1/* 2 * Indeo Video v3 compatible decoder 3 * Copyright (c) 2009 - 2011 Maxim Poliakovski 4 * 5 * This file is part of FFmpeg. 6 * 7 * FFmpeg is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU Lesser General Public 9 * License as published by the Free Software Foundation; either 10 * version 2.1 of the License, or (at your option) any later version. 11 * 12 * FFmpeg is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 * Lesser General Public License for more details. 16 * 17 * You should have received a copy of the GNU Lesser General Public 18 * License along with FFmpeg; if not, write to the Free Software 19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 20 */ 21 22/** 23 * @file 24 * This is a decoder for Intel Indeo Video v3. 25 * It is based on vector quantization, run-length coding and motion compensation. 26 * Known container formats: .avi and .mov 27 * Known FOURCCs: 'IV31', 'IV32' 28 * 29 * @see http://wiki.multimedia.cx/index.php?title=Indeo_3 30 */ 31 32#include "libavutil/imgutils.h" 33#include "libavutil/intreadwrite.h" 34#include "libavutil/thread.h" 35#include "avcodec.h" 36#include "codec_internal.h" 37#include "copy_block.h" 38#include "bytestream.h" 39#include "get_bits.h" 40#include "hpeldsp.h" 41#include "internal.h" 42 43#include "indeo3data.h" 44 45/* RLE opcodes. */ 46enum { 47 RLE_ESC_F9 = 249, ///< same as RLE_ESC_FA + do the same with next block 48 RLE_ESC_FA = 250, ///< INTRA: skip block, INTER: copy data from reference 49 RLE_ESC_FB = 251, ///< apply null delta to N blocks / skip N blocks 50 RLE_ESC_FC = 252, ///< same as RLE_ESC_FD + do the same with next block 51 RLE_ESC_FD = 253, ///< apply null delta to all remaining lines of this block 52 RLE_ESC_FE = 254, ///< apply null delta to all lines up to the 3rd line 53 RLE_ESC_FF = 255 ///< apply null delta to all lines up to the 2nd line 54}; 55 56 57/* Some constants for parsing frame bitstream flags. */ 58#define BS_8BIT_PEL (1 << 1) ///< 8-bit pixel bitdepth indicator 59#define BS_KEYFRAME (1 << 2) ///< intra frame indicator 60#define BS_MV_Y_HALF (1 << 4) ///< vertical mv halfpel resolution indicator 61#define BS_MV_X_HALF (1 << 5) ///< horizontal mv halfpel resolution indicator 62#define BS_NONREF (1 << 8) ///< nonref (discardable) frame indicator 63#define BS_BUFFER 9 ///< indicates which of two frame buffers should be used 64 65 66typedef struct Plane { 67 uint8_t *buffers[2]; 68 uint8_t *pixels[2]; ///< pointer to the actual pixel data of the buffers above 69 uint32_t width; 70 uint32_t height; 71 ptrdiff_t pitch; 72} Plane; 73 74#define CELL_STACK_MAX 20 75 76typedef struct Cell { 77 int16_t xpos; ///< cell coordinates in 4x4 blocks 78 int16_t ypos; 79 int16_t width; ///< cell width in 4x4 blocks 80 int16_t height; ///< cell height in 4x4 blocks 81 uint8_t tree; ///< tree id: 0- MC tree, 1 - VQ tree 82 const int8_t *mv_ptr; ///< ptr to the motion vector if any 83} Cell; 84 85typedef struct Indeo3DecodeContext { 86 AVCodecContext *avctx; 87 HpelDSPContext hdsp; 88 89 GetBitContext gb; 90 int need_resync; 91 int skip_bits; 92 const uint8_t *next_cell_data; 93 const uint8_t *last_byte; 94 const int8_t *mc_vectors; 95 unsigned num_vectors; ///< number of motion vectors in mc_vectors 96 97 int16_t width, height; 98 uint32_t frame_num; ///< current frame number (zero-based) 99 int data_size; ///< size of the frame data in bytes 100 uint16_t frame_flags; ///< frame properties 101 uint8_t cb_offset; ///< needed for selecting VQ tables 102 uint8_t buf_sel; ///< active frame buffer: 0 - primary, 1 -secondary 103 const uint8_t *y_data_ptr; 104 const uint8_t *v_data_ptr; 105 const uint8_t *u_data_ptr; 106 int32_t y_data_size; 107 int32_t v_data_size; 108 int32_t u_data_size; 109 const uint8_t *alt_quant; ///< secondary VQ table set for the modes 1 and 4 110 Plane planes[3]; 111} Indeo3DecodeContext; 112 113 114static uint8_t requant_tab[8][128]; 115 116/* 117 * Build the static requantization table. 118 * This table is used to remap pixel values according to a specific 119 * quant index and thus avoid overflows while adding deltas. 120 */ 121static av_cold void build_requant_tab(void) 122{ 123 static const int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 }; 124 static const int8_t deltas [8] = { 0, 1, 0, 4, 4, 1, 0, 1 }; 125 126 int i, j, step; 127 128 for (i = 0; i < 8; i++) { 129 step = i + 2; 130 for (j = 0; j < 128; j++) 131 requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i]; 132 } 133 134 /* some last elements calculated above will have values >= 128 */ 135 /* pixel values shall never exceed 127 so set them to non-overflowing values */ 136 /* according with the quantization step of the respective section */ 137 requant_tab[0][127] = 126; 138 requant_tab[1][119] = 118; 139 requant_tab[1][120] = 118; 140 requant_tab[2][126] = 124; 141 requant_tab[2][127] = 124; 142 requant_tab[6][124] = 120; 143 requant_tab[6][125] = 120; 144 requant_tab[6][126] = 120; 145 requant_tab[6][127] = 120; 146 147 /* Patch for compatibility with the Intel's binary decoders */ 148 requant_tab[1][7] = 10; 149 requant_tab[4][8] = 10; 150} 151 152 153static av_cold void free_frame_buffers(Indeo3DecodeContext *ctx) 154{ 155 int p; 156 157 ctx->width = ctx->height = 0; 158 159 for (p = 0; p < 3; p++) { 160 av_freep(&ctx->planes[p].buffers[0]); 161 av_freep(&ctx->planes[p].buffers[1]); 162 ctx->planes[p].pixels[0] = ctx->planes[p].pixels[1] = 0; 163 } 164} 165 166 167static av_cold int allocate_frame_buffers(Indeo3DecodeContext *ctx, 168 AVCodecContext *avctx, int luma_width, int luma_height) 169{ 170 int p, chroma_width, chroma_height; 171 int luma_size, chroma_size; 172 ptrdiff_t luma_pitch, chroma_pitch; 173 174 if (luma_width < 16 || luma_width > 640 || 175 luma_height < 16 || luma_height > 480 || 176 luma_width & 1 || luma_height & 1) { 177 av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n", 178 luma_width, luma_height); 179 return AVERROR_INVALIDDATA; 180 } 181 182 ctx->width = luma_width ; 183 ctx->height = luma_height; 184 185 chroma_width = FFALIGN(luma_width >> 2, 4); 186 chroma_height = FFALIGN(luma_height >> 2, 4); 187 188 luma_pitch = FFALIGN(luma_width, 16); 189 chroma_pitch = FFALIGN(chroma_width, 16); 190 191 /* Calculate size of the luminance plane. */ 192 /* Add one line more for INTRA prediction. */ 193 luma_size = luma_pitch * (luma_height + 1); 194 195 /* Calculate size of a chrominance planes. */ 196 /* Add one line more for INTRA prediction. */ 197 chroma_size = chroma_pitch * (chroma_height + 1); 198 199 /* allocate frame buffers */ 200 for (p = 0; p < 3; p++) { 201 ctx->planes[p].pitch = !p ? luma_pitch : chroma_pitch; 202 ctx->planes[p].width = !p ? luma_width : chroma_width; 203 ctx->planes[p].height = !p ? luma_height : chroma_height; 204 205 ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size); 206 ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size); 207 208 if (!ctx->planes[p].buffers[0] || !ctx->planes[p].buffers[1]) 209 return AVERROR(ENOMEM); 210 211 /* fill the INTRA prediction lines with the middle pixel value = 64 */ 212 memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch); 213 memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch); 214 215 /* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */ 216 ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch; 217 ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch; 218 memset(ctx->planes[p].pixels[0], 0, ctx->planes[p].pitch * ctx->planes[p].height); 219 memset(ctx->planes[p].pixels[1], 0, ctx->planes[p].pitch * ctx->planes[p].height); 220 } 221 222 return 0; 223} 224 225/** 226 * Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into 227 * the cell(x, y) in the current frame. 228 * 229 * @param ctx pointer to the decoder context 230 * @param plane pointer to the plane descriptor 231 * @param cell pointer to the cell descriptor 232 */ 233static int copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell) 234{ 235 int h, w, mv_x, mv_y, offset, offset_dst; 236 uint8_t *src, *dst; 237 238 /* setup output and reference pointers */ 239 offset_dst = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2); 240 dst = plane->pixels[ctx->buf_sel] + offset_dst; 241 if(cell->mv_ptr){ 242 mv_y = cell->mv_ptr[0]; 243 mv_x = cell->mv_ptr[1]; 244 }else 245 mv_x= mv_y= 0; 246 247 /* -1 because there is an extra line on top for prediction */ 248 if ((cell->ypos << 2) + mv_y < -1 || (cell->xpos << 2) + mv_x < 0 || 249 ((cell->ypos + cell->height) << 2) + mv_y > plane->height || 250 ((cell->xpos + cell->width) << 2) + mv_x > plane->width) { 251 av_log(ctx->avctx, AV_LOG_ERROR, 252 "Motion vectors point out of the frame.\n"); 253 return AVERROR_INVALIDDATA; 254 } 255 256 offset = offset_dst + mv_y * plane->pitch + mv_x; 257 src = plane->pixels[ctx->buf_sel ^ 1] + offset; 258 259 h = cell->height << 2; 260 261 for (w = cell->width; w > 0;) { 262 /* copy using 16xH blocks */ 263 if (!((cell->xpos << 2) & 15) && w >= 4) { 264 for (; w >= 4; src += 16, dst += 16, w -= 4) 265 ctx->hdsp.put_pixels_tab[0][0](dst, src, plane->pitch, h); 266 } 267 268 /* copy using 8xH blocks */ 269 if (!((cell->xpos << 2) & 7) && w >= 2) { 270 ctx->hdsp.put_pixels_tab[1][0](dst, src, plane->pitch, h); 271 w -= 2; 272 src += 8; 273 dst += 8; 274 } else if (w >= 1) { 275 ctx->hdsp.put_pixels_tab[2][0](dst, src, plane->pitch, h); 276 w--; 277 src += 4; 278 dst += 4; 279 } 280 } 281 282 return 0; 283} 284 285 286/* Average 4/8 pixels at once without rounding using SWAR */ 287#define AVG_32(dst, src, ref) \ 288 AV_WN32A(dst, ((AV_RN32(src) + AV_RN32(ref)) >> 1) & 0x7F7F7F7FUL) 289 290#define AVG_64(dst, src, ref) \ 291 AV_WN64A(dst, ((AV_RN64(src) + AV_RN64(ref)) >> 1) & 0x7F7F7F7F7F7F7F7FULL) 292 293 294/* 295 * Replicate each even pixel as follows: 296 * ABCDEFGH -> AACCEEGG 297 */ 298static inline uint64_t replicate64(uint64_t a) { 299#if HAVE_BIGENDIAN 300 a &= 0xFF00FF00FF00FF00ULL; 301 a |= a >> 8; 302#else 303 a &= 0x00FF00FF00FF00FFULL; 304 a |= a << 8; 305#endif 306 return a; 307} 308 309static inline uint32_t replicate32(uint32_t a) { 310#if HAVE_BIGENDIAN 311 a &= 0xFF00FF00UL; 312 a |= a >> 8; 313#else 314 a &= 0x00FF00FFUL; 315 a |= a << 8; 316#endif 317 return a; 318} 319 320 321/* Fill n lines with 64-bit pixel value pix */ 322static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n, 323 int32_t row_offset) 324{ 325 for (; n > 0; dst += row_offset, n--) 326 AV_WN64A(dst, pix); 327} 328 329 330/* Error codes for cell decoding. */ 331enum { 332 IV3_NOERR = 0, 333 IV3_BAD_RLE = 1, 334 IV3_BAD_DATA = 2, 335 IV3_BAD_COUNTER = 3, 336 IV3_UNSUPPORTED = 4, 337 IV3_OUT_OF_DATA = 5 338}; 339 340 341#define BUFFER_PRECHECK \ 342if (*data_ptr >= last_ptr) \ 343 return IV3_OUT_OF_DATA; \ 344 345#define RLE_BLOCK_COPY \ 346 if (cell->mv_ptr || !skip_flag) \ 347 copy_block4(dst, ref, row_offset, row_offset, 4 << v_zoom) 348 349#define RLE_BLOCK_COPY_8 \ 350 pix64 = AV_RN64(ref);\ 351 if (is_first_row) {/* special prediction case: top line of a cell */\ 352 pix64 = replicate64(pix64);\ 353 fill_64(dst + row_offset, pix64, 7, row_offset);\ 354 AVG_64(dst, ref, dst + row_offset);\ 355 } else \ 356 fill_64(dst, pix64, 8, row_offset) 357 358#define RLE_LINES_COPY \ 359 copy_block4(dst, ref, row_offset, row_offset, num_lines << v_zoom) 360 361#define RLE_LINES_COPY_M10 \ 362 pix64 = AV_RN64(ref);\ 363 if (is_top_of_cell) {\ 364 pix64 = replicate64(pix64);\ 365 fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\ 366 AVG_64(dst, ref, dst + row_offset);\ 367 } else \ 368 fill_64(dst, pix64, num_lines << 1, row_offset) 369 370#define APPLY_DELTA_4 \ 371 AV_WN16A(dst + line_offset ,\ 372 (AV_RN16(ref ) + delta_tab->deltas[dyad1]) & 0x7F7F);\ 373 AV_WN16A(dst + line_offset + 2,\ 374 (AV_RN16(ref + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\ 375 if (mode >= 3) {\ 376 if (is_top_of_cell && !cell->ypos) {\ 377 AV_COPY32U(dst, dst + row_offset);\ 378 } else {\ 379 AVG_32(dst, ref, dst + row_offset);\ 380 }\ 381 } 382 383#define APPLY_DELTA_8 \ 384 /* apply two 32-bit VQ deltas to next even line */\ 385 if (is_top_of_cell) { \ 386 AV_WN32A(dst + row_offset , \ 387 (replicate32(AV_RN32(ref )) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\ 388 AV_WN32A(dst + row_offset + 4, \ 389 (replicate32(AV_RN32(ref + 4)) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\ 390 } else { \ 391 AV_WN32A(dst + row_offset , \ 392 (AV_RN32(ref ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\ 393 AV_WN32A(dst + row_offset + 4, \ 394 (AV_RN32(ref + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\ 395 } \ 396 /* odd lines are not coded but rather interpolated/replicated */\ 397 /* first line of the cell on the top of image? - replicate */\ 398 /* otherwise - interpolate */\ 399 if (is_top_of_cell && !cell->ypos) {\ 400 AV_COPY64U(dst, dst + row_offset);\ 401 } else \ 402 AVG_64(dst, ref, dst + row_offset); 403 404 405#define APPLY_DELTA_1011_INTER \ 406 if (mode == 10) { \ 407 AV_WN32A(dst , \ 408 (AV_RN32(dst ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\ 409 AV_WN32A(dst + 4 , \ 410 (AV_RN32(dst + 4 ) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\ 411 AV_WN32A(dst + row_offset , \ 412 (AV_RN32(dst + row_offset ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\ 413 AV_WN32A(dst + row_offset + 4, \ 414 (AV_RN32(dst + row_offset + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\ 415 } else { \ 416 AV_WN16A(dst , \ 417 (AV_RN16(dst ) + delta_tab->deltas[dyad1]) & 0x7F7F);\ 418 AV_WN16A(dst + 2 , \ 419 (AV_RN16(dst + 2 ) + delta_tab->deltas[dyad2]) & 0x7F7F);\ 420 AV_WN16A(dst + row_offset , \ 421 (AV_RN16(dst + row_offset ) + delta_tab->deltas[dyad1]) & 0x7F7F);\ 422 AV_WN16A(dst + row_offset + 2, \ 423 (AV_RN16(dst + row_offset + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\ 424 } 425 426 427static int decode_cell_data(Indeo3DecodeContext *ctx, Cell *cell, 428 uint8_t *block, uint8_t *ref_block, 429 ptrdiff_t row_offset, int h_zoom, int v_zoom, int mode, 430 const vqEntry *delta[2], int swap_quads[2], 431 const uint8_t **data_ptr, const uint8_t *last_ptr) 432{ 433 int x, y, line, num_lines; 434 int rle_blocks = 0; 435 uint8_t code, *dst, *ref; 436 const vqEntry *delta_tab; 437 unsigned int dyad1, dyad2; 438 uint64_t pix64; 439 int skip_flag = 0, is_top_of_cell, is_first_row = 1; 440 int blk_row_offset, line_offset; 441 442 blk_row_offset = (row_offset << (2 + v_zoom)) - (cell->width << 2); 443 line_offset = v_zoom ? row_offset : 0; 444 445 if (cell->height & v_zoom || cell->width & h_zoom) 446 return IV3_BAD_DATA; 447 448 for (y = 0; y < cell->height; is_first_row = 0, y += 1 + v_zoom) { 449 for (x = 0; x < cell->width; x += 1 + h_zoom) { 450 ref = ref_block; 451 dst = block; 452 453 if (rle_blocks > 0) { 454 if (mode <= 4) { 455 RLE_BLOCK_COPY; 456 } else if (mode == 10 && !cell->mv_ptr) { 457 RLE_BLOCK_COPY_8; 458 } 459 rle_blocks--; 460 } else { 461 for (line = 0; line < 4;) { 462 num_lines = 1; 463 is_top_of_cell = is_first_row && !line; 464 465 /* select primary VQ table for odd, secondary for even lines */ 466 if (mode <= 4) 467 delta_tab = delta[line & 1]; 468 else 469 delta_tab = delta[1]; 470 BUFFER_PRECHECK; 471 code = bytestream_get_byte(data_ptr); 472 if (code < 248) { 473 if (code < delta_tab->num_dyads) { 474 BUFFER_PRECHECK; 475 dyad1 = bytestream_get_byte(data_ptr); 476 dyad2 = code; 477 if (dyad1 >= delta_tab->num_dyads || dyad1 >= 248) 478 return IV3_BAD_DATA; 479 } else { 480 /* process QUADS */ 481 code -= delta_tab->num_dyads; 482 dyad1 = code / delta_tab->quad_exp; 483 dyad2 = code % delta_tab->quad_exp; 484 if (swap_quads[line & 1]) 485 FFSWAP(unsigned int, dyad1, dyad2); 486 } 487 if (mode <= 4) { 488 APPLY_DELTA_4; 489 } else if (mode == 10 && !cell->mv_ptr) { 490 APPLY_DELTA_8; 491 } else { 492 APPLY_DELTA_1011_INTER; 493 } 494 } else { 495 /* process RLE codes */ 496 switch (code) { 497 case RLE_ESC_FC: 498 skip_flag = 0; 499 rle_blocks = 1; 500 code = 253; 501 /* FALLTHROUGH */ 502 case RLE_ESC_FF: 503 case RLE_ESC_FE: 504 case RLE_ESC_FD: 505 num_lines = 257 - code - line; 506 if (num_lines <= 0) 507 return IV3_BAD_RLE; 508 if (mode <= 4) { 509 RLE_LINES_COPY; 510 } else if (mode == 10 && !cell->mv_ptr) { 511 RLE_LINES_COPY_M10; 512 } 513 break; 514 case RLE_ESC_FB: 515 BUFFER_PRECHECK; 516 code = bytestream_get_byte(data_ptr); 517 rle_blocks = (code & 0x1F) - 1; /* set block counter */ 518 if (code >= 64 || rle_blocks < 0) 519 return IV3_BAD_COUNTER; 520 skip_flag = code & 0x20; 521 num_lines = 4 - line; /* enforce next block processing */ 522 if (mode >= 10 || (cell->mv_ptr || !skip_flag)) { 523 if (mode <= 4) { 524 RLE_LINES_COPY; 525 } else if (mode == 10 && !cell->mv_ptr) { 526 RLE_LINES_COPY_M10; 527 } 528 } 529 break; 530 case RLE_ESC_F9: 531 skip_flag = 1; 532 rle_blocks = 1; 533 /* FALLTHROUGH */ 534 case RLE_ESC_FA: 535 if (line) 536 return IV3_BAD_RLE; 537 num_lines = 4; /* enforce next block processing */ 538 if (cell->mv_ptr) { 539 if (mode <= 4) { 540 RLE_LINES_COPY; 541 } else if (mode == 10 && !cell->mv_ptr) { 542 RLE_LINES_COPY_M10; 543 } 544 } 545 break; 546 default: 547 return IV3_UNSUPPORTED; 548 } 549 } 550 551 line += num_lines; 552 ref += row_offset * (num_lines << v_zoom); 553 dst += row_offset * (num_lines << v_zoom); 554 } 555 } 556 557 /* move to next horizontal block */ 558 block += 4 << h_zoom; 559 ref_block += 4 << h_zoom; 560 } 561 562 /* move to next line of blocks */ 563 ref_block += blk_row_offset; 564 block += blk_row_offset; 565 } 566 return IV3_NOERR; 567} 568 569 570/** 571 * Decode a vector-quantized cell. 572 * It consists of several routines, each of which handles one or more "modes" 573 * with which a cell can be encoded. 574 * 575 * @param ctx pointer to the decoder context 576 * @param avctx ptr to the AVCodecContext 577 * @param plane pointer to the plane descriptor 578 * @param cell pointer to the cell descriptor 579 * @param data_ptr pointer to the compressed data 580 * @param last_ptr pointer to the last byte to catch reads past end of buffer 581 * @return number of consumed bytes or negative number in case of error 582 */ 583static int decode_cell(Indeo3DecodeContext *ctx, AVCodecContext *avctx, 584 Plane *plane, Cell *cell, const uint8_t *data_ptr, 585 const uint8_t *last_ptr) 586{ 587 int x, mv_x, mv_y, mode, vq_index, prim_indx, second_indx; 588 int zoom_fac; 589 int offset, error = 0, swap_quads[2]; 590 uint8_t code, *block, *ref_block = 0; 591 const vqEntry *delta[2]; 592 const uint8_t *data_start = data_ptr; 593 594 /* get coding mode and VQ table index from the VQ descriptor byte */ 595 code = *data_ptr++; 596 mode = code >> 4; 597 vq_index = code & 0xF; 598 599 /* setup output and reference pointers */ 600 offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2); 601 block = plane->pixels[ctx->buf_sel] + offset; 602 603 if (!cell->mv_ptr) { 604 /* use previous line as reference for INTRA cells */ 605 ref_block = block - plane->pitch; 606 } else if (mode >= 10) { 607 /* for mode 10 and 11 INTER first copy the predicted cell into the current one */ 608 /* so we don't need to do data copying for each RLE code later */ 609 int ret = copy_cell(ctx, plane, cell); 610 if (ret < 0) 611 return ret; 612 } else { 613 /* set the pointer to the reference pixels for modes 0-4 INTER */ 614 mv_y = cell->mv_ptr[0]; 615 mv_x = cell->mv_ptr[1]; 616 617 /* -1 because there is an extra line on top for prediction */ 618 if ((cell->ypos << 2) + mv_y < -1 || (cell->xpos << 2) + mv_x < 0 || 619 ((cell->ypos + cell->height) << 2) + mv_y > plane->height || 620 ((cell->xpos + cell->width) << 2) + mv_x > plane->width) { 621 av_log(ctx->avctx, AV_LOG_ERROR, 622 "Motion vectors point out of the frame.\n"); 623 return AVERROR_INVALIDDATA; 624 } 625 626 offset += mv_y * plane->pitch + mv_x; 627 ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset; 628 } 629 630 /* select VQ tables as follows: */ 631 /* modes 0 and 3 use only the primary table for all lines in a block */ 632 /* while modes 1 and 4 switch between primary and secondary tables on alternate lines */ 633 if (mode == 1 || mode == 4) { 634 code = ctx->alt_quant[vq_index]; 635 prim_indx = (code >> 4) + ctx->cb_offset; 636 second_indx = (code & 0xF) + ctx->cb_offset; 637 } else { 638 vq_index += ctx->cb_offset; 639 prim_indx = second_indx = vq_index; 640 } 641 642 if (prim_indx >= 24 || second_indx >= 24) { 643 av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n", 644 prim_indx, second_indx); 645 return AVERROR_INVALIDDATA; 646 } 647 648 delta[0] = &vq_tab[second_indx]; 649 delta[1] = &vq_tab[prim_indx]; 650 swap_quads[0] = second_indx >= 16; 651 swap_quads[1] = prim_indx >= 16; 652 653 /* requantize the prediction if VQ index of this cell differs from VQ index */ 654 /* of the predicted cell in order to avoid overflows. */ 655 if (vq_index >= 8 && ref_block) { 656 for (x = 0; x < cell->width << 2; x++) 657 ref_block[x] = requant_tab[vq_index & 7][ref_block[x] & 127]; 658 } 659 660 error = IV3_NOERR; 661 662 switch (mode) { 663 case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/ 664 case 1: 665 case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/ 666 case 4: 667 if (mode >= 3 && cell->mv_ptr) { 668 av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n"); 669 return AVERROR_INVALIDDATA; 670 } 671 672 zoom_fac = mode >= 3; 673 error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch, 674 0, zoom_fac, mode, delta, swap_quads, 675 &data_ptr, last_ptr); 676 break; 677 case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/ 678 case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/ 679 if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */ 680 error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch, 681 1, 1, mode, delta, swap_quads, 682 &data_ptr, last_ptr); 683 } else { /* mode 10 and 11 INTER processing */ 684 if (mode == 11 && !cell->mv_ptr) { 685 av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n"); 686 return AVERROR_INVALIDDATA; 687 } 688 689 zoom_fac = mode == 10; 690 error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch, 691 zoom_fac, 1, mode, delta, swap_quads, 692 &data_ptr, last_ptr); 693 } 694 break; 695 default: 696 av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode); 697 return AVERROR_INVALIDDATA; 698 }//switch mode 699 700 switch (error) { 701 case IV3_BAD_RLE: 702 av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the current line\n", 703 mode, data_ptr[-1]); 704 return AVERROR_INVALIDDATA; 705 case IV3_BAD_DATA: 706 av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode); 707 return AVERROR_INVALIDDATA; 708 case IV3_BAD_COUNTER: 709 av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code); 710 return AVERROR_INVALIDDATA; 711 case IV3_UNSUPPORTED: 712 av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]); 713 return AVERROR_INVALIDDATA; 714 case IV3_OUT_OF_DATA: 715 av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode); 716 return AVERROR_INVALIDDATA; 717 } 718 719 return data_ptr - data_start; /* report number of bytes consumed from the input buffer */ 720} 721 722 723/* Binary tree codes. */ 724enum { 725 H_SPLIT = 0, 726 V_SPLIT = 1, 727 INTRA_NULL = 2, 728 INTER_DATA = 3 729}; 730 731 732#define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1 733 734#define UPDATE_BITPOS(n) \ 735 ctx->skip_bits += (n); \ 736 ctx->need_resync = 1 737 738#define RESYNC_BITSTREAM \ 739 if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \ 740 skip_bits_long(&ctx->gb, ctx->skip_bits); \ 741 ctx->skip_bits = 0; \ 742 ctx->need_resync = 0; \ 743 } 744 745#define CHECK_CELL \ 746 if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) || \ 747 curr_cell.ypos + curr_cell.height > (plane->height >> 2)) { \ 748 av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n", \ 749 curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \ 750 return AVERROR_INVALIDDATA; \ 751 } 752 753 754static int parse_bintree(Indeo3DecodeContext *ctx, AVCodecContext *avctx, 755 Plane *plane, int code, Cell *ref_cell, 756 const int depth, const int strip_width) 757{ 758 Cell curr_cell; 759 int bytes_used, ret; 760 761 if (depth <= 0) { 762 av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n"); 763 return AVERROR_INVALIDDATA; // unwind recursion 764 } 765 766 curr_cell = *ref_cell; // clone parent cell 767 if (code == H_SPLIT) { 768 SPLIT_CELL(ref_cell->height, curr_cell.height); 769 ref_cell->ypos += curr_cell.height; 770 ref_cell->height -= curr_cell.height; 771 if (ref_cell->height <= 0 || curr_cell.height <= 0) 772 return AVERROR_INVALIDDATA; 773 } else if (code == V_SPLIT) { 774 if (curr_cell.width > strip_width) { 775 /* split strip */ 776 curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width; 777 } else 778 SPLIT_CELL(ref_cell->width, curr_cell.width); 779 ref_cell->xpos += curr_cell.width; 780 ref_cell->width -= curr_cell.width; 781 if (ref_cell->width <= 0 || curr_cell.width <= 0) 782 return AVERROR_INVALIDDATA; 783 } 784 785 while (get_bits_left(&ctx->gb) >= 2) { /* loop until return */ 786 RESYNC_BITSTREAM; 787 switch (code = get_bits(&ctx->gb, 2)) { 788 case H_SPLIT: 789 case V_SPLIT: 790 if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth - 1, strip_width)) 791 return AVERROR_INVALIDDATA; 792 break; 793 case INTRA_NULL: 794 if (!curr_cell.tree) { /* MC tree INTRA code */ 795 curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */ 796 curr_cell.tree = 1; /* enter the VQ tree */ 797 } else { /* VQ tree NULL code */ 798 RESYNC_BITSTREAM; 799 code = get_bits(&ctx->gb, 2); 800 if (code >= 2) { 801 av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code); 802 return AVERROR_INVALIDDATA; 803 } 804 if (code == 1) 805 av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n"); 806 807 CHECK_CELL 808 if (!curr_cell.mv_ptr) 809 return AVERROR_INVALIDDATA; 810 811 ret = copy_cell(ctx, plane, &curr_cell); 812 return ret; 813 } 814 break; 815 case INTER_DATA: 816 if (!curr_cell.tree) { /* MC tree INTER code */ 817 unsigned mv_idx; 818 /* get motion vector index and setup the pointer to the mv set */ 819 if (!ctx->need_resync) 820 ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3]; 821 if (ctx->next_cell_data >= ctx->last_byte) { 822 av_log(avctx, AV_LOG_ERROR, "motion vector out of array\n"); 823 return AVERROR_INVALIDDATA; 824 } 825 mv_idx = *(ctx->next_cell_data++); 826 if (mv_idx >= ctx->num_vectors) { 827 av_log(avctx, AV_LOG_ERROR, "motion vector index out of range\n"); 828 return AVERROR_INVALIDDATA; 829 } 830 curr_cell.mv_ptr = &ctx->mc_vectors[mv_idx << 1]; 831 curr_cell.tree = 1; /* enter the VQ tree */ 832 UPDATE_BITPOS(8); 833 } else { /* VQ tree DATA code */ 834 if (!ctx->need_resync) 835 ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3]; 836 837 CHECK_CELL 838 bytes_used = decode_cell(ctx, avctx, plane, &curr_cell, 839 ctx->next_cell_data, ctx->last_byte); 840 if (bytes_used < 0) 841 return AVERROR_INVALIDDATA; 842 843 UPDATE_BITPOS(bytes_used << 3); 844 ctx->next_cell_data += bytes_used; 845 return 0; 846 } 847 break; 848 } 849 }//while 850 851 return AVERROR_INVALIDDATA; 852} 853 854 855static int decode_plane(Indeo3DecodeContext *ctx, AVCodecContext *avctx, 856 Plane *plane, const uint8_t *data, int32_t data_size, 857 int32_t strip_width) 858{ 859 Cell curr_cell; 860 unsigned num_vectors; 861 862 /* each plane data starts with mc_vector_count field, */ 863 /* an optional array of motion vectors followed by the vq data */ 864 num_vectors = bytestream_get_le32(&data); data_size -= 4; 865 if (num_vectors > 256) { 866 av_log(ctx->avctx, AV_LOG_ERROR, 867 "Read invalid number of motion vectors %d\n", num_vectors); 868 return AVERROR_INVALIDDATA; 869 } 870 if (num_vectors * 2 > data_size) 871 return AVERROR_INVALIDDATA; 872 873 ctx->num_vectors = num_vectors; 874 ctx->mc_vectors = num_vectors ? data : 0; 875 876 /* init the bitreader */ 877 init_get_bits(&ctx->gb, &data[num_vectors * 2], (data_size - num_vectors * 2) << 3); 878 ctx->skip_bits = 0; 879 ctx->need_resync = 0; 880 881 ctx->last_byte = data + data_size; 882 883 /* initialize the 1st cell and set its dimensions to whole plane */ 884 curr_cell.xpos = curr_cell.ypos = 0; 885 curr_cell.width = plane->width >> 2; 886 curr_cell.height = plane->height >> 2; 887 curr_cell.tree = 0; // we are in the MC tree now 888 curr_cell.mv_ptr = 0; // no motion vector = INTRA cell 889 890 return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width); 891} 892 893 894#define OS_HDR_ID MKBETAG('F', 'R', 'M', 'H') 895 896static int decode_frame_headers(Indeo3DecodeContext *ctx, AVCodecContext *avctx, 897 const uint8_t *buf, int buf_size) 898{ 899 GetByteContext gb; 900 const uint8_t *bs_hdr; 901 uint32_t frame_num, word2, check_sum, data_size; 902 int y_offset, u_offset, v_offset; 903 uint32_t starts[3], ends[3]; 904 uint16_t height, width; 905 int i, j; 906 907 bytestream2_init(&gb, buf, buf_size); 908 909 /* parse and check the OS header */ 910 frame_num = bytestream2_get_le32(&gb); 911 word2 = bytestream2_get_le32(&gb); 912 check_sum = bytestream2_get_le32(&gb); 913 data_size = bytestream2_get_le32(&gb); 914 915 if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) { 916 av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n"); 917 return AVERROR_INVALIDDATA; 918 } 919 920 /* parse the bitstream header */ 921 bs_hdr = gb.buffer; 922 923 if (bytestream2_get_le16(&gb) != 32) { 924 av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n"); 925 return AVERROR_INVALIDDATA; 926 } 927 928 ctx->frame_num = frame_num; 929 ctx->frame_flags = bytestream2_get_le16(&gb); 930 ctx->data_size = (bytestream2_get_le32(&gb) + 7) >> 3; 931 ctx->cb_offset = bytestream2_get_byte(&gb); 932 933 if (ctx->data_size == 16) 934 return 4; 935 ctx->data_size = FFMIN(ctx->data_size, buf_size - 16); 936 937 bytestream2_skip(&gb, 3); // skip reserved byte and checksum 938 939 /* check frame dimensions */ 940 height = bytestream2_get_le16(&gb); 941 width = bytestream2_get_le16(&gb); 942 if (av_image_check_size(width, height, 0, avctx)) 943 return AVERROR_INVALIDDATA; 944 945 if (width != ctx->width || height != ctx->height) { 946 int res; 947 948 ff_dlog(avctx, "Frame dimensions changed!\n"); 949 950 if (width < 16 || width > 640 || 951 height < 16 || height > 480 || 952 width & 3 || height & 3) { 953 av_log(avctx, AV_LOG_ERROR, 954 "Invalid picture dimensions: %d x %d!\n", width, height); 955 return AVERROR_INVALIDDATA; 956 } 957 free_frame_buffers(ctx); 958 if ((res = allocate_frame_buffers(ctx, avctx, width, height)) < 0) 959 return res; 960 if ((res = ff_set_dimensions(avctx, width, height)) < 0) 961 return res; 962 } 963 964 y_offset = bytestream2_get_le32(&gb); 965 v_offset = bytestream2_get_le32(&gb); 966 u_offset = bytestream2_get_le32(&gb); 967 bytestream2_skip(&gb, 4); 968 969 /* unfortunately there is no common order of planes in the buffer */ 970 /* so we use that sorting algo for determining planes data sizes */ 971 starts[0] = y_offset; 972 starts[1] = v_offset; 973 starts[2] = u_offset; 974 975 for (j = 0; j < 3; j++) { 976 ends[j] = ctx->data_size; 977 for (i = 2; i >= 0; i--) 978 if (starts[i] < ends[j] && starts[i] > starts[j]) 979 ends[j] = starts[i]; 980 } 981 982 ctx->y_data_size = ends[0] - starts[0]; 983 ctx->v_data_size = ends[1] - starts[1]; 984 ctx->u_data_size = ends[2] - starts[2]; 985 if (FFMIN3(y_offset, v_offset, u_offset) < 0 || 986 FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 || 987 FFMIN3(y_offset, v_offset, u_offset) < gb.buffer - bs_hdr + 16 || 988 FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) { 989 av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n"); 990 return AVERROR_INVALIDDATA; 991 } 992 993 ctx->y_data_ptr = bs_hdr + y_offset; 994 ctx->v_data_ptr = bs_hdr + v_offset; 995 ctx->u_data_ptr = bs_hdr + u_offset; 996 ctx->alt_quant = gb.buffer; 997 998 if (ctx->data_size == 16) { 999 av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n"); 1000 return 16; 1001 } 1002 1003 if (ctx->frame_flags & BS_8BIT_PEL) { 1004 avpriv_request_sample(avctx, "8-bit pixel format"); 1005 return AVERROR_PATCHWELCOME; 1006 } 1007 1008 if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) { 1009 avpriv_request_sample(avctx, "Halfpel motion vectors"); 1010 return AVERROR_PATCHWELCOME; 1011 } 1012 1013 return 0; 1014} 1015 1016 1017/** 1018 * Convert and output the current plane. 1019 * All pixel values will be upsampled by shifting right by one bit. 1020 * 1021 * @param[in] plane pointer to the descriptor of the plane being processed 1022 * @param[in] buf_sel indicates which frame buffer the input data stored in 1023 * @param[out] dst pointer to the buffer receiving converted pixels 1024 * @param[in] dst_pitch pitch for moving to the next y line 1025 * @param[in] dst_height output plane height 1026 */ 1027static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst, 1028 ptrdiff_t dst_pitch, int dst_height) 1029{ 1030 int x,y; 1031 const uint8_t *src = plane->pixels[buf_sel]; 1032 ptrdiff_t pitch = plane->pitch; 1033 1034 dst_height = FFMIN(dst_height, plane->height); 1035 for (y = 0; y < dst_height; y++) { 1036 /* convert four pixels at once using SWAR */ 1037 for (x = 0; x < plane->width >> 2; x++) { 1038 AV_WN32A(dst, (AV_RN32A(src) & 0x7F7F7F7F) << 1); 1039 src += 4; 1040 dst += 4; 1041 } 1042 1043 for (x <<= 2; x < plane->width; x++) 1044 *dst++ = *src++ << 1; 1045 1046 src += pitch - plane->width; 1047 dst += dst_pitch - plane->width; 1048 } 1049} 1050 1051 1052static av_cold int decode_init(AVCodecContext *avctx) 1053{ 1054 static AVOnce init_static_once = AV_ONCE_INIT; 1055 Indeo3DecodeContext *ctx = avctx->priv_data; 1056 1057 ctx->avctx = avctx; 1058 avctx->pix_fmt = AV_PIX_FMT_YUV410P; 1059 1060 ff_thread_once(&init_static_once, build_requant_tab); 1061 1062 ff_hpeldsp_init(&ctx->hdsp, avctx->flags); 1063 1064 return allocate_frame_buffers(ctx, avctx, avctx->width, avctx->height); 1065} 1066 1067 1068static int decode_frame(AVCodecContext *avctx, AVFrame *frame, 1069 int *got_frame, AVPacket *avpkt) 1070{ 1071 Indeo3DecodeContext *ctx = avctx->priv_data; 1072 const uint8_t *buf = avpkt->data; 1073 int buf_size = avpkt->size; 1074 int res; 1075 1076 res = decode_frame_headers(ctx, avctx, buf, buf_size); 1077 if (res < 0) 1078 return res; 1079 1080 /* skip sync(null) frames */ 1081 if (res) { 1082 // we have processed 16 bytes but no data was decoded 1083 *got_frame = 0; 1084 return buf_size; 1085 } 1086 1087 /* skip droppable INTER frames if requested */ 1088 if (ctx->frame_flags & BS_NONREF && 1089 (avctx->skip_frame >= AVDISCARD_NONREF)) 1090 return 0; 1091 1092 /* skip INTER frames if requested */ 1093 if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY) 1094 return 0; 1095 1096 /* use BS_BUFFER flag for buffer switching */ 1097 ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1; 1098 1099 if ((res = ff_get_buffer(avctx, frame, 0)) < 0) 1100 return res; 1101 1102 /* decode luma plane */ 1103 if ((res = decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40))) 1104 return res; 1105 1106 /* decode chroma planes */ 1107 if ((res = decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10))) 1108 return res; 1109 1110 if ((res = decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10))) 1111 return res; 1112 1113 output_plane(&ctx->planes[0], ctx->buf_sel, 1114 frame->data[0], frame->linesize[0], 1115 avctx->height); 1116 output_plane(&ctx->planes[1], ctx->buf_sel, 1117 frame->data[1], frame->linesize[1], 1118 (avctx->height + 3) >> 2); 1119 output_plane(&ctx->planes[2], ctx->buf_sel, 1120 frame->data[2], frame->linesize[2], 1121 (avctx->height + 3) >> 2); 1122 1123 *got_frame = 1; 1124 1125 return buf_size; 1126} 1127 1128 1129static av_cold int decode_close(AVCodecContext *avctx) 1130{ 1131 free_frame_buffers(avctx->priv_data); 1132 1133 return 0; 1134} 1135 1136const FFCodec ff_indeo3_decoder = { 1137 .p.name = "indeo3", 1138 .p.long_name = NULL_IF_CONFIG_SMALL("Intel Indeo 3"), 1139 .p.type = AVMEDIA_TYPE_VIDEO, 1140 .p.id = AV_CODEC_ID_INDEO3, 1141 .priv_data_size = sizeof(Indeo3DecodeContext), 1142 .init = decode_init, 1143 .close = decode_close, 1144 FF_CODEC_DECODE_CB(decode_frame), 1145 .p.capabilities = AV_CODEC_CAP_DR1, 1146 .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP, 1147}; 1148