xref: /third_party/ffmpeg/libavcodec/indeo3.c (revision cabdff1a)
1/*
2 * Indeo Video v3 compatible decoder
3 * Copyright (c) 2009 - 2011 Maxim Poliakovski
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file
24 * This is a decoder for Intel Indeo Video v3.
25 * It is based on vector quantization, run-length coding and motion compensation.
26 * Known container formats: .avi and .mov
27 * Known FOURCCs: 'IV31', 'IV32'
28 *
29 * @see http://wiki.multimedia.cx/index.php?title=Indeo_3
30 */
31
32#include "libavutil/imgutils.h"
33#include "libavutil/intreadwrite.h"
34#include "libavutil/thread.h"
35#include "avcodec.h"
36#include "codec_internal.h"
37#include "copy_block.h"
38#include "bytestream.h"
39#include "get_bits.h"
40#include "hpeldsp.h"
41#include "internal.h"
42
43#include "indeo3data.h"
44
45/* RLE opcodes. */
46enum {
47    RLE_ESC_F9    = 249, ///< same as RLE_ESC_FA + do the same with next block
48    RLE_ESC_FA    = 250, ///< INTRA: skip block, INTER: copy data from reference
49    RLE_ESC_FB    = 251, ///< apply null delta to N blocks / skip N blocks
50    RLE_ESC_FC    = 252, ///< same as RLE_ESC_FD + do the same with next block
51    RLE_ESC_FD    = 253, ///< apply null delta to all remaining lines of this block
52    RLE_ESC_FE    = 254, ///< apply null delta to all lines up to the 3rd line
53    RLE_ESC_FF    = 255  ///< apply null delta to all lines up to the 2nd line
54};
55
56
57/* Some constants for parsing frame bitstream flags. */
58#define BS_8BIT_PEL     (1 << 1) ///< 8-bit pixel bitdepth indicator
59#define BS_KEYFRAME     (1 << 2) ///< intra frame indicator
60#define BS_MV_Y_HALF    (1 << 4) ///< vertical mv halfpel resolution indicator
61#define BS_MV_X_HALF    (1 << 5) ///< horizontal mv halfpel resolution indicator
62#define BS_NONREF       (1 << 8) ///< nonref (discardable) frame indicator
63#define BS_BUFFER        9       ///< indicates which of two frame buffers should be used
64
65
66typedef struct Plane {
67    uint8_t         *buffers[2];
68    uint8_t         *pixels[2]; ///< pointer to the actual pixel data of the buffers above
69    uint32_t        width;
70    uint32_t        height;
71    ptrdiff_t       pitch;
72} Plane;
73
74#define CELL_STACK_MAX  20
75
76typedef struct Cell {
77    int16_t         xpos;       ///< cell coordinates in 4x4 blocks
78    int16_t         ypos;
79    int16_t         width;      ///< cell width  in 4x4 blocks
80    int16_t         height;     ///< cell height in 4x4 blocks
81    uint8_t         tree;       ///< tree id: 0- MC tree, 1 - VQ tree
82    const int8_t    *mv_ptr;    ///< ptr to the motion vector if any
83} Cell;
84
85typedef struct Indeo3DecodeContext {
86    AVCodecContext *avctx;
87    HpelDSPContext  hdsp;
88
89    GetBitContext   gb;
90    int             need_resync;
91    int             skip_bits;
92    const uint8_t   *next_cell_data;
93    const uint8_t   *last_byte;
94    const int8_t    *mc_vectors;
95    unsigned        num_vectors;    ///< number of motion vectors in mc_vectors
96
97    int16_t         width, height;
98    uint32_t        frame_num;      ///< current frame number (zero-based)
99    int             data_size;      ///< size of the frame data in bytes
100    uint16_t        frame_flags;    ///< frame properties
101    uint8_t         cb_offset;      ///< needed for selecting VQ tables
102    uint8_t         buf_sel;        ///< active frame buffer: 0 - primary, 1 -secondary
103    const uint8_t   *y_data_ptr;
104    const uint8_t   *v_data_ptr;
105    const uint8_t   *u_data_ptr;
106    int32_t         y_data_size;
107    int32_t         v_data_size;
108    int32_t         u_data_size;
109    const uint8_t   *alt_quant;     ///< secondary VQ table set for the modes 1 and 4
110    Plane           planes[3];
111} Indeo3DecodeContext;
112
113
114static uint8_t requant_tab[8][128];
115
116/*
117 *  Build the static requantization table.
118 *  This table is used to remap pixel values according to a specific
119 *  quant index and thus avoid overflows while adding deltas.
120 */
121static av_cold void build_requant_tab(void)
122{
123    static const int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 };
124    static const int8_t deltas [8] = { 0, 1, 0,  4,  4, 1, 0, 1 };
125
126    int i, j, step;
127
128    for (i = 0; i < 8; i++) {
129        step = i + 2;
130        for (j = 0; j < 128; j++)
131                requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i];
132    }
133
134    /* some last elements calculated above will have values >= 128 */
135    /* pixel values shall never exceed 127 so set them to non-overflowing values */
136    /* according with the quantization step of the respective section */
137    requant_tab[0][127] = 126;
138    requant_tab[1][119] = 118;
139    requant_tab[1][120] = 118;
140    requant_tab[2][126] = 124;
141    requant_tab[2][127] = 124;
142    requant_tab[6][124] = 120;
143    requant_tab[6][125] = 120;
144    requant_tab[6][126] = 120;
145    requant_tab[6][127] = 120;
146
147    /* Patch for compatibility with the Intel's binary decoders */
148    requant_tab[1][7] = 10;
149    requant_tab[4][8] = 10;
150}
151
152
153static av_cold void free_frame_buffers(Indeo3DecodeContext *ctx)
154{
155    int p;
156
157    ctx->width = ctx->height = 0;
158
159    for (p = 0; p < 3; p++) {
160        av_freep(&ctx->planes[p].buffers[0]);
161        av_freep(&ctx->planes[p].buffers[1]);
162        ctx->planes[p].pixels[0] = ctx->planes[p].pixels[1] = 0;
163    }
164}
165
166
167static av_cold int allocate_frame_buffers(Indeo3DecodeContext *ctx,
168                                          AVCodecContext *avctx, int luma_width, int luma_height)
169{
170    int p, chroma_width, chroma_height;
171    int luma_size, chroma_size;
172    ptrdiff_t luma_pitch, chroma_pitch;
173
174    if (luma_width  < 16 || luma_width  > 640 ||
175        luma_height < 16 || luma_height > 480 ||
176        luma_width  &  1 || luma_height &   1) {
177        av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n",
178               luma_width, luma_height);
179        return AVERROR_INVALIDDATA;
180    }
181
182    ctx->width  = luma_width ;
183    ctx->height = luma_height;
184
185    chroma_width  = FFALIGN(luma_width  >> 2, 4);
186    chroma_height = FFALIGN(luma_height >> 2, 4);
187
188    luma_pitch   = FFALIGN(luma_width,   16);
189    chroma_pitch = FFALIGN(chroma_width, 16);
190
191    /* Calculate size of the luminance plane.  */
192    /* Add one line more for INTRA prediction. */
193    luma_size = luma_pitch * (luma_height + 1);
194
195    /* Calculate size of a chrominance planes. */
196    /* Add one line more for INTRA prediction. */
197    chroma_size = chroma_pitch * (chroma_height + 1);
198
199    /* allocate frame buffers */
200    for (p = 0; p < 3; p++) {
201        ctx->planes[p].pitch  = !p ? luma_pitch  : chroma_pitch;
202        ctx->planes[p].width  = !p ? luma_width  : chroma_width;
203        ctx->planes[p].height = !p ? luma_height : chroma_height;
204
205        ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size);
206        ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size);
207
208        if (!ctx->planes[p].buffers[0] || !ctx->planes[p].buffers[1])
209            return AVERROR(ENOMEM);
210
211        /* fill the INTRA prediction lines with the middle pixel value = 64 */
212        memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch);
213        memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch);
214
215        /* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */
216        ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch;
217        ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch;
218        memset(ctx->planes[p].pixels[0], 0, ctx->planes[p].pitch * ctx->planes[p].height);
219        memset(ctx->planes[p].pixels[1], 0, ctx->planes[p].pitch * ctx->planes[p].height);
220    }
221
222    return 0;
223}
224
225/**
226 *  Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into
227 *  the cell(x, y) in the current frame.
228 *
229 *  @param ctx      pointer to the decoder context
230 *  @param plane    pointer to the plane descriptor
231 *  @param cell     pointer to the cell  descriptor
232 */
233static int copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell)
234{
235    int     h, w, mv_x, mv_y, offset, offset_dst;
236    uint8_t *src, *dst;
237
238    /* setup output and reference pointers */
239    offset_dst  = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
240    dst         = plane->pixels[ctx->buf_sel] + offset_dst;
241    if(cell->mv_ptr){
242    mv_y        = cell->mv_ptr[0];
243    mv_x        = cell->mv_ptr[1];
244    }else
245        mv_x= mv_y= 0;
246
247    /* -1 because there is an extra line on top for prediction */
248    if ((cell->ypos << 2) + mv_y < -1 || (cell->xpos << 2) + mv_x < 0 ||
249        ((cell->ypos + cell->height) << 2) + mv_y > plane->height     ||
250        ((cell->xpos + cell->width)  << 2) + mv_x > plane->width) {
251        av_log(ctx->avctx, AV_LOG_ERROR,
252               "Motion vectors point out of the frame.\n");
253        return AVERROR_INVALIDDATA;
254    }
255
256    offset      = offset_dst + mv_y * plane->pitch + mv_x;
257    src         = plane->pixels[ctx->buf_sel ^ 1] + offset;
258
259    h = cell->height << 2;
260
261    for (w = cell->width; w > 0;) {
262        /* copy using 16xH blocks */
263        if (!((cell->xpos << 2) & 15) && w >= 4) {
264            for (; w >= 4; src += 16, dst += 16, w -= 4)
265                ctx->hdsp.put_pixels_tab[0][0](dst, src, plane->pitch, h);
266        }
267
268        /* copy using 8xH blocks */
269        if (!((cell->xpos << 2) & 7) && w >= 2) {
270            ctx->hdsp.put_pixels_tab[1][0](dst, src, plane->pitch, h);
271            w -= 2;
272            src += 8;
273            dst += 8;
274        } else if (w >= 1) {
275            ctx->hdsp.put_pixels_tab[2][0](dst, src, plane->pitch, h);
276            w--;
277            src += 4;
278            dst += 4;
279        }
280    }
281
282    return 0;
283}
284
285
286/* Average 4/8 pixels at once without rounding using SWAR */
287#define AVG_32(dst, src, ref) \
288    AV_WN32A(dst, ((AV_RN32(src) + AV_RN32(ref)) >> 1) & 0x7F7F7F7FUL)
289
290#define AVG_64(dst, src, ref) \
291    AV_WN64A(dst, ((AV_RN64(src) + AV_RN64(ref)) >> 1) & 0x7F7F7F7F7F7F7F7FULL)
292
293
294/*
295 *  Replicate each even pixel as follows:
296 *  ABCDEFGH -> AACCEEGG
297 */
298static inline uint64_t replicate64(uint64_t a) {
299#if HAVE_BIGENDIAN
300    a &= 0xFF00FF00FF00FF00ULL;
301    a |= a >> 8;
302#else
303    a &= 0x00FF00FF00FF00FFULL;
304    a |= a << 8;
305#endif
306    return a;
307}
308
309static inline uint32_t replicate32(uint32_t a) {
310#if HAVE_BIGENDIAN
311    a &= 0xFF00FF00UL;
312    a |= a >> 8;
313#else
314    a &= 0x00FF00FFUL;
315    a |= a << 8;
316#endif
317    return a;
318}
319
320
321/* Fill n lines with 64-bit pixel value pix */
322static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n,
323                           int32_t row_offset)
324{
325    for (; n > 0; dst += row_offset, n--)
326        AV_WN64A(dst, pix);
327}
328
329
330/* Error codes for cell decoding. */
331enum {
332    IV3_NOERR       = 0,
333    IV3_BAD_RLE     = 1,
334    IV3_BAD_DATA    = 2,
335    IV3_BAD_COUNTER = 3,
336    IV3_UNSUPPORTED = 4,
337    IV3_OUT_OF_DATA = 5
338};
339
340
341#define BUFFER_PRECHECK \
342if (*data_ptr >= last_ptr) \
343    return IV3_OUT_OF_DATA; \
344
345#define RLE_BLOCK_COPY \
346    if (cell->mv_ptr || !skip_flag) \
347        copy_block4(dst, ref, row_offset, row_offset, 4 << v_zoom)
348
349#define RLE_BLOCK_COPY_8 \
350    pix64 = AV_RN64(ref);\
351    if (is_first_row) {/* special prediction case: top line of a cell */\
352        pix64 = replicate64(pix64);\
353        fill_64(dst + row_offset, pix64, 7, row_offset);\
354        AVG_64(dst, ref, dst + row_offset);\
355    } else \
356        fill_64(dst, pix64, 8, row_offset)
357
358#define RLE_LINES_COPY \
359    copy_block4(dst, ref, row_offset, row_offset, num_lines << v_zoom)
360
361#define RLE_LINES_COPY_M10 \
362    pix64 = AV_RN64(ref);\
363    if (is_top_of_cell) {\
364        pix64 = replicate64(pix64);\
365        fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\
366        AVG_64(dst, ref, dst + row_offset);\
367    } else \
368        fill_64(dst, pix64, num_lines << 1, row_offset)
369
370#define APPLY_DELTA_4 \
371    AV_WN16A(dst + line_offset    ,\
372             (AV_RN16(ref    ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
373    AV_WN16A(dst + line_offset + 2,\
374             (AV_RN16(ref + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
375    if (mode >= 3) {\
376        if (is_top_of_cell && !cell->ypos) {\
377            AV_COPY32U(dst, dst + row_offset);\
378        } else {\
379            AVG_32(dst, ref, dst + row_offset);\
380        }\
381    }
382
383#define APPLY_DELTA_8 \
384    /* apply two 32-bit VQ deltas to next even line */\
385    if (is_top_of_cell) { \
386        AV_WN32A(dst + row_offset    , \
387                 (replicate32(AV_RN32(ref    )) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
388        AV_WN32A(dst + row_offset + 4, \
389                 (replicate32(AV_RN32(ref + 4)) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
390    } else { \
391        AV_WN32A(dst + row_offset    , \
392                 (AV_RN32(ref    ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
393        AV_WN32A(dst + row_offset + 4, \
394                 (AV_RN32(ref + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
395    } \
396    /* odd lines are not coded but rather interpolated/replicated */\
397    /* first line of the cell on the top of image? - replicate */\
398    /* otherwise - interpolate */\
399    if (is_top_of_cell && !cell->ypos) {\
400        AV_COPY64U(dst, dst + row_offset);\
401    } else \
402        AVG_64(dst, ref, dst + row_offset);
403
404
405#define APPLY_DELTA_1011_INTER \
406    if (mode == 10) { \
407        AV_WN32A(dst                 , \
408                 (AV_RN32(dst                 ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
409        AV_WN32A(dst + 4             , \
410                 (AV_RN32(dst + 4             ) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
411        AV_WN32A(dst + row_offset    , \
412                 (AV_RN32(dst + row_offset    ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
413        AV_WN32A(dst + row_offset + 4, \
414                 (AV_RN32(dst + row_offset + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
415    } else { \
416        AV_WN16A(dst                 , \
417                 (AV_RN16(dst                 ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
418        AV_WN16A(dst + 2             , \
419                 (AV_RN16(dst + 2             ) + delta_tab->deltas[dyad2]) & 0x7F7F);\
420        AV_WN16A(dst + row_offset    , \
421                 (AV_RN16(dst + row_offset    ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
422        AV_WN16A(dst + row_offset + 2, \
423                 (AV_RN16(dst + row_offset + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
424    }
425
426
427static int decode_cell_data(Indeo3DecodeContext *ctx, Cell *cell,
428                            uint8_t *block, uint8_t *ref_block,
429                            ptrdiff_t row_offset, int h_zoom, int v_zoom, int mode,
430                            const vqEntry *delta[2], int swap_quads[2],
431                            const uint8_t **data_ptr, const uint8_t *last_ptr)
432{
433    int           x, y, line, num_lines;
434    int           rle_blocks = 0;
435    uint8_t       code, *dst, *ref;
436    const vqEntry *delta_tab;
437    unsigned int  dyad1, dyad2;
438    uint64_t      pix64;
439    int           skip_flag = 0, is_top_of_cell, is_first_row = 1;
440    int           blk_row_offset, line_offset;
441
442    blk_row_offset = (row_offset << (2 + v_zoom)) - (cell->width << 2);
443    line_offset    = v_zoom ? row_offset : 0;
444
445    if (cell->height & v_zoom || cell->width & h_zoom)
446        return IV3_BAD_DATA;
447
448    for (y = 0; y < cell->height; is_first_row = 0, y += 1 + v_zoom) {
449        for (x = 0; x < cell->width; x += 1 + h_zoom) {
450            ref = ref_block;
451            dst = block;
452
453            if (rle_blocks > 0) {
454                if (mode <= 4) {
455                    RLE_BLOCK_COPY;
456                } else if (mode == 10 && !cell->mv_ptr) {
457                    RLE_BLOCK_COPY_8;
458                }
459                rle_blocks--;
460            } else {
461                for (line = 0; line < 4;) {
462                    num_lines = 1;
463                    is_top_of_cell = is_first_row && !line;
464
465                    /* select primary VQ table for odd, secondary for even lines */
466                    if (mode <= 4)
467                        delta_tab = delta[line & 1];
468                    else
469                        delta_tab = delta[1];
470                    BUFFER_PRECHECK;
471                    code = bytestream_get_byte(data_ptr);
472                    if (code < 248) {
473                        if (code < delta_tab->num_dyads) {
474                            BUFFER_PRECHECK;
475                            dyad1 = bytestream_get_byte(data_ptr);
476                            dyad2 = code;
477                            if (dyad1 >= delta_tab->num_dyads || dyad1 >= 248)
478                                return IV3_BAD_DATA;
479                        } else {
480                            /* process QUADS */
481                            code -= delta_tab->num_dyads;
482                            dyad1 = code / delta_tab->quad_exp;
483                            dyad2 = code % delta_tab->quad_exp;
484                            if (swap_quads[line & 1])
485                                FFSWAP(unsigned int, dyad1, dyad2);
486                        }
487                        if (mode <= 4) {
488                            APPLY_DELTA_4;
489                        } else if (mode == 10 && !cell->mv_ptr) {
490                            APPLY_DELTA_8;
491                        } else {
492                            APPLY_DELTA_1011_INTER;
493                        }
494                    } else {
495                        /* process RLE codes */
496                        switch (code) {
497                        case RLE_ESC_FC:
498                            skip_flag  = 0;
499                            rle_blocks = 1;
500                            code       = 253;
501                            /* FALLTHROUGH */
502                        case RLE_ESC_FF:
503                        case RLE_ESC_FE:
504                        case RLE_ESC_FD:
505                            num_lines = 257 - code - line;
506                            if (num_lines <= 0)
507                                return IV3_BAD_RLE;
508                            if (mode <= 4) {
509                                RLE_LINES_COPY;
510                            } else if (mode == 10 && !cell->mv_ptr) {
511                                RLE_LINES_COPY_M10;
512                            }
513                            break;
514                        case RLE_ESC_FB:
515                            BUFFER_PRECHECK;
516                            code = bytestream_get_byte(data_ptr);
517                            rle_blocks = (code & 0x1F) - 1; /* set block counter */
518                            if (code >= 64 || rle_blocks < 0)
519                                return IV3_BAD_COUNTER;
520                            skip_flag = code & 0x20;
521                            num_lines = 4 - line; /* enforce next block processing */
522                            if (mode >= 10 || (cell->mv_ptr || !skip_flag)) {
523                                if (mode <= 4) {
524                                    RLE_LINES_COPY;
525                                } else if (mode == 10 && !cell->mv_ptr) {
526                                    RLE_LINES_COPY_M10;
527                                }
528                            }
529                            break;
530                        case RLE_ESC_F9:
531                            skip_flag  = 1;
532                            rle_blocks = 1;
533                            /* FALLTHROUGH */
534                        case RLE_ESC_FA:
535                            if (line)
536                                return IV3_BAD_RLE;
537                            num_lines = 4; /* enforce next block processing */
538                            if (cell->mv_ptr) {
539                                if (mode <= 4) {
540                                    RLE_LINES_COPY;
541                                } else if (mode == 10 && !cell->mv_ptr) {
542                                    RLE_LINES_COPY_M10;
543                                }
544                            }
545                            break;
546                        default:
547                            return IV3_UNSUPPORTED;
548                        }
549                    }
550
551                    line += num_lines;
552                    ref  += row_offset * (num_lines << v_zoom);
553                    dst  += row_offset * (num_lines << v_zoom);
554                }
555            }
556
557            /* move to next horizontal block */
558            block     += 4 << h_zoom;
559            ref_block += 4 << h_zoom;
560        }
561
562        /* move to next line of blocks */
563        ref_block += blk_row_offset;
564        block     += blk_row_offset;
565    }
566    return IV3_NOERR;
567}
568
569
570/**
571 *  Decode a vector-quantized cell.
572 *  It consists of several routines, each of which handles one or more "modes"
573 *  with which a cell can be encoded.
574 *
575 *  @param ctx      pointer to the decoder context
576 *  @param avctx    ptr to the AVCodecContext
577 *  @param plane    pointer to the plane descriptor
578 *  @param cell     pointer to the cell  descriptor
579 *  @param data_ptr pointer to the compressed data
580 *  @param last_ptr pointer to the last byte to catch reads past end of buffer
581 *  @return         number of consumed bytes or negative number in case of error
582 */
583static int decode_cell(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
584                       Plane *plane, Cell *cell, const uint8_t *data_ptr,
585                       const uint8_t *last_ptr)
586{
587    int           x, mv_x, mv_y, mode, vq_index, prim_indx, second_indx;
588    int           zoom_fac;
589    int           offset, error = 0, swap_quads[2];
590    uint8_t       code, *block, *ref_block = 0;
591    const vqEntry *delta[2];
592    const uint8_t *data_start = data_ptr;
593
594    /* get coding mode and VQ table index from the VQ descriptor byte */
595    code     = *data_ptr++;
596    mode     = code >> 4;
597    vq_index = code & 0xF;
598
599    /* setup output and reference pointers */
600    offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
601    block  =  plane->pixels[ctx->buf_sel] + offset;
602
603    if (!cell->mv_ptr) {
604        /* use previous line as reference for INTRA cells */
605        ref_block = block - plane->pitch;
606    } else if (mode >= 10) {
607        /* for mode 10 and 11 INTER first copy the predicted cell into the current one */
608        /* so we don't need to do data copying for each RLE code later */
609        int ret = copy_cell(ctx, plane, cell);
610        if (ret < 0)
611            return ret;
612    } else {
613        /* set the pointer to the reference pixels for modes 0-4 INTER */
614        mv_y      = cell->mv_ptr[0];
615        mv_x      = cell->mv_ptr[1];
616
617        /* -1 because there is an extra line on top for prediction */
618        if ((cell->ypos << 2) + mv_y < -1 || (cell->xpos << 2) + mv_x < 0 ||
619            ((cell->ypos + cell->height) << 2) + mv_y > plane->height     ||
620            ((cell->xpos + cell->width)  << 2) + mv_x > plane->width) {
621            av_log(ctx->avctx, AV_LOG_ERROR,
622                   "Motion vectors point out of the frame.\n");
623            return AVERROR_INVALIDDATA;
624        }
625
626        offset   += mv_y * plane->pitch + mv_x;
627        ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset;
628    }
629
630    /* select VQ tables as follows: */
631    /* modes 0 and 3 use only the primary table for all lines in a block */
632    /* while modes 1 and 4 switch between primary and secondary tables on alternate lines */
633    if (mode == 1 || mode == 4) {
634        code        = ctx->alt_quant[vq_index];
635        prim_indx   = (code >> 4)  + ctx->cb_offset;
636        second_indx = (code & 0xF) + ctx->cb_offset;
637    } else {
638        vq_index += ctx->cb_offset;
639        prim_indx = second_indx = vq_index;
640    }
641
642    if (prim_indx >= 24 || second_indx >= 24) {
643        av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n",
644               prim_indx, second_indx);
645        return AVERROR_INVALIDDATA;
646    }
647
648    delta[0] = &vq_tab[second_indx];
649    delta[1] = &vq_tab[prim_indx];
650    swap_quads[0] = second_indx >= 16;
651    swap_quads[1] = prim_indx   >= 16;
652
653    /* requantize the prediction if VQ index of this cell differs from VQ index */
654    /* of the predicted cell in order to avoid overflows. */
655    if (vq_index >= 8 && ref_block) {
656        for (x = 0; x < cell->width << 2; x++)
657            ref_block[x] = requant_tab[vq_index & 7][ref_block[x] & 127];
658    }
659
660    error = IV3_NOERR;
661
662    switch (mode) {
663    case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/
664    case 1:
665    case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/
666    case 4:
667        if (mode >= 3 && cell->mv_ptr) {
668            av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n");
669            return AVERROR_INVALIDDATA;
670        }
671
672        zoom_fac = mode >= 3;
673        error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
674                                 0, zoom_fac, mode, delta, swap_quads,
675                                 &data_ptr, last_ptr);
676        break;
677    case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/
678    case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/
679        if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */
680            error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
681                                     1, 1, mode, delta, swap_quads,
682                                     &data_ptr, last_ptr);
683        } else { /* mode 10 and 11 INTER processing */
684            if (mode == 11 && !cell->mv_ptr) {
685               av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n");
686               return AVERROR_INVALIDDATA;
687            }
688
689            zoom_fac = mode == 10;
690            error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
691                                     zoom_fac, 1, mode, delta, swap_quads,
692                                     &data_ptr, last_ptr);
693        }
694        break;
695    default:
696        av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode);
697        return AVERROR_INVALIDDATA;
698    }//switch mode
699
700    switch (error) {
701    case IV3_BAD_RLE:
702        av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the current line\n",
703               mode, data_ptr[-1]);
704        return AVERROR_INVALIDDATA;
705    case IV3_BAD_DATA:
706        av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode);
707        return AVERROR_INVALIDDATA;
708    case IV3_BAD_COUNTER:
709        av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code);
710        return AVERROR_INVALIDDATA;
711    case IV3_UNSUPPORTED:
712        av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]);
713        return AVERROR_INVALIDDATA;
714    case IV3_OUT_OF_DATA:
715        av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode);
716        return AVERROR_INVALIDDATA;
717    }
718
719    return data_ptr - data_start; /* report number of bytes consumed from the input buffer */
720}
721
722
723/* Binary tree codes. */
724enum {
725    H_SPLIT    = 0,
726    V_SPLIT    = 1,
727    INTRA_NULL = 2,
728    INTER_DATA = 3
729};
730
731
732#define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1
733
734#define UPDATE_BITPOS(n) \
735    ctx->skip_bits  += (n); \
736    ctx->need_resync = 1
737
738#define RESYNC_BITSTREAM \
739    if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \
740        skip_bits_long(&ctx->gb, ctx->skip_bits);              \
741        ctx->skip_bits   = 0;                                  \
742        ctx->need_resync = 0;                                  \
743    }
744
745#define CHECK_CELL \
746    if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) ||               \
747        curr_cell.ypos + curr_cell.height > (plane->height >> 2)) {             \
748        av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n",   \
749               curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \
750        return AVERROR_INVALIDDATA;                                                              \
751    }
752
753
754static int parse_bintree(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
755                         Plane *plane, int code, Cell *ref_cell,
756                         const int depth, const int strip_width)
757{
758    Cell    curr_cell;
759    int     bytes_used, ret;
760
761    if (depth <= 0) {
762        av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n");
763        return AVERROR_INVALIDDATA; // unwind recursion
764    }
765
766    curr_cell = *ref_cell; // clone parent cell
767    if (code == H_SPLIT) {
768        SPLIT_CELL(ref_cell->height, curr_cell.height);
769        ref_cell->ypos   += curr_cell.height;
770        ref_cell->height -= curr_cell.height;
771        if (ref_cell->height <= 0 || curr_cell.height <= 0)
772            return AVERROR_INVALIDDATA;
773    } else if (code == V_SPLIT) {
774        if (curr_cell.width > strip_width) {
775            /* split strip */
776            curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width;
777        } else
778            SPLIT_CELL(ref_cell->width, curr_cell.width);
779        ref_cell->xpos  += curr_cell.width;
780        ref_cell->width -= curr_cell.width;
781        if (ref_cell->width <= 0 || curr_cell.width <= 0)
782            return AVERROR_INVALIDDATA;
783    }
784
785    while (get_bits_left(&ctx->gb) >= 2) { /* loop until return */
786        RESYNC_BITSTREAM;
787        switch (code = get_bits(&ctx->gb, 2)) {
788        case H_SPLIT:
789        case V_SPLIT:
790            if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth - 1, strip_width))
791                return AVERROR_INVALIDDATA;
792            break;
793        case INTRA_NULL:
794            if (!curr_cell.tree) { /* MC tree INTRA code */
795                curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */
796                curr_cell.tree   = 1; /* enter the VQ tree */
797            } else { /* VQ tree NULL code */
798                RESYNC_BITSTREAM;
799                code = get_bits(&ctx->gb, 2);
800                if (code >= 2) {
801                    av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code);
802                    return AVERROR_INVALIDDATA;
803                }
804                if (code == 1)
805                    av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n");
806
807                CHECK_CELL
808                if (!curr_cell.mv_ptr)
809                    return AVERROR_INVALIDDATA;
810
811                ret = copy_cell(ctx, plane, &curr_cell);
812                return ret;
813            }
814            break;
815        case INTER_DATA:
816            if (!curr_cell.tree) { /* MC tree INTER code */
817                unsigned mv_idx;
818                /* get motion vector index and setup the pointer to the mv set */
819                if (!ctx->need_resync)
820                    ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
821                if (ctx->next_cell_data >= ctx->last_byte) {
822                    av_log(avctx, AV_LOG_ERROR, "motion vector out of array\n");
823                    return AVERROR_INVALIDDATA;
824                }
825                mv_idx = *(ctx->next_cell_data++);
826                if (mv_idx >= ctx->num_vectors) {
827                    av_log(avctx, AV_LOG_ERROR, "motion vector index out of range\n");
828                    return AVERROR_INVALIDDATA;
829                }
830                curr_cell.mv_ptr = &ctx->mc_vectors[mv_idx << 1];
831                curr_cell.tree   = 1; /* enter the VQ tree */
832                UPDATE_BITPOS(8);
833            } else { /* VQ tree DATA code */
834                if (!ctx->need_resync)
835                    ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
836
837                CHECK_CELL
838                bytes_used = decode_cell(ctx, avctx, plane, &curr_cell,
839                                         ctx->next_cell_data, ctx->last_byte);
840                if (bytes_used < 0)
841                    return AVERROR_INVALIDDATA;
842
843                UPDATE_BITPOS(bytes_used << 3);
844                ctx->next_cell_data += bytes_used;
845                return 0;
846            }
847            break;
848        }
849    }//while
850
851    return AVERROR_INVALIDDATA;
852}
853
854
855static int decode_plane(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
856                        Plane *plane, const uint8_t *data, int32_t data_size,
857                        int32_t strip_width)
858{
859    Cell            curr_cell;
860    unsigned        num_vectors;
861
862    /* each plane data starts with mc_vector_count field, */
863    /* an optional array of motion vectors followed by the vq data */
864    num_vectors = bytestream_get_le32(&data); data_size -= 4;
865    if (num_vectors > 256) {
866        av_log(ctx->avctx, AV_LOG_ERROR,
867               "Read invalid number of motion vectors %d\n", num_vectors);
868        return AVERROR_INVALIDDATA;
869    }
870    if (num_vectors * 2 > data_size)
871        return AVERROR_INVALIDDATA;
872
873    ctx->num_vectors = num_vectors;
874    ctx->mc_vectors  = num_vectors ? data : 0;
875
876    /* init the bitreader */
877    init_get_bits(&ctx->gb, &data[num_vectors * 2], (data_size - num_vectors * 2) << 3);
878    ctx->skip_bits   = 0;
879    ctx->need_resync = 0;
880
881    ctx->last_byte = data + data_size;
882
883    /* initialize the 1st cell and set its dimensions to whole plane */
884    curr_cell.xpos   = curr_cell.ypos = 0;
885    curr_cell.width  = plane->width  >> 2;
886    curr_cell.height = plane->height >> 2;
887    curr_cell.tree   = 0; // we are in the MC tree now
888    curr_cell.mv_ptr = 0; // no motion vector = INTRA cell
889
890    return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width);
891}
892
893
894#define OS_HDR_ID   MKBETAG('F', 'R', 'M', 'H')
895
896static int decode_frame_headers(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
897                                const uint8_t *buf, int buf_size)
898{
899    GetByteContext gb;
900    const uint8_t   *bs_hdr;
901    uint32_t        frame_num, word2, check_sum, data_size;
902    int             y_offset, u_offset, v_offset;
903    uint32_t        starts[3], ends[3];
904    uint16_t        height, width;
905    int             i, j;
906
907    bytestream2_init(&gb, buf, buf_size);
908
909    /* parse and check the OS header */
910    frame_num = bytestream2_get_le32(&gb);
911    word2     = bytestream2_get_le32(&gb);
912    check_sum = bytestream2_get_le32(&gb);
913    data_size = bytestream2_get_le32(&gb);
914
915    if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) {
916        av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n");
917        return AVERROR_INVALIDDATA;
918    }
919
920    /* parse the bitstream header */
921    bs_hdr = gb.buffer;
922
923    if (bytestream2_get_le16(&gb) != 32) {
924        av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n");
925        return AVERROR_INVALIDDATA;
926    }
927
928    ctx->frame_num   =  frame_num;
929    ctx->frame_flags =  bytestream2_get_le16(&gb);
930    ctx->data_size   = (bytestream2_get_le32(&gb) + 7) >> 3;
931    ctx->cb_offset   =  bytestream2_get_byte(&gb);
932
933    if (ctx->data_size == 16)
934        return 4;
935    ctx->data_size = FFMIN(ctx->data_size, buf_size - 16);
936
937    bytestream2_skip(&gb, 3); // skip reserved byte and checksum
938
939    /* check frame dimensions */
940    height = bytestream2_get_le16(&gb);
941    width  = bytestream2_get_le16(&gb);
942    if (av_image_check_size(width, height, 0, avctx))
943        return AVERROR_INVALIDDATA;
944
945    if (width != ctx->width || height != ctx->height) {
946        int res;
947
948        ff_dlog(avctx, "Frame dimensions changed!\n");
949
950        if (width  < 16 || width  > 640 ||
951            height < 16 || height > 480 ||
952            width  &  3 || height &   3) {
953            av_log(avctx, AV_LOG_ERROR,
954                   "Invalid picture dimensions: %d x %d!\n", width, height);
955            return AVERROR_INVALIDDATA;
956        }
957        free_frame_buffers(ctx);
958        if ((res = allocate_frame_buffers(ctx, avctx, width, height)) < 0)
959             return res;
960        if ((res = ff_set_dimensions(avctx, width, height)) < 0)
961            return res;
962    }
963
964    y_offset = bytestream2_get_le32(&gb);
965    v_offset = bytestream2_get_le32(&gb);
966    u_offset = bytestream2_get_le32(&gb);
967    bytestream2_skip(&gb, 4);
968
969    /* unfortunately there is no common order of planes in the buffer */
970    /* so we use that sorting algo for determining planes data sizes  */
971    starts[0] = y_offset;
972    starts[1] = v_offset;
973    starts[2] = u_offset;
974
975    for (j = 0; j < 3; j++) {
976        ends[j] = ctx->data_size;
977        for (i = 2; i >= 0; i--)
978            if (starts[i] < ends[j] && starts[i] > starts[j])
979                ends[j] = starts[i];
980    }
981
982    ctx->y_data_size = ends[0] - starts[0];
983    ctx->v_data_size = ends[1] - starts[1];
984    ctx->u_data_size = ends[2] - starts[2];
985    if (FFMIN3(y_offset, v_offset, u_offset) < 0 ||
986        FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 ||
987        FFMIN3(y_offset, v_offset, u_offset) < gb.buffer - bs_hdr + 16 ||
988        FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) {
989        av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n");
990        return AVERROR_INVALIDDATA;
991    }
992
993    ctx->y_data_ptr = bs_hdr + y_offset;
994    ctx->v_data_ptr = bs_hdr + v_offset;
995    ctx->u_data_ptr = bs_hdr + u_offset;
996    ctx->alt_quant  = gb.buffer;
997
998    if (ctx->data_size == 16) {
999        av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n");
1000        return 16;
1001    }
1002
1003    if (ctx->frame_flags & BS_8BIT_PEL) {
1004        avpriv_request_sample(avctx, "8-bit pixel format");
1005        return AVERROR_PATCHWELCOME;
1006    }
1007
1008    if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) {
1009        avpriv_request_sample(avctx, "Halfpel motion vectors");
1010        return AVERROR_PATCHWELCOME;
1011    }
1012
1013    return 0;
1014}
1015
1016
1017/**
1018 *  Convert and output the current plane.
1019 *  All pixel values will be upsampled by shifting right by one bit.
1020 *
1021 *  @param[in]  plane        pointer to the descriptor of the plane being processed
1022 *  @param[in]  buf_sel      indicates which frame buffer the input data stored in
1023 *  @param[out] dst          pointer to the buffer receiving converted pixels
1024 *  @param[in]  dst_pitch    pitch for moving to the next y line
1025 *  @param[in]  dst_height   output plane height
1026 */
1027static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst,
1028                         ptrdiff_t dst_pitch, int dst_height)
1029{
1030    int             x,y;
1031    const uint8_t   *src  = plane->pixels[buf_sel];
1032    ptrdiff_t       pitch = plane->pitch;
1033
1034    dst_height = FFMIN(dst_height, plane->height);
1035    for (y = 0; y < dst_height; y++) {
1036        /* convert four pixels at once using SWAR */
1037        for (x = 0; x < plane->width >> 2; x++) {
1038            AV_WN32A(dst, (AV_RN32A(src) & 0x7F7F7F7F) << 1);
1039            src += 4;
1040            dst += 4;
1041        }
1042
1043        for (x <<= 2; x < plane->width; x++)
1044            *dst++ = *src++ << 1;
1045
1046        src += pitch     - plane->width;
1047        dst += dst_pitch - plane->width;
1048    }
1049}
1050
1051
1052static av_cold int decode_init(AVCodecContext *avctx)
1053{
1054    static AVOnce init_static_once = AV_ONCE_INIT;
1055    Indeo3DecodeContext *ctx = avctx->priv_data;
1056
1057    ctx->avctx     = avctx;
1058    avctx->pix_fmt = AV_PIX_FMT_YUV410P;
1059
1060    ff_thread_once(&init_static_once, build_requant_tab);
1061
1062    ff_hpeldsp_init(&ctx->hdsp, avctx->flags);
1063
1064    return allocate_frame_buffers(ctx, avctx, avctx->width, avctx->height);
1065}
1066
1067
1068static int decode_frame(AVCodecContext *avctx, AVFrame *frame,
1069                        int *got_frame, AVPacket *avpkt)
1070{
1071    Indeo3DecodeContext *ctx = avctx->priv_data;
1072    const uint8_t *buf = avpkt->data;
1073    int buf_size       = avpkt->size;
1074    int res;
1075
1076    res = decode_frame_headers(ctx, avctx, buf, buf_size);
1077    if (res < 0)
1078        return res;
1079
1080    /* skip sync(null) frames */
1081    if (res) {
1082        // we have processed 16 bytes but no data was decoded
1083        *got_frame = 0;
1084        return buf_size;
1085    }
1086
1087    /* skip droppable INTER frames if requested */
1088    if (ctx->frame_flags & BS_NONREF &&
1089       (avctx->skip_frame >= AVDISCARD_NONREF))
1090        return 0;
1091
1092    /* skip INTER frames if requested */
1093    if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY)
1094        return 0;
1095
1096    /* use BS_BUFFER flag for buffer switching */
1097    ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1;
1098
1099    if ((res = ff_get_buffer(avctx, frame, 0)) < 0)
1100        return res;
1101
1102    /* decode luma plane */
1103    if ((res = decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40)))
1104        return res;
1105
1106    /* decode chroma planes */
1107    if ((res = decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10)))
1108        return res;
1109
1110    if ((res = decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10)))
1111        return res;
1112
1113    output_plane(&ctx->planes[0], ctx->buf_sel,
1114                 frame->data[0], frame->linesize[0],
1115                 avctx->height);
1116    output_plane(&ctx->planes[1], ctx->buf_sel,
1117                 frame->data[1], frame->linesize[1],
1118                 (avctx->height + 3) >> 2);
1119    output_plane(&ctx->planes[2], ctx->buf_sel,
1120                 frame->data[2], frame->linesize[2],
1121                 (avctx->height + 3) >> 2);
1122
1123    *got_frame = 1;
1124
1125    return buf_size;
1126}
1127
1128
1129static av_cold int decode_close(AVCodecContext *avctx)
1130{
1131    free_frame_buffers(avctx->priv_data);
1132
1133    return 0;
1134}
1135
1136const FFCodec ff_indeo3_decoder = {
1137    .p.name         = "indeo3",
1138    .p.long_name    = NULL_IF_CONFIG_SMALL("Intel Indeo 3"),
1139    .p.type         = AVMEDIA_TYPE_VIDEO,
1140    .p.id           = AV_CODEC_ID_INDEO3,
1141    .priv_data_size = sizeof(Indeo3DecodeContext),
1142    .init           = decode_init,
1143    .close          = decode_close,
1144    FF_CODEC_DECODE_CB(decode_frame),
1145    .p.capabilities = AV_CODEC_CAP_DR1,
1146    .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
1147};
1148