1cabdff1aSopenharmony_ci/* 2cabdff1aSopenharmony_ci * This file is part of the Independent JPEG Group's software. 3cabdff1aSopenharmony_ci * 4cabdff1aSopenharmony_ci * The authors make NO WARRANTY or representation, either express or implied, 5cabdff1aSopenharmony_ci * with respect to this software, its quality, accuracy, merchantability, or 6cabdff1aSopenharmony_ci * fitness for a particular purpose. This software is provided "AS IS", and 7cabdff1aSopenharmony_ci * you, its user, assume the entire risk as to its quality and accuracy. 8cabdff1aSopenharmony_ci * 9cabdff1aSopenharmony_ci * This software is copyright (C) 1991, 1992, Thomas G. Lane. 10cabdff1aSopenharmony_ci * All Rights Reserved except as specified below. 11cabdff1aSopenharmony_ci * 12cabdff1aSopenharmony_ci * Permission is hereby granted to use, copy, modify, and distribute this 13cabdff1aSopenharmony_ci * software (or portions thereof) for any purpose, without fee, subject to 14cabdff1aSopenharmony_ci * these conditions: 15cabdff1aSopenharmony_ci * (1) If any part of the source code for this software is distributed, then 16cabdff1aSopenharmony_ci * this README file must be included, with this copyright and no-warranty 17cabdff1aSopenharmony_ci * notice unaltered; and any additions, deletions, or changes to the original 18cabdff1aSopenharmony_ci * files must be clearly indicated in accompanying documentation. 19cabdff1aSopenharmony_ci * (2) If only executable code is distributed, then the accompanying 20cabdff1aSopenharmony_ci * documentation must state that "this software is based in part on the work 21cabdff1aSopenharmony_ci * of the Independent JPEG Group". 22cabdff1aSopenharmony_ci * (3) Permission for use of this software is granted only if the user accepts 23cabdff1aSopenharmony_ci * full responsibility for any undesirable consequences; the authors accept 24cabdff1aSopenharmony_ci * NO LIABILITY for damages of any kind. 25cabdff1aSopenharmony_ci * 26cabdff1aSopenharmony_ci * These conditions apply to any software derived from or based on the IJG 27cabdff1aSopenharmony_ci * code, not just to the unmodified library. If you use our work, you ought 28cabdff1aSopenharmony_ci * to acknowledge us. 29cabdff1aSopenharmony_ci * 30cabdff1aSopenharmony_ci * Permission is NOT granted for the use of any IJG author's name or company 31cabdff1aSopenharmony_ci * name in advertising or publicity relating to this software or products 32cabdff1aSopenharmony_ci * derived from it. This software may be referred to only as "the Independent 33cabdff1aSopenharmony_ci * JPEG Group's software". 34cabdff1aSopenharmony_ci * 35cabdff1aSopenharmony_ci * We specifically permit and encourage the use of this software as the basis 36cabdff1aSopenharmony_ci * of commercial products, provided that all warranty or liability claims are 37cabdff1aSopenharmony_ci * assumed by the product vendor. 38cabdff1aSopenharmony_ci * 39cabdff1aSopenharmony_ci * This file contains the basic inverse-DCT transformation subroutine. 40cabdff1aSopenharmony_ci * 41cabdff1aSopenharmony_ci * This implementation is based on an algorithm described in 42cabdff1aSopenharmony_ci * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT 43cabdff1aSopenharmony_ci * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, 44cabdff1aSopenharmony_ci * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. 45cabdff1aSopenharmony_ci * The primary algorithm described there uses 11 multiplies and 29 adds. 46cabdff1aSopenharmony_ci * We use their alternate method with 12 multiplies and 32 adds. 47cabdff1aSopenharmony_ci * The advantage of this method is that no data path contains more than one 48cabdff1aSopenharmony_ci * multiplication; this allows a very simple and accurate implementation in 49cabdff1aSopenharmony_ci * scaled fixed-point arithmetic, with a minimal number of shifts. 50cabdff1aSopenharmony_ci * 51cabdff1aSopenharmony_ci * I've made lots of modifications to attempt to take advantage of the 52cabdff1aSopenharmony_ci * sparse nature of the DCT matrices we're getting. Although the logic 53cabdff1aSopenharmony_ci * is cumbersome, it's straightforward and the resulting code is much 54cabdff1aSopenharmony_ci * faster. 55cabdff1aSopenharmony_ci * 56cabdff1aSopenharmony_ci * A better way to do this would be to pass in the DCT block as a sparse 57cabdff1aSopenharmony_ci * matrix, perhaps with the difference cases encoded. 58cabdff1aSopenharmony_ci */ 59cabdff1aSopenharmony_ci 60cabdff1aSopenharmony_ci/** 61cabdff1aSopenharmony_ci * @file 62cabdff1aSopenharmony_ci * Independent JPEG Group's LLM idct. 63cabdff1aSopenharmony_ci */ 64cabdff1aSopenharmony_ci 65cabdff1aSopenharmony_ci#include <stddef.h> 66cabdff1aSopenharmony_ci#include <stdint.h> 67cabdff1aSopenharmony_ci 68cabdff1aSopenharmony_ci#include "libavutil/intreadwrite.h" 69cabdff1aSopenharmony_ci 70cabdff1aSopenharmony_ci#include "dct.h" 71cabdff1aSopenharmony_ci#include "idctdsp.h" 72cabdff1aSopenharmony_ci 73cabdff1aSopenharmony_ci#define EIGHT_BIT_SAMPLES 74cabdff1aSopenharmony_ci 75cabdff1aSopenharmony_ci#define DCTSIZE 8 76cabdff1aSopenharmony_ci#define DCTSIZE2 64 77cabdff1aSopenharmony_ci 78cabdff1aSopenharmony_ci#define GLOBAL 79cabdff1aSopenharmony_ci 80cabdff1aSopenharmony_ci#define RIGHT_SHIFT(x, n) ((x) >> (n)) 81cabdff1aSopenharmony_ci 82cabdff1aSopenharmony_citypedef int16_t DCTBLOCK[DCTSIZE2]; 83cabdff1aSopenharmony_ci 84cabdff1aSopenharmony_ci#define CONST_BITS 13 85cabdff1aSopenharmony_ci 86cabdff1aSopenharmony_ci/* 87cabdff1aSopenharmony_ci * This routine is specialized to the case DCTSIZE = 8. 88cabdff1aSopenharmony_ci */ 89cabdff1aSopenharmony_ci 90cabdff1aSopenharmony_ci#if DCTSIZE != 8 91cabdff1aSopenharmony_ci Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ 92cabdff1aSopenharmony_ci#endif 93cabdff1aSopenharmony_ci 94cabdff1aSopenharmony_ci 95cabdff1aSopenharmony_ci/* 96cabdff1aSopenharmony_ci * A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT 97cabdff1aSopenharmony_ci * on each column. Direct algorithms are also available, but they are 98cabdff1aSopenharmony_ci * much more complex and seem not to be any faster when reduced to code. 99cabdff1aSopenharmony_ci * 100cabdff1aSopenharmony_ci * The poop on this scaling stuff is as follows: 101cabdff1aSopenharmony_ci * 102cabdff1aSopenharmony_ci * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) 103cabdff1aSopenharmony_ci * larger than the true IDCT outputs. The final outputs are therefore 104cabdff1aSopenharmony_ci * a factor of N larger than desired; since N=8 this can be cured by 105cabdff1aSopenharmony_ci * a simple right shift at the end of the algorithm. The advantage of 106cabdff1aSopenharmony_ci * this arrangement is that we save two multiplications per 1-D IDCT, 107cabdff1aSopenharmony_ci * because the y0 and y4 inputs need not be divided by sqrt(N). 108cabdff1aSopenharmony_ci * 109cabdff1aSopenharmony_ci * We have to do addition and subtraction of the integer inputs, which 110cabdff1aSopenharmony_ci * is no problem, and multiplication by fractional constants, which is 111cabdff1aSopenharmony_ci * a problem to do in integer arithmetic. We multiply all the constants 112cabdff1aSopenharmony_ci * by CONST_SCALE and convert them to integer constants (thus retaining 113cabdff1aSopenharmony_ci * CONST_BITS bits of precision in the constants). After doing a 114cabdff1aSopenharmony_ci * multiplication we have to divide the product by CONST_SCALE, with proper 115cabdff1aSopenharmony_ci * rounding, to produce the correct output. This division can be done 116cabdff1aSopenharmony_ci * cheaply as a right shift of CONST_BITS bits. We postpone shifting 117cabdff1aSopenharmony_ci * as long as possible so that partial sums can be added together with 118cabdff1aSopenharmony_ci * full fractional precision. 119cabdff1aSopenharmony_ci * 120cabdff1aSopenharmony_ci * The outputs of the first pass are scaled up by PASS1_BITS bits so that 121cabdff1aSopenharmony_ci * they are represented to better-than-integral precision. These outputs 122cabdff1aSopenharmony_ci * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word 123cabdff1aSopenharmony_ci * with the recommended scaling. (To scale up 12-bit sample data further, an 124cabdff1aSopenharmony_ci * intermediate int32 array would be needed.) 125cabdff1aSopenharmony_ci * 126cabdff1aSopenharmony_ci * To avoid overflow of the 32-bit intermediate results in pass 2, we must 127cabdff1aSopenharmony_ci * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis 128cabdff1aSopenharmony_ci * shows that the values given below are the most effective. 129cabdff1aSopenharmony_ci */ 130cabdff1aSopenharmony_ci 131cabdff1aSopenharmony_ci#ifdef EIGHT_BIT_SAMPLES 132cabdff1aSopenharmony_ci#define PASS1_BITS 2 133cabdff1aSopenharmony_ci#else 134cabdff1aSopenharmony_ci#define PASS1_BITS 1 /* lose a little precision to avoid overflow */ 135cabdff1aSopenharmony_ci#endif 136cabdff1aSopenharmony_ci 137cabdff1aSopenharmony_ci#define ONE ((int32_t) 1) 138cabdff1aSopenharmony_ci 139cabdff1aSopenharmony_ci#define CONST_SCALE (ONE << CONST_BITS) 140cabdff1aSopenharmony_ci 141cabdff1aSopenharmony_ci/* Convert a positive real constant to an integer scaled by CONST_SCALE. 142cabdff1aSopenharmony_ci * IMPORTANT: if your compiler doesn't do this arithmetic at compile time, 143cabdff1aSopenharmony_ci * you will pay a significant penalty in run time. In that case, figure 144cabdff1aSopenharmony_ci * the correct integer constant values and insert them by hand. 145cabdff1aSopenharmony_ci */ 146cabdff1aSopenharmony_ci 147cabdff1aSopenharmony_ci/* Actually FIX is no longer used, we precomputed them all */ 148cabdff1aSopenharmony_ci#define FIX(x) ((int32_t) ((x) * CONST_SCALE + 0.5)) 149cabdff1aSopenharmony_ci 150cabdff1aSopenharmony_ci/* Descale and correctly round an int32_t value that's scaled by N bits. 151cabdff1aSopenharmony_ci * We assume RIGHT_SHIFT rounds towards minus infinity, so adding 152cabdff1aSopenharmony_ci * the fudge factor is correct for either sign of X. 153cabdff1aSopenharmony_ci */ 154cabdff1aSopenharmony_ci 155cabdff1aSopenharmony_ci#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n) 156cabdff1aSopenharmony_ci 157cabdff1aSopenharmony_ci/* Multiply an int32_t variable by an int32_t constant to yield an int32_t result. 158cabdff1aSopenharmony_ci * For 8-bit samples with the recommended scaling, all the variable 159cabdff1aSopenharmony_ci * and constant values involved are no more than 16 bits wide, so a 160cabdff1aSopenharmony_ci * 16x16->32 bit multiply can be used instead of a full 32x32 multiply; 161cabdff1aSopenharmony_ci * this provides a useful speedup on many machines. 162cabdff1aSopenharmony_ci * There is no way to specify a 16x16->32 multiply in portable C, but 163cabdff1aSopenharmony_ci * some C compilers will do the right thing if you provide the correct 164cabdff1aSopenharmony_ci * combination of casts. 165cabdff1aSopenharmony_ci * NB: for 12-bit samples, a full 32-bit multiplication will be needed. 166cabdff1aSopenharmony_ci */ 167cabdff1aSopenharmony_ci 168cabdff1aSopenharmony_ci#ifdef EIGHT_BIT_SAMPLES 169cabdff1aSopenharmony_ci#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ 170cabdff1aSopenharmony_ci#define MULTIPLY(var,const) (((int16_t) (var)) * ((int16_t) (const))) 171cabdff1aSopenharmony_ci#endif 172cabdff1aSopenharmony_ci#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */ 173cabdff1aSopenharmony_ci#define MULTIPLY(var,const) (((int16_t) (var)) * ((int32_t) (const))) 174cabdff1aSopenharmony_ci#endif 175cabdff1aSopenharmony_ci#endif 176cabdff1aSopenharmony_ci 177cabdff1aSopenharmony_ci#ifndef MULTIPLY /* default definition */ 178cabdff1aSopenharmony_ci#define MULTIPLY(var,const) ((var) * (const)) 179cabdff1aSopenharmony_ci#endif 180cabdff1aSopenharmony_ci 181cabdff1aSopenharmony_ci 182cabdff1aSopenharmony_ci/* 183cabdff1aSopenharmony_ci Unlike our decoder where we approximate the FIXes, we need to use exact 184cabdff1aSopenharmony_ciones here or successive P-frames will drift too much with Reference frame coding 185cabdff1aSopenharmony_ci*/ 186cabdff1aSopenharmony_ci#define FIX_0_211164243 1730 187cabdff1aSopenharmony_ci#define FIX_0_275899380 2260 188cabdff1aSopenharmony_ci#define FIX_0_298631336 2446 189cabdff1aSopenharmony_ci#define FIX_0_390180644 3196 190cabdff1aSopenharmony_ci#define FIX_0_509795579 4176 191cabdff1aSopenharmony_ci#define FIX_0_541196100 4433 192cabdff1aSopenharmony_ci#define FIX_0_601344887 4926 193cabdff1aSopenharmony_ci#define FIX_0_765366865 6270 194cabdff1aSopenharmony_ci#define FIX_0_785694958 6436 195cabdff1aSopenharmony_ci#define FIX_0_899976223 7373 196cabdff1aSopenharmony_ci#define FIX_1_061594337 8697 197cabdff1aSopenharmony_ci#define FIX_1_111140466 9102 198cabdff1aSopenharmony_ci#define FIX_1_175875602 9633 199cabdff1aSopenharmony_ci#define FIX_1_306562965 10703 200cabdff1aSopenharmony_ci#define FIX_1_387039845 11363 201cabdff1aSopenharmony_ci#define FIX_1_451774981 11893 202cabdff1aSopenharmony_ci#define FIX_1_501321110 12299 203cabdff1aSopenharmony_ci#define FIX_1_662939225 13623 204cabdff1aSopenharmony_ci#define FIX_1_847759065 15137 205cabdff1aSopenharmony_ci#define FIX_1_961570560 16069 206cabdff1aSopenharmony_ci#define FIX_2_053119869 16819 207cabdff1aSopenharmony_ci#define FIX_2_172734803 17799 208cabdff1aSopenharmony_ci#define FIX_2_562915447 20995 209cabdff1aSopenharmony_ci#define FIX_3_072711026 25172 210cabdff1aSopenharmony_ci 211cabdff1aSopenharmony_ci/* 212cabdff1aSopenharmony_ci * Perform the inverse DCT on one block of coefficients. 213cabdff1aSopenharmony_ci */ 214cabdff1aSopenharmony_ci 215cabdff1aSopenharmony_civoid ff_j_rev_dct(DCTBLOCK data) 216cabdff1aSopenharmony_ci{ 217cabdff1aSopenharmony_ci int32_t tmp0, tmp1, tmp2, tmp3; 218cabdff1aSopenharmony_ci int32_t tmp10, tmp11, tmp12, tmp13; 219cabdff1aSopenharmony_ci int32_t z1, z2, z3, z4, z5; 220cabdff1aSopenharmony_ci int32_t d0, d1, d2, d3, d4, d5, d6, d7; 221cabdff1aSopenharmony_ci register int16_t *dataptr; 222cabdff1aSopenharmony_ci int rowctr; 223cabdff1aSopenharmony_ci 224cabdff1aSopenharmony_ci /* Pass 1: process rows. */ 225cabdff1aSopenharmony_ci /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ 226cabdff1aSopenharmony_ci /* furthermore, we scale the results by 2**PASS1_BITS. */ 227cabdff1aSopenharmony_ci 228cabdff1aSopenharmony_ci dataptr = data; 229cabdff1aSopenharmony_ci 230cabdff1aSopenharmony_ci for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { 231cabdff1aSopenharmony_ci /* Due to quantization, we will usually find that many of the input 232cabdff1aSopenharmony_ci * coefficients are zero, especially the AC terms. We can exploit this 233cabdff1aSopenharmony_ci * by short-circuiting the IDCT calculation for any row in which all 234cabdff1aSopenharmony_ci * the AC terms are zero. In that case each output is equal to the 235cabdff1aSopenharmony_ci * DC coefficient (with scale factor as needed). 236cabdff1aSopenharmony_ci * With typical images and quantization tables, half or more of the 237cabdff1aSopenharmony_ci * row DCT calculations can be simplified this way. 238cabdff1aSopenharmony_ci */ 239cabdff1aSopenharmony_ci 240cabdff1aSopenharmony_ci register uint8_t *idataptr = (uint8_t*)dataptr; 241cabdff1aSopenharmony_ci 242cabdff1aSopenharmony_ci /* WARNING: we do the same permutation as MMX idct to simplify the 243cabdff1aSopenharmony_ci video core */ 244cabdff1aSopenharmony_ci d0 = dataptr[0]; 245cabdff1aSopenharmony_ci d2 = dataptr[1]; 246cabdff1aSopenharmony_ci d4 = dataptr[2]; 247cabdff1aSopenharmony_ci d6 = dataptr[3]; 248cabdff1aSopenharmony_ci d1 = dataptr[4]; 249cabdff1aSopenharmony_ci d3 = dataptr[5]; 250cabdff1aSopenharmony_ci d5 = dataptr[6]; 251cabdff1aSopenharmony_ci d7 = dataptr[7]; 252cabdff1aSopenharmony_ci 253cabdff1aSopenharmony_ci if ((d1 | d2 | d3 | d4 | d5 | d6 | d7) == 0) { 254cabdff1aSopenharmony_ci /* AC terms all zero */ 255cabdff1aSopenharmony_ci if (d0) { 256cabdff1aSopenharmony_ci /* Compute a 32 bit value to assign. */ 257cabdff1aSopenharmony_ci int16_t dcval = (int16_t) (d0 * (1 << PASS1_BITS)); 258cabdff1aSopenharmony_ci register int v = (dcval & 0xffff) | ((dcval * (1 << 16)) & 0xffff0000); 259cabdff1aSopenharmony_ci 260cabdff1aSopenharmony_ci AV_WN32A(&idataptr[ 0], v); 261cabdff1aSopenharmony_ci AV_WN32A(&idataptr[ 4], v); 262cabdff1aSopenharmony_ci AV_WN32A(&idataptr[ 8], v); 263cabdff1aSopenharmony_ci AV_WN32A(&idataptr[12], v); 264cabdff1aSopenharmony_ci } 265cabdff1aSopenharmony_ci 266cabdff1aSopenharmony_ci dataptr += DCTSIZE; /* advance pointer to next row */ 267cabdff1aSopenharmony_ci continue; 268cabdff1aSopenharmony_ci } 269cabdff1aSopenharmony_ci 270cabdff1aSopenharmony_ci /* Even part: reverse the even part of the forward DCT. */ 271cabdff1aSopenharmony_ci /* The rotator is sqrt(2)*c(-6). */ 272cabdff1aSopenharmony_ci{ 273cabdff1aSopenharmony_ci if (d6) { 274cabdff1aSopenharmony_ci if (d2) { 275cabdff1aSopenharmony_ci /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ 276cabdff1aSopenharmony_ci z1 = MULTIPLY(d2 + d6, FIX_0_541196100); 277cabdff1aSopenharmony_ci tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); 278cabdff1aSopenharmony_ci tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); 279cabdff1aSopenharmony_ci 280cabdff1aSopenharmony_ci tmp0 = (d0 + d4) * CONST_SCALE; 281cabdff1aSopenharmony_ci tmp1 = (d0 - d4) * CONST_SCALE; 282cabdff1aSopenharmony_ci 283cabdff1aSopenharmony_ci tmp10 = tmp0 + tmp3; 284cabdff1aSopenharmony_ci tmp13 = tmp0 - tmp3; 285cabdff1aSopenharmony_ci tmp11 = tmp1 + tmp2; 286cabdff1aSopenharmony_ci tmp12 = tmp1 - tmp2; 287cabdff1aSopenharmony_ci } else { 288cabdff1aSopenharmony_ci /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ 289cabdff1aSopenharmony_ci tmp2 = MULTIPLY(-d6, FIX_1_306562965); 290cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d6, FIX_0_541196100); 291cabdff1aSopenharmony_ci 292cabdff1aSopenharmony_ci tmp0 = (d0 + d4) * CONST_SCALE; 293cabdff1aSopenharmony_ci tmp1 = (d0 - d4) * CONST_SCALE; 294cabdff1aSopenharmony_ci 295cabdff1aSopenharmony_ci tmp10 = tmp0 + tmp3; 296cabdff1aSopenharmony_ci tmp13 = tmp0 - tmp3; 297cabdff1aSopenharmony_ci tmp11 = tmp1 + tmp2; 298cabdff1aSopenharmony_ci tmp12 = tmp1 - tmp2; 299cabdff1aSopenharmony_ci } 300cabdff1aSopenharmony_ci } else { 301cabdff1aSopenharmony_ci if (d2) { 302cabdff1aSopenharmony_ci /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ 303cabdff1aSopenharmony_ci tmp2 = MULTIPLY(d2, FIX_0_541196100); 304cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d2, FIX_1_306562965); 305cabdff1aSopenharmony_ci 306cabdff1aSopenharmony_ci tmp0 = (d0 + d4) * CONST_SCALE; 307cabdff1aSopenharmony_ci tmp1 = (d0 - d4) * CONST_SCALE; 308cabdff1aSopenharmony_ci 309cabdff1aSopenharmony_ci tmp10 = tmp0 + tmp3; 310cabdff1aSopenharmony_ci tmp13 = tmp0 - tmp3; 311cabdff1aSopenharmony_ci tmp11 = tmp1 + tmp2; 312cabdff1aSopenharmony_ci tmp12 = tmp1 - tmp2; 313cabdff1aSopenharmony_ci } else { 314cabdff1aSopenharmony_ci /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ 315cabdff1aSopenharmony_ci tmp10 = tmp13 = (d0 + d4) * CONST_SCALE; 316cabdff1aSopenharmony_ci tmp11 = tmp12 = (d0 - d4) * CONST_SCALE; 317cabdff1aSopenharmony_ci } 318cabdff1aSopenharmony_ci } 319cabdff1aSopenharmony_ci 320cabdff1aSopenharmony_ci /* Odd part per figure 8; the matrix is unitary and hence its 321cabdff1aSopenharmony_ci * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. 322cabdff1aSopenharmony_ci */ 323cabdff1aSopenharmony_ci 324cabdff1aSopenharmony_ci if (d7) { 325cabdff1aSopenharmony_ci if (d5) { 326cabdff1aSopenharmony_ci if (d3) { 327cabdff1aSopenharmony_ci if (d1) { 328cabdff1aSopenharmony_ci /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */ 329cabdff1aSopenharmony_ci z1 = d7 + d1; 330cabdff1aSopenharmony_ci z2 = d5 + d3; 331cabdff1aSopenharmony_ci z3 = d7 + d3; 332cabdff1aSopenharmony_ci z4 = d5 + d1; 333cabdff1aSopenharmony_ci z5 = MULTIPLY(z3 + z4, FIX_1_175875602); 334cabdff1aSopenharmony_ci 335cabdff1aSopenharmony_ci tmp0 = MULTIPLY(d7, FIX_0_298631336); 336cabdff1aSopenharmony_ci tmp1 = MULTIPLY(d5, FIX_2_053119869); 337cabdff1aSopenharmony_ci tmp2 = MULTIPLY(d3, FIX_3_072711026); 338cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d1, FIX_1_501321110); 339cabdff1aSopenharmony_ci z1 = MULTIPLY(-z1, FIX_0_899976223); 340cabdff1aSopenharmony_ci z2 = MULTIPLY(-z2, FIX_2_562915447); 341cabdff1aSopenharmony_ci z3 = MULTIPLY(-z3, FIX_1_961570560); 342cabdff1aSopenharmony_ci z4 = MULTIPLY(-z4, FIX_0_390180644); 343cabdff1aSopenharmony_ci 344cabdff1aSopenharmony_ci z3 += z5; 345cabdff1aSopenharmony_ci z4 += z5; 346cabdff1aSopenharmony_ci 347cabdff1aSopenharmony_ci tmp0 += z1 + z3; 348cabdff1aSopenharmony_ci tmp1 += z2 + z4; 349cabdff1aSopenharmony_ci tmp2 += z2 + z3; 350cabdff1aSopenharmony_ci tmp3 += z1 + z4; 351cabdff1aSopenharmony_ci } else { 352cabdff1aSopenharmony_ci /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */ 353cabdff1aSopenharmony_ci z2 = d5 + d3; 354cabdff1aSopenharmony_ci z3 = d7 + d3; 355cabdff1aSopenharmony_ci z5 = MULTIPLY(z3 + d5, FIX_1_175875602); 356cabdff1aSopenharmony_ci 357cabdff1aSopenharmony_ci tmp0 = MULTIPLY(d7, FIX_0_298631336); 358cabdff1aSopenharmony_ci tmp1 = MULTIPLY(d5, FIX_2_053119869); 359cabdff1aSopenharmony_ci tmp2 = MULTIPLY(d3, FIX_3_072711026); 360cabdff1aSopenharmony_ci z1 = MULTIPLY(-d7, FIX_0_899976223); 361cabdff1aSopenharmony_ci z2 = MULTIPLY(-z2, FIX_2_562915447); 362cabdff1aSopenharmony_ci z3 = MULTIPLY(-z3, FIX_1_961570560); 363cabdff1aSopenharmony_ci z4 = MULTIPLY(-d5, FIX_0_390180644); 364cabdff1aSopenharmony_ci 365cabdff1aSopenharmony_ci z3 += z5; 366cabdff1aSopenharmony_ci z4 += z5; 367cabdff1aSopenharmony_ci 368cabdff1aSopenharmony_ci tmp0 += z1 + z3; 369cabdff1aSopenharmony_ci tmp1 += z2 + z4; 370cabdff1aSopenharmony_ci tmp2 += z2 + z3; 371cabdff1aSopenharmony_ci tmp3 = z1 + z4; 372cabdff1aSopenharmony_ci } 373cabdff1aSopenharmony_ci } else { 374cabdff1aSopenharmony_ci if (d1) { 375cabdff1aSopenharmony_ci /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */ 376cabdff1aSopenharmony_ci z1 = d7 + d1; 377cabdff1aSopenharmony_ci z4 = d5 + d1; 378cabdff1aSopenharmony_ci z5 = MULTIPLY(d7 + z4, FIX_1_175875602); 379cabdff1aSopenharmony_ci 380cabdff1aSopenharmony_ci tmp0 = MULTIPLY(d7, FIX_0_298631336); 381cabdff1aSopenharmony_ci tmp1 = MULTIPLY(d5, FIX_2_053119869); 382cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d1, FIX_1_501321110); 383cabdff1aSopenharmony_ci z1 = MULTIPLY(-z1, FIX_0_899976223); 384cabdff1aSopenharmony_ci z2 = MULTIPLY(-d5, FIX_2_562915447); 385cabdff1aSopenharmony_ci z3 = MULTIPLY(-d7, FIX_1_961570560); 386cabdff1aSopenharmony_ci z4 = MULTIPLY(-z4, FIX_0_390180644); 387cabdff1aSopenharmony_ci 388cabdff1aSopenharmony_ci z3 += z5; 389cabdff1aSopenharmony_ci z4 += z5; 390cabdff1aSopenharmony_ci 391cabdff1aSopenharmony_ci tmp0 += z1 + z3; 392cabdff1aSopenharmony_ci tmp1 += z2 + z4; 393cabdff1aSopenharmony_ci tmp2 = z2 + z3; 394cabdff1aSopenharmony_ci tmp3 += z1 + z4; 395cabdff1aSopenharmony_ci } else { 396cabdff1aSopenharmony_ci /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */ 397cabdff1aSopenharmony_ci tmp0 = MULTIPLY(-d7, FIX_0_601344887); 398cabdff1aSopenharmony_ci z1 = MULTIPLY(-d7, FIX_0_899976223); 399cabdff1aSopenharmony_ci z3 = MULTIPLY(-d7, FIX_1_961570560); 400cabdff1aSopenharmony_ci tmp1 = MULTIPLY(-d5, FIX_0_509795579); 401cabdff1aSopenharmony_ci z2 = MULTIPLY(-d5, FIX_2_562915447); 402cabdff1aSopenharmony_ci z4 = MULTIPLY(-d5, FIX_0_390180644); 403cabdff1aSopenharmony_ci z5 = MULTIPLY(d5 + d7, FIX_1_175875602); 404cabdff1aSopenharmony_ci 405cabdff1aSopenharmony_ci z3 += z5; 406cabdff1aSopenharmony_ci z4 += z5; 407cabdff1aSopenharmony_ci 408cabdff1aSopenharmony_ci tmp0 += z3; 409cabdff1aSopenharmony_ci tmp1 += z4; 410cabdff1aSopenharmony_ci tmp2 = z2 + z3; 411cabdff1aSopenharmony_ci tmp3 = z1 + z4; 412cabdff1aSopenharmony_ci } 413cabdff1aSopenharmony_ci } 414cabdff1aSopenharmony_ci } else { 415cabdff1aSopenharmony_ci if (d3) { 416cabdff1aSopenharmony_ci if (d1) { 417cabdff1aSopenharmony_ci /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */ 418cabdff1aSopenharmony_ci z1 = d7 + d1; 419cabdff1aSopenharmony_ci z3 = d7 + d3; 420cabdff1aSopenharmony_ci z5 = MULTIPLY(z3 + d1, FIX_1_175875602); 421cabdff1aSopenharmony_ci 422cabdff1aSopenharmony_ci tmp0 = MULTIPLY(d7, FIX_0_298631336); 423cabdff1aSopenharmony_ci tmp2 = MULTIPLY(d3, FIX_3_072711026); 424cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d1, FIX_1_501321110); 425cabdff1aSopenharmony_ci z1 = MULTIPLY(-z1, FIX_0_899976223); 426cabdff1aSopenharmony_ci z2 = MULTIPLY(-d3, FIX_2_562915447); 427cabdff1aSopenharmony_ci z3 = MULTIPLY(-z3, FIX_1_961570560); 428cabdff1aSopenharmony_ci z4 = MULTIPLY(-d1, FIX_0_390180644); 429cabdff1aSopenharmony_ci 430cabdff1aSopenharmony_ci z3 += z5; 431cabdff1aSopenharmony_ci z4 += z5; 432cabdff1aSopenharmony_ci 433cabdff1aSopenharmony_ci tmp0 += z1 + z3; 434cabdff1aSopenharmony_ci tmp1 = z2 + z4; 435cabdff1aSopenharmony_ci tmp2 += z2 + z3; 436cabdff1aSopenharmony_ci tmp3 += z1 + z4; 437cabdff1aSopenharmony_ci } else { 438cabdff1aSopenharmony_ci /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */ 439cabdff1aSopenharmony_ci z3 = d7 + d3; 440cabdff1aSopenharmony_ci 441cabdff1aSopenharmony_ci tmp0 = MULTIPLY(-d7, FIX_0_601344887); 442cabdff1aSopenharmony_ci z1 = MULTIPLY(-d7, FIX_0_899976223); 443cabdff1aSopenharmony_ci tmp2 = MULTIPLY(d3, FIX_0_509795579); 444cabdff1aSopenharmony_ci z2 = MULTIPLY(-d3, FIX_2_562915447); 445cabdff1aSopenharmony_ci z5 = MULTIPLY(z3, FIX_1_175875602); 446cabdff1aSopenharmony_ci z3 = MULTIPLY(-z3, FIX_0_785694958); 447cabdff1aSopenharmony_ci 448cabdff1aSopenharmony_ci tmp0 += z3; 449cabdff1aSopenharmony_ci tmp1 = z2 + z5; 450cabdff1aSopenharmony_ci tmp2 += z3; 451cabdff1aSopenharmony_ci tmp3 = z1 + z5; 452cabdff1aSopenharmony_ci } 453cabdff1aSopenharmony_ci } else { 454cabdff1aSopenharmony_ci if (d1) { 455cabdff1aSopenharmony_ci /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */ 456cabdff1aSopenharmony_ci z1 = d7 + d1; 457cabdff1aSopenharmony_ci z5 = MULTIPLY(z1, FIX_1_175875602); 458cabdff1aSopenharmony_ci 459cabdff1aSopenharmony_ci z1 = MULTIPLY(z1, FIX_0_275899380); 460cabdff1aSopenharmony_ci z3 = MULTIPLY(-d7, FIX_1_961570560); 461cabdff1aSopenharmony_ci tmp0 = MULTIPLY(-d7, FIX_1_662939225); 462cabdff1aSopenharmony_ci z4 = MULTIPLY(-d1, FIX_0_390180644); 463cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d1, FIX_1_111140466); 464cabdff1aSopenharmony_ci 465cabdff1aSopenharmony_ci tmp0 += z1; 466cabdff1aSopenharmony_ci tmp1 = z4 + z5; 467cabdff1aSopenharmony_ci tmp2 = z3 + z5; 468cabdff1aSopenharmony_ci tmp3 += z1; 469cabdff1aSopenharmony_ci } else { 470cabdff1aSopenharmony_ci /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */ 471cabdff1aSopenharmony_ci tmp0 = MULTIPLY(-d7, FIX_1_387039845); 472cabdff1aSopenharmony_ci tmp1 = MULTIPLY(d7, FIX_1_175875602); 473cabdff1aSopenharmony_ci tmp2 = MULTIPLY(-d7, FIX_0_785694958); 474cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d7, FIX_0_275899380); 475cabdff1aSopenharmony_ci } 476cabdff1aSopenharmony_ci } 477cabdff1aSopenharmony_ci } 478cabdff1aSopenharmony_ci } else { 479cabdff1aSopenharmony_ci if (d5) { 480cabdff1aSopenharmony_ci if (d3) { 481cabdff1aSopenharmony_ci if (d1) { 482cabdff1aSopenharmony_ci /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */ 483cabdff1aSopenharmony_ci z2 = d5 + d3; 484cabdff1aSopenharmony_ci z4 = d5 + d1; 485cabdff1aSopenharmony_ci z5 = MULTIPLY(d3 + z4, FIX_1_175875602); 486cabdff1aSopenharmony_ci 487cabdff1aSopenharmony_ci tmp1 = MULTIPLY(d5, FIX_2_053119869); 488cabdff1aSopenharmony_ci tmp2 = MULTIPLY(d3, FIX_3_072711026); 489cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d1, FIX_1_501321110); 490cabdff1aSopenharmony_ci z1 = MULTIPLY(-d1, FIX_0_899976223); 491cabdff1aSopenharmony_ci z2 = MULTIPLY(-z2, FIX_2_562915447); 492cabdff1aSopenharmony_ci z3 = MULTIPLY(-d3, FIX_1_961570560); 493cabdff1aSopenharmony_ci z4 = MULTIPLY(-z4, FIX_0_390180644); 494cabdff1aSopenharmony_ci 495cabdff1aSopenharmony_ci z3 += z5; 496cabdff1aSopenharmony_ci z4 += z5; 497cabdff1aSopenharmony_ci 498cabdff1aSopenharmony_ci tmp0 = z1 + z3; 499cabdff1aSopenharmony_ci tmp1 += z2 + z4; 500cabdff1aSopenharmony_ci tmp2 += z2 + z3; 501cabdff1aSopenharmony_ci tmp3 += z1 + z4; 502cabdff1aSopenharmony_ci } else { 503cabdff1aSopenharmony_ci /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */ 504cabdff1aSopenharmony_ci z2 = d5 + d3; 505cabdff1aSopenharmony_ci 506cabdff1aSopenharmony_ci z5 = MULTIPLY(z2, FIX_1_175875602); 507cabdff1aSopenharmony_ci tmp1 = MULTIPLY(d5, FIX_1_662939225); 508cabdff1aSopenharmony_ci z4 = MULTIPLY(-d5, FIX_0_390180644); 509cabdff1aSopenharmony_ci z2 = MULTIPLY(-z2, FIX_1_387039845); 510cabdff1aSopenharmony_ci tmp2 = MULTIPLY(d3, FIX_1_111140466); 511cabdff1aSopenharmony_ci z3 = MULTIPLY(-d3, FIX_1_961570560); 512cabdff1aSopenharmony_ci 513cabdff1aSopenharmony_ci tmp0 = z3 + z5; 514cabdff1aSopenharmony_ci tmp1 += z2; 515cabdff1aSopenharmony_ci tmp2 += z2; 516cabdff1aSopenharmony_ci tmp3 = z4 + z5; 517cabdff1aSopenharmony_ci } 518cabdff1aSopenharmony_ci } else { 519cabdff1aSopenharmony_ci if (d1) { 520cabdff1aSopenharmony_ci /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */ 521cabdff1aSopenharmony_ci z4 = d5 + d1; 522cabdff1aSopenharmony_ci 523cabdff1aSopenharmony_ci z5 = MULTIPLY(z4, FIX_1_175875602); 524cabdff1aSopenharmony_ci z1 = MULTIPLY(-d1, FIX_0_899976223); 525cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d1, FIX_0_601344887); 526cabdff1aSopenharmony_ci tmp1 = MULTIPLY(-d5, FIX_0_509795579); 527cabdff1aSopenharmony_ci z2 = MULTIPLY(-d5, FIX_2_562915447); 528cabdff1aSopenharmony_ci z4 = MULTIPLY(z4, FIX_0_785694958); 529cabdff1aSopenharmony_ci 530cabdff1aSopenharmony_ci tmp0 = z1 + z5; 531cabdff1aSopenharmony_ci tmp1 += z4; 532cabdff1aSopenharmony_ci tmp2 = z2 + z5; 533cabdff1aSopenharmony_ci tmp3 += z4; 534cabdff1aSopenharmony_ci } else { 535cabdff1aSopenharmony_ci /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */ 536cabdff1aSopenharmony_ci tmp0 = MULTIPLY(d5, FIX_1_175875602); 537cabdff1aSopenharmony_ci tmp1 = MULTIPLY(d5, FIX_0_275899380); 538cabdff1aSopenharmony_ci tmp2 = MULTIPLY(-d5, FIX_1_387039845); 539cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d5, FIX_0_785694958); 540cabdff1aSopenharmony_ci } 541cabdff1aSopenharmony_ci } 542cabdff1aSopenharmony_ci } else { 543cabdff1aSopenharmony_ci if (d3) { 544cabdff1aSopenharmony_ci if (d1) { 545cabdff1aSopenharmony_ci /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */ 546cabdff1aSopenharmony_ci z5 = d1 + d3; 547cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d1, FIX_0_211164243); 548cabdff1aSopenharmony_ci tmp2 = MULTIPLY(-d3, FIX_1_451774981); 549cabdff1aSopenharmony_ci z1 = MULTIPLY(d1, FIX_1_061594337); 550cabdff1aSopenharmony_ci z2 = MULTIPLY(-d3, FIX_2_172734803); 551cabdff1aSopenharmony_ci z4 = MULTIPLY(z5, FIX_0_785694958); 552cabdff1aSopenharmony_ci z5 = MULTIPLY(z5, FIX_1_175875602); 553cabdff1aSopenharmony_ci 554cabdff1aSopenharmony_ci tmp0 = z1 - z4; 555cabdff1aSopenharmony_ci tmp1 = z2 + z4; 556cabdff1aSopenharmony_ci tmp2 += z5; 557cabdff1aSopenharmony_ci tmp3 += z5; 558cabdff1aSopenharmony_ci } else { 559cabdff1aSopenharmony_ci /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */ 560cabdff1aSopenharmony_ci tmp0 = MULTIPLY(-d3, FIX_0_785694958); 561cabdff1aSopenharmony_ci tmp1 = MULTIPLY(-d3, FIX_1_387039845); 562cabdff1aSopenharmony_ci tmp2 = MULTIPLY(-d3, FIX_0_275899380); 563cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d3, FIX_1_175875602); 564cabdff1aSopenharmony_ci } 565cabdff1aSopenharmony_ci } else { 566cabdff1aSopenharmony_ci if (d1) { 567cabdff1aSopenharmony_ci /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */ 568cabdff1aSopenharmony_ci tmp0 = MULTIPLY(d1, FIX_0_275899380); 569cabdff1aSopenharmony_ci tmp1 = MULTIPLY(d1, FIX_0_785694958); 570cabdff1aSopenharmony_ci tmp2 = MULTIPLY(d1, FIX_1_175875602); 571cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d1, FIX_1_387039845); 572cabdff1aSopenharmony_ci } else { 573cabdff1aSopenharmony_ci /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */ 574cabdff1aSopenharmony_ci tmp0 = tmp1 = tmp2 = tmp3 = 0; 575cabdff1aSopenharmony_ci } 576cabdff1aSopenharmony_ci } 577cabdff1aSopenharmony_ci } 578cabdff1aSopenharmony_ci } 579cabdff1aSopenharmony_ci} 580cabdff1aSopenharmony_ci /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ 581cabdff1aSopenharmony_ci 582cabdff1aSopenharmony_ci dataptr[0] = (int16_t) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS); 583cabdff1aSopenharmony_ci dataptr[7] = (int16_t) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS); 584cabdff1aSopenharmony_ci dataptr[1] = (int16_t) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS); 585cabdff1aSopenharmony_ci dataptr[6] = (int16_t) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS); 586cabdff1aSopenharmony_ci dataptr[2] = (int16_t) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS); 587cabdff1aSopenharmony_ci dataptr[5] = (int16_t) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS); 588cabdff1aSopenharmony_ci dataptr[3] = (int16_t) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS); 589cabdff1aSopenharmony_ci dataptr[4] = (int16_t) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS); 590cabdff1aSopenharmony_ci 591cabdff1aSopenharmony_ci dataptr += DCTSIZE; /* advance pointer to next row */ 592cabdff1aSopenharmony_ci } 593cabdff1aSopenharmony_ci 594cabdff1aSopenharmony_ci /* Pass 2: process columns. */ 595cabdff1aSopenharmony_ci /* Note that we must descale the results by a factor of 8 == 2**3, */ 596cabdff1aSopenharmony_ci /* and also undo the PASS1_BITS scaling. */ 597cabdff1aSopenharmony_ci 598cabdff1aSopenharmony_ci dataptr = data; 599cabdff1aSopenharmony_ci for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { 600cabdff1aSopenharmony_ci /* Columns of zeroes can be exploited in the same way as we did with rows. 601cabdff1aSopenharmony_ci * However, the row calculation has created many nonzero AC terms, so the 602cabdff1aSopenharmony_ci * simplification applies less often (typically 5% to 10% of the time). 603cabdff1aSopenharmony_ci * On machines with very fast multiplication, it's possible that the 604cabdff1aSopenharmony_ci * test takes more time than it's worth. In that case this section 605cabdff1aSopenharmony_ci * may be commented out. 606cabdff1aSopenharmony_ci */ 607cabdff1aSopenharmony_ci 608cabdff1aSopenharmony_ci d0 = dataptr[DCTSIZE*0]; 609cabdff1aSopenharmony_ci d1 = dataptr[DCTSIZE*1]; 610cabdff1aSopenharmony_ci d2 = dataptr[DCTSIZE*2]; 611cabdff1aSopenharmony_ci d3 = dataptr[DCTSIZE*3]; 612cabdff1aSopenharmony_ci d4 = dataptr[DCTSIZE*4]; 613cabdff1aSopenharmony_ci d5 = dataptr[DCTSIZE*5]; 614cabdff1aSopenharmony_ci d6 = dataptr[DCTSIZE*6]; 615cabdff1aSopenharmony_ci d7 = dataptr[DCTSIZE*7]; 616cabdff1aSopenharmony_ci 617cabdff1aSopenharmony_ci /* Even part: reverse the even part of the forward DCT. */ 618cabdff1aSopenharmony_ci /* The rotator is sqrt(2)*c(-6). */ 619cabdff1aSopenharmony_ci if (d6) { 620cabdff1aSopenharmony_ci if (d2) { 621cabdff1aSopenharmony_ci /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ 622cabdff1aSopenharmony_ci z1 = MULTIPLY(d2 + d6, FIX_0_541196100); 623cabdff1aSopenharmony_ci tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); 624cabdff1aSopenharmony_ci tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); 625cabdff1aSopenharmony_ci 626cabdff1aSopenharmony_ci tmp0 = (d0 + d4) * CONST_SCALE; 627cabdff1aSopenharmony_ci tmp1 = (d0 - d4) * CONST_SCALE; 628cabdff1aSopenharmony_ci 629cabdff1aSopenharmony_ci tmp10 = tmp0 + tmp3; 630cabdff1aSopenharmony_ci tmp13 = tmp0 - tmp3; 631cabdff1aSopenharmony_ci tmp11 = tmp1 + tmp2; 632cabdff1aSopenharmony_ci tmp12 = tmp1 - tmp2; 633cabdff1aSopenharmony_ci } else { 634cabdff1aSopenharmony_ci /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ 635cabdff1aSopenharmony_ci tmp2 = MULTIPLY(-d6, FIX_1_306562965); 636cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d6, FIX_0_541196100); 637cabdff1aSopenharmony_ci 638cabdff1aSopenharmony_ci tmp0 = (d0 + d4) * CONST_SCALE; 639cabdff1aSopenharmony_ci tmp1 = (d0 - d4) * CONST_SCALE; 640cabdff1aSopenharmony_ci 641cabdff1aSopenharmony_ci tmp10 = tmp0 + tmp3; 642cabdff1aSopenharmony_ci tmp13 = tmp0 - tmp3; 643cabdff1aSopenharmony_ci tmp11 = tmp1 + tmp2; 644cabdff1aSopenharmony_ci tmp12 = tmp1 - tmp2; 645cabdff1aSopenharmony_ci } 646cabdff1aSopenharmony_ci } else { 647cabdff1aSopenharmony_ci if (d2) { 648cabdff1aSopenharmony_ci /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ 649cabdff1aSopenharmony_ci tmp2 = MULTIPLY(d2, FIX_0_541196100); 650cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d2, FIX_1_306562965); 651cabdff1aSopenharmony_ci 652cabdff1aSopenharmony_ci tmp0 = (d0 + d4) * CONST_SCALE; 653cabdff1aSopenharmony_ci tmp1 = (d0 - d4) * CONST_SCALE; 654cabdff1aSopenharmony_ci 655cabdff1aSopenharmony_ci tmp10 = tmp0 + tmp3; 656cabdff1aSopenharmony_ci tmp13 = tmp0 - tmp3; 657cabdff1aSopenharmony_ci tmp11 = tmp1 + tmp2; 658cabdff1aSopenharmony_ci tmp12 = tmp1 - tmp2; 659cabdff1aSopenharmony_ci } else { 660cabdff1aSopenharmony_ci /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ 661cabdff1aSopenharmony_ci tmp10 = tmp13 = (d0 + d4) * CONST_SCALE; 662cabdff1aSopenharmony_ci tmp11 = tmp12 = (d0 - d4) * CONST_SCALE; 663cabdff1aSopenharmony_ci } 664cabdff1aSopenharmony_ci } 665cabdff1aSopenharmony_ci 666cabdff1aSopenharmony_ci /* Odd part per figure 8; the matrix is unitary and hence its 667cabdff1aSopenharmony_ci * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. 668cabdff1aSopenharmony_ci */ 669cabdff1aSopenharmony_ci if (d7) { 670cabdff1aSopenharmony_ci if (d5) { 671cabdff1aSopenharmony_ci if (d3) { 672cabdff1aSopenharmony_ci if (d1) { 673cabdff1aSopenharmony_ci /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */ 674cabdff1aSopenharmony_ci z1 = d7 + d1; 675cabdff1aSopenharmony_ci z2 = d5 + d3; 676cabdff1aSopenharmony_ci z3 = d7 + d3; 677cabdff1aSopenharmony_ci z4 = d5 + d1; 678cabdff1aSopenharmony_ci z5 = MULTIPLY(z3 + z4, FIX_1_175875602); 679cabdff1aSopenharmony_ci 680cabdff1aSopenharmony_ci tmp0 = MULTIPLY(d7, FIX_0_298631336); 681cabdff1aSopenharmony_ci tmp1 = MULTIPLY(d5, FIX_2_053119869); 682cabdff1aSopenharmony_ci tmp2 = MULTIPLY(d3, FIX_3_072711026); 683cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d1, FIX_1_501321110); 684cabdff1aSopenharmony_ci z1 = MULTIPLY(-z1, FIX_0_899976223); 685cabdff1aSopenharmony_ci z2 = MULTIPLY(-z2, FIX_2_562915447); 686cabdff1aSopenharmony_ci z3 = MULTIPLY(-z3, FIX_1_961570560); 687cabdff1aSopenharmony_ci z4 = MULTIPLY(-z4, FIX_0_390180644); 688cabdff1aSopenharmony_ci 689cabdff1aSopenharmony_ci z3 += z5; 690cabdff1aSopenharmony_ci z4 += z5; 691cabdff1aSopenharmony_ci 692cabdff1aSopenharmony_ci tmp0 += z1 + z3; 693cabdff1aSopenharmony_ci tmp1 += z2 + z4; 694cabdff1aSopenharmony_ci tmp2 += z2 + z3; 695cabdff1aSopenharmony_ci tmp3 += z1 + z4; 696cabdff1aSopenharmony_ci } else { 697cabdff1aSopenharmony_ci /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */ 698cabdff1aSopenharmony_ci z2 = d5 + d3; 699cabdff1aSopenharmony_ci z3 = d7 + d3; 700cabdff1aSopenharmony_ci z5 = MULTIPLY(z3 + d5, FIX_1_175875602); 701cabdff1aSopenharmony_ci 702cabdff1aSopenharmony_ci tmp0 = MULTIPLY(d7, FIX_0_298631336); 703cabdff1aSopenharmony_ci tmp1 = MULTIPLY(d5, FIX_2_053119869); 704cabdff1aSopenharmony_ci tmp2 = MULTIPLY(d3, FIX_3_072711026); 705cabdff1aSopenharmony_ci z1 = MULTIPLY(-d7, FIX_0_899976223); 706cabdff1aSopenharmony_ci z2 = MULTIPLY(-z2, FIX_2_562915447); 707cabdff1aSopenharmony_ci z3 = MULTIPLY(-z3, FIX_1_961570560); 708cabdff1aSopenharmony_ci z4 = MULTIPLY(-d5, FIX_0_390180644); 709cabdff1aSopenharmony_ci 710cabdff1aSopenharmony_ci z3 += z5; 711cabdff1aSopenharmony_ci z4 += z5; 712cabdff1aSopenharmony_ci 713cabdff1aSopenharmony_ci tmp0 += z1 + z3; 714cabdff1aSopenharmony_ci tmp1 += z2 + z4; 715cabdff1aSopenharmony_ci tmp2 += z2 + z3; 716cabdff1aSopenharmony_ci tmp3 = z1 + z4; 717cabdff1aSopenharmony_ci } 718cabdff1aSopenharmony_ci } else { 719cabdff1aSopenharmony_ci if (d1) { 720cabdff1aSopenharmony_ci /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */ 721cabdff1aSopenharmony_ci z1 = d7 + d1; 722cabdff1aSopenharmony_ci z3 = d7; 723cabdff1aSopenharmony_ci z4 = d5 + d1; 724cabdff1aSopenharmony_ci z5 = MULTIPLY(z3 + z4, FIX_1_175875602); 725cabdff1aSopenharmony_ci 726cabdff1aSopenharmony_ci tmp0 = MULTIPLY(d7, FIX_0_298631336); 727cabdff1aSopenharmony_ci tmp1 = MULTIPLY(d5, FIX_2_053119869); 728cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d1, FIX_1_501321110); 729cabdff1aSopenharmony_ci z1 = MULTIPLY(-z1, FIX_0_899976223); 730cabdff1aSopenharmony_ci z2 = MULTIPLY(-d5, FIX_2_562915447); 731cabdff1aSopenharmony_ci z3 = MULTIPLY(-d7, FIX_1_961570560); 732cabdff1aSopenharmony_ci z4 = MULTIPLY(-z4, FIX_0_390180644); 733cabdff1aSopenharmony_ci 734cabdff1aSopenharmony_ci z3 += z5; 735cabdff1aSopenharmony_ci z4 += z5; 736cabdff1aSopenharmony_ci 737cabdff1aSopenharmony_ci tmp0 += z1 + z3; 738cabdff1aSopenharmony_ci tmp1 += z2 + z4; 739cabdff1aSopenharmony_ci tmp2 = z2 + z3; 740cabdff1aSopenharmony_ci tmp3 += z1 + z4; 741cabdff1aSopenharmony_ci } else { 742cabdff1aSopenharmony_ci /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */ 743cabdff1aSopenharmony_ci tmp0 = MULTIPLY(-d7, FIX_0_601344887); 744cabdff1aSopenharmony_ci z1 = MULTIPLY(-d7, FIX_0_899976223); 745cabdff1aSopenharmony_ci z3 = MULTIPLY(-d7, FIX_1_961570560); 746cabdff1aSopenharmony_ci tmp1 = MULTIPLY(-d5, FIX_0_509795579); 747cabdff1aSopenharmony_ci z2 = MULTIPLY(-d5, FIX_2_562915447); 748cabdff1aSopenharmony_ci z4 = MULTIPLY(-d5, FIX_0_390180644); 749cabdff1aSopenharmony_ci z5 = MULTIPLY(d5 + d7, FIX_1_175875602); 750cabdff1aSopenharmony_ci 751cabdff1aSopenharmony_ci z3 += z5; 752cabdff1aSopenharmony_ci z4 += z5; 753cabdff1aSopenharmony_ci 754cabdff1aSopenharmony_ci tmp0 += z3; 755cabdff1aSopenharmony_ci tmp1 += z4; 756cabdff1aSopenharmony_ci tmp2 = z2 + z3; 757cabdff1aSopenharmony_ci tmp3 = z1 + z4; 758cabdff1aSopenharmony_ci } 759cabdff1aSopenharmony_ci } 760cabdff1aSopenharmony_ci } else { 761cabdff1aSopenharmony_ci if (d3) { 762cabdff1aSopenharmony_ci if (d1) { 763cabdff1aSopenharmony_ci /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */ 764cabdff1aSopenharmony_ci z1 = d7 + d1; 765cabdff1aSopenharmony_ci z3 = d7 + d3; 766cabdff1aSopenharmony_ci z5 = MULTIPLY(z3 + d1, FIX_1_175875602); 767cabdff1aSopenharmony_ci 768cabdff1aSopenharmony_ci tmp0 = MULTIPLY(d7, FIX_0_298631336); 769cabdff1aSopenharmony_ci tmp2 = MULTIPLY(d3, FIX_3_072711026); 770cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d1, FIX_1_501321110); 771cabdff1aSopenharmony_ci z1 = MULTIPLY(-z1, FIX_0_899976223); 772cabdff1aSopenharmony_ci z2 = MULTIPLY(-d3, FIX_2_562915447); 773cabdff1aSopenharmony_ci z3 = MULTIPLY(-z3, FIX_1_961570560); 774cabdff1aSopenharmony_ci z4 = MULTIPLY(-d1, FIX_0_390180644); 775cabdff1aSopenharmony_ci 776cabdff1aSopenharmony_ci z3 += z5; 777cabdff1aSopenharmony_ci z4 += z5; 778cabdff1aSopenharmony_ci 779cabdff1aSopenharmony_ci tmp0 += z1 + z3; 780cabdff1aSopenharmony_ci tmp1 = z2 + z4; 781cabdff1aSopenharmony_ci tmp2 += z2 + z3; 782cabdff1aSopenharmony_ci tmp3 += z1 + z4; 783cabdff1aSopenharmony_ci } else { 784cabdff1aSopenharmony_ci /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */ 785cabdff1aSopenharmony_ci z3 = d7 + d3; 786cabdff1aSopenharmony_ci 787cabdff1aSopenharmony_ci tmp0 = MULTIPLY(-d7, FIX_0_601344887); 788cabdff1aSopenharmony_ci z1 = MULTIPLY(-d7, FIX_0_899976223); 789cabdff1aSopenharmony_ci tmp2 = MULTIPLY(d3, FIX_0_509795579); 790cabdff1aSopenharmony_ci z2 = MULTIPLY(-d3, FIX_2_562915447); 791cabdff1aSopenharmony_ci z5 = MULTIPLY(z3, FIX_1_175875602); 792cabdff1aSopenharmony_ci z3 = MULTIPLY(-z3, FIX_0_785694958); 793cabdff1aSopenharmony_ci 794cabdff1aSopenharmony_ci tmp0 += z3; 795cabdff1aSopenharmony_ci tmp1 = z2 + z5; 796cabdff1aSopenharmony_ci tmp2 += z3; 797cabdff1aSopenharmony_ci tmp3 = z1 + z5; 798cabdff1aSopenharmony_ci } 799cabdff1aSopenharmony_ci } else { 800cabdff1aSopenharmony_ci if (d1) { 801cabdff1aSopenharmony_ci /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */ 802cabdff1aSopenharmony_ci z1 = d7 + d1; 803cabdff1aSopenharmony_ci z5 = MULTIPLY(z1, FIX_1_175875602); 804cabdff1aSopenharmony_ci 805cabdff1aSopenharmony_ci z1 = MULTIPLY(z1, FIX_0_275899380); 806cabdff1aSopenharmony_ci z3 = MULTIPLY(-d7, FIX_1_961570560); 807cabdff1aSopenharmony_ci tmp0 = MULTIPLY(-d7, FIX_1_662939225); 808cabdff1aSopenharmony_ci z4 = MULTIPLY(-d1, FIX_0_390180644); 809cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d1, FIX_1_111140466); 810cabdff1aSopenharmony_ci 811cabdff1aSopenharmony_ci tmp0 += z1; 812cabdff1aSopenharmony_ci tmp1 = z4 + z5; 813cabdff1aSopenharmony_ci tmp2 = z3 + z5; 814cabdff1aSopenharmony_ci tmp3 += z1; 815cabdff1aSopenharmony_ci } else { 816cabdff1aSopenharmony_ci /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */ 817cabdff1aSopenharmony_ci tmp0 = MULTIPLY(-d7, FIX_1_387039845); 818cabdff1aSopenharmony_ci tmp1 = MULTIPLY(d7, FIX_1_175875602); 819cabdff1aSopenharmony_ci tmp2 = MULTIPLY(-d7, FIX_0_785694958); 820cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d7, FIX_0_275899380); 821cabdff1aSopenharmony_ci } 822cabdff1aSopenharmony_ci } 823cabdff1aSopenharmony_ci } 824cabdff1aSopenharmony_ci } else { 825cabdff1aSopenharmony_ci if (d5) { 826cabdff1aSopenharmony_ci if (d3) { 827cabdff1aSopenharmony_ci if (d1) { 828cabdff1aSopenharmony_ci /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */ 829cabdff1aSopenharmony_ci z2 = d5 + d3; 830cabdff1aSopenharmony_ci z4 = d5 + d1; 831cabdff1aSopenharmony_ci z5 = MULTIPLY(d3 + z4, FIX_1_175875602); 832cabdff1aSopenharmony_ci 833cabdff1aSopenharmony_ci tmp1 = MULTIPLY(d5, FIX_2_053119869); 834cabdff1aSopenharmony_ci tmp2 = MULTIPLY(d3, FIX_3_072711026); 835cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d1, FIX_1_501321110); 836cabdff1aSopenharmony_ci z1 = MULTIPLY(-d1, FIX_0_899976223); 837cabdff1aSopenharmony_ci z2 = MULTIPLY(-z2, FIX_2_562915447); 838cabdff1aSopenharmony_ci z3 = MULTIPLY(-d3, FIX_1_961570560); 839cabdff1aSopenharmony_ci z4 = MULTIPLY(-z4, FIX_0_390180644); 840cabdff1aSopenharmony_ci 841cabdff1aSopenharmony_ci z3 += z5; 842cabdff1aSopenharmony_ci z4 += z5; 843cabdff1aSopenharmony_ci 844cabdff1aSopenharmony_ci tmp0 = z1 + z3; 845cabdff1aSopenharmony_ci tmp1 += z2 + z4; 846cabdff1aSopenharmony_ci tmp2 += z2 + z3; 847cabdff1aSopenharmony_ci tmp3 += z1 + z4; 848cabdff1aSopenharmony_ci } else { 849cabdff1aSopenharmony_ci /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */ 850cabdff1aSopenharmony_ci z2 = d5 + d3; 851cabdff1aSopenharmony_ci 852cabdff1aSopenharmony_ci z5 = MULTIPLY(z2, FIX_1_175875602); 853cabdff1aSopenharmony_ci tmp1 = MULTIPLY(d5, FIX_1_662939225); 854cabdff1aSopenharmony_ci z4 = MULTIPLY(-d5, FIX_0_390180644); 855cabdff1aSopenharmony_ci z2 = MULTIPLY(-z2, FIX_1_387039845); 856cabdff1aSopenharmony_ci tmp2 = MULTIPLY(d3, FIX_1_111140466); 857cabdff1aSopenharmony_ci z3 = MULTIPLY(-d3, FIX_1_961570560); 858cabdff1aSopenharmony_ci 859cabdff1aSopenharmony_ci tmp0 = z3 + z5; 860cabdff1aSopenharmony_ci tmp1 += z2; 861cabdff1aSopenharmony_ci tmp2 += z2; 862cabdff1aSopenharmony_ci tmp3 = z4 + z5; 863cabdff1aSopenharmony_ci } 864cabdff1aSopenharmony_ci } else { 865cabdff1aSopenharmony_ci if (d1) { 866cabdff1aSopenharmony_ci /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */ 867cabdff1aSopenharmony_ci z4 = d5 + d1; 868cabdff1aSopenharmony_ci 869cabdff1aSopenharmony_ci z5 = MULTIPLY(z4, FIX_1_175875602); 870cabdff1aSopenharmony_ci z1 = MULTIPLY(-d1, FIX_0_899976223); 871cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d1, FIX_0_601344887); 872cabdff1aSopenharmony_ci tmp1 = MULTIPLY(-d5, FIX_0_509795579); 873cabdff1aSopenharmony_ci z2 = MULTIPLY(-d5, FIX_2_562915447); 874cabdff1aSopenharmony_ci z4 = MULTIPLY(z4, FIX_0_785694958); 875cabdff1aSopenharmony_ci 876cabdff1aSopenharmony_ci tmp0 = z1 + z5; 877cabdff1aSopenharmony_ci tmp1 += z4; 878cabdff1aSopenharmony_ci tmp2 = z2 + z5; 879cabdff1aSopenharmony_ci tmp3 += z4; 880cabdff1aSopenharmony_ci } else { 881cabdff1aSopenharmony_ci /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */ 882cabdff1aSopenharmony_ci tmp0 = MULTIPLY(d5, FIX_1_175875602); 883cabdff1aSopenharmony_ci tmp1 = MULTIPLY(d5, FIX_0_275899380); 884cabdff1aSopenharmony_ci tmp2 = MULTIPLY(-d5, FIX_1_387039845); 885cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d5, FIX_0_785694958); 886cabdff1aSopenharmony_ci } 887cabdff1aSopenharmony_ci } 888cabdff1aSopenharmony_ci } else { 889cabdff1aSopenharmony_ci if (d3) { 890cabdff1aSopenharmony_ci if (d1) { 891cabdff1aSopenharmony_ci /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */ 892cabdff1aSopenharmony_ci z5 = d1 + d3; 893cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d1, FIX_0_211164243); 894cabdff1aSopenharmony_ci tmp2 = MULTIPLY(-d3, FIX_1_451774981); 895cabdff1aSopenharmony_ci z1 = MULTIPLY(d1, FIX_1_061594337); 896cabdff1aSopenharmony_ci z2 = MULTIPLY(-d3, FIX_2_172734803); 897cabdff1aSopenharmony_ci z4 = MULTIPLY(z5, FIX_0_785694958); 898cabdff1aSopenharmony_ci z5 = MULTIPLY(z5, FIX_1_175875602); 899cabdff1aSopenharmony_ci 900cabdff1aSopenharmony_ci tmp0 = z1 - z4; 901cabdff1aSopenharmony_ci tmp1 = z2 + z4; 902cabdff1aSopenharmony_ci tmp2 += z5; 903cabdff1aSopenharmony_ci tmp3 += z5; 904cabdff1aSopenharmony_ci } else { 905cabdff1aSopenharmony_ci /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */ 906cabdff1aSopenharmony_ci tmp0 = MULTIPLY(-d3, FIX_0_785694958); 907cabdff1aSopenharmony_ci tmp1 = MULTIPLY(-d3, FIX_1_387039845); 908cabdff1aSopenharmony_ci tmp2 = MULTIPLY(-d3, FIX_0_275899380); 909cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d3, FIX_1_175875602); 910cabdff1aSopenharmony_ci } 911cabdff1aSopenharmony_ci } else { 912cabdff1aSopenharmony_ci if (d1) { 913cabdff1aSopenharmony_ci /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */ 914cabdff1aSopenharmony_ci tmp0 = MULTIPLY(d1, FIX_0_275899380); 915cabdff1aSopenharmony_ci tmp1 = MULTIPLY(d1, FIX_0_785694958); 916cabdff1aSopenharmony_ci tmp2 = MULTIPLY(d1, FIX_1_175875602); 917cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d1, FIX_1_387039845); 918cabdff1aSopenharmony_ci } else { 919cabdff1aSopenharmony_ci /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */ 920cabdff1aSopenharmony_ci tmp0 = tmp1 = tmp2 = tmp3 = 0; 921cabdff1aSopenharmony_ci } 922cabdff1aSopenharmony_ci } 923cabdff1aSopenharmony_ci } 924cabdff1aSopenharmony_ci } 925cabdff1aSopenharmony_ci 926cabdff1aSopenharmony_ci /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ 927cabdff1aSopenharmony_ci 928cabdff1aSopenharmony_ci dataptr[DCTSIZE*0] = (int16_t) DESCALE(tmp10 + tmp3, 929cabdff1aSopenharmony_ci CONST_BITS+PASS1_BITS+3); 930cabdff1aSopenharmony_ci dataptr[DCTSIZE*7] = (int16_t) DESCALE(tmp10 - tmp3, 931cabdff1aSopenharmony_ci CONST_BITS+PASS1_BITS+3); 932cabdff1aSopenharmony_ci dataptr[DCTSIZE*1] = (int16_t) DESCALE(tmp11 + tmp2, 933cabdff1aSopenharmony_ci CONST_BITS+PASS1_BITS+3); 934cabdff1aSopenharmony_ci dataptr[DCTSIZE*6] = (int16_t) DESCALE(tmp11 - tmp2, 935cabdff1aSopenharmony_ci CONST_BITS+PASS1_BITS+3); 936cabdff1aSopenharmony_ci dataptr[DCTSIZE*2] = (int16_t) DESCALE(tmp12 + tmp1, 937cabdff1aSopenharmony_ci CONST_BITS+PASS1_BITS+3); 938cabdff1aSopenharmony_ci dataptr[DCTSIZE*5] = (int16_t) DESCALE(tmp12 - tmp1, 939cabdff1aSopenharmony_ci CONST_BITS+PASS1_BITS+3); 940cabdff1aSopenharmony_ci dataptr[DCTSIZE*3] = (int16_t) DESCALE(tmp13 + tmp0, 941cabdff1aSopenharmony_ci CONST_BITS+PASS1_BITS+3); 942cabdff1aSopenharmony_ci dataptr[DCTSIZE*4] = (int16_t) DESCALE(tmp13 - tmp0, 943cabdff1aSopenharmony_ci CONST_BITS+PASS1_BITS+3); 944cabdff1aSopenharmony_ci 945cabdff1aSopenharmony_ci dataptr++; /* advance pointer to next column */ 946cabdff1aSopenharmony_ci } 947cabdff1aSopenharmony_ci} 948cabdff1aSopenharmony_ci 949cabdff1aSopenharmony_ci#undef DCTSIZE 950cabdff1aSopenharmony_ci#define DCTSIZE 4 951cabdff1aSopenharmony_ci#define DCTSTRIDE 8 952cabdff1aSopenharmony_ci 953cabdff1aSopenharmony_civoid ff_j_rev_dct4(DCTBLOCK data) 954cabdff1aSopenharmony_ci{ 955cabdff1aSopenharmony_ci int32_t tmp0, tmp1, tmp2, tmp3; 956cabdff1aSopenharmony_ci int32_t tmp10, tmp11, tmp12, tmp13; 957cabdff1aSopenharmony_ci int32_t z1; 958cabdff1aSopenharmony_ci int32_t d0, d2, d4, d6; 959cabdff1aSopenharmony_ci register int16_t *dataptr; 960cabdff1aSopenharmony_ci int rowctr; 961cabdff1aSopenharmony_ci 962cabdff1aSopenharmony_ci /* Pass 1: process rows. */ 963cabdff1aSopenharmony_ci /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ 964cabdff1aSopenharmony_ci /* furthermore, we scale the results by 2**PASS1_BITS. */ 965cabdff1aSopenharmony_ci 966cabdff1aSopenharmony_ci data[0] += 4; 967cabdff1aSopenharmony_ci 968cabdff1aSopenharmony_ci dataptr = data; 969cabdff1aSopenharmony_ci 970cabdff1aSopenharmony_ci for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { 971cabdff1aSopenharmony_ci /* Due to quantization, we will usually find that many of the input 972cabdff1aSopenharmony_ci * coefficients are zero, especially the AC terms. We can exploit this 973cabdff1aSopenharmony_ci * by short-circuiting the IDCT calculation for any row in which all 974cabdff1aSopenharmony_ci * the AC terms are zero. In that case each output is equal to the 975cabdff1aSopenharmony_ci * DC coefficient (with scale factor as needed). 976cabdff1aSopenharmony_ci * With typical images and quantization tables, half or more of the 977cabdff1aSopenharmony_ci * row DCT calculations can be simplified this way. 978cabdff1aSopenharmony_ci */ 979cabdff1aSopenharmony_ci 980cabdff1aSopenharmony_ci register uint8_t *idataptr = (uint8_t*)dataptr; 981cabdff1aSopenharmony_ci 982cabdff1aSopenharmony_ci d0 = dataptr[0]; 983cabdff1aSopenharmony_ci d2 = dataptr[1]; 984cabdff1aSopenharmony_ci d4 = dataptr[2]; 985cabdff1aSopenharmony_ci d6 = dataptr[3]; 986cabdff1aSopenharmony_ci 987cabdff1aSopenharmony_ci if ((d2 | d4 | d6) == 0) { 988cabdff1aSopenharmony_ci /* AC terms all zero */ 989cabdff1aSopenharmony_ci if (d0) { 990cabdff1aSopenharmony_ci /* Compute a 32 bit value to assign. */ 991cabdff1aSopenharmony_ci int16_t dcval = (int16_t) (d0 << PASS1_BITS); 992cabdff1aSopenharmony_ci register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000); 993cabdff1aSopenharmony_ci 994cabdff1aSopenharmony_ci AV_WN32A(&idataptr[0], v); 995cabdff1aSopenharmony_ci AV_WN32A(&idataptr[4], v); 996cabdff1aSopenharmony_ci } 997cabdff1aSopenharmony_ci 998cabdff1aSopenharmony_ci dataptr += DCTSTRIDE; /* advance pointer to next row */ 999cabdff1aSopenharmony_ci continue; 1000cabdff1aSopenharmony_ci } 1001cabdff1aSopenharmony_ci 1002cabdff1aSopenharmony_ci /* Even part: reverse the even part of the forward DCT. */ 1003cabdff1aSopenharmony_ci /* The rotator is sqrt(2)*c(-6). */ 1004cabdff1aSopenharmony_ci if (d6) { 1005cabdff1aSopenharmony_ci if (d2) { 1006cabdff1aSopenharmony_ci /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ 1007cabdff1aSopenharmony_ci z1 = MULTIPLY(d2 + d6, FIX_0_541196100); 1008cabdff1aSopenharmony_ci tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); 1009cabdff1aSopenharmony_ci tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); 1010cabdff1aSopenharmony_ci 1011cabdff1aSopenharmony_ci tmp0 = (d0 + d4) << CONST_BITS; 1012cabdff1aSopenharmony_ci tmp1 = (d0 - d4) << CONST_BITS; 1013cabdff1aSopenharmony_ci 1014cabdff1aSopenharmony_ci tmp10 = tmp0 + tmp3; 1015cabdff1aSopenharmony_ci tmp13 = tmp0 - tmp3; 1016cabdff1aSopenharmony_ci tmp11 = tmp1 + tmp2; 1017cabdff1aSopenharmony_ci tmp12 = tmp1 - tmp2; 1018cabdff1aSopenharmony_ci } else { 1019cabdff1aSopenharmony_ci /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ 1020cabdff1aSopenharmony_ci tmp2 = MULTIPLY(-d6, FIX_1_306562965); 1021cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d6, FIX_0_541196100); 1022cabdff1aSopenharmony_ci 1023cabdff1aSopenharmony_ci tmp0 = (d0 + d4) << CONST_BITS; 1024cabdff1aSopenharmony_ci tmp1 = (d0 - d4) << CONST_BITS; 1025cabdff1aSopenharmony_ci 1026cabdff1aSopenharmony_ci tmp10 = tmp0 + tmp3; 1027cabdff1aSopenharmony_ci tmp13 = tmp0 - tmp3; 1028cabdff1aSopenharmony_ci tmp11 = tmp1 + tmp2; 1029cabdff1aSopenharmony_ci tmp12 = tmp1 - tmp2; 1030cabdff1aSopenharmony_ci } 1031cabdff1aSopenharmony_ci } else { 1032cabdff1aSopenharmony_ci if (d2) { 1033cabdff1aSopenharmony_ci /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ 1034cabdff1aSopenharmony_ci tmp2 = MULTIPLY(d2, FIX_0_541196100); 1035cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d2, FIX_1_306562965); 1036cabdff1aSopenharmony_ci 1037cabdff1aSopenharmony_ci tmp0 = (d0 + d4) << CONST_BITS; 1038cabdff1aSopenharmony_ci tmp1 = (d0 - d4) << CONST_BITS; 1039cabdff1aSopenharmony_ci 1040cabdff1aSopenharmony_ci tmp10 = tmp0 + tmp3; 1041cabdff1aSopenharmony_ci tmp13 = tmp0 - tmp3; 1042cabdff1aSopenharmony_ci tmp11 = tmp1 + tmp2; 1043cabdff1aSopenharmony_ci tmp12 = tmp1 - tmp2; 1044cabdff1aSopenharmony_ci } else { 1045cabdff1aSopenharmony_ci /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ 1046cabdff1aSopenharmony_ci tmp10 = tmp13 = (d0 + d4) << CONST_BITS; 1047cabdff1aSopenharmony_ci tmp11 = tmp12 = (d0 - d4) << CONST_BITS; 1048cabdff1aSopenharmony_ci } 1049cabdff1aSopenharmony_ci } 1050cabdff1aSopenharmony_ci 1051cabdff1aSopenharmony_ci /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ 1052cabdff1aSopenharmony_ci 1053cabdff1aSopenharmony_ci dataptr[0] = (int16_t) DESCALE(tmp10, CONST_BITS-PASS1_BITS); 1054cabdff1aSopenharmony_ci dataptr[1] = (int16_t) DESCALE(tmp11, CONST_BITS-PASS1_BITS); 1055cabdff1aSopenharmony_ci dataptr[2] = (int16_t) DESCALE(tmp12, CONST_BITS-PASS1_BITS); 1056cabdff1aSopenharmony_ci dataptr[3] = (int16_t) DESCALE(tmp13, CONST_BITS-PASS1_BITS); 1057cabdff1aSopenharmony_ci 1058cabdff1aSopenharmony_ci dataptr += DCTSTRIDE; /* advance pointer to next row */ 1059cabdff1aSopenharmony_ci } 1060cabdff1aSopenharmony_ci 1061cabdff1aSopenharmony_ci /* Pass 2: process columns. */ 1062cabdff1aSopenharmony_ci /* Note that we must descale the results by a factor of 8 == 2**3, */ 1063cabdff1aSopenharmony_ci /* and also undo the PASS1_BITS scaling. */ 1064cabdff1aSopenharmony_ci 1065cabdff1aSopenharmony_ci dataptr = data; 1066cabdff1aSopenharmony_ci for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { 1067cabdff1aSopenharmony_ci /* Columns of zeroes can be exploited in the same way as we did with rows. 1068cabdff1aSopenharmony_ci * However, the row calculation has created many nonzero AC terms, so the 1069cabdff1aSopenharmony_ci * simplification applies less often (typically 5% to 10% of the time). 1070cabdff1aSopenharmony_ci * On machines with very fast multiplication, it's possible that the 1071cabdff1aSopenharmony_ci * test takes more time than it's worth. In that case this section 1072cabdff1aSopenharmony_ci * may be commented out. 1073cabdff1aSopenharmony_ci */ 1074cabdff1aSopenharmony_ci 1075cabdff1aSopenharmony_ci d0 = dataptr[DCTSTRIDE*0]; 1076cabdff1aSopenharmony_ci d2 = dataptr[DCTSTRIDE*1]; 1077cabdff1aSopenharmony_ci d4 = dataptr[DCTSTRIDE*2]; 1078cabdff1aSopenharmony_ci d6 = dataptr[DCTSTRIDE*3]; 1079cabdff1aSopenharmony_ci 1080cabdff1aSopenharmony_ci /* Even part: reverse the even part of the forward DCT. */ 1081cabdff1aSopenharmony_ci /* The rotator is sqrt(2)*c(-6). */ 1082cabdff1aSopenharmony_ci if (d6) { 1083cabdff1aSopenharmony_ci if (d2) { 1084cabdff1aSopenharmony_ci /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ 1085cabdff1aSopenharmony_ci z1 = MULTIPLY(d2 + d6, FIX_0_541196100); 1086cabdff1aSopenharmony_ci tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065); 1087cabdff1aSopenharmony_ci tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865); 1088cabdff1aSopenharmony_ci 1089cabdff1aSopenharmony_ci tmp0 = (d0 + d4) << CONST_BITS; 1090cabdff1aSopenharmony_ci tmp1 = (d0 - d4) << CONST_BITS; 1091cabdff1aSopenharmony_ci 1092cabdff1aSopenharmony_ci tmp10 = tmp0 + tmp3; 1093cabdff1aSopenharmony_ci tmp13 = tmp0 - tmp3; 1094cabdff1aSopenharmony_ci tmp11 = tmp1 + tmp2; 1095cabdff1aSopenharmony_ci tmp12 = tmp1 - tmp2; 1096cabdff1aSopenharmony_ci } else { 1097cabdff1aSopenharmony_ci /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ 1098cabdff1aSopenharmony_ci tmp2 = MULTIPLY(-d6, FIX_1_306562965); 1099cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d6, FIX_0_541196100); 1100cabdff1aSopenharmony_ci 1101cabdff1aSopenharmony_ci tmp0 = (d0 + d4) << CONST_BITS; 1102cabdff1aSopenharmony_ci tmp1 = (d0 - d4) << CONST_BITS; 1103cabdff1aSopenharmony_ci 1104cabdff1aSopenharmony_ci tmp10 = tmp0 + tmp3; 1105cabdff1aSopenharmony_ci tmp13 = tmp0 - tmp3; 1106cabdff1aSopenharmony_ci tmp11 = tmp1 + tmp2; 1107cabdff1aSopenharmony_ci tmp12 = tmp1 - tmp2; 1108cabdff1aSopenharmony_ci } 1109cabdff1aSopenharmony_ci } else { 1110cabdff1aSopenharmony_ci if (d2) { 1111cabdff1aSopenharmony_ci /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ 1112cabdff1aSopenharmony_ci tmp2 = MULTIPLY(d2, FIX_0_541196100); 1113cabdff1aSopenharmony_ci tmp3 = MULTIPLY(d2, FIX_1_306562965); 1114cabdff1aSopenharmony_ci 1115cabdff1aSopenharmony_ci tmp0 = (d0 + d4) << CONST_BITS; 1116cabdff1aSopenharmony_ci tmp1 = (d0 - d4) << CONST_BITS; 1117cabdff1aSopenharmony_ci 1118cabdff1aSopenharmony_ci tmp10 = tmp0 + tmp3; 1119cabdff1aSopenharmony_ci tmp13 = tmp0 - tmp3; 1120cabdff1aSopenharmony_ci tmp11 = tmp1 + tmp2; 1121cabdff1aSopenharmony_ci tmp12 = tmp1 - tmp2; 1122cabdff1aSopenharmony_ci } else { 1123cabdff1aSopenharmony_ci /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ 1124cabdff1aSopenharmony_ci tmp10 = tmp13 = (d0 + d4) << CONST_BITS; 1125cabdff1aSopenharmony_ci tmp11 = tmp12 = (d0 - d4) << CONST_BITS; 1126cabdff1aSopenharmony_ci } 1127cabdff1aSopenharmony_ci } 1128cabdff1aSopenharmony_ci 1129cabdff1aSopenharmony_ci /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ 1130cabdff1aSopenharmony_ci 1131cabdff1aSopenharmony_ci dataptr[DCTSTRIDE*0] = tmp10 >> (CONST_BITS+PASS1_BITS+3); 1132cabdff1aSopenharmony_ci dataptr[DCTSTRIDE*1] = tmp11 >> (CONST_BITS+PASS1_BITS+3); 1133cabdff1aSopenharmony_ci dataptr[DCTSTRIDE*2] = tmp12 >> (CONST_BITS+PASS1_BITS+3); 1134cabdff1aSopenharmony_ci dataptr[DCTSTRIDE*3] = tmp13 >> (CONST_BITS+PASS1_BITS+3); 1135cabdff1aSopenharmony_ci 1136cabdff1aSopenharmony_ci dataptr++; /* advance pointer to next column */ 1137cabdff1aSopenharmony_ci } 1138cabdff1aSopenharmony_ci} 1139cabdff1aSopenharmony_ci 1140cabdff1aSopenharmony_civoid ff_j_rev_dct2(DCTBLOCK data){ 1141cabdff1aSopenharmony_ci int d00, d01, d10, d11; 1142cabdff1aSopenharmony_ci 1143cabdff1aSopenharmony_ci data[0] += 4; 1144cabdff1aSopenharmony_ci d00 = data[0+0*DCTSTRIDE] + data[1+0*DCTSTRIDE]; 1145cabdff1aSopenharmony_ci d01 = data[0+0*DCTSTRIDE] - data[1+0*DCTSTRIDE]; 1146cabdff1aSopenharmony_ci d10 = data[0+1*DCTSTRIDE] + data[1+1*DCTSTRIDE]; 1147cabdff1aSopenharmony_ci d11 = data[0+1*DCTSTRIDE] - data[1+1*DCTSTRIDE]; 1148cabdff1aSopenharmony_ci 1149cabdff1aSopenharmony_ci data[0+0*DCTSTRIDE]= (d00 + d10)>>3; 1150cabdff1aSopenharmony_ci data[1+0*DCTSTRIDE]= (d01 + d11)>>3; 1151cabdff1aSopenharmony_ci data[0+1*DCTSTRIDE]= (d00 - d10)>>3; 1152cabdff1aSopenharmony_ci data[1+1*DCTSTRIDE]= (d01 - d11)>>3; 1153cabdff1aSopenharmony_ci} 1154cabdff1aSopenharmony_ci 1155cabdff1aSopenharmony_civoid ff_j_rev_dct1(DCTBLOCK data){ 1156cabdff1aSopenharmony_ci data[0] = (data[0] + 4)>>3; 1157cabdff1aSopenharmony_ci} 1158cabdff1aSopenharmony_ci 1159cabdff1aSopenharmony_ci#undef FIX 1160cabdff1aSopenharmony_ci#undef CONST_BITS 1161cabdff1aSopenharmony_ci 1162cabdff1aSopenharmony_civoid ff_jref_idct_put(uint8_t *dest, ptrdiff_t line_size, int16_t *block) 1163cabdff1aSopenharmony_ci{ 1164cabdff1aSopenharmony_ci ff_j_rev_dct(block); 1165cabdff1aSopenharmony_ci ff_put_pixels_clamped_c(block, dest, line_size); 1166cabdff1aSopenharmony_ci} 1167cabdff1aSopenharmony_ci 1168cabdff1aSopenharmony_civoid ff_jref_idct_add(uint8_t *dest, ptrdiff_t line_size, int16_t *block) 1169cabdff1aSopenharmony_ci{ 1170cabdff1aSopenharmony_ci ff_j_rev_dct(block); 1171cabdff1aSopenharmony_ci ff_add_pixels_clamped_c(block, dest, line_size); 1172cabdff1aSopenharmony_ci} 1173