xref: /third_party/ffmpeg/libavcodec/jrevdct.c (revision cabdff1a)
1cabdff1aSopenharmony_ci/*
2cabdff1aSopenharmony_ci * This file is part of the Independent JPEG Group's software.
3cabdff1aSopenharmony_ci *
4cabdff1aSopenharmony_ci * The authors make NO WARRANTY or representation, either express or implied,
5cabdff1aSopenharmony_ci * with respect to this software, its quality, accuracy, merchantability, or
6cabdff1aSopenharmony_ci * fitness for a particular purpose.  This software is provided "AS IS", and
7cabdff1aSopenharmony_ci * you, its user, assume the entire risk as to its quality and accuracy.
8cabdff1aSopenharmony_ci *
9cabdff1aSopenharmony_ci * This software is copyright (C) 1991, 1992, Thomas G. Lane.
10cabdff1aSopenharmony_ci * All Rights Reserved except as specified below.
11cabdff1aSopenharmony_ci *
12cabdff1aSopenharmony_ci * Permission is hereby granted to use, copy, modify, and distribute this
13cabdff1aSopenharmony_ci * software (or portions thereof) for any purpose, without fee, subject to
14cabdff1aSopenharmony_ci * these conditions:
15cabdff1aSopenharmony_ci * (1) If any part of the source code for this software is distributed, then
16cabdff1aSopenharmony_ci * this README file must be included, with this copyright and no-warranty
17cabdff1aSopenharmony_ci * notice unaltered; and any additions, deletions, or changes to the original
18cabdff1aSopenharmony_ci * files must be clearly indicated in accompanying documentation.
19cabdff1aSopenharmony_ci * (2) If only executable code is distributed, then the accompanying
20cabdff1aSopenharmony_ci * documentation must state that "this software is based in part on the work
21cabdff1aSopenharmony_ci * of the Independent JPEG Group".
22cabdff1aSopenharmony_ci * (3) Permission for use of this software is granted only if the user accepts
23cabdff1aSopenharmony_ci * full responsibility for any undesirable consequences; the authors accept
24cabdff1aSopenharmony_ci * NO LIABILITY for damages of any kind.
25cabdff1aSopenharmony_ci *
26cabdff1aSopenharmony_ci * These conditions apply to any software derived from or based on the IJG
27cabdff1aSopenharmony_ci * code, not just to the unmodified library.  If you use our work, you ought
28cabdff1aSopenharmony_ci * to acknowledge us.
29cabdff1aSopenharmony_ci *
30cabdff1aSopenharmony_ci * Permission is NOT granted for the use of any IJG author's name or company
31cabdff1aSopenharmony_ci * name in advertising or publicity relating to this software or products
32cabdff1aSopenharmony_ci * derived from it.  This software may be referred to only as "the Independent
33cabdff1aSopenharmony_ci * JPEG Group's software".
34cabdff1aSopenharmony_ci *
35cabdff1aSopenharmony_ci * We specifically permit and encourage the use of this software as the basis
36cabdff1aSopenharmony_ci * of commercial products, provided that all warranty or liability claims are
37cabdff1aSopenharmony_ci * assumed by the product vendor.
38cabdff1aSopenharmony_ci *
39cabdff1aSopenharmony_ci * This file contains the basic inverse-DCT transformation subroutine.
40cabdff1aSopenharmony_ci *
41cabdff1aSopenharmony_ci * This implementation is based on an algorithm described in
42cabdff1aSopenharmony_ci *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
43cabdff1aSopenharmony_ci *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
44cabdff1aSopenharmony_ci *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
45cabdff1aSopenharmony_ci * The primary algorithm described there uses 11 multiplies and 29 adds.
46cabdff1aSopenharmony_ci * We use their alternate method with 12 multiplies and 32 adds.
47cabdff1aSopenharmony_ci * The advantage of this method is that no data path contains more than one
48cabdff1aSopenharmony_ci * multiplication; this allows a very simple and accurate implementation in
49cabdff1aSopenharmony_ci * scaled fixed-point arithmetic, with a minimal number of shifts.
50cabdff1aSopenharmony_ci *
51cabdff1aSopenharmony_ci * I've made lots of modifications to attempt to take advantage of the
52cabdff1aSopenharmony_ci * sparse nature of the DCT matrices we're getting.  Although the logic
53cabdff1aSopenharmony_ci * is cumbersome, it's straightforward and the resulting code is much
54cabdff1aSopenharmony_ci * faster.
55cabdff1aSopenharmony_ci *
56cabdff1aSopenharmony_ci * A better way to do this would be to pass in the DCT block as a sparse
57cabdff1aSopenharmony_ci * matrix, perhaps with the difference cases encoded.
58cabdff1aSopenharmony_ci */
59cabdff1aSopenharmony_ci
60cabdff1aSopenharmony_ci/**
61cabdff1aSopenharmony_ci * @file
62cabdff1aSopenharmony_ci * Independent JPEG Group's LLM idct.
63cabdff1aSopenharmony_ci */
64cabdff1aSopenharmony_ci
65cabdff1aSopenharmony_ci#include <stddef.h>
66cabdff1aSopenharmony_ci#include <stdint.h>
67cabdff1aSopenharmony_ci
68cabdff1aSopenharmony_ci#include "libavutil/intreadwrite.h"
69cabdff1aSopenharmony_ci
70cabdff1aSopenharmony_ci#include "dct.h"
71cabdff1aSopenharmony_ci#include "idctdsp.h"
72cabdff1aSopenharmony_ci
73cabdff1aSopenharmony_ci#define EIGHT_BIT_SAMPLES
74cabdff1aSopenharmony_ci
75cabdff1aSopenharmony_ci#define DCTSIZE 8
76cabdff1aSopenharmony_ci#define DCTSIZE2 64
77cabdff1aSopenharmony_ci
78cabdff1aSopenharmony_ci#define GLOBAL
79cabdff1aSopenharmony_ci
80cabdff1aSopenharmony_ci#define RIGHT_SHIFT(x, n) ((x) >> (n))
81cabdff1aSopenharmony_ci
82cabdff1aSopenharmony_citypedef int16_t DCTBLOCK[DCTSIZE2];
83cabdff1aSopenharmony_ci
84cabdff1aSopenharmony_ci#define CONST_BITS 13
85cabdff1aSopenharmony_ci
86cabdff1aSopenharmony_ci/*
87cabdff1aSopenharmony_ci * This routine is specialized to the case DCTSIZE = 8.
88cabdff1aSopenharmony_ci */
89cabdff1aSopenharmony_ci
90cabdff1aSopenharmony_ci#if DCTSIZE != 8
91cabdff1aSopenharmony_ci  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
92cabdff1aSopenharmony_ci#endif
93cabdff1aSopenharmony_ci
94cabdff1aSopenharmony_ci
95cabdff1aSopenharmony_ci/*
96cabdff1aSopenharmony_ci * A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT
97cabdff1aSopenharmony_ci * on each column.  Direct algorithms are also available, but they are
98cabdff1aSopenharmony_ci * much more complex and seem not to be any faster when reduced to code.
99cabdff1aSopenharmony_ci *
100cabdff1aSopenharmony_ci * The poop on this scaling stuff is as follows:
101cabdff1aSopenharmony_ci *
102cabdff1aSopenharmony_ci * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
103cabdff1aSopenharmony_ci * larger than the true IDCT outputs.  The final outputs are therefore
104cabdff1aSopenharmony_ci * a factor of N larger than desired; since N=8 this can be cured by
105cabdff1aSopenharmony_ci * a simple right shift at the end of the algorithm.  The advantage of
106cabdff1aSopenharmony_ci * this arrangement is that we save two multiplications per 1-D IDCT,
107cabdff1aSopenharmony_ci * because the y0 and y4 inputs need not be divided by sqrt(N).
108cabdff1aSopenharmony_ci *
109cabdff1aSopenharmony_ci * We have to do addition and subtraction of the integer inputs, which
110cabdff1aSopenharmony_ci * is no problem, and multiplication by fractional constants, which is
111cabdff1aSopenharmony_ci * a problem to do in integer arithmetic.  We multiply all the constants
112cabdff1aSopenharmony_ci * by CONST_SCALE and convert them to integer constants (thus retaining
113cabdff1aSopenharmony_ci * CONST_BITS bits of precision in the constants).  After doing a
114cabdff1aSopenharmony_ci * multiplication we have to divide the product by CONST_SCALE, with proper
115cabdff1aSopenharmony_ci * rounding, to produce the correct output.  This division can be done
116cabdff1aSopenharmony_ci * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
117cabdff1aSopenharmony_ci * as long as possible so that partial sums can be added together with
118cabdff1aSopenharmony_ci * full fractional precision.
119cabdff1aSopenharmony_ci *
120cabdff1aSopenharmony_ci * The outputs of the first pass are scaled up by PASS1_BITS bits so that
121cabdff1aSopenharmony_ci * they are represented to better-than-integral precision.  These outputs
122cabdff1aSopenharmony_ci * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
123cabdff1aSopenharmony_ci * with the recommended scaling.  (To scale up 12-bit sample data further, an
124cabdff1aSopenharmony_ci * intermediate int32 array would be needed.)
125cabdff1aSopenharmony_ci *
126cabdff1aSopenharmony_ci * To avoid overflow of the 32-bit intermediate results in pass 2, we must
127cabdff1aSopenharmony_ci * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
128cabdff1aSopenharmony_ci * shows that the values given below are the most effective.
129cabdff1aSopenharmony_ci */
130cabdff1aSopenharmony_ci
131cabdff1aSopenharmony_ci#ifdef EIGHT_BIT_SAMPLES
132cabdff1aSopenharmony_ci#define PASS1_BITS  2
133cabdff1aSopenharmony_ci#else
134cabdff1aSopenharmony_ci#define PASS1_BITS  1   /* lose a little precision to avoid overflow */
135cabdff1aSopenharmony_ci#endif
136cabdff1aSopenharmony_ci
137cabdff1aSopenharmony_ci#define ONE         ((int32_t) 1)
138cabdff1aSopenharmony_ci
139cabdff1aSopenharmony_ci#define CONST_SCALE (ONE << CONST_BITS)
140cabdff1aSopenharmony_ci
141cabdff1aSopenharmony_ci/* Convert a positive real constant to an integer scaled by CONST_SCALE.
142cabdff1aSopenharmony_ci * IMPORTANT: if your compiler doesn't do this arithmetic at compile time,
143cabdff1aSopenharmony_ci * you will pay a significant penalty in run time.  In that case, figure
144cabdff1aSopenharmony_ci * the correct integer constant values and insert them by hand.
145cabdff1aSopenharmony_ci */
146cabdff1aSopenharmony_ci
147cabdff1aSopenharmony_ci/* Actually FIX is no longer used, we precomputed them all */
148cabdff1aSopenharmony_ci#define FIX(x)  ((int32_t) ((x) * CONST_SCALE + 0.5))
149cabdff1aSopenharmony_ci
150cabdff1aSopenharmony_ci/* Descale and correctly round an int32_t value that's scaled by N bits.
151cabdff1aSopenharmony_ci * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
152cabdff1aSopenharmony_ci * the fudge factor is correct for either sign of X.
153cabdff1aSopenharmony_ci */
154cabdff1aSopenharmony_ci
155cabdff1aSopenharmony_ci#define DESCALE(x,n)  RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
156cabdff1aSopenharmony_ci
157cabdff1aSopenharmony_ci/* Multiply an int32_t variable by an int32_t constant to yield an int32_t result.
158cabdff1aSopenharmony_ci * For 8-bit samples with the recommended scaling, all the variable
159cabdff1aSopenharmony_ci * and constant values involved are no more than 16 bits wide, so a
160cabdff1aSopenharmony_ci * 16x16->32 bit multiply can be used instead of a full 32x32 multiply;
161cabdff1aSopenharmony_ci * this provides a useful speedup on many machines.
162cabdff1aSopenharmony_ci * There is no way to specify a 16x16->32 multiply in portable C, but
163cabdff1aSopenharmony_ci * some C compilers will do the right thing if you provide the correct
164cabdff1aSopenharmony_ci * combination of casts.
165cabdff1aSopenharmony_ci * NB: for 12-bit samples, a full 32-bit multiplication will be needed.
166cabdff1aSopenharmony_ci */
167cabdff1aSopenharmony_ci
168cabdff1aSopenharmony_ci#ifdef EIGHT_BIT_SAMPLES
169cabdff1aSopenharmony_ci#ifdef SHORTxSHORT_32           /* may work if 'int' is 32 bits */
170cabdff1aSopenharmony_ci#define MULTIPLY(var,const)  (((int16_t) (var)) * ((int16_t) (const)))
171cabdff1aSopenharmony_ci#endif
172cabdff1aSopenharmony_ci#ifdef SHORTxLCONST_32          /* known to work with Microsoft C 6.0 */
173cabdff1aSopenharmony_ci#define MULTIPLY(var,const)  (((int16_t) (var)) * ((int32_t) (const)))
174cabdff1aSopenharmony_ci#endif
175cabdff1aSopenharmony_ci#endif
176cabdff1aSopenharmony_ci
177cabdff1aSopenharmony_ci#ifndef MULTIPLY                /* default definition */
178cabdff1aSopenharmony_ci#define MULTIPLY(var,const)  ((var) * (const))
179cabdff1aSopenharmony_ci#endif
180cabdff1aSopenharmony_ci
181cabdff1aSopenharmony_ci
182cabdff1aSopenharmony_ci/*
183cabdff1aSopenharmony_ci  Unlike our decoder where we approximate the FIXes, we need to use exact
184cabdff1aSopenharmony_ciones here or successive P-frames will drift too much with Reference frame coding
185cabdff1aSopenharmony_ci*/
186cabdff1aSopenharmony_ci#define FIX_0_211164243 1730
187cabdff1aSopenharmony_ci#define FIX_0_275899380 2260
188cabdff1aSopenharmony_ci#define FIX_0_298631336 2446
189cabdff1aSopenharmony_ci#define FIX_0_390180644 3196
190cabdff1aSopenharmony_ci#define FIX_0_509795579 4176
191cabdff1aSopenharmony_ci#define FIX_0_541196100 4433
192cabdff1aSopenharmony_ci#define FIX_0_601344887 4926
193cabdff1aSopenharmony_ci#define FIX_0_765366865 6270
194cabdff1aSopenharmony_ci#define FIX_0_785694958 6436
195cabdff1aSopenharmony_ci#define FIX_0_899976223 7373
196cabdff1aSopenharmony_ci#define FIX_1_061594337 8697
197cabdff1aSopenharmony_ci#define FIX_1_111140466 9102
198cabdff1aSopenharmony_ci#define FIX_1_175875602 9633
199cabdff1aSopenharmony_ci#define FIX_1_306562965 10703
200cabdff1aSopenharmony_ci#define FIX_1_387039845 11363
201cabdff1aSopenharmony_ci#define FIX_1_451774981 11893
202cabdff1aSopenharmony_ci#define FIX_1_501321110 12299
203cabdff1aSopenharmony_ci#define FIX_1_662939225 13623
204cabdff1aSopenharmony_ci#define FIX_1_847759065 15137
205cabdff1aSopenharmony_ci#define FIX_1_961570560 16069
206cabdff1aSopenharmony_ci#define FIX_2_053119869 16819
207cabdff1aSopenharmony_ci#define FIX_2_172734803 17799
208cabdff1aSopenharmony_ci#define FIX_2_562915447 20995
209cabdff1aSopenharmony_ci#define FIX_3_072711026 25172
210cabdff1aSopenharmony_ci
211cabdff1aSopenharmony_ci/*
212cabdff1aSopenharmony_ci * Perform the inverse DCT on one block of coefficients.
213cabdff1aSopenharmony_ci */
214cabdff1aSopenharmony_ci
215cabdff1aSopenharmony_civoid ff_j_rev_dct(DCTBLOCK data)
216cabdff1aSopenharmony_ci{
217cabdff1aSopenharmony_ci  int32_t tmp0, tmp1, tmp2, tmp3;
218cabdff1aSopenharmony_ci  int32_t tmp10, tmp11, tmp12, tmp13;
219cabdff1aSopenharmony_ci  int32_t z1, z2, z3, z4, z5;
220cabdff1aSopenharmony_ci  int32_t d0, d1, d2, d3, d4, d5, d6, d7;
221cabdff1aSopenharmony_ci  register int16_t *dataptr;
222cabdff1aSopenharmony_ci  int rowctr;
223cabdff1aSopenharmony_ci
224cabdff1aSopenharmony_ci  /* Pass 1: process rows. */
225cabdff1aSopenharmony_ci  /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
226cabdff1aSopenharmony_ci  /* furthermore, we scale the results by 2**PASS1_BITS. */
227cabdff1aSopenharmony_ci
228cabdff1aSopenharmony_ci  dataptr = data;
229cabdff1aSopenharmony_ci
230cabdff1aSopenharmony_ci  for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
231cabdff1aSopenharmony_ci    /* Due to quantization, we will usually find that many of the input
232cabdff1aSopenharmony_ci     * coefficients are zero, especially the AC terms.  We can exploit this
233cabdff1aSopenharmony_ci     * by short-circuiting the IDCT calculation for any row in which all
234cabdff1aSopenharmony_ci     * the AC terms are zero.  In that case each output is equal to the
235cabdff1aSopenharmony_ci     * DC coefficient (with scale factor as needed).
236cabdff1aSopenharmony_ci     * With typical images and quantization tables, half or more of the
237cabdff1aSopenharmony_ci     * row DCT calculations can be simplified this way.
238cabdff1aSopenharmony_ci     */
239cabdff1aSopenharmony_ci
240cabdff1aSopenharmony_ci    register uint8_t *idataptr = (uint8_t*)dataptr;
241cabdff1aSopenharmony_ci
242cabdff1aSopenharmony_ci    /* WARNING: we do the same permutation as MMX idct to simplify the
243cabdff1aSopenharmony_ci       video core */
244cabdff1aSopenharmony_ci    d0 = dataptr[0];
245cabdff1aSopenharmony_ci    d2 = dataptr[1];
246cabdff1aSopenharmony_ci    d4 = dataptr[2];
247cabdff1aSopenharmony_ci    d6 = dataptr[3];
248cabdff1aSopenharmony_ci    d1 = dataptr[4];
249cabdff1aSopenharmony_ci    d3 = dataptr[5];
250cabdff1aSopenharmony_ci    d5 = dataptr[6];
251cabdff1aSopenharmony_ci    d7 = dataptr[7];
252cabdff1aSopenharmony_ci
253cabdff1aSopenharmony_ci    if ((d1 | d2 | d3 | d4 | d5 | d6 | d7) == 0) {
254cabdff1aSopenharmony_ci      /* AC terms all zero */
255cabdff1aSopenharmony_ci      if (d0) {
256cabdff1aSopenharmony_ci          /* Compute a 32 bit value to assign. */
257cabdff1aSopenharmony_ci          int16_t dcval = (int16_t) (d0 * (1 << PASS1_BITS));
258cabdff1aSopenharmony_ci          register int v = (dcval & 0xffff) | ((dcval * (1 << 16)) & 0xffff0000);
259cabdff1aSopenharmony_ci
260cabdff1aSopenharmony_ci          AV_WN32A(&idataptr[ 0], v);
261cabdff1aSopenharmony_ci          AV_WN32A(&idataptr[ 4], v);
262cabdff1aSopenharmony_ci          AV_WN32A(&idataptr[ 8], v);
263cabdff1aSopenharmony_ci          AV_WN32A(&idataptr[12], v);
264cabdff1aSopenharmony_ci      }
265cabdff1aSopenharmony_ci
266cabdff1aSopenharmony_ci      dataptr += DCTSIZE;       /* advance pointer to next row */
267cabdff1aSopenharmony_ci      continue;
268cabdff1aSopenharmony_ci    }
269cabdff1aSopenharmony_ci
270cabdff1aSopenharmony_ci    /* Even part: reverse the even part of the forward DCT. */
271cabdff1aSopenharmony_ci    /* The rotator is sqrt(2)*c(-6). */
272cabdff1aSopenharmony_ci{
273cabdff1aSopenharmony_ci    if (d6) {
274cabdff1aSopenharmony_ci            if (d2) {
275cabdff1aSopenharmony_ci                    /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
276cabdff1aSopenharmony_ci                    z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
277cabdff1aSopenharmony_ci                    tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
278cabdff1aSopenharmony_ci                    tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
279cabdff1aSopenharmony_ci
280cabdff1aSopenharmony_ci                    tmp0 = (d0 + d4) * CONST_SCALE;
281cabdff1aSopenharmony_ci                    tmp1 = (d0 - d4) * CONST_SCALE;
282cabdff1aSopenharmony_ci
283cabdff1aSopenharmony_ci                    tmp10 = tmp0 + tmp3;
284cabdff1aSopenharmony_ci                    tmp13 = tmp0 - tmp3;
285cabdff1aSopenharmony_ci                    tmp11 = tmp1 + tmp2;
286cabdff1aSopenharmony_ci                    tmp12 = tmp1 - tmp2;
287cabdff1aSopenharmony_ci            } else {
288cabdff1aSopenharmony_ci                    /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
289cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(-d6, FIX_1_306562965);
290cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d6, FIX_0_541196100);
291cabdff1aSopenharmony_ci
292cabdff1aSopenharmony_ci                    tmp0 = (d0 + d4) * CONST_SCALE;
293cabdff1aSopenharmony_ci                    tmp1 = (d0 - d4) * CONST_SCALE;
294cabdff1aSopenharmony_ci
295cabdff1aSopenharmony_ci                    tmp10 = tmp0 + tmp3;
296cabdff1aSopenharmony_ci                    tmp13 = tmp0 - tmp3;
297cabdff1aSopenharmony_ci                    tmp11 = tmp1 + tmp2;
298cabdff1aSopenharmony_ci                    tmp12 = tmp1 - tmp2;
299cabdff1aSopenharmony_ci            }
300cabdff1aSopenharmony_ci    } else {
301cabdff1aSopenharmony_ci            if (d2) {
302cabdff1aSopenharmony_ci                    /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
303cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(d2, FIX_0_541196100);
304cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d2, FIX_1_306562965);
305cabdff1aSopenharmony_ci
306cabdff1aSopenharmony_ci                    tmp0 = (d0 + d4) * CONST_SCALE;
307cabdff1aSopenharmony_ci                    tmp1 = (d0 - d4) * CONST_SCALE;
308cabdff1aSopenharmony_ci
309cabdff1aSopenharmony_ci                    tmp10 = tmp0 + tmp3;
310cabdff1aSopenharmony_ci                    tmp13 = tmp0 - tmp3;
311cabdff1aSopenharmony_ci                    tmp11 = tmp1 + tmp2;
312cabdff1aSopenharmony_ci                    tmp12 = tmp1 - tmp2;
313cabdff1aSopenharmony_ci            } else {
314cabdff1aSopenharmony_ci                    /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
315cabdff1aSopenharmony_ci                    tmp10 = tmp13 = (d0 + d4) * CONST_SCALE;
316cabdff1aSopenharmony_ci                    tmp11 = tmp12 = (d0 - d4) * CONST_SCALE;
317cabdff1aSopenharmony_ci            }
318cabdff1aSopenharmony_ci      }
319cabdff1aSopenharmony_ci
320cabdff1aSopenharmony_ci    /* Odd part per figure 8; the matrix is unitary and hence its
321cabdff1aSopenharmony_ci     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
322cabdff1aSopenharmony_ci     */
323cabdff1aSopenharmony_ci
324cabdff1aSopenharmony_ci    if (d7) {
325cabdff1aSopenharmony_ci        if (d5) {
326cabdff1aSopenharmony_ci            if (d3) {
327cabdff1aSopenharmony_ci                if (d1) {
328cabdff1aSopenharmony_ci                    /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
329cabdff1aSopenharmony_ci                    z1 = d7 + d1;
330cabdff1aSopenharmony_ci                    z2 = d5 + d3;
331cabdff1aSopenharmony_ci                    z3 = d7 + d3;
332cabdff1aSopenharmony_ci                    z4 = d5 + d1;
333cabdff1aSopenharmony_ci                    z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
334cabdff1aSopenharmony_ci
335cabdff1aSopenharmony_ci                    tmp0 = MULTIPLY(d7, FIX_0_298631336);
336cabdff1aSopenharmony_ci                    tmp1 = MULTIPLY(d5, FIX_2_053119869);
337cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(d3, FIX_3_072711026);
338cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d1, FIX_1_501321110);
339cabdff1aSopenharmony_ci                    z1 = MULTIPLY(-z1, FIX_0_899976223);
340cabdff1aSopenharmony_ci                    z2 = MULTIPLY(-z2, FIX_2_562915447);
341cabdff1aSopenharmony_ci                    z3 = MULTIPLY(-z3, FIX_1_961570560);
342cabdff1aSopenharmony_ci                    z4 = MULTIPLY(-z4, FIX_0_390180644);
343cabdff1aSopenharmony_ci
344cabdff1aSopenharmony_ci                    z3 += z5;
345cabdff1aSopenharmony_ci                    z4 += z5;
346cabdff1aSopenharmony_ci
347cabdff1aSopenharmony_ci                    tmp0 += z1 + z3;
348cabdff1aSopenharmony_ci                    tmp1 += z2 + z4;
349cabdff1aSopenharmony_ci                    tmp2 += z2 + z3;
350cabdff1aSopenharmony_ci                    tmp3 += z1 + z4;
351cabdff1aSopenharmony_ci                } else {
352cabdff1aSopenharmony_ci                    /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
353cabdff1aSopenharmony_ci                    z2 = d5 + d3;
354cabdff1aSopenharmony_ci                    z3 = d7 + d3;
355cabdff1aSopenharmony_ci                    z5 = MULTIPLY(z3 + d5, FIX_1_175875602);
356cabdff1aSopenharmony_ci
357cabdff1aSopenharmony_ci                    tmp0 = MULTIPLY(d7, FIX_0_298631336);
358cabdff1aSopenharmony_ci                    tmp1 = MULTIPLY(d5, FIX_2_053119869);
359cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(d3, FIX_3_072711026);
360cabdff1aSopenharmony_ci                    z1 = MULTIPLY(-d7, FIX_0_899976223);
361cabdff1aSopenharmony_ci                    z2 = MULTIPLY(-z2, FIX_2_562915447);
362cabdff1aSopenharmony_ci                    z3 = MULTIPLY(-z3, FIX_1_961570560);
363cabdff1aSopenharmony_ci                    z4 = MULTIPLY(-d5, FIX_0_390180644);
364cabdff1aSopenharmony_ci
365cabdff1aSopenharmony_ci                    z3 += z5;
366cabdff1aSopenharmony_ci                    z4 += z5;
367cabdff1aSopenharmony_ci
368cabdff1aSopenharmony_ci                    tmp0 += z1 + z3;
369cabdff1aSopenharmony_ci                    tmp1 += z2 + z4;
370cabdff1aSopenharmony_ci                    tmp2 += z2 + z3;
371cabdff1aSopenharmony_ci                    tmp3 = z1 + z4;
372cabdff1aSopenharmony_ci                }
373cabdff1aSopenharmony_ci            } else {
374cabdff1aSopenharmony_ci                if (d1) {
375cabdff1aSopenharmony_ci                    /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
376cabdff1aSopenharmony_ci                    z1 = d7 + d1;
377cabdff1aSopenharmony_ci                    z4 = d5 + d1;
378cabdff1aSopenharmony_ci                    z5 = MULTIPLY(d7 + z4, FIX_1_175875602);
379cabdff1aSopenharmony_ci
380cabdff1aSopenharmony_ci                    tmp0 = MULTIPLY(d7, FIX_0_298631336);
381cabdff1aSopenharmony_ci                    tmp1 = MULTIPLY(d5, FIX_2_053119869);
382cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d1, FIX_1_501321110);
383cabdff1aSopenharmony_ci                    z1 = MULTIPLY(-z1, FIX_0_899976223);
384cabdff1aSopenharmony_ci                    z2 = MULTIPLY(-d5, FIX_2_562915447);
385cabdff1aSopenharmony_ci                    z3 = MULTIPLY(-d7, FIX_1_961570560);
386cabdff1aSopenharmony_ci                    z4 = MULTIPLY(-z4, FIX_0_390180644);
387cabdff1aSopenharmony_ci
388cabdff1aSopenharmony_ci                    z3 += z5;
389cabdff1aSopenharmony_ci                    z4 += z5;
390cabdff1aSopenharmony_ci
391cabdff1aSopenharmony_ci                    tmp0 += z1 + z3;
392cabdff1aSopenharmony_ci                    tmp1 += z2 + z4;
393cabdff1aSopenharmony_ci                    tmp2 = z2 + z3;
394cabdff1aSopenharmony_ci                    tmp3 += z1 + z4;
395cabdff1aSopenharmony_ci                } else {
396cabdff1aSopenharmony_ci                    /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
397cabdff1aSopenharmony_ci                    tmp0 = MULTIPLY(-d7, FIX_0_601344887);
398cabdff1aSopenharmony_ci                    z1 = MULTIPLY(-d7, FIX_0_899976223);
399cabdff1aSopenharmony_ci                    z3 = MULTIPLY(-d7, FIX_1_961570560);
400cabdff1aSopenharmony_ci                    tmp1 = MULTIPLY(-d5, FIX_0_509795579);
401cabdff1aSopenharmony_ci                    z2 = MULTIPLY(-d5, FIX_2_562915447);
402cabdff1aSopenharmony_ci                    z4 = MULTIPLY(-d5, FIX_0_390180644);
403cabdff1aSopenharmony_ci                    z5 = MULTIPLY(d5 + d7, FIX_1_175875602);
404cabdff1aSopenharmony_ci
405cabdff1aSopenharmony_ci                    z3 += z5;
406cabdff1aSopenharmony_ci                    z4 += z5;
407cabdff1aSopenharmony_ci
408cabdff1aSopenharmony_ci                    tmp0 += z3;
409cabdff1aSopenharmony_ci                    tmp1 += z4;
410cabdff1aSopenharmony_ci                    tmp2 = z2 + z3;
411cabdff1aSopenharmony_ci                    tmp3 = z1 + z4;
412cabdff1aSopenharmony_ci                }
413cabdff1aSopenharmony_ci            }
414cabdff1aSopenharmony_ci        } else {
415cabdff1aSopenharmony_ci            if (d3) {
416cabdff1aSopenharmony_ci                if (d1) {
417cabdff1aSopenharmony_ci                    /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
418cabdff1aSopenharmony_ci                    z1 = d7 + d1;
419cabdff1aSopenharmony_ci                    z3 = d7 + d3;
420cabdff1aSopenharmony_ci                    z5 = MULTIPLY(z3 + d1, FIX_1_175875602);
421cabdff1aSopenharmony_ci
422cabdff1aSopenharmony_ci                    tmp0 = MULTIPLY(d7, FIX_0_298631336);
423cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(d3, FIX_3_072711026);
424cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d1, FIX_1_501321110);
425cabdff1aSopenharmony_ci                    z1 = MULTIPLY(-z1, FIX_0_899976223);
426cabdff1aSopenharmony_ci                    z2 = MULTIPLY(-d3, FIX_2_562915447);
427cabdff1aSopenharmony_ci                    z3 = MULTIPLY(-z3, FIX_1_961570560);
428cabdff1aSopenharmony_ci                    z4 = MULTIPLY(-d1, FIX_0_390180644);
429cabdff1aSopenharmony_ci
430cabdff1aSopenharmony_ci                    z3 += z5;
431cabdff1aSopenharmony_ci                    z4 += z5;
432cabdff1aSopenharmony_ci
433cabdff1aSopenharmony_ci                    tmp0 += z1 + z3;
434cabdff1aSopenharmony_ci                    tmp1 = z2 + z4;
435cabdff1aSopenharmony_ci                    tmp2 += z2 + z3;
436cabdff1aSopenharmony_ci                    tmp3 += z1 + z4;
437cabdff1aSopenharmony_ci                } else {
438cabdff1aSopenharmony_ci                    /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
439cabdff1aSopenharmony_ci                    z3 = d7 + d3;
440cabdff1aSopenharmony_ci
441cabdff1aSopenharmony_ci                    tmp0 = MULTIPLY(-d7, FIX_0_601344887);
442cabdff1aSopenharmony_ci                    z1 = MULTIPLY(-d7, FIX_0_899976223);
443cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(d3, FIX_0_509795579);
444cabdff1aSopenharmony_ci                    z2 = MULTIPLY(-d3, FIX_2_562915447);
445cabdff1aSopenharmony_ci                    z5 = MULTIPLY(z3, FIX_1_175875602);
446cabdff1aSopenharmony_ci                    z3 = MULTIPLY(-z3, FIX_0_785694958);
447cabdff1aSopenharmony_ci
448cabdff1aSopenharmony_ci                    tmp0 += z3;
449cabdff1aSopenharmony_ci                    tmp1 = z2 + z5;
450cabdff1aSopenharmony_ci                    tmp2 += z3;
451cabdff1aSopenharmony_ci                    tmp3 = z1 + z5;
452cabdff1aSopenharmony_ci                }
453cabdff1aSopenharmony_ci            } else {
454cabdff1aSopenharmony_ci                if (d1) {
455cabdff1aSopenharmony_ci                    /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
456cabdff1aSopenharmony_ci                    z1 = d7 + d1;
457cabdff1aSopenharmony_ci                    z5 = MULTIPLY(z1, FIX_1_175875602);
458cabdff1aSopenharmony_ci
459cabdff1aSopenharmony_ci                    z1 = MULTIPLY(z1, FIX_0_275899380);
460cabdff1aSopenharmony_ci                    z3 = MULTIPLY(-d7, FIX_1_961570560);
461cabdff1aSopenharmony_ci                    tmp0 = MULTIPLY(-d7, FIX_1_662939225);
462cabdff1aSopenharmony_ci                    z4 = MULTIPLY(-d1, FIX_0_390180644);
463cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d1, FIX_1_111140466);
464cabdff1aSopenharmony_ci
465cabdff1aSopenharmony_ci                    tmp0 += z1;
466cabdff1aSopenharmony_ci                    tmp1 = z4 + z5;
467cabdff1aSopenharmony_ci                    tmp2 = z3 + z5;
468cabdff1aSopenharmony_ci                    tmp3 += z1;
469cabdff1aSopenharmony_ci                } else {
470cabdff1aSopenharmony_ci                    /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
471cabdff1aSopenharmony_ci                    tmp0 = MULTIPLY(-d7, FIX_1_387039845);
472cabdff1aSopenharmony_ci                    tmp1 = MULTIPLY(d7, FIX_1_175875602);
473cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(-d7, FIX_0_785694958);
474cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d7, FIX_0_275899380);
475cabdff1aSopenharmony_ci                }
476cabdff1aSopenharmony_ci            }
477cabdff1aSopenharmony_ci        }
478cabdff1aSopenharmony_ci    } else {
479cabdff1aSopenharmony_ci        if (d5) {
480cabdff1aSopenharmony_ci            if (d3) {
481cabdff1aSopenharmony_ci                if (d1) {
482cabdff1aSopenharmony_ci                    /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
483cabdff1aSopenharmony_ci                    z2 = d5 + d3;
484cabdff1aSopenharmony_ci                    z4 = d5 + d1;
485cabdff1aSopenharmony_ci                    z5 = MULTIPLY(d3 + z4, FIX_1_175875602);
486cabdff1aSopenharmony_ci
487cabdff1aSopenharmony_ci                    tmp1 = MULTIPLY(d5, FIX_2_053119869);
488cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(d3, FIX_3_072711026);
489cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d1, FIX_1_501321110);
490cabdff1aSopenharmony_ci                    z1 = MULTIPLY(-d1, FIX_0_899976223);
491cabdff1aSopenharmony_ci                    z2 = MULTIPLY(-z2, FIX_2_562915447);
492cabdff1aSopenharmony_ci                    z3 = MULTIPLY(-d3, FIX_1_961570560);
493cabdff1aSopenharmony_ci                    z4 = MULTIPLY(-z4, FIX_0_390180644);
494cabdff1aSopenharmony_ci
495cabdff1aSopenharmony_ci                    z3 += z5;
496cabdff1aSopenharmony_ci                    z4 += z5;
497cabdff1aSopenharmony_ci
498cabdff1aSopenharmony_ci                    tmp0 = z1 + z3;
499cabdff1aSopenharmony_ci                    tmp1 += z2 + z4;
500cabdff1aSopenharmony_ci                    tmp2 += z2 + z3;
501cabdff1aSopenharmony_ci                    tmp3 += z1 + z4;
502cabdff1aSopenharmony_ci                } else {
503cabdff1aSopenharmony_ci                    /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
504cabdff1aSopenharmony_ci                    z2 = d5 + d3;
505cabdff1aSopenharmony_ci
506cabdff1aSopenharmony_ci                    z5 = MULTIPLY(z2, FIX_1_175875602);
507cabdff1aSopenharmony_ci                    tmp1 = MULTIPLY(d5, FIX_1_662939225);
508cabdff1aSopenharmony_ci                    z4 = MULTIPLY(-d5, FIX_0_390180644);
509cabdff1aSopenharmony_ci                    z2 = MULTIPLY(-z2, FIX_1_387039845);
510cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(d3, FIX_1_111140466);
511cabdff1aSopenharmony_ci                    z3 = MULTIPLY(-d3, FIX_1_961570560);
512cabdff1aSopenharmony_ci
513cabdff1aSopenharmony_ci                    tmp0 = z3 + z5;
514cabdff1aSopenharmony_ci                    tmp1 += z2;
515cabdff1aSopenharmony_ci                    tmp2 += z2;
516cabdff1aSopenharmony_ci                    tmp3 = z4 + z5;
517cabdff1aSopenharmony_ci                }
518cabdff1aSopenharmony_ci            } else {
519cabdff1aSopenharmony_ci                if (d1) {
520cabdff1aSopenharmony_ci                    /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
521cabdff1aSopenharmony_ci                    z4 = d5 + d1;
522cabdff1aSopenharmony_ci
523cabdff1aSopenharmony_ci                    z5 = MULTIPLY(z4, FIX_1_175875602);
524cabdff1aSopenharmony_ci                    z1 = MULTIPLY(-d1, FIX_0_899976223);
525cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d1, FIX_0_601344887);
526cabdff1aSopenharmony_ci                    tmp1 = MULTIPLY(-d5, FIX_0_509795579);
527cabdff1aSopenharmony_ci                    z2 = MULTIPLY(-d5, FIX_2_562915447);
528cabdff1aSopenharmony_ci                    z4 = MULTIPLY(z4, FIX_0_785694958);
529cabdff1aSopenharmony_ci
530cabdff1aSopenharmony_ci                    tmp0 = z1 + z5;
531cabdff1aSopenharmony_ci                    tmp1 += z4;
532cabdff1aSopenharmony_ci                    tmp2 = z2 + z5;
533cabdff1aSopenharmony_ci                    tmp3 += z4;
534cabdff1aSopenharmony_ci                } else {
535cabdff1aSopenharmony_ci                    /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
536cabdff1aSopenharmony_ci                    tmp0 = MULTIPLY(d5, FIX_1_175875602);
537cabdff1aSopenharmony_ci                    tmp1 = MULTIPLY(d5, FIX_0_275899380);
538cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(-d5, FIX_1_387039845);
539cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d5, FIX_0_785694958);
540cabdff1aSopenharmony_ci                }
541cabdff1aSopenharmony_ci            }
542cabdff1aSopenharmony_ci        } else {
543cabdff1aSopenharmony_ci            if (d3) {
544cabdff1aSopenharmony_ci                if (d1) {
545cabdff1aSopenharmony_ci                    /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
546cabdff1aSopenharmony_ci                    z5 = d1 + d3;
547cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d1, FIX_0_211164243);
548cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(-d3, FIX_1_451774981);
549cabdff1aSopenharmony_ci                    z1 = MULTIPLY(d1, FIX_1_061594337);
550cabdff1aSopenharmony_ci                    z2 = MULTIPLY(-d3, FIX_2_172734803);
551cabdff1aSopenharmony_ci                    z4 = MULTIPLY(z5, FIX_0_785694958);
552cabdff1aSopenharmony_ci                    z5 = MULTIPLY(z5, FIX_1_175875602);
553cabdff1aSopenharmony_ci
554cabdff1aSopenharmony_ci                    tmp0 = z1 - z4;
555cabdff1aSopenharmony_ci                    tmp1 = z2 + z4;
556cabdff1aSopenharmony_ci                    tmp2 += z5;
557cabdff1aSopenharmony_ci                    tmp3 += z5;
558cabdff1aSopenharmony_ci                } else {
559cabdff1aSopenharmony_ci                    /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
560cabdff1aSopenharmony_ci                    tmp0 = MULTIPLY(-d3, FIX_0_785694958);
561cabdff1aSopenharmony_ci                    tmp1 = MULTIPLY(-d3, FIX_1_387039845);
562cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(-d3, FIX_0_275899380);
563cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d3, FIX_1_175875602);
564cabdff1aSopenharmony_ci                }
565cabdff1aSopenharmony_ci            } else {
566cabdff1aSopenharmony_ci                if (d1) {
567cabdff1aSopenharmony_ci                    /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
568cabdff1aSopenharmony_ci                    tmp0 = MULTIPLY(d1, FIX_0_275899380);
569cabdff1aSopenharmony_ci                    tmp1 = MULTIPLY(d1, FIX_0_785694958);
570cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(d1, FIX_1_175875602);
571cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d1, FIX_1_387039845);
572cabdff1aSopenharmony_ci                } else {
573cabdff1aSopenharmony_ci                    /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
574cabdff1aSopenharmony_ci                    tmp0 = tmp1 = tmp2 = tmp3 = 0;
575cabdff1aSopenharmony_ci                }
576cabdff1aSopenharmony_ci            }
577cabdff1aSopenharmony_ci        }
578cabdff1aSopenharmony_ci    }
579cabdff1aSopenharmony_ci}
580cabdff1aSopenharmony_ci    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
581cabdff1aSopenharmony_ci
582cabdff1aSopenharmony_ci    dataptr[0] = (int16_t) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);
583cabdff1aSopenharmony_ci    dataptr[7] = (int16_t) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);
584cabdff1aSopenharmony_ci    dataptr[1] = (int16_t) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);
585cabdff1aSopenharmony_ci    dataptr[6] = (int16_t) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);
586cabdff1aSopenharmony_ci    dataptr[2] = (int16_t) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);
587cabdff1aSopenharmony_ci    dataptr[5] = (int16_t) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);
588cabdff1aSopenharmony_ci    dataptr[3] = (int16_t) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);
589cabdff1aSopenharmony_ci    dataptr[4] = (int16_t) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);
590cabdff1aSopenharmony_ci
591cabdff1aSopenharmony_ci    dataptr += DCTSIZE;         /* advance pointer to next row */
592cabdff1aSopenharmony_ci  }
593cabdff1aSopenharmony_ci
594cabdff1aSopenharmony_ci  /* Pass 2: process columns. */
595cabdff1aSopenharmony_ci  /* Note that we must descale the results by a factor of 8 == 2**3, */
596cabdff1aSopenharmony_ci  /* and also undo the PASS1_BITS scaling. */
597cabdff1aSopenharmony_ci
598cabdff1aSopenharmony_ci  dataptr = data;
599cabdff1aSopenharmony_ci  for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
600cabdff1aSopenharmony_ci    /* Columns of zeroes can be exploited in the same way as we did with rows.
601cabdff1aSopenharmony_ci     * However, the row calculation has created many nonzero AC terms, so the
602cabdff1aSopenharmony_ci     * simplification applies less often (typically 5% to 10% of the time).
603cabdff1aSopenharmony_ci     * On machines with very fast multiplication, it's possible that the
604cabdff1aSopenharmony_ci     * test takes more time than it's worth.  In that case this section
605cabdff1aSopenharmony_ci     * may be commented out.
606cabdff1aSopenharmony_ci     */
607cabdff1aSopenharmony_ci
608cabdff1aSopenharmony_ci    d0 = dataptr[DCTSIZE*0];
609cabdff1aSopenharmony_ci    d1 = dataptr[DCTSIZE*1];
610cabdff1aSopenharmony_ci    d2 = dataptr[DCTSIZE*2];
611cabdff1aSopenharmony_ci    d3 = dataptr[DCTSIZE*3];
612cabdff1aSopenharmony_ci    d4 = dataptr[DCTSIZE*4];
613cabdff1aSopenharmony_ci    d5 = dataptr[DCTSIZE*5];
614cabdff1aSopenharmony_ci    d6 = dataptr[DCTSIZE*6];
615cabdff1aSopenharmony_ci    d7 = dataptr[DCTSIZE*7];
616cabdff1aSopenharmony_ci
617cabdff1aSopenharmony_ci    /* Even part: reverse the even part of the forward DCT. */
618cabdff1aSopenharmony_ci    /* The rotator is sqrt(2)*c(-6). */
619cabdff1aSopenharmony_ci    if (d6) {
620cabdff1aSopenharmony_ci            if (d2) {
621cabdff1aSopenharmony_ci                    /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
622cabdff1aSopenharmony_ci                    z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
623cabdff1aSopenharmony_ci                    tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
624cabdff1aSopenharmony_ci                    tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
625cabdff1aSopenharmony_ci
626cabdff1aSopenharmony_ci                    tmp0 = (d0 + d4) * CONST_SCALE;
627cabdff1aSopenharmony_ci                    tmp1 = (d0 - d4) * CONST_SCALE;
628cabdff1aSopenharmony_ci
629cabdff1aSopenharmony_ci                    tmp10 = tmp0 + tmp3;
630cabdff1aSopenharmony_ci                    tmp13 = tmp0 - tmp3;
631cabdff1aSopenharmony_ci                    tmp11 = tmp1 + tmp2;
632cabdff1aSopenharmony_ci                    tmp12 = tmp1 - tmp2;
633cabdff1aSopenharmony_ci            } else {
634cabdff1aSopenharmony_ci                    /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
635cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(-d6, FIX_1_306562965);
636cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d6, FIX_0_541196100);
637cabdff1aSopenharmony_ci
638cabdff1aSopenharmony_ci                    tmp0 = (d0 + d4) * CONST_SCALE;
639cabdff1aSopenharmony_ci                    tmp1 = (d0 - d4) * CONST_SCALE;
640cabdff1aSopenharmony_ci
641cabdff1aSopenharmony_ci                    tmp10 = tmp0 + tmp3;
642cabdff1aSopenharmony_ci                    tmp13 = tmp0 - tmp3;
643cabdff1aSopenharmony_ci                    tmp11 = tmp1 + tmp2;
644cabdff1aSopenharmony_ci                    tmp12 = tmp1 - tmp2;
645cabdff1aSopenharmony_ci            }
646cabdff1aSopenharmony_ci    } else {
647cabdff1aSopenharmony_ci            if (d2) {
648cabdff1aSopenharmony_ci                    /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
649cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(d2, FIX_0_541196100);
650cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d2, FIX_1_306562965);
651cabdff1aSopenharmony_ci
652cabdff1aSopenharmony_ci                    tmp0 = (d0 + d4) * CONST_SCALE;
653cabdff1aSopenharmony_ci                    tmp1 = (d0 - d4) * CONST_SCALE;
654cabdff1aSopenharmony_ci
655cabdff1aSopenharmony_ci                    tmp10 = tmp0 + tmp3;
656cabdff1aSopenharmony_ci                    tmp13 = tmp0 - tmp3;
657cabdff1aSopenharmony_ci                    tmp11 = tmp1 + tmp2;
658cabdff1aSopenharmony_ci                    tmp12 = tmp1 - tmp2;
659cabdff1aSopenharmony_ci            } else {
660cabdff1aSopenharmony_ci                    /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
661cabdff1aSopenharmony_ci                    tmp10 = tmp13 = (d0 + d4) * CONST_SCALE;
662cabdff1aSopenharmony_ci                    tmp11 = tmp12 = (d0 - d4) * CONST_SCALE;
663cabdff1aSopenharmony_ci            }
664cabdff1aSopenharmony_ci    }
665cabdff1aSopenharmony_ci
666cabdff1aSopenharmony_ci    /* Odd part per figure 8; the matrix is unitary and hence its
667cabdff1aSopenharmony_ci     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.
668cabdff1aSopenharmony_ci     */
669cabdff1aSopenharmony_ci    if (d7) {
670cabdff1aSopenharmony_ci        if (d5) {
671cabdff1aSopenharmony_ci            if (d3) {
672cabdff1aSopenharmony_ci                if (d1) {
673cabdff1aSopenharmony_ci                    /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
674cabdff1aSopenharmony_ci                    z1 = d7 + d1;
675cabdff1aSopenharmony_ci                    z2 = d5 + d3;
676cabdff1aSopenharmony_ci                    z3 = d7 + d3;
677cabdff1aSopenharmony_ci                    z4 = d5 + d1;
678cabdff1aSopenharmony_ci                    z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
679cabdff1aSopenharmony_ci
680cabdff1aSopenharmony_ci                    tmp0 = MULTIPLY(d7, FIX_0_298631336);
681cabdff1aSopenharmony_ci                    tmp1 = MULTIPLY(d5, FIX_2_053119869);
682cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(d3, FIX_3_072711026);
683cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d1, FIX_1_501321110);
684cabdff1aSopenharmony_ci                    z1 = MULTIPLY(-z1, FIX_0_899976223);
685cabdff1aSopenharmony_ci                    z2 = MULTIPLY(-z2, FIX_2_562915447);
686cabdff1aSopenharmony_ci                    z3 = MULTIPLY(-z3, FIX_1_961570560);
687cabdff1aSopenharmony_ci                    z4 = MULTIPLY(-z4, FIX_0_390180644);
688cabdff1aSopenharmony_ci
689cabdff1aSopenharmony_ci                    z3 += z5;
690cabdff1aSopenharmony_ci                    z4 += z5;
691cabdff1aSopenharmony_ci
692cabdff1aSopenharmony_ci                    tmp0 += z1 + z3;
693cabdff1aSopenharmony_ci                    tmp1 += z2 + z4;
694cabdff1aSopenharmony_ci                    tmp2 += z2 + z3;
695cabdff1aSopenharmony_ci                    tmp3 += z1 + z4;
696cabdff1aSopenharmony_ci                } else {
697cabdff1aSopenharmony_ci                    /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
698cabdff1aSopenharmony_ci                    z2 = d5 + d3;
699cabdff1aSopenharmony_ci                    z3 = d7 + d3;
700cabdff1aSopenharmony_ci                    z5 = MULTIPLY(z3 + d5, FIX_1_175875602);
701cabdff1aSopenharmony_ci
702cabdff1aSopenharmony_ci                    tmp0 = MULTIPLY(d7, FIX_0_298631336);
703cabdff1aSopenharmony_ci                    tmp1 = MULTIPLY(d5, FIX_2_053119869);
704cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(d3, FIX_3_072711026);
705cabdff1aSopenharmony_ci                    z1 = MULTIPLY(-d7, FIX_0_899976223);
706cabdff1aSopenharmony_ci                    z2 = MULTIPLY(-z2, FIX_2_562915447);
707cabdff1aSopenharmony_ci                    z3 = MULTIPLY(-z3, FIX_1_961570560);
708cabdff1aSopenharmony_ci                    z4 = MULTIPLY(-d5, FIX_0_390180644);
709cabdff1aSopenharmony_ci
710cabdff1aSopenharmony_ci                    z3 += z5;
711cabdff1aSopenharmony_ci                    z4 += z5;
712cabdff1aSopenharmony_ci
713cabdff1aSopenharmony_ci                    tmp0 += z1 + z3;
714cabdff1aSopenharmony_ci                    tmp1 += z2 + z4;
715cabdff1aSopenharmony_ci                    tmp2 += z2 + z3;
716cabdff1aSopenharmony_ci                    tmp3 = z1 + z4;
717cabdff1aSopenharmony_ci                }
718cabdff1aSopenharmony_ci            } else {
719cabdff1aSopenharmony_ci                if (d1) {
720cabdff1aSopenharmony_ci                    /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
721cabdff1aSopenharmony_ci                    z1 = d7 + d1;
722cabdff1aSopenharmony_ci                    z3 = d7;
723cabdff1aSopenharmony_ci                    z4 = d5 + d1;
724cabdff1aSopenharmony_ci                    z5 = MULTIPLY(z3 + z4, FIX_1_175875602);
725cabdff1aSopenharmony_ci
726cabdff1aSopenharmony_ci                    tmp0 = MULTIPLY(d7, FIX_0_298631336);
727cabdff1aSopenharmony_ci                    tmp1 = MULTIPLY(d5, FIX_2_053119869);
728cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d1, FIX_1_501321110);
729cabdff1aSopenharmony_ci                    z1 = MULTIPLY(-z1, FIX_0_899976223);
730cabdff1aSopenharmony_ci                    z2 = MULTIPLY(-d5, FIX_2_562915447);
731cabdff1aSopenharmony_ci                    z3 = MULTIPLY(-d7, FIX_1_961570560);
732cabdff1aSopenharmony_ci                    z4 = MULTIPLY(-z4, FIX_0_390180644);
733cabdff1aSopenharmony_ci
734cabdff1aSopenharmony_ci                    z3 += z5;
735cabdff1aSopenharmony_ci                    z4 += z5;
736cabdff1aSopenharmony_ci
737cabdff1aSopenharmony_ci                    tmp0 += z1 + z3;
738cabdff1aSopenharmony_ci                    tmp1 += z2 + z4;
739cabdff1aSopenharmony_ci                    tmp2 = z2 + z3;
740cabdff1aSopenharmony_ci                    tmp3 += z1 + z4;
741cabdff1aSopenharmony_ci                } else {
742cabdff1aSopenharmony_ci                    /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
743cabdff1aSopenharmony_ci                    tmp0 = MULTIPLY(-d7, FIX_0_601344887);
744cabdff1aSopenharmony_ci                    z1 = MULTIPLY(-d7, FIX_0_899976223);
745cabdff1aSopenharmony_ci                    z3 = MULTIPLY(-d7, FIX_1_961570560);
746cabdff1aSopenharmony_ci                    tmp1 = MULTIPLY(-d5, FIX_0_509795579);
747cabdff1aSopenharmony_ci                    z2 = MULTIPLY(-d5, FIX_2_562915447);
748cabdff1aSopenharmony_ci                    z4 = MULTIPLY(-d5, FIX_0_390180644);
749cabdff1aSopenharmony_ci                    z5 = MULTIPLY(d5 + d7, FIX_1_175875602);
750cabdff1aSopenharmony_ci
751cabdff1aSopenharmony_ci                    z3 += z5;
752cabdff1aSopenharmony_ci                    z4 += z5;
753cabdff1aSopenharmony_ci
754cabdff1aSopenharmony_ci                    tmp0 += z3;
755cabdff1aSopenharmony_ci                    tmp1 += z4;
756cabdff1aSopenharmony_ci                    tmp2 = z2 + z3;
757cabdff1aSopenharmony_ci                    tmp3 = z1 + z4;
758cabdff1aSopenharmony_ci                }
759cabdff1aSopenharmony_ci            }
760cabdff1aSopenharmony_ci        } else {
761cabdff1aSopenharmony_ci            if (d3) {
762cabdff1aSopenharmony_ci                if (d1) {
763cabdff1aSopenharmony_ci                    /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
764cabdff1aSopenharmony_ci                    z1 = d7 + d1;
765cabdff1aSopenharmony_ci                    z3 = d7 + d3;
766cabdff1aSopenharmony_ci                    z5 = MULTIPLY(z3 + d1, FIX_1_175875602);
767cabdff1aSopenharmony_ci
768cabdff1aSopenharmony_ci                    tmp0 = MULTIPLY(d7, FIX_0_298631336);
769cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(d3, FIX_3_072711026);
770cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d1, FIX_1_501321110);
771cabdff1aSopenharmony_ci                    z1 = MULTIPLY(-z1, FIX_0_899976223);
772cabdff1aSopenharmony_ci                    z2 = MULTIPLY(-d3, FIX_2_562915447);
773cabdff1aSopenharmony_ci                    z3 = MULTIPLY(-z3, FIX_1_961570560);
774cabdff1aSopenharmony_ci                    z4 = MULTIPLY(-d1, FIX_0_390180644);
775cabdff1aSopenharmony_ci
776cabdff1aSopenharmony_ci                    z3 += z5;
777cabdff1aSopenharmony_ci                    z4 += z5;
778cabdff1aSopenharmony_ci
779cabdff1aSopenharmony_ci                    tmp0 += z1 + z3;
780cabdff1aSopenharmony_ci                    tmp1 = z2 + z4;
781cabdff1aSopenharmony_ci                    tmp2 += z2 + z3;
782cabdff1aSopenharmony_ci                    tmp3 += z1 + z4;
783cabdff1aSopenharmony_ci                } else {
784cabdff1aSopenharmony_ci                    /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
785cabdff1aSopenharmony_ci                    z3 = d7 + d3;
786cabdff1aSopenharmony_ci
787cabdff1aSopenharmony_ci                    tmp0 = MULTIPLY(-d7, FIX_0_601344887);
788cabdff1aSopenharmony_ci                    z1 = MULTIPLY(-d7, FIX_0_899976223);
789cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(d3, FIX_0_509795579);
790cabdff1aSopenharmony_ci                    z2 = MULTIPLY(-d3, FIX_2_562915447);
791cabdff1aSopenharmony_ci                    z5 = MULTIPLY(z3, FIX_1_175875602);
792cabdff1aSopenharmony_ci                    z3 = MULTIPLY(-z3, FIX_0_785694958);
793cabdff1aSopenharmony_ci
794cabdff1aSopenharmony_ci                    tmp0 += z3;
795cabdff1aSopenharmony_ci                    tmp1 = z2 + z5;
796cabdff1aSopenharmony_ci                    tmp2 += z3;
797cabdff1aSopenharmony_ci                    tmp3 = z1 + z5;
798cabdff1aSopenharmony_ci                }
799cabdff1aSopenharmony_ci            } else {
800cabdff1aSopenharmony_ci                if (d1) {
801cabdff1aSopenharmony_ci                    /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
802cabdff1aSopenharmony_ci                    z1 = d7 + d1;
803cabdff1aSopenharmony_ci                    z5 = MULTIPLY(z1, FIX_1_175875602);
804cabdff1aSopenharmony_ci
805cabdff1aSopenharmony_ci                    z1 = MULTIPLY(z1, FIX_0_275899380);
806cabdff1aSopenharmony_ci                    z3 = MULTIPLY(-d7, FIX_1_961570560);
807cabdff1aSopenharmony_ci                    tmp0 = MULTIPLY(-d7, FIX_1_662939225);
808cabdff1aSopenharmony_ci                    z4 = MULTIPLY(-d1, FIX_0_390180644);
809cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d1, FIX_1_111140466);
810cabdff1aSopenharmony_ci
811cabdff1aSopenharmony_ci                    tmp0 += z1;
812cabdff1aSopenharmony_ci                    tmp1 = z4 + z5;
813cabdff1aSopenharmony_ci                    tmp2 = z3 + z5;
814cabdff1aSopenharmony_ci                    tmp3 += z1;
815cabdff1aSopenharmony_ci                } else {
816cabdff1aSopenharmony_ci                    /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
817cabdff1aSopenharmony_ci                    tmp0 = MULTIPLY(-d7, FIX_1_387039845);
818cabdff1aSopenharmony_ci                    tmp1 = MULTIPLY(d7, FIX_1_175875602);
819cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(-d7, FIX_0_785694958);
820cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d7, FIX_0_275899380);
821cabdff1aSopenharmony_ci                }
822cabdff1aSopenharmony_ci            }
823cabdff1aSopenharmony_ci        }
824cabdff1aSopenharmony_ci    } else {
825cabdff1aSopenharmony_ci        if (d5) {
826cabdff1aSopenharmony_ci            if (d3) {
827cabdff1aSopenharmony_ci                if (d1) {
828cabdff1aSopenharmony_ci                    /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
829cabdff1aSopenharmony_ci                    z2 = d5 + d3;
830cabdff1aSopenharmony_ci                    z4 = d5 + d1;
831cabdff1aSopenharmony_ci                    z5 = MULTIPLY(d3 + z4, FIX_1_175875602);
832cabdff1aSopenharmony_ci
833cabdff1aSopenharmony_ci                    tmp1 = MULTIPLY(d5, FIX_2_053119869);
834cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(d3, FIX_3_072711026);
835cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d1, FIX_1_501321110);
836cabdff1aSopenharmony_ci                    z1 = MULTIPLY(-d1, FIX_0_899976223);
837cabdff1aSopenharmony_ci                    z2 = MULTIPLY(-z2, FIX_2_562915447);
838cabdff1aSopenharmony_ci                    z3 = MULTIPLY(-d3, FIX_1_961570560);
839cabdff1aSopenharmony_ci                    z4 = MULTIPLY(-z4, FIX_0_390180644);
840cabdff1aSopenharmony_ci
841cabdff1aSopenharmony_ci                    z3 += z5;
842cabdff1aSopenharmony_ci                    z4 += z5;
843cabdff1aSopenharmony_ci
844cabdff1aSopenharmony_ci                    tmp0 = z1 + z3;
845cabdff1aSopenharmony_ci                    tmp1 += z2 + z4;
846cabdff1aSopenharmony_ci                    tmp2 += z2 + z3;
847cabdff1aSopenharmony_ci                    tmp3 += z1 + z4;
848cabdff1aSopenharmony_ci                } else {
849cabdff1aSopenharmony_ci                    /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
850cabdff1aSopenharmony_ci                    z2 = d5 + d3;
851cabdff1aSopenharmony_ci
852cabdff1aSopenharmony_ci                    z5 = MULTIPLY(z2, FIX_1_175875602);
853cabdff1aSopenharmony_ci                    tmp1 = MULTIPLY(d5, FIX_1_662939225);
854cabdff1aSopenharmony_ci                    z4 = MULTIPLY(-d5, FIX_0_390180644);
855cabdff1aSopenharmony_ci                    z2 = MULTIPLY(-z2, FIX_1_387039845);
856cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(d3, FIX_1_111140466);
857cabdff1aSopenharmony_ci                    z3 = MULTIPLY(-d3, FIX_1_961570560);
858cabdff1aSopenharmony_ci
859cabdff1aSopenharmony_ci                    tmp0 = z3 + z5;
860cabdff1aSopenharmony_ci                    tmp1 += z2;
861cabdff1aSopenharmony_ci                    tmp2 += z2;
862cabdff1aSopenharmony_ci                    tmp3 = z4 + z5;
863cabdff1aSopenharmony_ci                }
864cabdff1aSopenharmony_ci            } else {
865cabdff1aSopenharmony_ci                if (d1) {
866cabdff1aSopenharmony_ci                    /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
867cabdff1aSopenharmony_ci                    z4 = d5 + d1;
868cabdff1aSopenharmony_ci
869cabdff1aSopenharmony_ci                    z5 = MULTIPLY(z4, FIX_1_175875602);
870cabdff1aSopenharmony_ci                    z1 = MULTIPLY(-d1, FIX_0_899976223);
871cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d1, FIX_0_601344887);
872cabdff1aSopenharmony_ci                    tmp1 = MULTIPLY(-d5, FIX_0_509795579);
873cabdff1aSopenharmony_ci                    z2 = MULTIPLY(-d5, FIX_2_562915447);
874cabdff1aSopenharmony_ci                    z4 = MULTIPLY(z4, FIX_0_785694958);
875cabdff1aSopenharmony_ci
876cabdff1aSopenharmony_ci                    tmp0 = z1 + z5;
877cabdff1aSopenharmony_ci                    tmp1 += z4;
878cabdff1aSopenharmony_ci                    tmp2 = z2 + z5;
879cabdff1aSopenharmony_ci                    tmp3 += z4;
880cabdff1aSopenharmony_ci                } else {
881cabdff1aSopenharmony_ci                    /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
882cabdff1aSopenharmony_ci                    tmp0 = MULTIPLY(d5, FIX_1_175875602);
883cabdff1aSopenharmony_ci                    tmp1 = MULTIPLY(d5, FIX_0_275899380);
884cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(-d5, FIX_1_387039845);
885cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d5, FIX_0_785694958);
886cabdff1aSopenharmony_ci                }
887cabdff1aSopenharmony_ci            }
888cabdff1aSopenharmony_ci        } else {
889cabdff1aSopenharmony_ci            if (d3) {
890cabdff1aSopenharmony_ci                if (d1) {
891cabdff1aSopenharmony_ci                    /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
892cabdff1aSopenharmony_ci                    z5 = d1 + d3;
893cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d1, FIX_0_211164243);
894cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(-d3, FIX_1_451774981);
895cabdff1aSopenharmony_ci                    z1 = MULTIPLY(d1, FIX_1_061594337);
896cabdff1aSopenharmony_ci                    z2 = MULTIPLY(-d3, FIX_2_172734803);
897cabdff1aSopenharmony_ci                    z4 = MULTIPLY(z5, FIX_0_785694958);
898cabdff1aSopenharmony_ci                    z5 = MULTIPLY(z5, FIX_1_175875602);
899cabdff1aSopenharmony_ci
900cabdff1aSopenharmony_ci                    tmp0 = z1 - z4;
901cabdff1aSopenharmony_ci                    tmp1 = z2 + z4;
902cabdff1aSopenharmony_ci                    tmp2 += z5;
903cabdff1aSopenharmony_ci                    tmp3 += z5;
904cabdff1aSopenharmony_ci                } else {
905cabdff1aSopenharmony_ci                    /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
906cabdff1aSopenharmony_ci                    tmp0 = MULTIPLY(-d3, FIX_0_785694958);
907cabdff1aSopenharmony_ci                    tmp1 = MULTIPLY(-d3, FIX_1_387039845);
908cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(-d3, FIX_0_275899380);
909cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d3, FIX_1_175875602);
910cabdff1aSopenharmony_ci                }
911cabdff1aSopenharmony_ci            } else {
912cabdff1aSopenharmony_ci                if (d1) {
913cabdff1aSopenharmony_ci                    /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
914cabdff1aSopenharmony_ci                    tmp0 = MULTIPLY(d1, FIX_0_275899380);
915cabdff1aSopenharmony_ci                    tmp1 = MULTIPLY(d1, FIX_0_785694958);
916cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(d1, FIX_1_175875602);
917cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d1, FIX_1_387039845);
918cabdff1aSopenharmony_ci                } else {
919cabdff1aSopenharmony_ci                    /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
920cabdff1aSopenharmony_ci                    tmp0 = tmp1 = tmp2 = tmp3 = 0;
921cabdff1aSopenharmony_ci                }
922cabdff1aSopenharmony_ci            }
923cabdff1aSopenharmony_ci        }
924cabdff1aSopenharmony_ci    }
925cabdff1aSopenharmony_ci
926cabdff1aSopenharmony_ci    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
927cabdff1aSopenharmony_ci
928cabdff1aSopenharmony_ci    dataptr[DCTSIZE*0] = (int16_t) DESCALE(tmp10 + tmp3,
929cabdff1aSopenharmony_ci                                           CONST_BITS+PASS1_BITS+3);
930cabdff1aSopenharmony_ci    dataptr[DCTSIZE*7] = (int16_t) DESCALE(tmp10 - tmp3,
931cabdff1aSopenharmony_ci                                           CONST_BITS+PASS1_BITS+3);
932cabdff1aSopenharmony_ci    dataptr[DCTSIZE*1] = (int16_t) DESCALE(tmp11 + tmp2,
933cabdff1aSopenharmony_ci                                           CONST_BITS+PASS1_BITS+3);
934cabdff1aSopenharmony_ci    dataptr[DCTSIZE*6] = (int16_t) DESCALE(tmp11 - tmp2,
935cabdff1aSopenharmony_ci                                           CONST_BITS+PASS1_BITS+3);
936cabdff1aSopenharmony_ci    dataptr[DCTSIZE*2] = (int16_t) DESCALE(tmp12 + tmp1,
937cabdff1aSopenharmony_ci                                           CONST_BITS+PASS1_BITS+3);
938cabdff1aSopenharmony_ci    dataptr[DCTSIZE*5] = (int16_t) DESCALE(tmp12 - tmp1,
939cabdff1aSopenharmony_ci                                           CONST_BITS+PASS1_BITS+3);
940cabdff1aSopenharmony_ci    dataptr[DCTSIZE*3] = (int16_t) DESCALE(tmp13 + tmp0,
941cabdff1aSopenharmony_ci                                           CONST_BITS+PASS1_BITS+3);
942cabdff1aSopenharmony_ci    dataptr[DCTSIZE*4] = (int16_t) DESCALE(tmp13 - tmp0,
943cabdff1aSopenharmony_ci                                           CONST_BITS+PASS1_BITS+3);
944cabdff1aSopenharmony_ci
945cabdff1aSopenharmony_ci    dataptr++;                  /* advance pointer to next column */
946cabdff1aSopenharmony_ci  }
947cabdff1aSopenharmony_ci}
948cabdff1aSopenharmony_ci
949cabdff1aSopenharmony_ci#undef DCTSIZE
950cabdff1aSopenharmony_ci#define DCTSIZE 4
951cabdff1aSopenharmony_ci#define DCTSTRIDE 8
952cabdff1aSopenharmony_ci
953cabdff1aSopenharmony_civoid ff_j_rev_dct4(DCTBLOCK data)
954cabdff1aSopenharmony_ci{
955cabdff1aSopenharmony_ci  int32_t tmp0, tmp1, tmp2, tmp3;
956cabdff1aSopenharmony_ci  int32_t tmp10, tmp11, tmp12, tmp13;
957cabdff1aSopenharmony_ci  int32_t z1;
958cabdff1aSopenharmony_ci  int32_t d0, d2, d4, d6;
959cabdff1aSopenharmony_ci  register int16_t *dataptr;
960cabdff1aSopenharmony_ci  int rowctr;
961cabdff1aSopenharmony_ci
962cabdff1aSopenharmony_ci  /* Pass 1: process rows. */
963cabdff1aSopenharmony_ci  /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
964cabdff1aSopenharmony_ci  /* furthermore, we scale the results by 2**PASS1_BITS. */
965cabdff1aSopenharmony_ci
966cabdff1aSopenharmony_ci  data[0] += 4;
967cabdff1aSopenharmony_ci
968cabdff1aSopenharmony_ci  dataptr = data;
969cabdff1aSopenharmony_ci
970cabdff1aSopenharmony_ci  for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
971cabdff1aSopenharmony_ci    /* Due to quantization, we will usually find that many of the input
972cabdff1aSopenharmony_ci     * coefficients are zero, especially the AC terms.  We can exploit this
973cabdff1aSopenharmony_ci     * by short-circuiting the IDCT calculation for any row in which all
974cabdff1aSopenharmony_ci     * the AC terms are zero.  In that case each output is equal to the
975cabdff1aSopenharmony_ci     * DC coefficient (with scale factor as needed).
976cabdff1aSopenharmony_ci     * With typical images and quantization tables, half or more of the
977cabdff1aSopenharmony_ci     * row DCT calculations can be simplified this way.
978cabdff1aSopenharmony_ci     */
979cabdff1aSopenharmony_ci
980cabdff1aSopenharmony_ci    register uint8_t *idataptr = (uint8_t*)dataptr;
981cabdff1aSopenharmony_ci
982cabdff1aSopenharmony_ci    d0 = dataptr[0];
983cabdff1aSopenharmony_ci    d2 = dataptr[1];
984cabdff1aSopenharmony_ci    d4 = dataptr[2];
985cabdff1aSopenharmony_ci    d6 = dataptr[3];
986cabdff1aSopenharmony_ci
987cabdff1aSopenharmony_ci    if ((d2 | d4 | d6) == 0) {
988cabdff1aSopenharmony_ci      /* AC terms all zero */
989cabdff1aSopenharmony_ci      if (d0) {
990cabdff1aSopenharmony_ci          /* Compute a 32 bit value to assign. */
991cabdff1aSopenharmony_ci          int16_t dcval = (int16_t) (d0 << PASS1_BITS);
992cabdff1aSopenharmony_ci          register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000);
993cabdff1aSopenharmony_ci
994cabdff1aSopenharmony_ci          AV_WN32A(&idataptr[0], v);
995cabdff1aSopenharmony_ci          AV_WN32A(&idataptr[4], v);
996cabdff1aSopenharmony_ci      }
997cabdff1aSopenharmony_ci
998cabdff1aSopenharmony_ci      dataptr += DCTSTRIDE;     /* advance pointer to next row */
999cabdff1aSopenharmony_ci      continue;
1000cabdff1aSopenharmony_ci    }
1001cabdff1aSopenharmony_ci
1002cabdff1aSopenharmony_ci    /* Even part: reverse the even part of the forward DCT. */
1003cabdff1aSopenharmony_ci    /* The rotator is sqrt(2)*c(-6). */
1004cabdff1aSopenharmony_ci    if (d6) {
1005cabdff1aSopenharmony_ci            if (d2) {
1006cabdff1aSopenharmony_ci                    /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
1007cabdff1aSopenharmony_ci                    z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
1008cabdff1aSopenharmony_ci                    tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
1009cabdff1aSopenharmony_ci                    tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
1010cabdff1aSopenharmony_ci
1011cabdff1aSopenharmony_ci                    tmp0 = (d0 + d4) << CONST_BITS;
1012cabdff1aSopenharmony_ci                    tmp1 = (d0 - d4) << CONST_BITS;
1013cabdff1aSopenharmony_ci
1014cabdff1aSopenharmony_ci                    tmp10 = tmp0 + tmp3;
1015cabdff1aSopenharmony_ci                    tmp13 = tmp0 - tmp3;
1016cabdff1aSopenharmony_ci                    tmp11 = tmp1 + tmp2;
1017cabdff1aSopenharmony_ci                    tmp12 = tmp1 - tmp2;
1018cabdff1aSopenharmony_ci            } else {
1019cabdff1aSopenharmony_ci                    /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
1020cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(-d6, FIX_1_306562965);
1021cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d6, FIX_0_541196100);
1022cabdff1aSopenharmony_ci
1023cabdff1aSopenharmony_ci                    tmp0 = (d0 + d4) << CONST_BITS;
1024cabdff1aSopenharmony_ci                    tmp1 = (d0 - d4) << CONST_BITS;
1025cabdff1aSopenharmony_ci
1026cabdff1aSopenharmony_ci                    tmp10 = tmp0 + tmp3;
1027cabdff1aSopenharmony_ci                    tmp13 = tmp0 - tmp3;
1028cabdff1aSopenharmony_ci                    tmp11 = tmp1 + tmp2;
1029cabdff1aSopenharmony_ci                    tmp12 = tmp1 - tmp2;
1030cabdff1aSopenharmony_ci            }
1031cabdff1aSopenharmony_ci    } else {
1032cabdff1aSopenharmony_ci            if (d2) {
1033cabdff1aSopenharmony_ci                    /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
1034cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(d2, FIX_0_541196100);
1035cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d2, FIX_1_306562965);
1036cabdff1aSopenharmony_ci
1037cabdff1aSopenharmony_ci                    tmp0 = (d0 + d4) << CONST_BITS;
1038cabdff1aSopenharmony_ci                    tmp1 = (d0 - d4) << CONST_BITS;
1039cabdff1aSopenharmony_ci
1040cabdff1aSopenharmony_ci                    tmp10 = tmp0 + tmp3;
1041cabdff1aSopenharmony_ci                    tmp13 = tmp0 - tmp3;
1042cabdff1aSopenharmony_ci                    tmp11 = tmp1 + tmp2;
1043cabdff1aSopenharmony_ci                    tmp12 = tmp1 - tmp2;
1044cabdff1aSopenharmony_ci            } else {
1045cabdff1aSopenharmony_ci                    /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
1046cabdff1aSopenharmony_ci                    tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
1047cabdff1aSopenharmony_ci                    tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
1048cabdff1aSopenharmony_ci            }
1049cabdff1aSopenharmony_ci      }
1050cabdff1aSopenharmony_ci
1051cabdff1aSopenharmony_ci    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
1052cabdff1aSopenharmony_ci
1053cabdff1aSopenharmony_ci    dataptr[0] = (int16_t) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
1054cabdff1aSopenharmony_ci    dataptr[1] = (int16_t) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
1055cabdff1aSopenharmony_ci    dataptr[2] = (int16_t) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
1056cabdff1aSopenharmony_ci    dataptr[3] = (int16_t) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
1057cabdff1aSopenharmony_ci
1058cabdff1aSopenharmony_ci    dataptr += DCTSTRIDE;       /* advance pointer to next row */
1059cabdff1aSopenharmony_ci  }
1060cabdff1aSopenharmony_ci
1061cabdff1aSopenharmony_ci  /* Pass 2: process columns. */
1062cabdff1aSopenharmony_ci  /* Note that we must descale the results by a factor of 8 == 2**3, */
1063cabdff1aSopenharmony_ci  /* and also undo the PASS1_BITS scaling. */
1064cabdff1aSopenharmony_ci
1065cabdff1aSopenharmony_ci  dataptr = data;
1066cabdff1aSopenharmony_ci  for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {
1067cabdff1aSopenharmony_ci    /* Columns of zeroes can be exploited in the same way as we did with rows.
1068cabdff1aSopenharmony_ci     * However, the row calculation has created many nonzero AC terms, so the
1069cabdff1aSopenharmony_ci     * simplification applies less often (typically 5% to 10% of the time).
1070cabdff1aSopenharmony_ci     * On machines with very fast multiplication, it's possible that the
1071cabdff1aSopenharmony_ci     * test takes more time than it's worth.  In that case this section
1072cabdff1aSopenharmony_ci     * may be commented out.
1073cabdff1aSopenharmony_ci     */
1074cabdff1aSopenharmony_ci
1075cabdff1aSopenharmony_ci    d0 = dataptr[DCTSTRIDE*0];
1076cabdff1aSopenharmony_ci    d2 = dataptr[DCTSTRIDE*1];
1077cabdff1aSopenharmony_ci    d4 = dataptr[DCTSTRIDE*2];
1078cabdff1aSopenharmony_ci    d6 = dataptr[DCTSTRIDE*3];
1079cabdff1aSopenharmony_ci
1080cabdff1aSopenharmony_ci    /* Even part: reverse the even part of the forward DCT. */
1081cabdff1aSopenharmony_ci    /* The rotator is sqrt(2)*c(-6). */
1082cabdff1aSopenharmony_ci    if (d6) {
1083cabdff1aSopenharmony_ci            if (d2) {
1084cabdff1aSopenharmony_ci                    /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
1085cabdff1aSopenharmony_ci                    z1 = MULTIPLY(d2 + d6, FIX_0_541196100);
1086cabdff1aSopenharmony_ci                    tmp2 = z1 + MULTIPLY(-d6, FIX_1_847759065);
1087cabdff1aSopenharmony_ci                    tmp3 = z1 + MULTIPLY(d2, FIX_0_765366865);
1088cabdff1aSopenharmony_ci
1089cabdff1aSopenharmony_ci                    tmp0 = (d0 + d4) << CONST_BITS;
1090cabdff1aSopenharmony_ci                    tmp1 = (d0 - d4) << CONST_BITS;
1091cabdff1aSopenharmony_ci
1092cabdff1aSopenharmony_ci                    tmp10 = tmp0 + tmp3;
1093cabdff1aSopenharmony_ci                    tmp13 = tmp0 - tmp3;
1094cabdff1aSopenharmony_ci                    tmp11 = tmp1 + tmp2;
1095cabdff1aSopenharmony_ci                    tmp12 = tmp1 - tmp2;
1096cabdff1aSopenharmony_ci            } else {
1097cabdff1aSopenharmony_ci                    /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
1098cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(-d6, FIX_1_306562965);
1099cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d6, FIX_0_541196100);
1100cabdff1aSopenharmony_ci
1101cabdff1aSopenharmony_ci                    tmp0 = (d0 + d4) << CONST_BITS;
1102cabdff1aSopenharmony_ci                    tmp1 = (d0 - d4) << CONST_BITS;
1103cabdff1aSopenharmony_ci
1104cabdff1aSopenharmony_ci                    tmp10 = tmp0 + tmp3;
1105cabdff1aSopenharmony_ci                    tmp13 = tmp0 - tmp3;
1106cabdff1aSopenharmony_ci                    tmp11 = tmp1 + tmp2;
1107cabdff1aSopenharmony_ci                    tmp12 = tmp1 - tmp2;
1108cabdff1aSopenharmony_ci            }
1109cabdff1aSopenharmony_ci    } else {
1110cabdff1aSopenharmony_ci            if (d2) {
1111cabdff1aSopenharmony_ci                    /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
1112cabdff1aSopenharmony_ci                    tmp2 = MULTIPLY(d2, FIX_0_541196100);
1113cabdff1aSopenharmony_ci                    tmp3 = MULTIPLY(d2, FIX_1_306562965);
1114cabdff1aSopenharmony_ci
1115cabdff1aSopenharmony_ci                    tmp0 = (d0 + d4) << CONST_BITS;
1116cabdff1aSopenharmony_ci                    tmp1 = (d0 - d4) << CONST_BITS;
1117cabdff1aSopenharmony_ci
1118cabdff1aSopenharmony_ci                    tmp10 = tmp0 + tmp3;
1119cabdff1aSopenharmony_ci                    tmp13 = tmp0 - tmp3;
1120cabdff1aSopenharmony_ci                    tmp11 = tmp1 + tmp2;
1121cabdff1aSopenharmony_ci                    tmp12 = tmp1 - tmp2;
1122cabdff1aSopenharmony_ci            } else {
1123cabdff1aSopenharmony_ci                    /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
1124cabdff1aSopenharmony_ci                    tmp10 = tmp13 = (d0 + d4) << CONST_BITS;
1125cabdff1aSopenharmony_ci                    tmp11 = tmp12 = (d0 - d4) << CONST_BITS;
1126cabdff1aSopenharmony_ci            }
1127cabdff1aSopenharmony_ci    }
1128cabdff1aSopenharmony_ci
1129cabdff1aSopenharmony_ci    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
1130cabdff1aSopenharmony_ci
1131cabdff1aSopenharmony_ci    dataptr[DCTSTRIDE*0] = tmp10 >> (CONST_BITS+PASS1_BITS+3);
1132cabdff1aSopenharmony_ci    dataptr[DCTSTRIDE*1] = tmp11 >> (CONST_BITS+PASS1_BITS+3);
1133cabdff1aSopenharmony_ci    dataptr[DCTSTRIDE*2] = tmp12 >> (CONST_BITS+PASS1_BITS+3);
1134cabdff1aSopenharmony_ci    dataptr[DCTSTRIDE*3] = tmp13 >> (CONST_BITS+PASS1_BITS+3);
1135cabdff1aSopenharmony_ci
1136cabdff1aSopenharmony_ci    dataptr++;                  /* advance pointer to next column */
1137cabdff1aSopenharmony_ci  }
1138cabdff1aSopenharmony_ci}
1139cabdff1aSopenharmony_ci
1140cabdff1aSopenharmony_civoid ff_j_rev_dct2(DCTBLOCK data){
1141cabdff1aSopenharmony_ci  int d00, d01, d10, d11;
1142cabdff1aSopenharmony_ci
1143cabdff1aSopenharmony_ci  data[0] += 4;
1144cabdff1aSopenharmony_ci  d00 = data[0+0*DCTSTRIDE] + data[1+0*DCTSTRIDE];
1145cabdff1aSopenharmony_ci  d01 = data[0+0*DCTSTRIDE] - data[1+0*DCTSTRIDE];
1146cabdff1aSopenharmony_ci  d10 = data[0+1*DCTSTRIDE] + data[1+1*DCTSTRIDE];
1147cabdff1aSopenharmony_ci  d11 = data[0+1*DCTSTRIDE] - data[1+1*DCTSTRIDE];
1148cabdff1aSopenharmony_ci
1149cabdff1aSopenharmony_ci  data[0+0*DCTSTRIDE]= (d00 + d10)>>3;
1150cabdff1aSopenharmony_ci  data[1+0*DCTSTRIDE]= (d01 + d11)>>3;
1151cabdff1aSopenharmony_ci  data[0+1*DCTSTRIDE]= (d00 - d10)>>3;
1152cabdff1aSopenharmony_ci  data[1+1*DCTSTRIDE]= (d01 - d11)>>3;
1153cabdff1aSopenharmony_ci}
1154cabdff1aSopenharmony_ci
1155cabdff1aSopenharmony_civoid ff_j_rev_dct1(DCTBLOCK data){
1156cabdff1aSopenharmony_ci  data[0] = (data[0] + 4)>>3;
1157cabdff1aSopenharmony_ci}
1158cabdff1aSopenharmony_ci
1159cabdff1aSopenharmony_ci#undef FIX
1160cabdff1aSopenharmony_ci#undef CONST_BITS
1161cabdff1aSopenharmony_ci
1162cabdff1aSopenharmony_civoid ff_jref_idct_put(uint8_t *dest, ptrdiff_t line_size, int16_t *block)
1163cabdff1aSopenharmony_ci{
1164cabdff1aSopenharmony_ci    ff_j_rev_dct(block);
1165cabdff1aSopenharmony_ci    ff_put_pixels_clamped_c(block, dest, line_size);
1166cabdff1aSopenharmony_ci}
1167cabdff1aSopenharmony_ci
1168cabdff1aSopenharmony_civoid ff_jref_idct_add(uint8_t *dest, ptrdiff_t line_size, int16_t *block)
1169cabdff1aSopenharmony_ci{
1170cabdff1aSopenharmony_ci    ff_j_rev_dct(block);
1171cabdff1aSopenharmony_ci    ff_add_pixels_clamped_c(block, dest, line_size);
1172cabdff1aSopenharmony_ci}
1173