define MULTIPLY(var,const)  ((var) * (const))
179#endif
180
181
182/*
183  Unlike our decoder where we approximate the FIXes, we need to use exact
184ones here or successive P-frames will drift too much with Reference frame coding
185*/
186#define FIX_0_211164243 1730
187#define FIX_0_275899380 2260
188#define FIX_0_298631336 2446
189#define FIX_0_390180644 3196
190#define FIX_0_509795579 4176
191#define FIX_0_541196100 4433
192#define FIX_0_601344887 4926
193#define FIX_0_765366865 6270
194#define FIX_0_785694958 6436
195#define FIX_0_899976223 7373
196#define FIX_1_061594337 8697
197#define FIX_1_111140466 9102
198#define FIX_1_175875602 9633
199#define FIX_1_306562965 10703
200#define FIX_1_387039845 11363
201#define FIX_1_451774981 11893
202#define FIX_1_501321110 12299
203#define FIX_1_662939225 13623
204#define FIX_1_847759065 15137
205#define FIX_1_961570560 16069
206#define FIX_2_053119869 16819
207#define FIX_2_172734803 17799
208#define FIX_2_562915447 20995
209#define FIX_3_072711026 25172
210
211/*
212 * Perform the inverse DCT on one block of coefficients.
213 */
214
215void ff_j_rev_dct(DCTBLOCK data)
216{
217  int32_t tmp0, tmp1, tmp2, tmp3;
218  int32_t tmp10, tmp11, tmp12, tmp13;
219  int32_t z1, z2, z3, z4, z5;
220  int32_t d0, d1, d2, d3, d4, d5, d6, d7;
221  register int16_t *dataptr;
222  int rowctr;
223
224  /* Pass 1: process rows. */
225  /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
226  /* furthermore, we scale the results by 2**PASS1_BITS. */
227
228  dataptr = data;
229
230  for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
231    /* Due to quantization, we will usually find that many of the input
232     * coefficients are zero, especially the AC terms.  We can exploit this
233     * by short-circuiting the IDCT calculation for any row in which all
234     * the AC terms are zero.  In that case each output is equal to the
235     * DC coefficient (with scale factor as needed).
236     * With typical images and quantization tables, half or more of the
237     * row DCT calculations can be simplified this way.
238     */
239
240    register uint8_t *idataptr = (uint8_t*)dataptr;
241
242    /* WARNING: we do the same permutation as MMX idct to simplify the
243       video core */
244    d0 = dataptr[0];
245    d2 = dataptr[1];
246    d4 = dataptr[2];
247    d6 = dataptr[3];
248    d1 = dataptr[4];
249    d3 = dataptr[5];
250    d5 = dataptr[6];
251    d7 = dataptr[7];
252
253    if ((d1 | d2 | d3 | d4 | d5 | d6 | d7) == 0) {
254      /* AC terms all zero */
255      if (d0) {
256          /* Compute a 32 bit value to assign. */
257          int16_t dcval = (int16_t) (d0 * (1 << PASS1_BITS));
258          register int v = (dcval & 0xffff) | ((dcval * (1 << 16)) & 0xffff0000);
259
260          AV_WN32A(&idataptr[ 0], v);
261          AV_WN32A(&idataptr[ 4], v);
262          AV_WN32A(&idataptr[ 8], v);
263          AV_WN32A(&idataptr[12], v);
264      }
265
266      dataptr += DCTSIZE;       /* advance pointer to next row */
267      continue;
268    }
269
270    /* Even part: reverse the even part of the forward DCT. */
271    /* The rotator is sqrt(2)*c(-6). */
272{
273    if (d6) {
274            if (d2) {
275                    /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
276                    z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
277                    tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
278                    tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
279
280                    tmp0 = (d0 + d4) * CONST_SCALE;
281                    tmp1 = (d0 - d4) * CONST_SCALE;
282
283                    tmp10 = tmp0 + tmp3;
284                    tmp13 = tmp0 - tmp3;
285                    tmp11 = tmp1 + tmp2;
286                    tmp12 = tmp1 - tmp2;
287            } else {
288                    /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
289                    tmp2 = MULTIPLY(-d6, FIX_1_306562965);
290                    tmp3 = MULTIPLY(d6, FIX_0_541196100);
291
292                    tmp0 = (d0 + d4) * CONST_SCALE;
293                    tmp1 = (d0 - d4) * CONST_SCALE;
294
295                    tmp10 = tmp0 + tmp3;
296                    tmp13 = tmp0 - tmp3;
297                    tmp11 = tmp1 + tmp2;
298                    tmp12 = tmp1 - tmp2;
299            }
300    } else {
301            if (d2) {
302                    /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
303                    tmp2 = MULTIPLY(d2, FIX_0_541196100);
304                    tmp3 = MULTIPLY(d2, FIX_1_306562965);
305
306                    tmp0 = (d0 + d4) * CONST_SCALE;
307                    tmp1 = (d0 - d4) * CONST_SCALE;
308
309                    tmp10 = tmp0 + tmp3;
310                    tmp13 = tmp0 - tmp3;
311                    tmp11 = tmp1 + tmp2;
312                    tmp12 = tmp1 - tmp2;
313            } else {
314                    /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
315                    tmp10 = tmp13 = (d0 + d4) * CONST_SCALE;
316                    tmp11 = tmp12 = (d0 - d4) * CONST_SCALE;
317            }
318      }
319
320    /* Odd part per figure 8; the matrix is unitary and hence its
321     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
322     */
323
324    if (d7) {
325        if (d5) {
326            if (d3) {
327                if (d1) {
328                    /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
329                    z1 = d7 + d1;
330                    z2 = d5 + d3;
331                    z3 = d7 + d3;
332                    z4 = d5 + d1;
333                    z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
334
335                    tmp0 = MULTIPLY(d7, FIX_0_298631336);
336                    tmp1 = MULTIPLY(d5, FIX_2_053119869);
337                    tmp2 = MULTIPLY(d3, FIX_3_072711026);
338                    tmp3 = MULTIPLY(d1, FIX_1_501321110);
339                    z1 = MULTIPLY(-z1, FIX_0_899976223);
340                    z2 = MULTIPLY(-z2, FIX_2_562915447);
341                    z3 = MULTIPLY(-z3, FIX_1_961570560);
342                    z4 = MULTIPLY(-z4, FIX_0_390180644);
343
344                    z3 += z5;
345                    z4 += z5;
346
347                    tmp0 += z1 + z3;
348                    tmp1 += z2 + z4;
349                    tmp2 += z2 + z3;
350                    tmp3 += z1 + z4;
351                } else {
352                    /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
353                    z2 = d5 + d3;
354                    z3 = d7 + d3;
355                    z5 = MULTIPLY(z3 + d5, FIX_1_175875602);
356
357                    tmp0 = MULTIPLY(d7, FIX_0_298631336);
358                    tmp1 = MULTIPLY(d5, FIX_2_053119869);
359                    tmp2 = MULTIPLY(d3, FIX_3_072711026);
360                    z1 = MULTIPLY(-d7, FIX_0_899976223);
361                    z2 = MULTIPLY(-z2, FIX_2_562915447);
362                    z3 = MULTIPLY(-z3, FIX_1_961570560);
363                    z4 = MULTIPLY(-d5, FIX_0_390180644);
364
365                    z3 += z5;
366                    z4 += z5;
367
368                    tmp0 += z1 + z3;
369                    tmp1 += z2 + z4;
370                    tmp2 += z2 + z3;
371                    tmp3 = z1 + z4;
372                }
373            } else {
374                if (d1) {
375                    /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
376                    z1 = d7 + d1;
377                    z4 = d5 + d1;
378                    z5 = MULTIPLY(d7 + z4, FIX_1_175875602);
379
380                    tmp0 = MULTIPLY(d7, FIX_0_298631336);
381                    tmp1 = MULTIPLY(d5, FIX_2_053119869);
382                    tmp3 = MULTIPLY(d1, FIX_1_501321110);
383                    z1 = MULTIPLY(-z1, FIX_0_899976223);
384                    z2 = MULTIPLY(-d5, FIX_2_562915447);
385                    z3 = MULTIPLY(-d7, FIX_1_961570560);
386                    z4 = MULTIPLY(-z4, FIX_0_390180644);
387
388                    z3 += z5;
389                    z4 += z5;
390
391                    tmp0 += z1 + z3;
392                    tmp1 += z2 + z4;
393                    tmp2 = z2 + z3;
394                    tmp3 += z1 + z4;
395                } else {
396                    /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
397                    tmp0 = MULTIPLY(-d7, FIX_0_601344887);
398                    z1 = MULTIPLY(-d7, FIX_0_899976223);
399                    z3 = MULTIPLY(-d7, FIX_1_961570560);
400                    tmp1 = MULTIPLY(-d5, FIX_0_509795579);
401                    z2 = MULTIPLY(-d5, FIX_2_562915447);
402                    z4 = MULTIPLY(-d5, FIX_0_390180644);
403                    z5 = MULTIPLY(d5 + d7, FIX_1_175875602);
404
405                    z3 += z5;
406                    z4 += z5;
407
408                    tmp0 += z3;
409                    tmp1 += z4;
410                    tmp2 = z2 + z3;
411                    tmp3 = z1 + z4;
412                }
413            }
414        } else {
415            if (d3) {
416                if (d1) {
417                    /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
418                    z1 = d7 + d1;
419                    z3 = d7 + d3;
420                    z5 = MULTIPLY(z3 + d1, FIX_1_175875602);
421
422                    tmp0 = MULTIPLY(d7, FIX_0_298631336);
423                    tmp2 = MULTIPLY(d3, FIX_3_072711026);
424                    tmp3 = MULTIPLY(d1, FIX_1_501321110);
425                    z1 = MULTIPLY(-z1, FIX_0_899976223);
426                    z2 = MULTIPLY(-d3, FIX_2_562915447);
427                    z3 = MULTIPLY(-z3, FIX_1_961570560);
428                    z4 = MULTIPLY(-d1, FIX_0_390180644);
429
430                    z3 += z5;
431                    z4 += z5;
432
433                    tmp0 += z1 + z3;
434                    tmp1 = z2 + z4;
435                    tmp2 += z2 + z3;
436                    tmp3 += z1 + z4;
437                } else {
438                    /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
439                    z3 = d7 + d3;
440
441                    tmp0 = MULTIPLY(-d7, FIX_0_601344887);
442                    z1 = MULTIPLY(-d7, FIX_0_899976223);
443                    tmp2 = MULTIPLY(d3, FIX_0_509795579);
444                    z2 = MULTIPLY(-d3, FIX_2_562915447);
445                    z5 = MULTIPLY(z3, FIX_1_175875602);
446                    z3 = MULTIPLY(-z3, FIX_0_785694958);
447
448                    tmp0 += z3;
449                    tmp1 = z2 + z5;
450                    tmp2 += z3;
451                    tmp3 = z1 + z5;
452                }
453            } else {
454                if (d1) {
455                    /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
456                    z1 = d7 + d1;
457                    z5 = MULTIPLY(z1, FIX_1_175875602);
458
459                    z1 = MULTIPLY(z1, FIX_0_275899380);
460                    z3 = MULTIPLY(-d7, FIX_1_961570560);
461                    tmp0 = MULTIPLY(-d7, FIX_1_662939225);
462                    z4 = MULTIPLY(-d1, FIX_0_390180644);
463                    tmp3 = MULTIPLY(d1, FIX_1_111140466);
464
465                    tmp0 += z1;
466                    tmp1 = z4 + z5;
467                    tmp2 = z3 + z5;
468                    tmp3 += z1;
469                } else {
470                    /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
471                    tmp0 = MULTIPLY(-d7, FIX_1_387039845);
472                    tmp1 = MULTIPLY(d7, FIX_1_175875602);
473                    tmp2 = MULTIPLY(-d7, FIX_0_785694958);
474                    tmp3 = MULTIPLY(d7, FIX_0_275899380);
475                }
476            }
477        }
478    } else {
479        if (d5) {
480            if (d3) {
481                if (d1) {
482                    /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
483                    z2 = d5 + d3;
484                    z4 = d5 + d1;
485                    z5 = MULTIPLY(d3 + z4, FIX_1_175875602);
486
487                    tmp1 = MULTIPLY(d5, FIX_2_053119869);
488                    tmp2 = MULTIPLY(d3, FIX_3_072711026);
489                    tmp3 = MULTIPLY(d1, FIX_1_501321110);
490                    z1 = MULTIPLY(-d1, FIX_0_899976223);
491                    z2 = MULTIPLY(-z2, FIX_2_562915447);
492                    z3 = MULTIPLY(-d3, FIX_1_961570560);
493                    z4 = MULTIPLY(-z4, FIX_0_390180644);
494
495                    z3 += z5;
496                    z4 += z5;
497
498                    tmp0 = z1 + z3;
499                    tmp1 += z2 + z4;
500                    tmp2 += z2 + z3;
501                    tmp3 += z1 + z4;
502                } else {
503                    /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
504                    z2 = d5 + d3;
505
506                    z5 = MULTIPLY(z2, FIX_1_175875602);
507                    tmp1 = MULTIPLY(d5, FIX_1_662939225);
508                    z4 = MULTIPLY(-d5, FIX_0_390180644);
509                    z2 = MULTIPLY(-z2, FIX_1_387039845);
510                    tmp2 = MULTIPLY(d3, FIX_1_111140466);
511                    z3 = MULTIPLY(-d3, FIX_1_961570560);
512
513                    tmp0 = z3 + z5;
514                    tmp1 += z2;
515                    tmp2 += z2;
516                    tmp3 = z4 + z5;
517                }
518            } else {
519                if (d1) {
520                    /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
521                    z4 = d5 + d1;
522
523                    z5 = MULTIPLY(z4, FIX_1_175875602);
524                    z1 = MULTIPLY(-d1, FIX_0_899976223);
525                    tmp3 = MULTIPLY(d1, FIX_0_601344887);
526                    tmp1 = MULTIPLY(-d5, FIX_0_509795579);
527                    z2 = MULTIPLY(-d5, FIX_2_562915447);
528                    z4 = MULTIPLY(z4, FIX_0_785694958);
529
530                    tmp0 = z1 + z5;
531                    tmp1 += z4;
532                    tmp2 = z2 + z5;
533                    tmp3 += z4;
534                } else {
535                    /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
536                    tmp0 = MULTIPLY(d5, FIX_1_175875602);
537                    tmp1 = MULTIPLY(d5, FIX_0_275899380);
538                    tmp2 = MULTIPLY(-d5, FIX_1_387039845);
539                    tmp3 = MULTIPLY(d5, FIX_0_785694958);
540                }
541            }
542        } else {
543            if (d3) {
544                if (d1) {
545                    /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
546                    z5 = d1 + d3;
547                    tmp3 = MULTIPLY(d1, FIX_0_211164243);
548                    tmp2 = MULTIPLY(-d3, FIX_1_451774981);
549                    z1 = MULTIPLY(d1, FIX_1_061594337);
550                    z2 = MULTIPLY(-d3, FIX_2_172734803);
551                    z4 = MULTIPLY(z5, FIX_0_785694958);
552                    z5 = MULTIPLY(z5, FIX_1_175875602);
553
554                    tmp0 = z1 - z4;
555                    tmp1 = z2 + z4;
556                    tmp2 += z5;
557                    tmp3 += z5;
558                } else {
559                    /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
560                    tmp0 = MULTIPLY(-d3, FIX_0_785694958);
561                    tmp1 = MULTIPLY(-d3, FIX_1_387039845);
562                    tmp2 = MULTIPLY(-d3, FIX_0_275899380);
563                    tmp3 = MULTIPLY(d3, FIX_1_175875602);
564                }
565            } else {
566                if (d1) {
567                    /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
568                    tmp0 = MULTIPLY(d1, FIX_0_275899380);
569                    tmp1 = MULTIPLY(d1, FIX_0_785694958);
570                    tmp2 = MULTIPLY(d1, FIX_1_175875602);
571                    tmp3 = MULTIPLY(d1, FIX_1_387039845);
572                } else {
573                    /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
574                    tmp0 = tmp1 = tmp2 = tmp3 = 0;
575                }
576            }
577        }
578    }
579}
580    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
581
582    dataptr[0] = (int16_t) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
583    dataptr[7] = (int16_t) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
584    dataptr[1] = (int16_t) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
585    dataptr[6] = (int16_t) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
586    dataptr[2] = (int16_t) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
587    dataptr[5] = (int16_t) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
588    dataptr[3] = (int16_t) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
589    dataptr[4] = (int16_t) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
590
591    dataptr += DCTSIZE;         /* advance pointer to next row */
592  }
593
594  /* Pass 2: process columns. */
595  /* Note that we must descale the results by a factor of 8 == 2**3, */
596  /* and also undo the PASS1_BITS scaling. */
597
598  dataptr = data;
599  for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
600    /* Columns of zeroes can be exploited in the same way as we did with rows.
601     * However, the row calculation has created many nonzero AC terms, so the
602     * simplification applies less often (typically 5% to 10% of the time).
603     * On machines with very fast multiplication, it's possible that the
604     * test takes more time than it's worth.  In that case this section
605     * may be commented out.
606     */
607
608    d0 = dataptr[DCTSIZE*0];
609    d1 = dataptr[DCTSIZE*1];
610    d2 = dataptr[DCTSIZE*2];
611    d3 = dataptr[DCTSIZE*3];
612    d4 = dataptr[DCTSIZE*4];
613    d5 = dataptr[DCTSIZE*5];
614    d6 = dataptr[DCTSIZE*6];
615    d7 = dataptr[DCTSIZE*7];
616
617    /* Even part: reverse the even part of the forward DCT. */
618    /* The rotator is sqrt(2)*c(-6). */
619    if (d6) {
620            if (d2) {
621                    /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
622                    z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
623                    tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
624                    tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
625
626                    tmp0 = (d0 + d4) * CONST_SCALE;
627                    tmp1 = (d0 - d4) * CONST_SCALE;
628
629                    tmp10 = tmp0 + tmp3;
630                    tmp13 = tmp0 - tmp3;
631                    tmp11 = tmp1 + tmp2;
632                    tmp12 = tmp1 - tmp2;
633            } else {
634                    /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
635                    tmp2 = MULTIPLY(-d6, FIX_1_306562965);
636                    tmp3 = MULTIPLY(d6, FIX_0_541196100);
637
638                    tmp0 = (d0 + d4) * CONST_SCALE;
639                    tmp1 = (d0 - d4) * CONST_SCALE;
640
641                    tmp10 = tmp0 + tmp3;
642                    tmp13 = tmp0 - tmp3;
643                    tmp11 = tmp1 + tmp2;
644                    tmp12 = tmp1 - tmp2;
645            }
646    } else {
647            if (d2) {
648                    /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
649                    tmp2 = MULTIPLY(d2, FIX_0_541196100);
650                    tmp3 = MULTIPLY(d2, FIX_1_306562965);
651
652                    tmp0 = (d0 + d4) * CONST_SCALE;
653                    tmp1 = (d0 - d4) * CONST_SCALE;
654
655                    tmp10 = tmp0 + tmp3;
656                    tmp13 = tmp0 - tmp3;
657                    tmp11 = tmp1 + tmp2;
658                    tmp12 = tmp1 - tmp2;
659            } else {
660                    /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
661                    tmp10 = tmp13 = (d0 + d4) * CONST_SCALE;
662                    tmp11 = tmp12 = (d0 - d4) * CONST_SCALE;
663            }
664    }
665
666    /* Odd part per figure 8; the matrix is unitary and hence its
667     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
668     */
669    if (d7) {
670        if (d5) {
671            if (d3) {
672                if (d1) {
673                    /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
674                    z1 = d7 + d1;
675                    z2 = d5 + d3;
676                    z3 = d7 + d3;
677                    z4 = d5 + d1;
678                    z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
679
680                    tmp0 = MULTIPLY(d7, FIX_0_298631336);
681                    tmp1 = MULTIPLY(d5, FIX_2_053119869);
682                    tmp2 = MULTIPLY(d3, FIX_3_072711026);
683                    tmp3 = MULTIPLY(d1, FIX_1_501321110);
684                    z1 = MULTIPLY(-z1, FIX_0_899976223);
685                    z2 = MULTIPLY(-z2, FIX_2_562915447);
686                    z3 = MULTIPLY(-z3, FIX_1_961570560);
687                    z4 = MULTIPLY(-z4, FIX_0_390180644);
688
689                    z3 += z5;
690                    z4 += z5;
691
692                    tmp0 += z1 + z3;
693                    tmp1 += z2 + z4;
694                    tmp2 += z2 + z3;
695                    tmp3 += z1 + z4;
696                } else {
697                    /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
698                    z2 = d5 + d3;
699                    z3 = d7 + d3;
700                    z5 = MULTIPLY(z3 + d5, FIX_1_175875602);
701
702                    tmp0 = MULTIPLY(d7, FIX_0_298631336);
703                    tmp1 = MULTIPLY(d5, FIX_2_053119869);
704                    tmp2 = MULTIPLY(d3, FIX_3_072711026);
705                    z1 = MULTIPLY(-d7, FIX_0_899976223);
706                    z2 = MULTIPLY(-z2, FIX_2_562915447);
707                    z3 = MULTIPLY(-z3, FIX_1_961570560);
708                    z4 = MULTIPLY(-d5, FIX_0_390180644);
709
710                    z3 += z5;
711                    z4 += z5;
712
713                    tmp0 += z1 + z3;
714                    tmp1 += z2 + z4;
715                    tmp2 += z2 + z3;
716                    tmp3 = z1 + z4;
717                }
718            } else {
719                if (d1) {
720                    /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
721                    z1 = d7 + d1;
722                    z3 = d7;
723                    z4 = d5 + d1;
724                    z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
725
726                    tmp0 = MULTIPLY(d7, FIX_0_298631336);
727                    tmp1 = MULTIPLY(d5, FIX_2_053119869);
728                    tmp3 = MULTIPLY(d1, FIX_1_501321110);
729                    z1 = MULTIPLY(-z1, FIX_0_899976223);
730                    z2 = MULTIPLY(-d5, FIX_2_562915447);
731                    z3 = MULTIPLY(-d7, FIX_1_961570560);
732                    z4 = MULTIPLY(-z4, FIX_0_390180644);
733
734                    z3 += z5;
735                    z4 += z5;
736
737                    tmp0 += z1 + z3;
738                    tmp1 += z2 + z4;
739                    tmp2 = z2 + z3;
740                    tmp3 += z1 + z4;
741                } else {
742                    /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
743                    tmp0 = MULTIPLY(-d7, FIX_0_601344887);
744                    z1 = MULTIPLY(-d7, FIX_0_899976223);
745                    z3 = MULTIPLY(-d7, FIX_1_961570560);
746                    tmp1 = MULTIPLY(-d5, FIX_0_509795579);
747                    z2 = MULTIPLY(-d5, FIX_2_562915447);
748                    z4 = MULTIPLY(-d5, FIX_0_390180644);
749                    z5 = MULTIPLY(d5 + d7, FIX_1_175875602);
750
751                    z3 += z5;
752                    z4 += z5;
753
754                    tmp0 += z3;
755                    tmp1 += z4;
756                    tmp2 = z2 + z3;
757                    tmp3 = z1 + z4;
758                }
759            }
760        } else {
761            if (d3) {
762                if (d1) {
763                    /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
764                    z1 = d7 + d1;
765                    z3 = d7 + d3;
766                    z5 = MULTIPLY(z3 + d1, FIX_1_175875602);
767
768                    tmp0 = MULTIPLY(d7, FIX_0_298631336);
769                    tmp2 = MULTIPLY(d3, FIX_3_072711026);
770                    tmp3 = MULTIPLY(d1, FIX_1_501321110);
771                    z1 = MULTIPLY(-z1, FIX_0_899976223);
772                    z2 = MULTIPLY(-d3, FIX_2_562915447);
773                    z3 = MULTIPLY(-z3, FIX_1_961570560);
774                    z4 = MULTIPLY(-d1, FIX_0_390180644);
775
776                    z3 += z5;
777                    z4 += z5;
778
779                    tmp0 += z1 + z3;
780                    tmp1 = z2 + z4;
781                    tmp2 += z2 + z3;
782                    tmp3 += z1 + z4;
783                } else {
784                    /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
785                    z3 = d7 + d3;
786
787                    tmp0 = MULTIPLY(-d7, FIX_0_601344887);
788                    z1 = MULTIPLY(-d7, FIX_0_899976223);
789                    tmp2 = MULTIPLY(d3, FIX_0_509795579);
790                    z2 = MULTIPLY(-d3, FIX_2_562915447);
791                    z5 = MULTIPLY(z3, FIX_1_175875602);
792                    z3 = MULTIPLY(-z3, FIX_0_785694958);
793
794                    tmp0 += z3;
795                    tmp1 = z2 + z5;
796                    tmp2 += z3;
797                    tmp3 = z1 + z5;
798                }
799            } else {
800                if (d1) {
801                    /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
802                    z1 = d7 + d1;
803                    z5 = MULTIPLY(z1, FIX_1_175875602);
804
805                    z1 = MULTIPLY(z1, FIX_0_275899380);
806                    z3 = MULTIPLY(-d7, FIX_1_961570560);
807                    tmp0 = MULTIPLY(-d7, FIX_1_662939225);
808                    z4 = MULTIPLY(-d1, FIX_0_390180644);
809                    tmp3 = MULTIPLY(d1, FIX_1_111140466);
810
811                    tmp0 += z1;
812                    tmp1 = z4 + z5;
813                    tmp2 = z3 + z5;
814                    tmp3 += z1;
815                } else {
816                    /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
817                    tmp0 = MULTIPLY(-d7, FIX_1_387039845);
818                    tmp1 = MULTIPLY(d7, FIX_1_175875602);
819                    tmp2 = MULTIPLY(-d7, FIX_0_785694958);
820                    tmp3 = MULTIPLY(d7, FIX_0_275899380);
821                }
822            }
823        }
824    } else {
825        if (d5) {
826            if (d3) {
827                if (d1) {
828                    /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
829                    z2 = d5 + d3;
830                    z4 = d5 + d1;
831                    z5 = MULTIPLY(d3 + z4, FIX_1_175875602);
832
833                    tmp1 = MULTIPLY(d5, FIX_2_053119869);
834                    tmp2 = MULTIPLY(d3, FIX_3_072711026);
835                    tmp3 = MULTIPLY(d1, FIX_1_501321110);
836                    z1 = MULTIPLY(-d1, FIX_0_899976223);
837                    z2 = MULTIPLY(-z2, FIX_2_562915447);
838                    z3 = MULTIPLY(-d3, FIX_1_961570560);
839                    z4 = MULTIPLY(-z4, FIX_0_390180644);
840
841                    z3 += z5;
842                    z4 += z5;
843
844                    tmp0 = z1 + z3;
845                    tmp1 += z2 + z4;
846                    tmp2 += z2 + z3;
847                    tmp3 += z1 + z4;
848                } else {
849                    /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
850                    z2 = d5 + d3;
851
852                    z5 = MULTIPLY(z2, FIX_1_175875602);
853                    tmp1 = MULTIPLY(d5, FIX_1_662939225);
854                    z4 = MULTIPLY(-d5, FIX_0_390180644);
855                    z2 = MULTIPLY(-z2, FIX_1_387039845);
856                    tmp2 = MULTIPLY(d3, FIX_1_111140466);
857                    z3 = MULTIPLY(-d3, FIX_1_961570560);
858
859                    tmp0 = z3 + z5;
860                    tmp1 += z2;
861                    tmp2 += z2;
862                    tmp3 = z4 + z5;
863                }
864            } else {
865                if (d1) {
866                    /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
867                    z4 = d5 + d1;
868
869                    z5 = MULTIPLY(z4, FIX_1_175875602);
870                    z1 = MULTIPLY(-d1, FIX_0_899976223);
871                    tmp3 = MULTIPLY(d1, FIX_0_601344887);
872                    tmp1 = MULTIPLY(-d5, FIX_0_509795579);
873                    z2 = MULTIPLY(-d5, FIX_2_562915447);
874                    z4 = MULTIPLY(z4, FIX_0_785694958);
875
876                    tmp0 = z1 + z5;
877                    tmp1 += z4;
878                    tmp2 = z2 + z5;
879                    tmp3 += z4;
880                } else {
881                    /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
882                    tmp0 = MULTIPLY(d5, FIX_1_175875602);
883                    tmp1 = MULTIPLY(d5, FIX_0_275899380);
884                    tmp2 = MULTIPLY(-d5, FIX_1_387039845);
885                    tmp3 = MULTIPLY(d5, FIX_0_785694958);
886                }
887            }
888        } else {
889            if (d3) {
890                if (d1) {
891                    /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
892                    z5 = d1 + d3;
893                    tmp3 = MULTIPLY(d1, FIX_0_211164243);
894                    tmp2 = MULTIPLY(-d3, FIX_1_451774981);
895                    z1 = MULTIPLY(d1, FIX_1_061594337);
896                    z2 = MULTIPLY(-d3, FIX_2_172734803);
897                    z4 = MULTIPLY(z5, FIX_0_785694958);
898                    z5 = MULTIPLY(z5, FIX_1_175875602);
899
900                    tmp0 = z1 - z4;
901                    tmp1 = z2 + z4;
902                    tmp2 += z5;
903                    tmp3 += z5;
904                } else {
905                    /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
906                    tmp0 = MULTIPLY(-d3, FIX_0_785694958);
907                    tmp1 = MULTIPLY(-d3, FIX_1_387039845);
908                    tmp2 = MULTIPLY(-d3, FIX_0_275899380);
909                    tmp3 = MULTIPLY(d3, FIX_1_175875602);
910                }
911            } else {
912                if (d1) {
913                    /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
914                    tmp0 = MULTIPLY(d1, FIX_0_275899380);
915                    tmp1 = MULTIPLY(d1, FIX_0_785694958);
916                    tmp2 = MULTIPLY(d1, FIX_1_175875602);
917                    tmp3 = MULTIPLY(d1, FIX_1_387039845);
918                } else {
919                    /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
920                    tmp0 = tmp1 = tmp2 = tmp3 = 0;
921                }
922            }
923        }
924    }
925
926    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
927
928    dataptr[DCTSIZE*0] = (int16_t) DESCALE(tmp10 + tmp3,
929                                           CONST_BITS+PASS1_BITS+3);
930    dataptr[DCTSIZE*7] = (int16_t) DESCALE(tmp10 - tmp3,
931                                           CONST_BITS+PASS1_BITS+3);
932    dataptr[DCTSIZE*1] = (int16_t) DESCALE(tmp11 + tmp2,
933                                           CONST_BITS+PASS1_BITS+3);
934    dataptr[DCTSIZE*6] = (int16_t) DESCALE(tmp11 - tmp2,
935                                           CONST_BITS+PASS1_BITS+3);
936    dataptr[DCTSIZE*2] = (int16_t) DESCALE(tmp12 + tmp1,
937                                           CONST_BITS+PASS1_BITS+3);
938    dataptr[DCTSIZE*5] = (int16_t) DESCALE(tmp12 - tmp1,
939                                           CONST_BITS+PASS1_BITS+3);
940    dataptr[DCTSIZE*3] = (int16_t) DESCALE(tmp13 + tmp0,
941                                           CONST_BITS+PASS1_BITS+3);
942    dataptr[DCTSIZE*4] = (int16_t) DESCALE(tmp13 - tmp0,
943                                           CONST_BITS+PASS1_BITS+3);
944
945    dataptr++;                  /* advance pointer to next column */
946  }
947}
948
949#undef DCTSIZE
950#define DCTSIZE 4
951#define DCTSTRIDE 8
952
953void ff_j_rev_dct4(DCTBLOCK data)
954{
955  int32_t tmp0, tmp1, tmp2, tmp3;
956  int32_t tmp10, tmp11, tmp12, tmp13;
957  int32_t z1;
958  int32_t d0, d2, d4, d6;
959  register int16_t *dataptr;
960  int rowctr;
961
962  /* Pass 1: process rows. */
963  /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
964  /* furthermore, we scale the results by 2**PASS1_BITS. */
965
966  data[0] += 4;
967
968  dataptr = data;
969
970  for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
971    /* Due to quantization, we will usually find that many of the input
972     * coefficients are zero, especially the AC terms.  We can exploit this
973     * by short-circuiting the IDCT calculation for any row in which all
974     * the AC terms are zero.  In that case each output is equal to the
975     * DC coefficient (with scale factor as needed).
976     * With typical images and quantization tables, half or more of the
977     * row DCT calculations can be simplified this way.
978     */
979
980    register uint8_t *idataptr = (uint8_t*)dataptr;
981
982    d0 = dataptr[0];
983    d2 = dataptr[1];
984    d4 = dataptr[2];
985    d6 = dataptr[3];
986
987    if ((d2 | d4 | d6) == 0) {
988      /* AC terms all zero */
989      if (d0) {
990          /* Compute a 32 bit value to assign. */
991          int16_t dcval = (int16_t) (d0 << PASS1_BITS);
992          register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000);
993
994          AV_WN32A(&idataptr[0], v);
995          AV_WN32A(&idataptr[4], v);
996      }
997
998      dataptr += DCTSTRIDE;     /* advance pointer to next row */
999      continue;
1000    }
1001
1002    /* Even part: reverse the even part of the forward DCT. */
1003    /* The rotator is sqrt(2)*c(-6). */
1004    if (d6) {
1005            if (d2) {
1006                    /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
1007                    z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
1008                    tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
1009                    tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
1010
1011                    tmp0 = (d0 + d4) << CONST_BITS;
1012                    tmp1 = (d0 - d4) << CONST_BITS;
1013
1014                    tmp10 = tmp0 + tmp3;
1015                    tmp13 = tmp0 - tmp3;
1016                    tmp11 = tmp1 + tmp2;
1017                    tmp12 = tmp1 - tmp2;
1018            } else {
1019                    /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
1020                    tmp2 = MULTIPLY(-d6, FIX_1_306562965);
1021                    tmp3 = MULTIPLY(d6, FIX_0_541196100);
1022
1023                    tmp0 = (d0 + d4) << CONST_BITS;
1024                    tmp1 = (d0 - d4) << CONST_BITS;
1025
1026                    tmp10 = tmp0 + tmp3;
1027                    tmp13 = tmp0 - tmp3;
1028                    tmp11 = tmp1 + tmp2;
1029                    tmp12 = tmp1 - tmp2;
1030            }
1031    } else {
1032            if (d2) {
1033                    /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
1034                    tmp2 = MULTIPLY(d2, FIX_0_541196100);
1035                    tmp3 = MULTIPLY(d2, FIX_1_306562965);
1036
1037                    tmp0 = (d0 + d4) << CONST_BITS;
1038                    tmp1 = (d0 - d4) << CONST_BITS;
1039
1040                    tmp10 = tmp0 + tmp3;
1041                    tmp13 = tmp0 - tmp3;
1042                    tmp11 = tmp1 + tmp2;
1043                    tmp12 = tmp1 - tmp2;
1044            } else {
1045                    /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
1046                    tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
1047                    tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
1048            }
1049      }
1050
1051    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
1052
1053    dataptr[0] = (int16_t) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
1054    dataptr[1] = (int16_t) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
1055    dataptr[2] = (int16_t) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
1056    dataptr[3] = (int16_t) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
1057
1058    dataptr += DCTSTRIDE;       /* advance pointer to next row */
1059  }
1060
1061  /* Pass 2: process columns. */
1062  /* Note that we must descale the results by a factor of 8 == 2**3, */
1063  /* and also undo the PASS1_BITS scaling. */
1064
1065  dataptr = data;
1066  for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
1067    /* Columns of zeroes can be exploited in the same way as we did with rows.
1068     * However, the row calculation has created many nonzero AC terms, so the
1069     * simplification applies less often (typically 5% to 10% of the time).
1070     * On machines with very fast multiplication, it's possible that the
1071     * test takes more time than it's worth.  In that case this section
1072     * may be commented out.
1073     */
1074
1075    d0 = dataptr[DCTSTRIDE*0];
1076    d2 = dataptr[DCTSTRIDE*1];
1077    d4 = dataptr[DCTSTRIDE*2];
1078    d6 = dataptr[DCTSTRIDE*3];
1079
1080    /* Even part: reverse the even part of the forward DCT. */
1081    /* The rotator is sqrt(2)*c(-6). */
1082    if (d6) {
1083            if (d2) {
1084                    /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
1085                    z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
1086                    tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
1087                    tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
1088
1089                    tmp0 = (d0 + d4) << CONST_BITS;
1090                    tmp1 = (d0 - d4) << CONST_BITS;
1091
1092                    tmp10 = tmp0 + tmp3;
1093                    tmp13 = tmp0 - tmp3;
1094                    tmp11 = tmp1 + tmp2;
1095                    tmp12 = tmp1 - tmp2;
1096            } else {
1097                    /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
1098                    tmp2 = MULTIPLY(-d6, FIX_1_306562965);
1099                    tmp3 = MULTIPLY(d6, FIX_0_541196100);
1100
1101                    tmp0 = (d0 + d4) << CONST_BITS;
1102                    tmp1 = (d0 - d4) << CONST_BITS;
1103
1104                    tmp10 = tmp0 + tmp3;
1105                    tmp13 = tmp0 - tmp3;
1106                    tmp11 = tmp1 + tmp2;
1107                    tmp12 = tmp1 - tmp2;
1108            }
1109    } else {
1110            if (d2) {
1111                    /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
1112                    tmp2 = MULTIPLY(d2, FIX_0_541196100);
1113                    tmp3 = MULTIPLY(d2, FIX_1_306562965);
1114
1115                    tmp0 = (d0 + d4) << CONST_BITS;
1116                    tmp1 = (d0 - d4) << CONST_BITS;
1117
1118                    tmp10 = tmp0 + tmp3;
1119                    tmp13 = tmp0 - tmp3;
1120                    tmp11 = tmp1 + tmp2;
1121                    tmp12 = tmp1 - tmp2;
1122            } else {
1123                    /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
1124                    tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
1125                    tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
1126            }
1127    }
1128
1129    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
1130
1131    dataptr[DCTSTRIDE*0] = tmp10 >> (CONST_BITS+PASS1_BITS+3);
1132    dataptr[DCTSTRIDE*1] = tmp11 >> (CONST_BITS+PASS1_BITS+3);
1133    dataptr[DCTSTRIDE*2] = tmp12 >> (CONST_BITS+PASS1_BITS+3);
1134    dataptr[DCTSTRIDE*3] = tmp13 >> (CONST_BITS+PASS1_BITS+3);
1135
1136    dataptr++;                  /* advance pointer to next column */
1137  }
1138}
1139
1140void ff_j_rev_dct2(DCTBLOCK data){
1141  int d00, d01, d10, d11;
1142
1143  data[0] += 4;
1144  d00 = data[0+0*DCTSTRIDE] + data[1+0*DCTSTRIDE];
1145  d01 = data[0+0*DCTSTRIDE] - data[1+0*DCTSTRIDE];
1146  d10 = data[0+1*DCTSTRIDE] + data[1+1*DCTSTRIDE];
1147  d11 = data[0+1*DCTSTRIDE] - data[1+1*DCTSTRIDE];
1148
1149  data[0+0*DCTSTRIDE]= (d00 + d10)>>3;
1150  data[1+0*DCTSTRIDE]= (d01 + d11)>>3;
1151  data[0+1*DCTSTRIDE]= (d00 - d10)>>3;
1152  data[1+1*DCTSTRIDE]= (d01 - d11)>>3;
1153}
1154
1155void ff_j_rev_dct1(DCTBLOCK data){
1156  data[0] = (data[0] + 4)>>3;
1157}
1158
1159#undef FIX
1160#undef CONST_BITS
1161
1162void ff_jref_idct_put(uint8_t *dest, ptrdiff_t line_size, int16_t *block)
1163{
1164    ff_j_rev_dct(block);
1165    ff_put_pixels_clamped_c(block, dest, line_size);
1166}
1167
1168void ff_jref_idct_add(uint8_t *dest, ptrdiff_t line_size, int16_t *block)
1169{
1170    ff_j_rev_dct(block);
1171    ff_add_pixels_clamped_c(block, dest, line_size);
1172}
1173