1/* 2 * This file is part of the Independent JPEG Group's software. 3 * 4 * The authors make NO WARRANTY or representation, either express or implied, 5 * with respect to this software, its quality, accuracy, merchantability, or 6 * fitness for a particular purpose. This software is provided "AS IS", and 7 * you, its user, assume the entire risk as to its quality and accuracy. 8 * 9 * This software is copyright (C) 1994-1996, Thomas G. Lane. 10 * All Rights Reserved except as specified below. 11 * 12 * Permission is hereby granted to use, copy, modify, and distribute this 13 * software (or portions thereof) for any purpose, without fee, subject to 14 * these conditions: 15 * (1) If any part of the source code for this software is distributed, then 16 * this README file must be included, with this copyright and no-warranty 17 * notice unaltered; and any additions, deletions, or changes to the original 18 * files must be clearly indicated in accompanying documentation. 19 * (2) If only executable code is distributed, then the accompanying 20 * documentation must state that "this software is based in part on the work 21 * of the Independent JPEG Group". 22 * (3) Permission for use of this software is granted only if the user accepts 23 * full responsibility for any undesirable consequences; the authors accept 24 * NO LIABILITY for damages of any kind. 25 * 26 * These conditions apply to any software derived from or based on the IJG 27 * code, not just to the unmodified library. If you use our work, you ought 28 * to acknowledge us. 29 * 30 * Permission is NOT granted for the use of any IJG author's name or company 31 * name in advertising or publicity relating to this software or products 32 * derived from it. This software may be referred to only as "the Independent 33 * JPEG Group's software". 34 * 35 * We specifically permit and encourage the use of this software as the basis 36 * of commercial products, provided that all warranty or liability claims are 37 * assumed by the product vendor. 38 * 39 * This file contains a fast, not so accurate integer implementation of the 40 * forward DCT (Discrete Cosine Transform). 41 * 42 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT 43 * on each column. Direct algorithms are also available, but they are 44 * much more complex and seem not to be any faster when reduced to code. 45 * 46 * This implementation is based on Arai, Agui, and Nakajima's algorithm for 47 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in 48 * Japanese, but the algorithm is described in the Pennebaker & Mitchell 49 * JPEG textbook (see REFERENCES section in file README). The following code 50 * is based directly on figure 4-8 in P&M. 51 * While an 8-point DCT cannot be done in less than 11 multiplies, it is 52 * possible to arrange the computation so that many of the multiplies are 53 * simple scalings of the final outputs. These multiplies can then be 54 * folded into the multiplications or divisions by the JPEG quantization 55 * table entries. The AA&N method leaves only 5 multiplies and 29 adds 56 * to be done in the DCT itself. 57 * The primary disadvantage of this method is that with fixed-point math, 58 * accuracy is lost due to imprecise representation of the scaled 59 * quantization values. The smaller the quantization table entry, the less 60 * precise the scaled value, so this implementation does worse with high- 61 * quality-setting files than with low-quality ones. 62 */ 63 64/** 65 * @file 66 * Independent JPEG Group's fast AAN dct. 67 */ 68 69#include <stdint.h> 70#include "libavutil/attributes.h" 71#include "dct.h" 72 73#define DCTSIZE 8 74#define GLOBAL(x) x 75#define RIGHT_SHIFT(x, n) ((x) >> (n)) 76 77/* 78 * This module is specialized to the case DCTSIZE = 8. 79 */ 80 81#if DCTSIZE != 8 82 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ 83#endif 84 85 86/* Scaling decisions are generally the same as in the LL&M algorithm; 87 * see jfdctint.c for more details. However, we choose to descale 88 * (right shift) multiplication products as soon as they are formed, 89 * rather than carrying additional fractional bits into subsequent additions. 90 * This compromises accuracy slightly, but it lets us save a few shifts. 91 * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) 92 * everywhere except in the multiplications proper; this saves a good deal 93 * of work on 16-bit-int machines. 94 * 95 * Again to save a few shifts, the intermediate results between pass 1 and 96 * pass 2 are not upscaled, but are represented only to integral precision. 97 * 98 * A final compromise is to represent the multiplicative constants to only 99 * 8 fractional bits, rather than 13. This saves some shifting work on some 100 * machines, and may also reduce the cost of multiplication (since there 101 * are fewer one-bits in the constants). 102 */ 103 104#define CONST_BITS 8 105 106 107/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus 108 * causing a lot of useless floating-point operations at run time. 109 * To get around this we use the following pre-calculated constants. 110 * If you change CONST_BITS you may want to add appropriate values. 111 * (With a reasonable C compiler, you can just rely on the FIX() macro...) 112 */ 113 114#if CONST_BITS == 8 115#define FIX_0_382683433 ((int32_t) 98) /* FIX(0.382683433) */ 116#define FIX_0_541196100 ((int32_t) 139) /* FIX(0.541196100) */ 117#define FIX_0_707106781 ((int32_t) 181) /* FIX(0.707106781) */ 118#define FIX_1_306562965 ((int32_t) 334) /* FIX(1.306562965) */ 119#else 120#define FIX_0_382683433 FIX(0.382683433) 121#define FIX_0_541196100 FIX(0.541196100) 122#define FIX_0_707106781 FIX(0.707106781) 123#define FIX_1_306562965 FIX(1.306562965) 124#endif 125 126 127/* We can gain a little more speed, with a further compromise in accuracy, 128 * by omitting the addition in a descaling shift. This yields an incorrectly 129 * rounded result half the time... 130 */ 131 132#ifndef USE_ACCURATE_ROUNDING 133#undef DESCALE 134#define DESCALE(x,n) RIGHT_SHIFT(x, n) 135#endif 136 137 138/* Multiply a int16_t variable by an int32_t constant, and immediately 139 * descale to yield a int16_t result. 140 */ 141 142#define MULTIPLY(var,const) ((int16_t) DESCALE((var) * (const), CONST_BITS)) 143 144static av_always_inline void row_fdct(int16_t * data){ 145 int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; 146 int tmp10, tmp11, tmp12, tmp13; 147 int z1, z2, z3, z4, z5, z11, z13; 148 int16_t *dataptr; 149 int ctr; 150 151 /* Pass 1: process rows. */ 152 153 dataptr = data; 154 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { 155 tmp0 = dataptr[0] + dataptr[7]; 156 tmp7 = dataptr[0] - dataptr[7]; 157 tmp1 = dataptr[1] + dataptr[6]; 158 tmp6 = dataptr[1] - dataptr[6]; 159 tmp2 = dataptr[2] + dataptr[5]; 160 tmp5 = dataptr[2] - dataptr[5]; 161 tmp3 = dataptr[3] + dataptr[4]; 162 tmp4 = dataptr[3] - dataptr[4]; 163 164 /* Even part */ 165 166 tmp10 = tmp0 + tmp3; /* phase 2 */ 167 tmp13 = tmp0 - tmp3; 168 tmp11 = tmp1 + tmp2; 169 tmp12 = tmp1 - tmp2; 170 171 dataptr[0] = tmp10 + tmp11; /* phase 3 */ 172 dataptr[4] = tmp10 - tmp11; 173 174 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ 175 dataptr[2] = tmp13 + z1; /* phase 5 */ 176 dataptr[6] = tmp13 - z1; 177 178 /* Odd part */ 179 180 tmp10 = tmp4 + tmp5; /* phase 2 */ 181 tmp11 = tmp5 + tmp6; 182 tmp12 = tmp6 + tmp7; 183 184 /* The rotator is modified from fig 4-8 to avoid extra negations. */ 185 z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ 186 z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ 187 z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ 188 z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ 189 190 z11 = tmp7 + z3; /* phase 5 */ 191 z13 = tmp7 - z3; 192 193 dataptr[5] = z13 + z2; /* phase 6 */ 194 dataptr[3] = z13 - z2; 195 dataptr[1] = z11 + z4; 196 dataptr[7] = z11 - z4; 197 198 dataptr += DCTSIZE; /* advance pointer to next row */ 199 } 200} 201 202/* 203 * Perform the forward DCT on one block of samples. 204 */ 205 206GLOBAL(void) 207ff_fdct_ifast (int16_t * data) 208{ 209 int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; 210 int tmp10, tmp11, tmp12, tmp13; 211 int z1, z2, z3, z4, z5, z11, z13; 212 int16_t *dataptr; 213 int ctr; 214 215 row_fdct(data); 216 217 /* Pass 2: process columns. */ 218 219 dataptr = data; 220 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { 221 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; 222 tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; 223 tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; 224 tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; 225 tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; 226 tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; 227 tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; 228 tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; 229 230 /* Even part */ 231 232 tmp10 = tmp0 + tmp3; /* phase 2 */ 233 tmp13 = tmp0 - tmp3; 234 tmp11 = tmp1 + tmp2; 235 tmp12 = tmp1 - tmp2; 236 237 dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ 238 dataptr[DCTSIZE*4] = tmp10 - tmp11; 239 240 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ 241 dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ 242 dataptr[DCTSIZE*6] = tmp13 - z1; 243 244 /* Odd part */ 245 246 tmp10 = tmp4 + tmp5; /* phase 2 */ 247 tmp11 = tmp5 + tmp6; 248 tmp12 = tmp6 + tmp7; 249 250 /* The rotator is modified from fig 4-8 to avoid extra negations. */ 251 z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ 252 z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ 253 z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ 254 z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ 255 256 z11 = tmp7 + z3; /* phase 5 */ 257 z13 = tmp7 - z3; 258 259 dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ 260 dataptr[DCTSIZE*3] = z13 - z2; 261 dataptr[DCTSIZE*1] = z11 + z4; 262 dataptr[DCTSIZE*7] = z11 - z4; 263 264 dataptr++; /* advance pointer to next column */ 265 } 266} 267 268/* 269 * Perform the forward 2-4-8 DCT on one block of samples. 270 */ 271 272GLOBAL(void) 273ff_fdct_ifast248 (int16_t * data) 274{ 275 int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; 276 int tmp10, tmp11, tmp12, tmp13; 277 int z1; 278 int16_t *dataptr; 279 int ctr; 280 281 row_fdct(data); 282 283 /* Pass 2: process columns. */ 284 285 dataptr = data; 286 for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { 287 tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*1]; 288 tmp1 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3]; 289 tmp2 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5]; 290 tmp3 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7]; 291 tmp4 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*1]; 292 tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3]; 293 tmp6 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5]; 294 tmp7 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7]; 295 296 /* Even part */ 297 298 tmp10 = tmp0 + tmp3; 299 tmp11 = tmp1 + tmp2; 300 tmp12 = tmp1 - tmp2; 301 tmp13 = tmp0 - tmp3; 302 303 dataptr[DCTSIZE*0] = tmp10 + tmp11; 304 dataptr[DCTSIZE*4] = tmp10 - tmp11; 305 306 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); 307 dataptr[DCTSIZE*2] = tmp13 + z1; 308 dataptr[DCTSIZE*6] = tmp13 - z1; 309 310 tmp10 = tmp4 + tmp7; 311 tmp11 = tmp5 + tmp6; 312 tmp12 = tmp5 - tmp6; 313 tmp13 = tmp4 - tmp7; 314 315 dataptr[DCTSIZE*1] = tmp10 + tmp11; 316 dataptr[DCTSIZE*5] = tmp10 - tmp11; 317 318 z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); 319 dataptr[DCTSIZE*3] = tmp13 + z1; 320 dataptr[DCTSIZE*7] = tmp13 - z1; 321 322 dataptr++; /* advance pointer to next column */ 323 } 324} 325 326 327#undef GLOBAL 328#undef CONST_BITS 329#undef DESCALE 330#undef FIX_0_541196100 331#undef FIX_1_306562965 332